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Abstract: The past few years have witnessed a surge of interest in non-Hermitian Floquet topo-
logical matter due to its exotic properties resulting from the interplay between driving fields and
non-Hermiticity. The present review sums up our studies on non-Hermitian Floquet topological
matter in one and two spatial dimensions. We first give a bird’s-eye view of the literature for clarifying
the physical significance of non-Hermitian Floquet systems. We then introduce, in a pedagogical
manner, a number of useful tools tailored for the study of non-Hermitian Floquet systems and their
topological properties. With the aid of these tools, we present typical examples of non-Hermitian
Floquet topological insulators, superconductors, and quasicrystals, with a focus on their topological
invariants, bulk-edge correspondences, non-Hermitian skin effects, dynamical properties, and local-
ization transitions. We conclude this review by summarizing our main findings and presenting our
vision of future directions.
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1. Introduction

When a physical system is driven periodically in time, its properties can be drastically
modified, leading to new phases and phenomena beyond the static limit [1–6]. One
such example, which can be traced back to the early history of human civilization, is the
Archimedes screw pump. Under periodic operations, the Archimedes screw could transfer
water from low-lying rivers into high-lying irrigation ditches, rather than letting the water
follow its natural flowing tendency. Another example is the tide caused by the combined
effects of the gravitational forces exerted by the Moon and its periodic orbiting around
the Earth. In the quantum domain, rich nonequilibrium features have been identified
in periodically driven systems over the past decades, such as the Rabi oscillation [7–9],
stimulated Raman adiabatic passage [10–12], dynamical localization [13–15], Thouless
pump [16–18], time crystal [19–21], Floquet topological phase [22–24] and integer quantum
Hall effect from chaos [25–27] (for more information, see the reviews [28–60] and references
therein). Among all these discoveries, Floquet topological matter stands out as one pivotal
impetus in the study of periodically driven quantum systems. Over the past twenty years,
it has attracted great attention in the context of quantum dynamics [33,36,37], quantum
simulation [34,35,43], condensed matter physics [38,39,42], and so on.

The topological properties of a periodically driven system are mainly coded in its
Floquet states, which are eigenstates of the evolution operator over a driving period. This
one-period propagator is called the Floquet operator. For a system described by the Hamil-

tonian Ĥ(t) = Ĥ(t + T), the Floquet operator can be expressed as Û = T̂e−i
∫ t0+T

t0
Ĥ(t)dt.

Here t denotes time, T is the driving period, t0 denotes the initial time of the period, T̂ per-
forms the time ordering, and we have set the Planck constant h̄ = 1. Solving the eigenvalue
equation Û|ψ〉 = e−iE|ψ〉 gives us the Floquet eigenstate |ψ〉 and the quasienergy E. The
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latter is a phase factor and defined modulus 2π. Its range E ∈ [−π, π) is usually referred
to as the Floquet quasienergy Brillouin zone. Moreover, the quasienergy is stroboscopi-
cally conserved and plays the role of “energy” in driven systems with only discrete-time
translational symmetries. If the system also obeys the spatial translational symmetry, the
quasienergy dispersion E(k) with respect to the conserved quasimomentum k could also
be grouped into bands, which are thus called Floquet bands. Under appropriate conditions,
these quasienergy bands could show nontrivial topological properties, which can be cap-
tured by topological invariants of the corresponding Floquet–Bloch states or the Floquet
operator itself. Periodically driven quantum systems could, thus, support a new class of
nonequilibrium phases, which is nowadays known as Floquet topological matter.

Similar to static topological phases, Floquet topological phases can also possess
symmetry-protected edge states under open boundary conditions and exhibit quantized
dynamical or transport signals. However, three key features distinguish Floquet topo-
logical phases from their static counterparts. First, suitable driving fields can break
the symmetry dynamically and open gaps around the touching points of static energy
bands, yielding band inversions and topologically nontrivial band structures [22]. This
aspect of driving can usually be taken into account by the Floquet effective Hamiltoni-
ans obtained from high-frequency expansions of the driving potential [61–64]. Second,
as the quasienergy E is bounded from above (E = π) and below (E = −π), Floquet
bands can meet with each other at E = ±π and develop nontrivial windings around
the whole quasienergy Brillouin zone E ∈ [−π, π). These spectral windings result in
unique states of matter in periodically driven systems, such as Floquet semi-metals with
Floquet band holonomy [65–67], degenerated edge modes at E = ±π (anomalous Floquet π
modes) [68–71] and anomalous chiral edge states in Floquet topological insulators
(FTIs) [72–74], which have no counterparts in static systems. Third, the driving field
could assist in the formation of long-range, and even spatially non-decaying coupling
among different degrees of freedom in a lattice [24], leading to Floquet phases with large
topological invariants, rich topological transitions, and a substantial number of topological
edge states [75–82]. These phases and boundary states go beyond the description of any
static tight-binding models in typical situations (i.e., with finite-range or spatially decaying
hopping amplitudes). The investigation of the above-mentioned features has not only led
to new classification schemes of Floquet matter in theories [83–86] but also promoted ex-
perimental realizations of numerous Floquet topological phases in solid-state and quantum
simulator setups [87–102], bringing new hope for applications in ultrafast electronics [38]
and topological quantum computing [103–105].

Non-Hermitian physics deals with classical and open quantum systems subject to
measurements, dissipation, gain, and loss, or nonreciprocal effects [106–109]. A physical
system described by a Hamiltonian Ĥ is regarded as non-Hermitian if Ĥ is not self-adjoint,
i.e., Ĥ 6= Ĥ†. The spectrum of such a non-Hermitian Hamiltonian is complex in general
and the resulting dynamics is non-unitary. In recent years, the study of topological phases
in non-Hermitian systems has attracted much attention from both theoretical and experi-
mental sides (see Refs. [110–134] for reviews). The investigation of these nonequilibrium
phases may help to deepen our understanding of topological matter in open systems and
optimize the design of noise-resilient quantum devices.

The recent boom in non-Hermitian topological matter is driven by a couple of key
concepts, including the parity and time-reversal (PT) symmetry, the exceptional point (EP),
and the non-Hermitian skin effect (NHSE). PT symmetry can appear in open systems with
balanced gain and loss. A PT-symmetric, non-Hermitian Hamiltonian has a real spectrum
in the PT unbroken regime [135,136]. PT symmetry was thus viewed as a possible way to lift
the restriction of Hermiticity for Hamiltonians in early studies [109]. Recently, it was found
that the topological and transport properties of a system may also change when it undergoes
a PT-symmetry-breaking transition, yielding phases unique to non-Hermitian Hamilto-
nians [137–139]. Models with PT symmetry, thus, became a focus on the study of non-
Hermitian topological matter [112–114,116,117,120,126,134]. The combination of PT and
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other symmetries further results in various classification schemes for non-Hermitian topo-
logical phases that go beyond their Hermitian counterparts [140–148]. The EP is a class of
level degeneracy point unique to non-Hermitian operators. At an EP, the geometric and alge-
braic multiplicities of a non-Hermitian matrix are different, leading to the breakdown of its
diagonalizability and the coalescence of its eigenvectors [106,110,111]. In recent years, vari-
ous gapless band structures (nodal points, lines, loops, surfaces, knots, etc.) formed by EPs
were discovered, giving rise to rich non-Hermitian topological (semi-)metallic phases with
intriguing transport properties [118,120,124,125,127,149]. In addition, EPs were also found
to play key roles in topological energy transfer [150–152], high-precision sensing [153–156],
topological lasers [157–159], and strongly correlated phases [124,125]. The NHSE refers
to the accumulation of bulk states around the edges of an open-boundary non-Hermitian
lattice. It highlights the extreme sensitivity of non-Hermitian physics to the boundary
conditions of a system [122,128,133]. This phenomenon not only blurs the distinction
between bulk and edge states in non-Hermitian models but also breaks the well-established
bulk–boundary correspondence in Hermitian topological matter [160–164]. Over the past
few years, a couple of theoretical frameworks have been introduced to characterize the
NHSE and its related topological phenomena [165–175], which are accompanied by the
experimental observations of the NHSE in AMO systems, electrical circuits, and metamate-
rials [176–183]. Entanglement transitions associated with the NHSE were also identified in
a recent study [184]. Further progress has been made in the study of non-Hermitian topo-
logical matter in randomly disordered [185–189], quasiperiodic [190–194], and many-body
systems [195–209].

With all these developments, a natural follow-up is to consider the system in a more
general situation, in which it is subject to both time-periodic drivings and non-Hermitian
effects. Such non-Hermitian Floquet systems may possess exotic dynamical phenomena
and topological phases with no static or Hermitian analogies. On the theoretical side, the
investigation of driven non-Hermitian systems may lead to the discovery of new topologi-
cal states and bring about the improvement of classification schemes for nonequilibrium
phases of matter in general. On the practical side, the exploration of non-Hermitian Floquet
matter is helpful to the design of new approaches for preparing or stabilizing topologi-
cally nontrivial states and controlling material properties. It also stimulates new ideas for
realizing quantum devices and quantum computing protocols that are robust to perturba-
tions caused by the environment. Though still at the early stage, much progress has been
made in the realization and characterization of non-Hermitian Floquet phases [210–255].
In this review, we limit our scope to the discussion of a number of typical topological
phases we discovered in non-Hermitian Floquet systems [256–266]. A schematic illustra-
tion is given in Figure 1. In Section 2, we give a pedagogical introduction to some key
aspects of Floquet systems, including their dynamical and topological characterizations. In
Section 3, we present typical examples of non-Hermitian Floquet topological insulators,
superconductors, and quasicrystals and summarize their main physical properties, with
a focus on the features that are unique to driven non-Hermitian systems. In Section 4,
we conclude this review, briefly mention some relevant studies, and discuss potential
future work.
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Figure 1. Non-Hermitian Floquet topological matter: a schematic diagram to illustrate the concepts
and definitions of several typical phases.

2. Background

We start with a recap of the basic description of a non-Hermitian Floquet system. The
Hamiltonian of such a system satisfies Ĥ(t) = Ĥ(t + T), and there exists t ∈ [0, T] such
that Ĥ(t) 6= [Ĥ(t)]†. Here t denotes time and T is the driving period. The state of the
system evolves according to the Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (1)

where we have set h̄ = 1. We first show that this equation can be solved using Floquet states
even though Ĥ(t) is non-Hermitian. This is followed by different ways of obtaining the Flo-
quet states in general situations, in the high-frequency regime, and in the adiabatic regime.
We next discuss the symmetry, topological invariants, and dynamical characterizations
of non-Hermitian Floquet states, with a focus on the types of physical systems explored
in our previous studies. We conclude this section by presenting some tools for charac-
terizing the spectrum properties and localization transitions in non-Hermitian Floquet
disordered systems.
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2.1. Floquet Theorem

We sketch a proof of the Floquet theorem in this subsection [267]. It follows the proof
of the Bloch theorem for waves in one-dimensional periodic lattices [268]. Applying the
Fourier expansion to our time-periodic Hamiltonian Ĥ(t) in the time–frequency domain,
we find

Ĥ(t) = ∑
n

Ĥ(ωn)eiωnt, ωn = nω = n
2π

T
, n ∈ Z. (2)

Here, ω is the driving frequency. For an infinite system, the set of plane waves {|ψε(t)〉 =
|ϕ(r)〉e−iεt} can be chosen as a suitable basis. We can write down a matrix expression for
Ĥ(t) in the orthonormal and complete basis {|ψε(t)〉}. Acting Ĥ(t) on |ψε(t)〉, we obtain

Ĥ(t)|ψε(t)〉 = ∑
n

Ĥ(ωn)|ϕ(r)〉e−i(ε−ωn)t = ∑
n

Ĥ(ωn)|ψε−ωn(t)〉. (3)

For any given n ∈ Z, the state |ψε−ωn(t)〉 belongs to the subspace

Sε = {|ψε(t)〉, |ψε±ω(t)〉, |ψε±2ω(t)〉, . . . , |ψε±nω(t)〉, . . . }. (4)

It is clear that any two subspaces Sε and Sε′ (ε
′ 6= ε) are decoupled under the action of

Ĥ(t) if Re(ε− ε′) ∈ (−ω, ω). Moreover, Sε and Sε′ are equivalent if there exists an n ∈ Z
such that ε− ε′ = nω. Therefore, we can study the dynamics of the system separately in
each subspace Sε for Re(ε) ∈ [−π/T, π/T), which is usually called the first quasienergy
Brillouin zone (BZ). The quasienergy ε is, thus, a conserved quantity due to the discrete-
time translational symmetry of Ĥ(t), similar to the conserved quasimomentum due to
the discrete-space translational symmetry of a static Hamiltonian. In the subspace Sε, a
solution of the Schrödinger equation can be written as

|Ψε(t)〉 = ∑
n

c(ε + ωn)|ψε+ωn(t)〉 = e−iεt ∑
n

c(ε + ωn)|ϕ(r)〉e−iωnt, (5)

where {c(ε + ωn)} are complex coefficients. It is clear that Equation (5) possesses a time-
periodic component

|uε(t)〉 ≡∑
n

c(ε + ωn)|ϕ(r)〉e−iωnt = |uε(t + T)〉. (6)

Therefore, we can express the general solution |Ψε(t)〉 as the product of an oscillating phase
factor e−iεt and a time-periodic Floquet mode |uε(t)〉, i.e.,

|Ψε(t)〉 = e−iεt|uε(t)〉. (7)

It also implies that
|Ψε(t + T)〉 = e−iεT |Ψε(t)〉. (8)

The latter equation indicates that the only change in the state |Ψε(t)〉 after undergoing
a one-period evolution is to pick up an exponential factor e−iεT . We refer to the set
{|Ψε(t)〉|Re(ε) ∈ [−π/T, π/T)} as Floquet eigenstates of the system. They form an or-
thonormal and complete basis at each instant of time t.

Since the evolution from |Ψε(t)〉 to |Ψε(t + T)〉 is governed by the Schrödinger equa-
tion, we can also express Equation (8) as

Û(t + T, t)|Ψε(t)〉 = e−iεT |Ψε(t)〉, (9)

where Û(t+ T, t) = T̂e−i
∫ t+T

t Ĥ(t′)dt′ is nothing but the Floquet operator (evolution operator
over one driving period) of the system. When we are only concerned with the stroboscopic
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dynamics, the initial time dependence of Equation (9) is not important. In this case, we can
set t = 0 in Equation (9) and express the Floquet eigenvalue equation as

Û|ΨE〉 = e−iE|ΨE〉, (10)

where Û = T̂e−i
∫ T

0 Ĥ(t)dt and we have introduced E = εT as the dimensionless quasienergy,
whose first BZ is given by [−π, π). To sum up, we find that the solution of Equation (1)
with a time-periodic Ĥ(t) has the form of Equations (7) or (8), where |Ψε(t)〉 is an eigenstate
of the Floquet operator of the system. For stroboscopic observations, all the Floquet
eigenstates can thus be obtained by solving the eigenvalue Equation (10) of the Floquet
operator Û. Due to the completeness of Floquet eigenstate basis {|ΨE〉}, we can expand
an arbitrary initial state of the system as |Ψ(0)〉 = ∑E cE|ΨE〉. The resulting state after an
evolution over n driving periods is then given by

|Ψ(t)〉 = ∑
E

cEe−inE|ΨE〉. (11)

Note that for a non-Hermitian Ĥ(t), Û is generally non-unitary and the quasienergy E
may have a non-vanishing imaginary part. In this case, the real part of E still belongs to the
range of [−π, π) and our arguments leading to the general solution (11) can be satisfied.

2.2. Floquet Eigenvalue Equation

In the most general situations, we can solve Equation (10) numerically by the split-
operator method [3]. Dividing the evolution periodic T into N segments with a large
enough N, we can express the Floquet operator Û approximately as

Û ' e−iĤ((N−1)∆t)∆te−iĤ((N−2)∆t)∆t · · · e−iĤ(∆t)∆te−iĤ(0)∆t, (12)

where ∆t = T/N. Over each small time interval ∆t, Ĥ(t) is approximately time-independent
and we can diagonalize it numerically at t = `∆t as

Ĥ(`∆t) = V`D`V−1
` . (13)

Each column of V` represents a right eigenvector of Ĥ(`∆t). The evolution operator over
the one-time interval ∆t then takes the form

e−iĤ(`∆t)∆t = V`e−iD`∆tV−1
` , ` = 0, 1, . . . , N − 1. (14)

The multiplication of all the V`e−iD`∆tV−1
` terms from right to left for ` = 0 to N − 1 yields

Equation (12), which further converges to the exact Floquet operator in the limit N → ∞.
We can, thus, numerically solve the Floquet eigenvalue equation by diagonalizing the
approximated Û in Equation (12). This approach works in principle for systems with any
individual or multiple driving frequencies. But it may become time-consuming in practice
for certain continuously or slowly driven systems.

When the driving field takes the form of periodic kicking or quenching, the series in
Equation (12) can be greatly simplified and even obtained exactly. Here, we give several
examples. Consider a time-periodic Hamiltonian of the form

Ĥ(t) = Ĥ0 + ∑
`∈Z

δ(t/T − `)Ĥ1, (15)

where δ(t/T − `) is the delta function peaked at t = `T, i.e., each integer multiple of the
driving period. The dynamics over each driving period, thus, constitutes a free evolution
part controlled by Ĥ0 and a delta kicking force controlled by Ĥ1. The quantum kicked rotor
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is one representative example of such a system [28]. Focusing on the one-period evolution
from t = `T − 0+ to t = (`+ 1)T − 0+, we find the Floquet operator of Ĥ(t) to be

Û =e−i
∫ (`+1)T−0+

`T+0+
Ĥ(t)dte−i

∫ `T+0+

`T−0+ Ĥ(t)dt

=e−i
∫ (`+1)T−0+

`T+0+
Ĥ0dte−i

∫ `T+0+

`T−0+ δ(t/T−`)Ĥ1dt

=e−iĤ0Te−iĤ1T . (16)

Similarly, if there are two kicks separated by a time interval τ within each driving period,
the Hamiltonian could take the form of

Ĥ(t) = Ĥ0 + ∑
`∈Z

δ(t/T − τ/T − `)Ĥ2 + ∑
`∈Z

δ(t/T − `)Ĥ1. (17)

For the evolution from time t = `T − 0+ to t = (`+ 1)T − 0+, the Floquet operator now
takes the form of

Û = e−iĤ0(T−τ)e−iĤ2Te−iĤ0τe−iĤ1T . (18)

One typical example of such a system is the double-kicked quantum rotor [24]. For a
periodically quenched Hamiltonian in the form of

Ĥ(t) =

{
Ĥ1 t ∈ [`T, `T + T1)

Ĥ2 t ∈ [`T + T1, `T + T1 + T2)
, (19)

where T = T1 + T2, we can also directly obtain the corresponding Floquet operator from
t = `T − 0+ to t = (`+ 1)T − 0+ as

Û =e−i
∫ `T+T−0+
`T+T1

Ĥ(t)dte−i
∫ `T+T1−0+

`T−0+
Ĥ(t)dt

=e−i
∫ `T+T−0+
`T+T1

Ĥ2dte−i
∫ `T+T1−0+

`T−0+
Ĥ1dt

=e−iĤ2T2 e−iĤ1T1 . (20)

The discrete-time quantum walk can be viewed as one example of such a periodically
quenched system [31]. Time-periodic quenches are also frequently implemented in the
study of discrete time crystals [19–21]. When [Ĥ1, Ĥ2] 6= 0, the quenches (or kicks) may
effectively generate long-range coupling in the system according to the Baker–Campbell–
Hausdorff formula, leading to Floquet phases with large topological invariants and many
boundary states. This point will be explicitly demonstrated by the examples discussed in
Section 3.

For a continuously driven system, the solution of the Floquet eigenvalue equation may
also be obtained approximately in terms of the frequency (Sambe) space
formalism [269–271]. Inserting the Floquet state in Equation (7) into the Schrödinger
Equation (1) and reorganizing the terms, we find[

Ĥ(t)− i
∂

∂t

]
|uε(t)〉 = ε|uε(t)〉. (21)

Using the Fourier expansion of Ĥ(t) and |uε(t)〉 = ∑n e−iωnt|uε(ωn)〉, we further obtain

∑
m,n

Ĥ(ωm)ei(ωm−ωn)t|uε(ωn)〉 −∑
n

ωne−iωnt|uε(ωn)〉 = ε ∑
n

e−iωnt|uε(ωn)〉. (22)
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Multiplying 1
T eiω`t from the left on both sides of Equation (22) and performing the integral

over a driving period T, we arrive at

∑
m
(Ĥm−n −ωmδm,n)|uε(ωm)〉 = ε|uε(ωn)〉, (23)

where

Ĥm−n ≡ Ĥ(ωm−n) =
1
T

∫ T

0
e−iωm−ntĤ(t)dt, (24)

and ωm−n = (m − n)ω = (m − n) 2π
T . Equation (23) is an infinite-dimensional matrix

equation of the form

. . . . . . . . . . . . . . . . . . . . .

. . . Ĥ0 + 2ω Ĥ1 Ĥ2 Ĥ3 Ĥ4
. . .

. . . Ĥ−1 Ĥ0 + ω Ĥ1 Ĥ2 Ĥ3
. . .

. . . Ĥ−2 Ĥ−1 Ĥ0 Ĥ1 Ĥ2
. . .

. . . Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 −ω Ĥ1
. . .

. . . Ĥ−4 Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 − 2ω
. . .

. . . . . . . . . . . . . . . . . . . . .





...
|uε(ω−2)〉
|uε(ω−1)〉
|uε(ω0)〉
|uε(ω1)〉
|uε(ω2)〉

...


= ε



...
|uε(ω−2)〉
|uε(ω−1)〉
|uε(ω0)〉
|uε(ω1)〉
|uε(ω2)〉

...


. (25)

Note that each Ĥm−n has the same Hilbert space dimension d as the original Hamiltonian
Ĥ(t). As an example, for a harmonically driven system described by the Hamiltonian

Ĥ(t) = Ĥ0 + V̂eiωt + Ŵe−iωt, (26)

the above equation reduces to the following block tridiagonal form

. . . . . . . . . . . . . . . . . . . . .

. . . Ĥ0 + 2ω V̂ 0 0 0
. . .

. . . Ŵ Ĥ0 + ω V̂ 0 0
. . .

. . . 0 Ŵ Ĥ0 V̂ 0
. . .

. . . 0 0 Ŵ Ĥ0 −ω V̂
. . .

. . . 0 0 0 Ŵ Ĥ0 − 2ω
. . .

. . . . . . . . . . . . . . . . . . . . .





...
|uε(ω−2)〉
|uε(ω−1)〉
|uε(ω0)〉
|uε(ω1)〉
|uε(ω2)〉

...


= ε



...
|uε(ω−2)〉
|uε(ω−1)〉
|uε(ω0)〉
|uε(ω1)〉
|uε(ω2)〉

...


. (27)

In practical calculations, one should truncate the infinite-dimensional matrix in
Equation (25) at a sufficiently high harmonics Nω, leading to an Nd× Nd dimensional
Floquet effective Hamiltonian, whose eigenvalue problem can be numerically solved. As-
suming the characteristic energy scale of Ĥm−n for all m− n to be Ω, we can take a smaller
N to achieve the truncation for a larger ratio of ω/Ω, i.e., for a high-frequency driving field.
Instead, for a resonantly or slowly driven system, more harmonics should be kept during
the truncation. All the discussions presented in this subsection hold for both Hermitian
and non-Hermitian Hamiltonians Ĥ(t).

2.3. Floquet Effective Hamiltonian and High-Frequency Expansion

From the Floquet operator Û of a periodically driven system, one can formally define
its Floquet effective Hamiltonian as

Ĥeff =
i
T

ln Û ⇔ Û = e−iĤeffT . (28)
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Taking into account the fact that the quasienergies are defined modulus 2π/T, the
Ĥeff contains the same physical information as Û. Yet, it provides us with more room to
treat the properties of Floquet systems in analogy with static Hamiltonian models. For
a continuously driven system, the explicit form of Ĥeff is usually involved. This can be
inspected from Equation (12), as the Ĥ(`∆t) and Ĥ(m∆t) do not commute for ` 6= m in
general. When the frequency of the driving field is high enough, an approximate series
expression for Ĥeff can be obtained via high-frequency expansion methods [61–64]. Here,
we recap one such method in its full generality, which is applicable to both Hermitian and
non-Hermitian systems.

We first assume that the time-periodic Hamiltonian Ĥ(t) can be decomposed into a
static part Ĥ0 and a periodically modulated part V̂(t), i.e.,

Ĥ(t) = Ĥ0 + V̂(t), V̂(t) = V̂(t + T). (29)

Here, T = 2π/ω is the driving period, with ω being the driving frequency. Next, we apply
a similarity transformation to the evolved state |Ψ(t)〉 in the Schrödinger Equation (1),
yielding a rotated state

|Φ(t)〉 = Û (t)|Ψ(t)〉 = eiK̂(t)|Ψ(t)〉. (30)

Here K̂(t) is sometimes called the kick operator. It encodes the information regarding the
micromotion dynamics of the system. Plugging |Ψ(t)〉 = e−iK̂(t)|Φ(t)〉 into Equation (1)
leads to the transformed Schrödinger equation

i
∂

∂t
|Φ(t)〉 = Ĥeff|Φ(t)〉, (31)

where

Ĥeff = eiK̂(t)Ĥ(t)e−iK̂(t) + i
deiK̂(t)

dt
e−iK̂(t). (32)

The aim of the high-frequency expansion method is to find a time-independent Ĥeff by
transferring all time-dependent terms into the kick operator K̂(t). When such a purpose is
formally achieved, we can express the Floquet evolution of a system as

Û(t1, t0)|Ψ(t0)〉 = e−iK̂(t1)e−iĤeff(t1−t0)eiK̂(t0)|Ψ(t0)〉. (33)

That is, the system is subject to an initial kick associated with the operator K̂(t0), then
evolved under the time-independent Ĥeff, and finally subject to a second kick carried out by
the operator K̂(t1). There is no need to perform any time-ordered integral in the calculation
of Û(t1, t0).

Assuming the driving frequency ω to be large, we may expand Ĥeff and K̂(t) into
power series of 1/ω as

Ĥeff =
∞

∑
n=0

1
ωn Ĥ(n)

eff , K̂ =
∞

∑
n=1

1
ωn K̂(n). (34)

In the meantime, we can apply Taylor expansions to the two terms in Equation (32) and
express Ĥeff as

Ĥeff =
∞

∑
n=0

in

n!
[

n of K̂︷ ︸︸ ︷
K̂, [K̂, . . . , K̂, [K̂, Ĥ]]]

+
∞

∑
n=1

i
in

n!
[

(n−1) of K̂︷ ︸︸ ︷
K̂, [K̂, . . . , K̂, [K̂, ∂tK̂]]]. (35)
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Note that we have concealed the explicit time-dependence of K̂(t) and K̂(n)(t) in the above
two equations for brevity. To proceed, we impose two further requirements for K̂(t),

K̂(t) = K̂(t + T),
∫ T

0
K̂(t)dt = 0. (36)

Inserting Equation (34) and the Fourier expansion

Ĥ(t) = Ĥ0 + ∑
m 6=0

V̂meimωt (37)

into Equation (35), we arrive at

∞

∑
n=0

1
ωn Ĥ(n)

eff

=
∞

∑
n=0

in

n!
[

n of K̂︷ ︸︸ ︷
∑
p

1
ωp K̂(p), [∑

q

1
ωq K̂(q), . . . , ∑

r

1
ωr K̂(r), [∑

s

1
ωs K̂(s),

(
Ĥ0 + ∑

m 6=0
V̂meimωt

)
]]]

+
∞

∑
n=1

in+1

n!
[

(n−1) of K̂︷ ︸︸ ︷
∑
p

1
ωp K̂(p), [∑

q

1
ωq K̂(q), . . . , ∑

r

1
ωr K̂(r), [∑

s

1
ωs K̂(s), ∂t ∑

m

1
ωm K̂(m)]]]. (38)

The high-frequency expansions of Ĥeff and K̂ are obtained by equating both sides of
Equation (38) at each order of 1/ω.

We can now carry out the calculations order-by-order to find the first few terms in the
series of Ĥeff and K̂. At the zeroth order, we could obtain

Ĥ(0)
eff = Ĥ0 + V̂(t)− 1

ω
∂tK̂(1) (39)

from Equation (38). To ensure that Ĥ(0)
eff is time-independent, we must choose

1
ω

∂tK̂(1) = V̂(t) = ∑
m 6=0

V̂meimωt, (40)

such that
K̂(1) = ∑

m 6=0

1
im

V̂meimωt. (41)

Therefore, up to the zeroth order of 1/ω, we have the following approximation for the
effective Hamiltonian

Ĥeff ≈ Ĥ(0)
eff = Ĥ0. (42)

Up to the first order of 1/ω, we have the following approximation for the kick operator

K̂(t) ≈ 1
ω

K̂(1) =
1
ω ∑

m 6=0

V̂m

im
eimωt. (43)

At the first order, we could find from Equation (38) that

Ĥ(1)
eff = i

[
K̂(1), Ĥ0 + V̂(t)

]
− 1

ω
∂tK̂(2) − i

2

[
K̂(1),

1
ω

∂tK̂(1)
]

= i
[
K̂(1), Ĥ0 + V̂(t)

]
− 1

ω
∂tK̂(2) − i

2

[
K̂(1), V̂(t)

]
= i
[
K̂(1), Ĥ0

]
+

i
2

[
K̂(1), V̂(t)

]
− 1

ω
∂tK̂(2). (44)
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By definition, any non-vanishing elements of i
[
K̂(1), Ĥ0

]
and − 1

ω ∂tK̂(2) are time-

dependent. The only time-independent term that could contribute to Ĥ(1)
eff comes from the

term i
2

[
K̂(1), V̂(t)

]
, which can be written explicitly as

i
2

[
K̂(1), V̂(t)

]
=

i
2

[
∑

m 6=0

1
im

V̂meimωt, ∑
m′ 6=0

V̂m′ e
im′ωt

]

= ∑
m,m′ 6=0

ei(m+m′)ωt

2m
[
V̂m, V̂m′

]
. (45)

The time-independent terms are those with m′ = −m. Collecting these terms together,
we find

Ĥ(1)
eff = ∑

m 6=0

[
V̂m, V̂−m

]
2m

= ∑
m 6=0

V̂mV̂−m

m
. (46)

Therefore, up to the first order of 1/ω, we have the following approximation for the
effective Hamiltonian

Ĥeff ≈ Ĥ(0)
eff +

1
ω

Ĥ(1)
eff = Ĥ0 +

1
ω ∑

m 6=0

V̂mV̂−m

m
. (47)

The form of K̂(2) is determined by the remaining time-dependent terms. Performing the
integration over time directly, we obtain

K̂(2) = ∑
m 6=0

1
m
[
V̂m, Ĥ0

] ∫
ωeimωtdt + ∑

m,m′ 6=0,−m

[
V̂m, V̂m′

]
2m

∫
ωei(m+m′)ωtdt

= ∑
m 6=0

1
im2

[
V̂m, Ĥ0

]
eimωt + ∑

m,m′ 6=0,−m

[
V̂m, V̂m′

]
2im(m + m′)

ei(m+m′)ωt. (48)

Up to the second order of 1/ω, we can thus approximate the kick operator by

K̂(t) ≈ 1
ω

K̂(1) +
1

ω2 K̂(2)

=
1
ω ∑

m 6=0

V̂m

im
eimωt +

1
ω2 ∑

m 6=0

1
im2

[
V̂m, Ĥ0

]
eimωt

+
1

ω2 ∑
m,m′ 6=0,−m

[
V̂m, V̂m′

]
2im(m + m′)

ei(m+m′)ωt. (49)

We could continue these self-consistent calculations to obtain higher-order terms in the
high-frequency expansion of Ĥeff and K̂(t). For example, for the second-order component
Ĥ(2)

eff , we have

Ĥ(2)
eff =

−1
2

[K̂(1), [K̂(1), Ĥ0 + V̂(t)]] + i[K̂(2), Ĥ0 + V̂(t)]

+
−1
ω

∂tK̂(3) +
−i
2ω

[K̂(1), ∂tK̂(2)] +
−i
2ω

[K̂(2), ∂tK̂(1)]

+
1

6ω
[K̂(1), [K̂(1), ∂tK̂(1)]. (50)

Dropping the time-dependent terms, we are left with

Ĥ(2)
eff =

1
2 ∑

m 6=0

[[V̂m, Ĥ0], V̂−m]

m2 +
1
3 ∑

l,m 6=0

[V̂l , [V̂m, V̂−l−m]]

lm
. (51)
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Therefore, up to the second-order correction in 1/ω, the effective Hamiltonian Ĥeff turns
out to be

Ĥeff ≈ Ĥ0 +
1
ω ∑

m 6=0

V̂mV̂−m

m

+
1

2ω2 ∑
m 6=0

[[V̂m, Ĥ0], V̂−m]

m2 +
1

3ω2 ∑
l,m 6=0

[V̂l , [V̂m, V̂−l−m]]

lm
. (52)

This approximation holds for both Hermitian and non-Hermitian Floquet systems under
high-frequency driving fields. Note that for stroboscopic evolution, we have t1 − t0 = NT
with N ∈ Z and K̂(t1) = K̂(t0) in Equation (33). In this case, the term K̂(t0) in Equation (33)
describes an initial phase, which can be set to zero as the expansion of K̂(t) at every order
of 1/ω is only determined up to a constant (see Equations (41) and (48)). Therefore, for
stroboscopic dynamics, we can simply use the Ĥeff to capture most of the essential physics.
In Section 3, we will showcase the application of the high-frequency methods presented here
to the Floquet engineering of non-Hermitian quasicrystals.

To be concrete, we illustrate the usage of Ĥeff here with a simple example. Consider a
harmonically driven two-level Hamiltonian of the form

Ĥ(t) = (hx + iγ/2)[cos(ωt)σx + sin(ωt)σy] + hzσz, (53)

where hx, hz, γ ∈ R, and σα for α = x, y, z are Pauli matrices. It is not hard to verify that by
choosing the kick operator as

eiK̂(t) =

(
1 0
0 e−iωt

)
, (54)

the Floquet effective Hamiltonian in the rotating frame can be exactly obtained from
Equation (32), i.e.,

Ĥeff = (ω/2)σ0 + (hx + iγ/2)σx + (hz −ω/2)σz, (55)

where σ0 denotes the 2× 2 identity matrix. We see that the two levels of H(t) have the
instantaneous eigenenergies

E± = ±
√

h2
x + h2

z − γ2/4 + ihxγ, (56)

which are time-independent and complex in general. They could meet with each other at a
second-order EP with E = 0 when hx = 0 and hz = ±γ/2. Meanwhile, Ĥeff in Equation (55)
has two quasienergy levels defined by

ε± =
ω

2
±
√

h2
x +

(
hz −

ω

2

)2
− γ2/4 + ihxγ. (57)

They could meet with each other at a second-order Floquet EP with ε = ω/2 when hx = 0
and hz = ω/2± γ/2. It is clear that the EP is shifted by the driving in both its energy and
location in the parameter space. If we define εT as the dimensionless quasienergy E, the
Floquet EP of our two-level system appears at the quasienergy E = π. This could lead to
Floquet exceptional topology and anomalous π edge modes, which are unique to driven
non-Hermitian systems. We will give an explicit example to demonstrate this point in
Section 3.

2.4. Adiabatic Perturbation Theory

We now consider a non-Hermitian system that is subject to slow-in-time and cyclic
modulations. It can be viewed as the opposite limit to a high-frequency driven system.
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Introducing a re-scaled and dimensionless time variable s = t/T, we can express the
Schrödinger Equation (1) as

i
∂

∂s
|Ψ(s)〉 = TĤ(s)|Ψ(s)〉. (58)

Our purpose is to find an expansion for |Ψ(s)〉 in the series of 1/T. This constitutes an
adiabatic perturbation theory (APT) of the system [272], providing that different energy
levels of Ĥ(s) are gapped for all s ∈ [0, 1].

The Hamiltonian Ĥ(s) is periodic in the scaled time s with Ĥ(s) = Ĥ(s + 1). We denote
its instantaneous right and left biorthonormal eigenvectors as {|n(s)〉} and {|ñ(s)〉} [273],
such that

Ĥ(s)|n(s)〉 = En(s)|n(s)〉, 〈ñ(s)|Ĥ(s) = 〈ñ(s)|En(s), (59)

〈m̃(s)|n(s)〉 = δmn, ∑
n
|n(s)〉〈ñ(s)| = 1. (60)

Here, En(s) is the instantaneous eigenenergy associated with |n(s)〉, which could be com-
plex if Ĥ(s) 6= Ĥ†(s). To proceed, we introduce an ansatz solution for the time-evolved
state |Ψ(s)〉 as

|Ψ(s)〉 = ∑
n

e−iΩn(s)cn(s)|n(s)〉, (61)

where
Ωn(s) ≡ T

∫ s

0
En(s′)ds′ (62)

describes a dynamical phase accumulated over the time interval [0, s]. At s = 0, we have
Ωn(0) = 0 and

cn(0) = 〈ñ(0)|Ψ(0)〉 (63)

for the initial state |Ψ(0)〉. Plugging Equation (61) into Equation (58), we obtain

∑
n

e−iΩn(s) ċn(s)|n(s)〉 = −∑
n

e−iΩn(s)cn(s)|ṅ(s)〉, (64)

where ċn(s) = dcn(s)/ds and |ṅ(s)〉 = d|n(s)〉/ds. Acting 〈m̃(s)| from the left on both
sides of the above equation and using Equation (60), we find

ċm(s) = − ∑
n 6=m

eiΩmn(s)cn(s)〈m̃(s)|ṅ(s)〉, (65)

where Ωmn(s) ≡ Ωm(s)−Ωn(s). We have made the parallel transport gauge choice so that
〈ñ(s)|ṅ(s)〉 = 0. Performing the integration over s and keeping the terms on the right-hand
side up to the first order of 1/T (i.e., up to the first-order non-adiabatic correction), we
arrive at

cm(s) = cm(0) +
1
T ∑

n 6=m

[
i〈m̃(s′)|ṅ(s′)〉

∆mn(s′)
eiΩmn(s′)

]∣∣∣∣s′=s

s′=0
cn(0), (66)

where ∆mn(s) = Em(s)− En(s). To reach Equation (66), we have assumed Ωmn(s) to be
real for all m 6= n and s ∈ [0, 1]. This can be achieved if every instantaneous energy level
possesses the same imaginary part iγ(s). On the other hand, Equation (66) is valid if
the Ĥ(s) is PT-invariant at every s, such that En(s) ∈ R for all n. The approximation in
Equation (66) does not hold if ∆mn(s) /∈ R, which would cause the exponential amplification
or decay of the amplitude cn(s). So the APT developed here is more restrictive in application
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than its Hermitian counterparts. Inserting Equation (66) into Equation (61) results in the
solution to Equation (58) up to first-order non-adiabatic corrections, i.e.,

|Ψ(s)〉 = ∑
m

e−iΩm(s)

{
cm(0) +

1
T ∑

n 6=m

[
i〈m̃(s′)|ṅ(s′)〉

∆mn(s′)
eiΩmn(s′)

]∣∣∣∣s′=s

s′=0
cn(0)

}
|m(s)〉. (67)

Since we have employed the formalism of biorthonormal eigenvectors, we may consider
another ansatz solution for the left eigenvector

〈Ψ̃(s)| = ∑
n

eiΩn(s)c∗n(s)〈ñ(s)|, (68)

which obeys a conjugate Schrödinger equation

−i
∂

∂s
〈Ψ̃(s)| = 〈Ψ̃(s)|Ĥ. (69)

Following the same reasoning in deriving Equation (67), we find, up to the first order of
1/T, that

〈Ψ̃(s)| = ∑
m

e+iΩm(s)

c∗m(0) +
1
T ∑

n 6=m

[
i〈 ˙̃n(s′)|m(s′)〉

∆nm(s′)
eiΩnm(s′)

]s′=s

s′=0

c∗n(0)

〈m̃(s)|. (70)

Assuming that initially only the state with m = ` is occupied such that cm(0) = δm`, we
can further simplify Equations (67) and (70) to

|Ψ`(s)〉 = e−iΩ`(s)

[
|`(s)〉+ 1

T ∑
m 6=`

i〈m̃(s)| ˙̀(s)〉
∆m`(s)

|m(s)〉
]
− 1

T ∑
m 6=`

e−iΩm(s) i〈m̃(0)| ˙̀(0)〉
∆m`(0)

|m(s)〉, (71)

〈Ψ̃`(s)| = e+iΩ`(s)

[
〈˜̀(s)|+ 1

T ∑
m 6=`

i〈 ˙̀̃(s)|m(s)〉
∆`m(s)

〈m̃(s)|
]
− 1

T ∑
m 6=`

e+iΩm(s) i〈 ˙̀̃(0)|m(0)〉
∆`m(0)

〈m̃(s)|. (72)

For any observable Ô, up to the correction of order 1/T, we can now express its biorthogonal
average over the states {|Ψ`(s)〉, |Ψ̃`(s)〉} as

〈Ψ̃`(s)|Ô|Ψ`(s)〉 = 〈˜̀(s)|Ô|`(s)〉+ 1
T ∑

m 6=`

i〈m̃(s)| ˙̀(s)〉
∆m`(s)

〈˜̀(s)|Ô|m(s)〉

+
1
T ∑

m 6=`

i〈 ˙̀̃(s)|m(s)〉
∆`m(s)

〈m̃(s)|Ô|`(s)〉. (73)

We notice that this average does not contain any time-oscillating phase factors.
We now illustrate this APT with an application in the study of dynamical topological

phenomena. Let us consider noninteracting particles in a one-dimensional (1D) periodic
lattice, whose onsite potential is also varied slowly and periodically in time. This is the
typical situation encountered in the topological Thouless pump [16–18]. The group velocity
of the particle can be expressed as v̂ = ∂k Ĥ, where k is the quasimomentum. At the initial
time s = 0, we assume that the band ` is uniformly filled, and it is separated from the other
bands at all k and s. The pumped number of particles over one adiabatic cycle due to this
initially filled band is then given by

N` =
∫ π

−π

dk
2π

∫ 1

0
ds〈Ψ̃`(s)|∂k Ĥ|Ψ`(s)〉. (74)
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With the aid of Equation (59), it is not hard to identify that

〈˜̀(s)|∂k Ĥ|`(s)〉 = ∂kE`(k, s), (75)

〈˜̀(s)|∂k Ĥ|m(s)〉
∆m`(s)

= 〈˜̀(s)|∂k|m(s)〉, m 6= `, (76)

where E`(k, s) denotes the energy dispersion of the `th adiabatic Bloch band. Plugging
Equations (75), (76), and (73) into Equation (74), we obtain

N` =
∫ π

−π

dk
2π

∫ 1

0
ds∂kE`(k, s) (77)

+ ∑
m 6=`

∫ π

−π

dk
2πi

∫ T

0
dt〈∂k˜̀(k, t)|m(k, t)〉〈m̃(k, t)|∂t`(k, t)〉

− ∑
m 6=`

∫ π

−π

dk
2πi

∫ T

0
dt〈∂t˜̀(k, t)|m(k, t)〉〈m̃(k, t)|∂k`(k, t)〉.

Noting that E`(k = −π, s) = E`(k = π, s) and ∑m |m(k, t)〉〈m̃(k, t)| = 1, we can
simplify the above equation and arrive at the pumped number of particles over an adiabatic
cycle, i.e.,

N` =
∫ π

−π

dk
2πi

∫ T

0
dt
[
〈∂k˜̀(k, t)|∂t`(k, t)〉 − 〈∂t˜̀(k, t)|∂k`(k, t)〉

]
. (78)

Equation (78) describes nothing but the Chern number of the adiabatic Bloch band `,
whose energy dispersion is defined on a two-dimensional (2D) torus (k, t) ∈ [−π, π)× [0, T).
The conditions for Equation (78) to hold are as follows. First, the Hamiltonian of the system
should be quasi-Hermitian with a real spectrum (e.g., PT-invariant) in our considered
parameter regime. Second, the band E` should be well gapped from the other bands
throughout the 2D torus (k, t) ∈ [−π, π)× [0, T), and h̄/T should be much smaller than
|∆`m| for all m 6= ` in order to guarantee the adiabatic condition. Third, the evolution of the
left and right vectors of the system should follow Equations (58) and (69). Note here that the
expression of the Chern number is not sensitive to the choice of biorthonormal basis. We
will obtain the same N` after changing ˜̀→ ` or `→ ˜̀ in Equation (78), as proved before for
non-Hermitian Chern bands [140].

2.5. Symmetry and Topological Characterization

Over the past few years, rich symmetry classifications and topological invariants have
been identified for non-Hermitian topological matter [140–148]. In this subsection, we
mainly recap two symmetries together with their associated topological numbers. They
are the most relevant ones for the characterization of non-Hermitian Floquet topological
phases reviewed in this work.

We first discuss PT symmetry, which is associated with the operator PT . Here, P de-
notes the parity operator and T denotes the time-reversal operator. When the Hamiltonian
of a non-Hermitian system Ĥ respects PT symmetry, we have [PT , Ĥ] = 0. In this case,
the system could have a real spectrum in the PT-unbroken regime, where the eigenstates
|ψ〉 and PT |ψ〉 of Ĥ are coincident up to a global phase. To see this, let us consider a
non-degenerate eigenstate |ψ〉 of Ĥ that satisfies the eigenvalue equation

Ĥ|ψ〉 = E|ψ〉. (79)

The PT symmetry of Ĥ then implies that

Ĥ(PT |ψ〉) = E∗(PT |ψ〉). (80)
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Therefore, PT |ψ〉 is also an eigenstate of Ĥ with the energy E∗. If |ψ〉 and Ĥ share the
same PT symmetry, |ψ〉 should be the common eigenstate of Ĥ and PT . PT |ψ〉 can thus
only differ from |ψ〉 up to a global phase, which means that E = E∗ ∈ R. However, with
the change in system parameters (e.g., the strengths of gain and loss), the PT symmetry
of |ψ〉 could be spontaneously broken and the spectrum of Ĥ could switch from real to
complex after undergoing a PT-symmetry-breaking transition. A topological invariant,
defined as [190]

w =
∫ 2π

0

dθ

2πi
∂θ ln det[Ĥ(θ)− E0], (81)

might be employed to characterize such a real-to-complex spectral transition. Here, E0
is a base energy chosen appropriately on the complex plane (not belong to the spectrum
of Ĥ). The parametrized Hamiltonian Ĥ(θ) = Ĥ(θ + 2π), where θ can be viewed as the
quasimomentum along an artificial dimension. We have also taken the periodic boundary
condition (PBC) for Ĥ before implementing its θ-parametrization. The w in Equation (81),
thus, depicts a spectral winding number with respect to the base energy E0, i.e., it counts
the number of times that the spectrum of Ĥ(θ) winds around E0 on the complex plane
when the synthetic quasimomentum θ is varied over a cycle. When the spectrum of Ĥ(θ)
is real, we must have w = 0, as a spectral loop cannot be formed on the complex plane
in this case. When the spectrum of Ĥ(θ) is complex, w may take an integer-quantized
value if Ĥ(θ) possesses spectral loops around E0. A suitably chosen E0 could then yield a
nonzero w when the first spectral loop appears on the complex-E plane, thereby detecting
the topological changes in the spectrum of Ĥ across the PT-breaking transition.

For a Floquet system, if the time-periodic Hamiltonian Ĥ(t) possesses PT symmetry
at each instant t, the resulting Floquet operator also has PT symmetry. In this case, we
can define the spectral winding number w as in Equation (81) for the stroboscopic Floquet
effective Hamiltonian so as to capture the PT-breaking transition in the quasienergy spec-
trum. We will provide explicit examples for this usage in Section 3.4, where we consider PT
transitions, localization transitions, and topological transitions in non-Hermitian Floquet
quasicrystals.

We next consider the chiral (or sublattice) symmetry, whose associated operator will
be denoted by S . When the Hamiltonian Ĥ of a system respects chiral symmetry S , we
have S ĤS = −Ĥ, where S is both Hermitian and unitary [274]. The implication of this
symmetry on the spectrum of Ĥ is as follows. Suppose that |ψ〉 is an eigenstate of a
chiral-symmetric Ĥ with the energy E, i.e., Ĥ|ψ〉 = E|ψ〉. We have

Ĥ(S|ψ〉) = −E(S|ψ〉). (82)

Therefore, S|ψ〉 is also an eigenstate of Ĥ with the energy −E. The eigenstates of a chiral-
symmetric Ĥ should then come in pairs of {|ψ〉,S|ψ〉} with the energies {E,−E} that
are symmetric with respect to E = 0. This further leads to a chiral-symmetry-protected
degeneracy for any eigenstate with E = 0. When the spectrum of Ĥ is gapped at E = 0,
we can group its energy levels into two clusters with ReE < 0 and ReE > 0. If these two
clusters meet with each other at E = 0 and then separate with the change in certain system
parameters, the system may undergo a phase transition. In one dimension, the change in
band topology of the system before and after such a transition could be characterized by a
winding number w0, defined as [274–276]

w0 =
∫ π

−π

dk
4π

Tr[SQ(k)i∂kQ(k)]. (83)

Here, the PBC has been assumed and k ∈ [−π, π) denotes the quasimomentum. The sign-
resolved projector Q(k) is obtained from the spectral decomposition of Ĥ = ∑k |k〉H(k)〈k|
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with H(k) = ∑n En(k)|n(k)〉〈ñ(k)| at each k by attributing +1 (−1) to every energy band n
with ReEn > 0 (ReEn < 0). Q(k) can thus be expressed as [263]

Q(k) = ∑
n

sgn{Re[En(k)]}|n(k)〉〈ñ(k)|. (84)

Here, H(k)|n(k)〉 = En(k)|n(k)〉 and 〈ñ(k)|H(k) = 〈ñ(k)|En(k). The set {|n(k)〉, |ñ(k)〉} of
basis satisfies the biorthonormal relations in Equation (60). Under the PBC, the winding
number w0 could characterize the bulk topological properties of a 1D chiral-symmetric
Hamiltonian Ĥ, either Hermitian or non-Hermitian. It could further distinguish between
different bulk topological insulating phases by showing a quantized jump at the transition
point, where the two band clusters of Ĥ meet with each other at E = 0. However, under
the open boundary condition (OBC), due to the possible existence of NHSE, the w0 defined
in Equation (83) may not be able to correctly predict the gap-closing points of the spectrum
in the parameter space and determine the number of degenerate edge modes at E = 0
in different parameter regions. This non-Hermiticity-induced breakdown of bulk–edge
correspondence may be recovered by introducing a real-space counterpart of w0, defined
as [169]

W0 = − 1
LB

TrB(SQ[Q, N̂]). (85)

Here S is the chiral symmetry operator of Ĥ, N̂ is the position operator in real space, and
Q is the flat band projector defined as

Q = ∑
|ψj〉∈bulk

sgn[Re(Ej)]|ψj〉〈ψ̃j|, (86)

where the summation is now taken over all the bulk eigenstates {|ψj〉} of Ĥ under the OBC.
The whole lattice of length L = LB + 2LE is decomposed into three segments, with a bulk
region of length LB in the middle, and two edge regions of the same length LE at the left
and right boundaries of the open chain. The trace TrB(·) is only taken over the bulk region,
which excludes all possible interruptions caused by the NHSE in the edge regions. The
resulting W0 was found to be able to faithfully capture the topological phase transitions
and bulk-edge correspondence in 1D, chiral-symmetric non-Hermitian systems even in the
presence of NHSE [169]. It was also suggested to be equivalent to the topological winding
number defined through the generalized Brillouin zone of non-Hermitian systems. By
definition, the winding number W0 in Equation (85) is also robust to perturbations induced
by symmetry-preserved disorders and impurities, making it applicable to more general
situations. In the clean, Hermitian, and thermodynamic limits, the W0 in Equation (85) can
be further reduced to the w0 in Equation (83) [274–276].

For a non-Hermitian Floquet system, we can state its chiral symmetry as follows [256].
From Equation (28), we can express the Floquet operator as Û = e−iĤeff , where we have set
the driving period T = 1 for brevity. Viewing the Ĥeff as a static Hamiltonian, we say that
it respects the chiral symmetry if there exists a unitary and Hermitian operator S such that
S ĤeffS = −Ĥeff. At the level of Û, the chiral symmetry then implies that

SÛS = Û−1. (87)

As in the case of static systems, the chiral symmetry of Û has a direct implication for
the symmetry of its spectrum. If |ΨE〉 is an eigenstate of Û with the quasienergy E, i.e.,
Û|ΨE〉 = e−iE|ΨE〉, we immediately have

Û(S|ΨE〉) = e−i(−E)(S|ΨE〉), (88)

which means that S|ΨE〉 is also an eigenstate of Û with the quasienergy −E. The Flo-
quet spectrum of Û is then symmetric with respect to both the quasienergies E = 0 and
E = π. The latter is because −E and E are identified at the quasienergy π. When the
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spectrum is gapped at E = 0 and π, the quasienergy levels of Û could be grouped into
two clusters. One of them has the quasienergy ReE ∈ (−π, 0) and the other one has
ReE ∈ (0, π). They could meet with each other at either the quasienergy zero or π, leading
to two possible phase transitions. This implies that a complete topological characteriza-
tion of a chiral-symmetric Floquet system should require at least two winding numbers,
which is rather different from the case of static systems where a single winding number
is sufficient. To identify these winding numbers, let us consider the example of a peri-
odically kicked 1D system, whose Hamiltonian and Floquet operator take the forms of
Equations (15) and (16). We also assume that the two parts of the Hamiltonians Ĥ0 and
Ĥ1 in Equation (15) have the same chiral symmetry S . At the level of Û = e−iĤ0 e−iĤ1

(assuming T = 1), the form of a chiral symmetry is not transparent. However, we can apply
similarity transformations to Û and express it in two symmetric time frames [69] as

Û1 = e−
i
2 Ĥ1 e−iĤ0 e−

i
2 Ĥ1 , (89)

Û2 = e−
i
2 Ĥ0 e−iĤ1 e−

i
2 Ĥ0 . (90)

It is then clear that SÛαS = Û−1
α for α = 1, 2, that is, the Floquet operators Û1 and Û2 in the

two symmetric time frames respect the same chiral symmetry S . We can, thus, introduce a
winding number for each of them under the PBC as [256]

wα =
∫ π

−π

dk
4π

Tr[SQα(k)i∂kQα(k)], (91)

where k ∈ [−π, π), and

Qα(k) = ∑
n

sgn{Re[En(k)]}|nα(k)〉〈ñα(k)|. (92)

The En(k) in Equation (92) now denotes the quasienergy of the Floquet eigenstate |nα(k)〉
of Ûα at the quasimomentum k under the PBC. Using w1 and w2, we can construct another
pair of winding numbers w0 and wπ , given by [256]

w0 =
w1 + w2

2
, wπ =

w1 − w2

2
. (93)

In Sections 3.2 and 3.3, we will demonstrate with explicit examples that w0 (wπ)
can correctly capture the bulk topological transitions of non-Hermitian Floquet bands
through the gap closing/reopening at the quasienergy E = 0 (E = π) in various chiral-
symmetric, non-Hermitian Floquet insulating and superconducting models. Furthermore,
in the absence of NHSE, the w0 and wπ can also capture the numbers of Floquet edge
modes at zero and π quasienergies under the OBC, and thus, are capable of describing the
bulk–edge correspondence of the related models. In the presence of NHSE, we can retrieve
the characterization of topological transitions and bulk–edge correspondence in chiral-
symmetric, non-Hermitian Floquet systems under the OBC through the open-bulk winding
numbers, in analogy with Equation (85). For the Û1 and Û2 in Equations (89) and (90), we
can define a winding number for each of them under the OBC as [263]

Wα = − 1
LB

TrB(SQα[Qα, N̂]), α = 1, 2. (94)

Here, the meanings of LB, TrB, S , and N̂ are the same as those in Equation (85). The Floquet
band projector in the time frame α is given by

Qα = ∑
|ψα

j 〉∈bulk
sgn[Re(Ej)]|ψα

j 〉〈ψ̃α
j |, (95)
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where |ψα
j 〉 is the jth bulk eigenstate of Ûα (α = 1, 2) with the quasienergy Ej under the

OBC. The linear combinations of W1 and W2 lead to another pair of winding numbers [263]

W0 =
W1 + W2

2
, Wπ =

W1 −W2

2
. (96)

In Section 3.2, we will illustrate that with the help of the winding numbers (w0, wπ)
and (W0, Wπ), a dual topological characterization of the phase transitions, edge states, and
bulk–edge correspondence can be established for 1D, chiral-symmetric non-Hermitian
Floquet systems under different boundary conditions, regardless of whether the NHSE
is present or not [263]. Interestingly, the winding numbers (w0, wπ) may both become
half-integer quantized due to the presence of Floquet EP in the bulk, thus revealing the
presence of Floquet exceptional topology. Meanwhile, the open-bulk winding numbers
(W0, Wπ) are always integer quantized.

2.6. Dynamical Indicators

In this subsection, we review two complementary dynamical probes in position and
momentum spaces. Both of them can be used to characterize the topological properties
of 1D non-Hermitian Floquet systems with chiral symmetry. These indicators allow us
to extract the topological winding numbers of the system from its long-time stroboscopic
dynamics [256–258]. The measurement of these indicators could, thus, provide evidence
for the existence of non-Hermitian Floquet topological matter.

2.6.1. Dynamic Winding Number (DWN)

The DWN [277,278], obtained from the long-time stroboscopic average of spin textures,
could provide us with information about the bulk topological properties of non-Hermitian
Floquet systems [258]. Let us consider a 1D, chiral-symmetric non-Hermitian Floquet
system with two quasienergy bands. Under the PBC, we can express its Floquet operator in
the symmetric time frame α (=1, 2) as Ûα = ∑k∈BZ |k〉e−iHα(k)〈k|. Here, Hα(k) is the effective
Hamiltonian in time frame α and k ∈ [−π, π) is the quasimomentum. Ûα and Hα(k) share
the same chiral symmetry S , i.e., SHα(k)S = −Hα(k). For a non-Hermitian system, the Ûα

is generally not unitary and Hα(k) is also not Hermitian. The right and left biorthonormal
eigenvectors {|nα(k)〉} and {|ñα(k)〉} of Hα(k) satisfy the eigenvalue equations

Hα(k)|nα(k)〉 = En(k)|nα(k)〉, (97)

〈ñα(k)|Hα(k) = 〈ñα(k)|En(k). (98)

Here, n = ± are the indices of the two Floquet bands with the quasienergies E±(k) ≡ ±E(k).
The biorthonormal relationship requires

〈ñα(k)|n′α(k)〉 = δnn′ , ∑
n=±
|nα(k)〉〈ñα(k)| = 1, α = 1, 2. (99)

We consider the case in which the system is prepared in a general initial state
|ψα(k, 0)〉 = ∑n=± cn(k)|nα(k)〉. The corresponding initial state in the left Hilbert space
reads |ψ̃α(k, 0)〉 = ∑n± cn(k)|ñα(k)〉, such that initially ∑n=± |cn(k)|2 = 1 at each k. After
the stroboscopic evolution over a number of ` driving periods, the right initial state becomes

|ψα(k, `)〉 = ∑
n=±

cn(k)e−i`En(k)|nα(k)〉. (100)

For the left initial state, we assume it to be evolved by a different effective Hamiltonian
H̃α(k) = ∑± En(k)|ñα(k)〉〈nα(k)| (In our theoretical analysis, we find that in order to get a
quantized DWN which can be connected to the static winding number, the left eigenvector
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should be evolved by the effective Hamiltonian H̃α instead of H†
α [258]), so that after the

evolution over ` driving periods it reaches the state

|ψ̃α(k, `)〉 = ∑
n=±

cn(k)e−i`En(k)|ñα(k)〉. (101)

Note that the dynamical equation of |ψ̃α(k, 0)〉we used here is different from that employed
in our study of the APT in Section 2.4.

The stroboscopic average of an observable Ô over |ψ̃α(k, t)〉 at the time t = `T is then
given by

〈Ô(k, `)〉α =
〈ψ̃α(k, `)|Ô|ψα(k, `)〉
〈ψ̃α(k, `)|ψα(k, `)〉

. (102)

Without the loss of generality, we consider the chiral-symmetric Hα(k) to be in the form of

Hα(k) = hαx(k)σx + hαy(k)σy. (103)

Note that any two out of the three Pauli matrices (σx, σy, σz) can be chosen to enter the
Hα(k), and the other Pauli matrix (e.g., σz for the Hα(k) in Equation (103)) plays the role
of the chiral symmetry operator S . By diagonalizing Hα(k), we obtain the biorthonormal
eigenvectors as

|nα(k)〉 =
1√

2En(k)

[
hαx(k)− ihαy(k)

En(k)

]
, |ñα(k)〉 =

1√
2E∗n(k)

[
h∗αx(k)− ih∗αy(k)

E∗n(k)

]
, (104)

where En(k) = n
√

h2
αx(k) + h2

αy(k) for n = ±. We can now compute the stroboscopic-

averaged spin textures in the long-time limit. For the Hα(k) in Equation (103), this means
that we need to find the multi-cycle averages of σx and σy. According to Equation (102),
they are given by

rα
j (k) ≡ lim

N→∞

1
N

N

∑
`=1
〈σj(k, `)〉α, (105)

where j = x, y and α = 1, 2. N counts the total number of driving periods. From the
averaged spin textures [rα

x(k), rα
y(k)], we can define the dynamic winding angle as

θα
yx(k) ≡ arctan

[
rα

y(k)
rα

x(k)

]
. (106)

The net winding number of θα
yx(k) over a cycle in k-space defines the DWN in the time

frame α, i.e.,

να =
∫ π

−π

dk
2π

∂kθα
yx(k), α = 1, 2. (107)

In Ref. [258], it was proved with straightforward calculations that in the limit N → ∞,
the να converges to the wα in Equation (91) if the initial condition satisfies c±(k) 6= 0 at
each k. Therefore, by preparing the initial state at different k under this condition and
measuring the averaged spin textures over a long stroboscopic time, we can obtain the
winding numbers (w0, wπ) of a chiral-symmetric 1D Floquet system (either Hermitian
or non-Hermitian) through the following combinations of (ν1, ν2) in two symmetric time
frames [258], i.e.,

w0 =
ν1 + ν2

2
, wπ =

ν1 − ν2

2
. (108)

In Section 3, we will illustrate the application of this dynamical–topological correspon-
dence to non-Hermitian Floquet topological insulators in one dimension. We will see that
both integer and half-integer quantized topological winding numbers can be extracted
from the DWN.
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2.6.2. Mean Chiral Displacement (MCD)

The MCD allows us to detect the winding numbers of a Floquet system from the
long-time-averaged chiral displacement of an initially localized wavepacket. This was
first proposed as a means to probe the topological invariants of chiral-symmetric topo-
logical insulators in one dimension [279–281]. Later, the MCD was used to obtain the
winding numbers of Floquet systems [78,81] and also generalized to 2D higher-order
topological insulators [80]. Its applicability was demonstrated both theoretically and
experimentally [279,281].

For a chiral-symmetric non-Hermitian system, the chiral displacement in the symmet-
ric time frame α (=1, 2) can be defined as

Cα(t) = Tr[ρ0(
ˆ̃U

†
α)

t(N̂ ⊗ S)Ût
α]. (109)

Here, t = `T denotes the stroboscopic time, with T being the driving period. N̂ is the
unit cell position operator and S is the chiral symmetry operator. The initial state ρ0 can
be chosen as a state localized in the middle of the lattice. For example, ρ0 may take the
form of (|0〉〈0| ⊗ σ0)/2 for a 1D bipartite lattice, where |0〉 is the eigenbasis of the central
unit cell and σ0 is the identity operator acting on the internal space of the two sublattices.
Both the Floquet operator Ûα and its dual ˆ̃Uα respect the chiral symmetry S . In the lattice
representation, they can be expressed as

Ûα =
L

∑
j=1

e−iEj |ψα
j 〉〈ψ̃α

j |,
ˆ̃Uα =

L

∑
j=1

e−iEj |ψ̃α
j 〉〈ψα

j |. (110)

Here, L denotes the total number of degrees of freedom of the lattice. |ψα
j 〉 and 〈ψ̃α

j | denote

the right and left eigenvectors of Ûα with the quasienergy Ej. They form a biorthonormal
basis such that

〈ψ̃α
j |ψα

m〉 = δjm,
L

∑
j=1
|ψα

j 〉〈ψ̃α
j | = 1. (111)

Note that ˆ̃Uα is not the Hermitian conjugate of Ûα in general.
We now consider the stroboscopic long-time average of Cα(t) in the time frames

α = 1, 2 for a 1D non-Hermitian Floquet system with chiral symmetry. Under the PBC,
taking the initial state to be ρ0 = (|0〉〈0| ⊗ σ0)/2 and performing the Fourier transformation
from position to momentum representations, we find the Cα(t) in Equation (109) to be [257]

Cα(t) =
1
2

∫ π

−π

dk
2π

Tr[Ũ†t
α (k)S i∂kUt

α(k)]. (112)

Here k ∈ [−π, π) is the quasimomentum. Uα(k) = 〈k|Ûα|k〉 and Ũα(k) = 〈k| ˆ̃Uα|k〉 act
on the internal degrees of freedom (spins and/or sublattices) of the system at a fixed k.
Taking the long-time stroboscopic average and incorporating the normalization factor

Tr[ρ0(
ˆ̃U

†
α)

tÛt
α], we find the expression of MCD as [257]

Cα = lim
`→∞

1
`T

`T

∑
t=T

∫ π

−π

dk
2π

Tr
[
Ũ†t

α (k)S i∂kUt
α(k)

]
Tr
[
Ũ†t

α (k)Ut
α(k)

] . (113)

For a given Hα(k) of the form in Equation (103), we have S = σz, Uα(k) = e−iHα(k), and
Ũα(k) = e−iE(k)H†

α(k)/E∗(k), where E(k) = 1
2 Tr[H2

α(k)]. One can then work out Equation (113)
explicitly and obtain [257]

Cα =
wα

2
, α = 1, 2. (114)
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Here, the wα is nothing but the winding number of Ûα as defined in Equation (91). Therefore,
by measuring the MCDs (C1, C2) in two symmetric time frames, we can determine the
topological winding numbers (w0, wπ) of a 1D chiral-symmetric Floquet system through
the relations [257]

w0 = C0 ≡ C1 + C2, wπ = Cπ ≡ C1 − C2. (115)

The MCD provides a real space complementary to the DWN. In Section 3, we will
demonstrate the usage of MCD to dynamically probing the winding numbers of first- and
second-order non-Hermitian Floquet topological insulators in one [257] and two [261]
spatial dimensions.

2.7. Localization Transition and Mobility Edge

In the last part of this subsection, we recap some tools that can be used to characterize
the real-to-complex spectral transitions, localization transitions, and mobility edges in
disordered non-Hermitian Floquet systems [264,266]. Considering the relevance to this
review, we focus on a 1D quadratic lattice model of the form

Ĥ(t) = ∑
〈n,n′〉

[Jn(t)eγn ĉ†
n ĉn′ + J∗n(t)e

−γn ĉ†
n′ ĉn] + ∑

n
Vn(t)ĉ†

n ĉn. (116)

Here, 〈n, n′〉 includes the lattice site indices n and n′ with n′ > n. ĉ†
n (ĉn) creates (annihilates)

a particle on the site n and the parameter γ ∈ R. The Hamiltonian Ĥ(t) is non-Hermitian if
γn 6= 0 for some n (nonreciprocal hopping) or Vn(t) 6= V∗n (t) (onsite gain and loss). Ĥ(t)
is further time-periodic if Jn(t) = Jn(t + T) and Vn(t) = Vn(t + T) for all n, with T being
the driving period. The disorder terms may be included within Vn(t) (diagonal disorder) or
Jn(t) (off-diagonal disorder). As an example, for a 1D non-Hermitian quasicrystal (NHQC)
with correlated onsite disorder, the Vn(t) may take the form of Vn(t) = V(t) cos(2παn + iβ).
Here, α is irrational and β ∈ R, with iβ describing an imaginary phase shift in the superlattice
potential Vn. The Floquet operator of the system described by the Ĥ(t) in Equation (116)

takes the general form of Û = T̂e−i
∫ T

0 Ĥ(t)dt = e−iĤeffT . If Ĥ(t) respects the PT symmetry,
Ĥeff could have the same symmetry and the quasienergy spectrum of Û could be real.
With the increase in the non-Hermitian parameter of Ĥ(t), the Floquet spectrum of Û may
undergo a PT-breaking transition, after which certain quasienergies of Û (obtained by
solving Û|Ψ〉 = e−iE|Ψ〉) may acquire non-vanishing imaginary parts. To take into account
such a spectral transition, we introduce the following quantities

max |ImE| ≡ max
j∈{1,...,L}

(|ImEj|), (117)

ρ ≡ N(ImE 6= 0)/L. (118)

Here, Ej is the jth quasienergy eigenvalue of Û. L counts the Hilbert space dimension of Û,
i.e., the total number of degrees of freedom of the lattice. N(ImE 6= 0) denotes the number
of quasienergy eigenvalues whose imaginary parts are nonzero. ρ thus describes the density
of states with complex quasienergies in the system. In the PT-invariant phase, we would
have max |ImE| = ρ = 0, implying that all the quasienergies of Û are real. In the PT-broken
phase, we would have max |ImE| > 0 and ρ ∈ (0, 1], meaning that there is a finite number
of eigenstates of Û whose quasienergies are complex. In particular, we would have ρ ' 1
if almost all the Floquet eigenstates of Û possess complex quasienergies. Therefore, by
locating the positions where both the max |ImE| and ρ start to deviate from zero in the
parameter space, we can identify the PT transition points for the Floquet spectrum of Û.
We will see that due to the interplay between periodic drivings and non-Hermitian effects,
both PT-symmetry breaking and restoring transitions could be induced by tuning a single
parameter in the Floquet NHQC.
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The localization nature of the Floquet eigenstates of Û can be characterized by the
statistics of its quasienergy levels and the inverse participation ratios (IPRs). Let us de-
note the normalized right eigenvectors of Û and their corresponding quasienergies as
{|ψj〉|j = 1, . . . , L} and {Ej|j = 1, . . . , L}. Along the real axis, the spacing between the jth
and the (j− 1)th quasienergies of Û is given by εj = ReEj − ReEj−1, from which we obtain
the ratio between two adjacent spacings of quasienergy levels as

gj =
min(εj, εj+1)

max(εj, εj+1)
, j = 2, . . . , L− 1. (119)

Here, the max(εj, εj+1) and min(εj, εj+1) are the maximum and minimum between the εj
and εj+1, respectively. The statistical property of adjacent gap ratios can then be obtained
by averaging over all gj in the thermodynamic limit, i.e.,

g = lim
L→∞

1
L ∑

j
gj. (120)

We would have g → 0 if all the bulk Floquet eigenstates of Û are extended. Com-
paratively, we expect g to approach a constant gmax > 0 if all the bulk eigenstates of Û
are localized. If we find g ∈ (0, gmax), extended and localized eigenstates of Û should
coexist and be separated by some mobility edges in the quasienergy spectrum. The g
can thus be utilized to distinguish between phases with different localization nature in
1D non-Hermitian Floquet systems from the perspective of level statistics [282–286]. In
the lattice representation, we can expand the right eigenvector |ψj〉 as |ψj〉 = ∑L

n=1 ψ
j
n|n〉,

where ψ
j
n = 〈n|ψj〉 and ∑n |ψ

j
n|2 = 1. The inverse and normalized participation ratios of

|ψj〉 in the real space can then be defined as

IPRj =
L

∑
n=1
|ψj

n|4, NPRj =
1
L

IPR−1
j . (121)

For a localized Floquet eigenstate |ψj〉, we have IPRj → λj and NPRj → 0 in the
thermodynamic limit, where the Lyapunov exponent λj of |ψj〉 could be a function of its
quasienergy Ej. If |ψj〉 represents an extended state, we have IPRj → 0 and NPRj → 1. The
global localization features of the Floquet system described by Û can then be extracted
from the combined information of {IPRj|j = 1, . . . , L} and {NPRj|j = 1, . . . , L}. For ease of
usage, we introduce the following localization indicators

IPRmax = max
j∈{1,...,L}

(IPRj), (122)

IPRmin = min
j∈{1,...,L}

(IPRj), (123)

ζ = log10(IPRave ·NPRave), (124)

where the IPRave = 1
L ∑L

j=1 IPRj and NPRave = 1
L ∑L

j=1 NPRj are the averages of IPRj
and NPRj over all Floquet eigenstates. It is not hard to see that in the metallic phase,
where all Floquet eigenstates are extended, we have IPRmax → 0, IPRmin → 0 and
ζ ∼ − log10(L) → −∞ in the limit L → ∞. Instead, in the insulating phase with all
Floquet eigenstates being localized, we have IPRmax > 0, IPRmin > 0 and ζ → −∞ [287]. In
the critical phase, where extended and localized Floquet eigenstates are coexistent, we have
IPRmax > 0, IPRmin → 0 together with a finite ζ. Assembling the information obtained from
IPRmax, IPRmin, and ζ thus allows us to distinguish the extended, localized, and critical
mobility edge phases of a non-Hermitian Floquet system with disorder. These tools will be
applied to our study of the Floquet NHQC in Section 3.4. We can also probe the transport
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nature of distinct non-Hermitian Floquet phases from the wave packet dynamics. Let us
consider a generic and normalized initial state |Ψ(0)〉 in the lattice representation. After
the stroboscopic evolution over a number of ` driving periods by Û, the final state turns
out to be |Ψ′(t = `T)〉 = Û`|Ψ(0)〉. Since the Floquet operator Û is not unitary for a
non-Hermitian Ĥ(t) in general, the norm of |Ψ(0)〉 cannot be preserved during the evo-
lution. We can express the normalized state at t = `T as |Ψ(t)〉 = |Ψ′(t)〉/

√
〈Ψ′(t)|Ψ′(t)〉.

The real space expansion |Ψ(t)〉 = ∑L
n=1 ψn(t)|n〉 then provides us with the probability

amplitude ψn(t) = 〈n|Ψ(t)〉 of the normalized final state |Ψ(t)〉 on the lattice site n at
time t. Using the collection of amplitudes {ψn(t)|n = 1, . . . , L}, we can define the following
dynamical quantities

〈x(t)〉 =
L

∑
n=1

n|ψn(t)|2, 〈x2(t)〉 =
L

∑
n=1

n2|ψn(t)|2, (125)

∆x(t) =
√
〈x2(t)〉 − 〈x(t)〉2, v(t) =

1
t

√
〈x2(t)〉, (126)

where the stroboscopic time t = `T and ` ∈ Z. It is clear that 〈x(t)〉, ∆x(t), and v(t)
describe the center, standard deviation, and spreading speed of the wavepacket |Ψ(t)〉 in
the lattice representation, respectively. For simplicity, we usually choose the initial state
|Ψ(0)〉 to be exponentially localized at a single site that is deep inside the bulk of the lattice.
If the Floquet system described by Û resides in a localized phase, we expect the 〈x(t)〉 and
∆x(t) to stay around their initial values, which means that the wavepacket almost does
not move and spread. In this case, the speed v(t) should also tend to zero for a long-time
evolution (` � 1). If the system stays in an extended phase, we expect the increasing of
∆x(t) with time due to the spreading of the initial wavepacket. Meanwhile, the 〈x(t)〉
may or may not change with time, depending on whether the hopping amplitudes are
symmetric. For a nearest-neighbor, nonreciprocal hopping, as in Equation (116), we may
have 〈x(t)〉 ∝ t and ∆x(t) ∝

√
t for a metallic phase of the system. The v(t) should take a

maximal possible value vmax(t) in this case. If the system is prepared in a critical mobility
edge phase, we expect both the 〈x(t)〉 and ∆x(t) to show intervening behaviors, while
the averaged spreading speed v(t) should satisfy 0 < v(t) < vmax(t). Therefore, we
can exploit the dynamical quantities 〈x(t)〉, ∆x(t), and v(t) to discriminate phases with
different localization properties in disordered non-Hermitian Floquet systems. We will
illustrate such an application for Floquet NHQC in Section 3.4.

3. Non-Hermitian Floquet Phases of Matter

This section collects and treats typical examples of non-Hermitian Floquet phases
discovered in our previous work [256–266]. We will see that the interplay between periodic
driving fields and gain/loss or nonreciprocal effects can induce rich phases and transitions
in non-Hermitian Floquet systems.

3.1. Non-Hermitian Floquet Exceptional Topology

Let us start with a simple model, whose Floquet effective Hamiltonian and quasienergy
dispersion are given by Equations (55) and (57). To be explicit, we choose

hx = sin k, hz = µ + cos k, (127)

where k ∈ (−π, π] denotes the quasimomentum in the first Brillouin zone, and the system
parameter µ ∈ R. The Heff in Equation (55), thus, describes the Bloch Hamiltonian of a 1D
two-band lattice model under the PBC in the rotating frame, where µ corresponds to the
amplitude of onsite potential and the nearest-neighbor hopping amplitude has been chosen
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to be the unit of energy. From Equations (57) and (127), we find that the two quasienergy
bands of Heff can meet with each other at the quasienergy ω/2 when

µ =

{
ω
2 ±

γ
2 − 1, for k = 0,

ω
2 ±

γ
2 + 1, for k = π.

(128)

If µ satisfies one of the above two equalities, there will be a second-order Floquet
EP at k = 0 or k = π in the conventional Brillouin zone. Note that both the quasienergy
of this Floquet EP and its location in the parameter space depend on the frequency ω,
which highlights the impact of the harmonic driving field on phase transitions in the
system. Moreover, the appearance of an EP in k-space may lead to the formation of
spectral loops on the complex energy plane and also the possible breakdown of bulk–edge
correspondence in conventional topological phases. This issue might be overcome by
incorporating the formalism of generalized Brillouin zone (GBZ) and non-Bloch band
theory [164,166]. Following the standard procedure, we first make the substitutions eik → β
and e−ik → β−1, where the complex number β ∈ GBZ. The effective Hamiltonian in
Equation (55) now takes the form of

Heff(β) =
ω

2
σ0 +

(
β− β−1

2i
+ i

γ

2

)
σx +

(
µ +

β + β−1

2
− ω

2

)
σz, (129)

with the quasienergy bands

ε±(β) =
ω

2
±

√(
β− β−1

2i
+

iγ
2

)2

+

(
µ− ω

2
+

β + β−1

2

)2

. (130)

We next focus on the non-constant part of ε±(β), whose square takes the form of

ε2
±(β) =

aβ2 + bβ + c
β

, (131)

where

a = µ− ω

2
+

γ

2
, b = 1 +

(
µ− ω

2

)2
− γ2

4
, c = µ− ω

2
− γ

2
. (132)

The ε2
±(β) is a Laurent polynomial of β. According to Ref. [166] (see also Ref. [288]),

β ∈ GBZ for the Heff(β) if ε2
±(β) = ε2

±(βeiθ), with θ being a phase factor. For Equation (131),
this means that β2 = ce−iθ/a. The GBZ is, thus, a circle of the radius

r = |β| =
∣∣∣∣µ−ω/2− γ/2
µ−ω/2 + γ/2

∣∣∣∣1/2
. (133)

It is clear that the GBZ radius r is controlled by both the driving field (through ω) and
the non-Hermitian effect (through γ). In the Hermitian limit (γ→ 0), we have r → 1 and
the GBZ is reduced to the conventional BZ, as expected. The radius r of GBZ becomes zero
or infinity if µ−ω/2 = γ/2 or −γ/2, respectively. Note that these limiting cases do not
correspond to second-order EPs where the two Floquet bands touch in the conventional BZ
(see Equation (128)) or in the GBZ (see Equation (134) below). They instead correspond
to the locations of intra-band high-order EPs of each Floquet band, as observable in the
GBZ spectrum of Figure 2. Finally, we can use the GBZ to determine the gap-closing (phase
transition) points of the system under the OBC. Setting the ε2

±(β) = 0 in Equation (131),
we find

µ =
ω

2
±
{√

γ2/4 + 1, |γ| ≤ 2,√
γ2/4± 1, |γ| > 2.

(134)
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These bulk gap-closing conditions are clearly different from those found in conven-
tional BZ under the PBC in Equation (128). Using the transfer matrix method [168], we can
further obtain the parameter regions in which degenerate Floquet edge states appear at the
quasienergy ω/2 (anomalous Floquet π edge modes), i.e.,

µ− ω

2
∈


(
−
√

γ2/4 + 1,
√

γ2/4 + 1
)

, |γ| ≤ 2,(
−
√

γ2/4 + 1,−
√

γ2/4− 1
)
∪
(√

γ2/4− 1,
√

γ2/4 + 1
)

, |γ| > 2.
(135)

Finally, we can characterize the different topological phases of the system by a non-Bloch
winding number [169]

W =
∫

GBZ

dβ

4πi
Tr[σyQ(β)∂βQ(β)], (136)

where σy is the chiral symmetry operator of the shifted effective Hamiltonian Heff(β)− ω
2 σ0.

The Q matrix is defined as Q(β) = |ψ+(β)〉〈ψ̃+(β)| − |ψ−(β)〉〈ψ̃−(β)|. |ψ±(β)〉 are the
right eigenvectors of Heff(β) with the quasienergies ε±(β). 〈ψ̃±(β)| are the corresponding
left eigenvectors. For our model, their explicit expressions are given by

|ψ±(β)〉 = 1√
2(ε± − ω

2 )(ε± − hz)

(
hx + iγ/2
ε± − hz

)
, (137)

〈ψ̃±(β)| = 1√
2(ε± − ω

2 )(ε± − hz)

(
hx + iγ/2 ε± − hz

)
. (138)

Figure 2. Floquet spectra and winding numbers of the harmonically driven 1D non-Hermitian lattice
model. The gray dots at each µ denote the real (in (a,b)) and imaginary (in (c,d)) parts of quasienergies
obtained under the PBC in the conventional BZ. The blue dots at each µ denote the real (in (a,b))
and imaginary (in (c,d)) parts of quasienergies obtained under the OBC in the GBZ. The yellow
circles denote the winding number W, which is equal to 1 (0) in the topological (trivial) phases with
(without) anomalous Floquet edge modes at the quasienergies ±π, which are highlighted by the red
solid lines. Other system parameters are chosen as (ω, γ) = (2π, 1) ((ω, γ) = (2π, 3)) for the panels
(a,c) (b,d).

In Figure 2, we show the Floquet spectra of Heff under different boundary conditions
and the non-Bloch winding numbers of Heff versus µ for some typical cases. We see that the
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Floquet spectra and the gap-closing points at the quasienergies E = ±π could indeed be
very different under the PBC and the OBC. Some high-order EPs appear in the bulk Floquet
spectra under the OBC at µ = ω/2± γ/2 and the gap closing points, which signify the
emergence of Floquet exceptional topology. In addition, the non-Bloch winding number W
can correctly discriminate different topological phases and characterize topological phase
transitions accompanied by quasienergy-band touchings under the OBC at E = π. We find
W = 1 (W = 0) in the topologically nontrivial (trivial) phases with (without) anomalous
Floquet π edge modes. The bulk–edge correspondence is then recovered. The gap-closing
points and the parameter regions with Floquet π modes are found to be perfectly coincident
with the predictions of Equations (134) and (135). These observations demonstrate the
applicability of non-Bloch band theories to non-Hermitian Floquet systems. It is also
straightforward to check that the system possesses Floquet NHSEs in a broad parameter
regime under the OBC. The simple model introduced in this subsection, thus, allows us to
obtain a bird’s-eye view on the nontrivial topological phenomena that could be brought
about by the interplay between Floquet driving fields and non-Hermitian effects. Further
examples with more striking features will be reviewed in the following subsections.

3.2. Non-Hermitian Floquet Topological Insulators

In this subsection, we review three types of non-Hermitian Floquet topological insula-
tors in one and two spatial dimensions. For all the cases, we uncover that the collaboration
between driving and gain/loss or nonreciprocal effects could induce topological insulating
states unique to non-Hermitian Floquet systems. They are characterized by large topologi-
cal invariants, many topological edge or corner modes, and separated by rich topological
phase transitions. The bulk–edge (or bulk–corner) correspondence will also be established
for each class of systems considered in this subsection.

3.2.1. First-Order Topological Phase

We start with the characterization of 1D non-Hermitian Floquet topological insulators.
One typical model that incorporates their rich topological properties is the following
periodically quenched dimerized tight-binding lattice, whose time-dependent Hamiltonian
reads [256]

Ĥ(t) =

{
Ĥ1, t ∈ [`T, `T + T/2),
Ĥ2, t ∈ [`T + T/2, `T + T),

(139)

where
Ĥ1 = ∑

n
(iry ĉ†

n+1 ĉn + H.c. + 2iγĉ†
n ĉn)⊗ σy, (140)

Ĥ2 = ∑
n
(rx ĉ†

n ĉn+1 + µĉ†
n ĉn + H.c.)⊗ σx. (141)

Here, T is the driving period and we will set h̄ = T = 1 in our calculations. ĉ†
n (ĉn)

creates (annihilates) a particle in the unit cell n of the lattice. σα, α = x, y, z, are Pauli
matrices acting on the two sublattice degrees of freedom A and B within each unit cell. The
system parameters rx, ry, µ, γ are all real. The non-Hermitian effect is introduced by the
nonreciprocal intracell coupling term 2iγσy applied over the first half of each driving period
(see Figure 3a for an illustration of the model). Experimentally, such a term might be realized
by a coupled-resonator optical waveguide with asymmetric internal scattering [289].

Considering the one-period evolution of the system from t = `+ 0− to t = `+ 1 + 0−,
the Floquet operator of Ĥ(t) takes the form of Û = e−

i
2 Ĥ2 e−

i
2 Ĥ1 . Its quasienergy spectrum

and Floquet eigenstates are obtained by solving the eigenvalue equation Û|ψ〉 = e−iE|ψ〉.
Under the OBC, we show the Floquet spectrum of Û on the complex quasienergy plane
ReE− ImE for some typical cases in Figure 3b–e (with (µ, ry, γ) = (0, π/2, arccosh(

√
2)),

rx = π/2, π, 3π/2, 2π, and the number of unit cells N = 150). The numbers of degenerate
Floquet edge mode pairs at the quasienergies E = 0 and E = π are denoted by n0 and
nπ in the corresponding figure captions. We observe one or multiple pairs of edge modes
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at both the center (E = 0) and boundary (E = π) of the first quasienergy Brillouin zone.
Interestingly, when the numbers of these edge modes are the same, i.e., n0 = nπ , we find
them to appear in different types of quasienergy gaps (see Figure 3c,e). For example, we
find a pair of Floquet zero modes in the line gap at E = 0, while another pair of Floquet
π modes are found in the point gap at E = π. This is rather different from the situation
in Hermitian Floquet systems, where the quasienergy is real and there is no distinction
between point and line gaps. It is also different from the cases encountered in 1D, chiral-
symmetric non-Hermitian static systems with two bands, where topological edge modes
can only appear in either a point gap or a line gap at E = 0. The Floquet spectra with hybrid
(point plus line) quasienergy gaps are, thus, unique to non-Hermitian Floquet systems.
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Figure 3. Non-Hermitian Floquet topological insulator [256]: (a) Schematic diagram of the lattice
model. (b–e) Floquet spectrum at different rx with (µ, ry, γ) = (0, π/2, arccosh(

√
2)) under the

OBC. The dots at ImE = 0 and |ReE|= 0 (|ReE|= π) denote edge modes with E = 0 (E = π).
Other dots denote bulk states. (b) rx = π/2, with one pair of edge modes at E = 0. (c) rx = π,
with one (one) pair of edge modes at E = 0 (E = π). (d) rx = 3π/2, with one pair (two pairs) of
edge modes at E = 0 (E = π). (e) rx = 2π, with two (two) pairs of edge modes at E = 0 (E = π).
(f,g) Winding numbers w0 (f) and wπ (g) in the domain (rx, ry) ∈ (0, 3π)× (0, 3π), with µ = 0 and
γ = arccosh(

√
2). The regions with the same color have the same values of w0 and wπ , as denoted

by the integers in (f,g). The white solid/dashed lines are phase boundaries related to gap closings
at E = 0/π and topological phase transitions. (h)–(j) Floquet spectrum versus rx under OBC, with
(µ, ry, γ) = (0, π/2, arccosh(

√
2)); (h,i) show the real and imaginary parts of E; (j) shows the absolute

values of E. The red solid (blue dashed) lines denote boundaries where the gap close at E = 0 (π).
The integers in light blue are the numbers of edge mode pairs at E = 0 and π.

To understand the origin of the non-Hermitian Floquet edge modes at E = 0 and
E = π, we study the bulk topological properties of the system. Under the PBC, the Floquet
operator of the system reads

U(k) = e−i(µ+rx cos k)σx e−i(ry sin k+iγ)σy , (142)



Entropy 2023, 25, 1401 29 of 53

where k ∈ [−π, π) is the quasimomentum. The quasienergy spectrum of U(k) is given by

±E(k) = ± arccos[cos(µ + rx cos k) cos(ry sin k + iγ)], (143)

and the gap-closing conditions can be obtained analytically by setting cos[E(k)] = ±1 [256].
Transforming U(k) to symmetric time frames, we obtain

U1(k) = e−
i
2 (µ+rx cos k)σx e−i(ry sin k+iγ)σy e−

i
2 (µ+rx cos k)σx , (144)

U2(k) = e−
i
2 (ry sin k+iγ)σy e−i(µ+rx cos k)σx e−

i
2 (ry sin k+iγ)σy . (145)

It is clear that both U1(k) and U2(k) respect the chiral (sublattice) symmetry S = σz.
We can, thus, characterize the non-Hermitian Floquet topological phases of U(k) by the
winding numbers (w0, wπ), according to Equation (93). In Figure 3f,g, we present the w0
and wπ of U(k) versus (rx, ry), respectively, yielding the topological phase diagram of the
system. We find various non-Hermitian Floquet insulating phases. They are characterized
by large integer winding numbers and separated by a series of topological phase transitions
with quasienergy level crossings at E = 0 (white solid lines in Figure 3f) and E = π (white
dashed lines in Figure 3g). The winding numbers (w0, wπ) could become arbitrarily large
with the increase of system parameters (e.g., the intercell hopping amplitude rx), which
implies that Floquet phases with large topological invariants could indeed survive even
with finite non-Hermitian effects (µ = 0 and γ = arccosh(

√
2) in Figure 3f–g). Moreover,

these winding numbers correctly count the numbers of degenerate Floquet edge mode
pairs n0 and nπ at E = 0 and E = π under the OBC. That is, we have the bulk–edge
correspondence for our 1D chiral-symmetric non-Hermitian Floquet topological insulator
as [256]

n0 = |w0|, nπ = |wπ |. (146)

Representative examples of the Floquet spectra under the OBC are shown in
Figure 3h–j (with µ = 0, ry = π/2, γ = arccosh(

√
2) and the number of unit cells N = 150),

which provide verifications for the bulk–edge correspondence found in Equation (146).
Note in passing that the system does not show NHSE under the OBC for µ = 0, even
though the Floquet spectra possess point quasienergy gaps under the PBC. Meanwhile,
many pairs of degenerate edge modes at the quasienergies E = 0 and E = π are found
in the topological phases with large winding numbers. As these topological edge modes
could survive in the presence of non-Hermitian effects, they may provide more resources
for the realization of robust quantum state transfer and quantum computing schemes in
open systems.

The winding numbers of non-Hermitian Floquet topological insulators can be ex-
perimentally probed by measuring the stroboscopic time-averaged spin textures [256] or
the MCDs [257], as introduced in Sections 2.6.1 and 2.6.2. Following Ref. [258], we con-
sider a periodically quenched non-Hermitian lattice model, whose Floquet operator in the
momentum space reads U(k) = e−i J2 sin kσy e−i J1 cos kσx . Here, J1 = u1 + iv1, J2 = u2 + iv2,
and u1, u2, v1, v2 ∈ R. The winding numbers (w0, wπ) of U(k) can be obtained using the
approach of symmetric time frames (see Equations (89)–(93)). Following the procedures
outlined in Sections 2.6.1 and 2.6.2, we obtain the MCDs in Figure 4a (with v = v1 = v2 and
(u1, u2) = (4.5π, 0.5π)) and the dynamic winding angles of time-averaged spin textures
in Figure 4b–e (with (u1, u2) = (4.5π, 0.5π) and v = v1 = v2 = 0.2π, 0.35π, 0.6π, 0.9π). In
all the cases, the obtained MCDs and DWNs are coincident with the winding numbers
(w0, wπ) of the Floquet operator U(k) even when there are finite non-Hermitian effects
(v 6= 0). The DWNs and the MCDs thus provide us with two complementary approaches
to dynamically characterize 1D non-Hermitian Floquet topological phases with chiral (sub-
lattice) symmetry in momentum and in real spaces, respectively. They can be applied to
detect non-Hermitian Floquet matter in different types of experimental setups [215,224].
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Figure 4. Dynamical characterization of non-Hermitian Floquet topological phases [258]: (a) Wind-
ing numbers (w0, wπ) and MCDs (C0, Cπ) versus the imaginary part of hopping amplitudes
J1 = u1 + iv and J2 = u2 + iv, with (u1, u2) = (4.5π, 0.5π). The results for (C0,Cπ) are averaged over
50 driving periods. (b–e) Winding angles θ1

yx (red dots) and θ2
yx (gray dots) of the time-averaged spin

textures versus the quasimomentum k, with (u1, u2) = (4.5π, 0.5π). The imaginary parts of hopping
amplitudes are v1 = v2 = v with v = 0.2π for (b), v = 0.35π for (c), v = 0.6π for (d), and v = 0.9π

for (e). The DWNs (ν1, ν2), derived from the winding angles around the first BZ are (1, 9) for (b),
(−1, 7) for (c), (−1, 3) for (d) and (1, 1) for (e), yielding ( ν1+ν2

2 , ν1−ν2
2 ) = (5,−4), (3,−4), (1,−2), (1, 0)

for (b–e), consistent with the (w0, wπ) in (a) at the corresponding system parameters.

The models we considered above in this subsection do not possess the NHSE. It
remains unclear whether the rich non-Hermitian Floquet topology could coexist with
NHSEs, and how to characterize the topological bulk–edge correspondence in the presence
of Floquet NHSE. To address this issue, we consider a periodically quenched non-Hermitian
SSH model [263], whose k-space Hamiltonian under the PBC takes the form of

H(k, t) =

{
(µ + J1 cos k + iλ sin k)σx, t ∈ [`T, `T + T/2),
(J2 sin k + iλ cos k)σy, t ∈ [`T + T/2, `T + T).

(147)

Here, µ and J1/2 + J2/2 are the intracell and intercell hopping amplitudes. The non-
Hermiticity is introduced by the asymmetric parts of hopping amplitudes ±iλ/2 between
the two sublattices. A sketch of the model is shown in Figure 5. The Floquet operator
associated with H(k, t) (for h̄ = 1 and T = 2) reads

U(k) = e−i(J2 sin k+iλ cos k)σy e−i(µ+J1 cos k+iλ sin k)σx . (148)

In symmetric time frames, it respects the chiral symmetry S = σz [263]. We may, thus,
use the winding numbers (w0, wπ) to characterize the Floquet topological phases of U(k). The
calculation of such winding numbers following Equations (89)–(93) leads to the topological
phase diagrams in Figure 5a,b. Interestingly, we find that despite Floquet topological insulators
with large integer winding numbers, there are also various phases with half-integer-quantized
topological invariants. These unique phases are absent in the Hermitian limit of the model. Their
appearance is due to the Floquet exceptional topology induced by non-Hermitian effects in the
system. The parameter regions which accommodate half-integer topological phases may further
show Floquet NHSEs under the OBC. In Figure 5c–f, we compare the dynamic winding angles
of U(k) with the winding patterns of its Floquet Hamiltonian vectors in different time frames
(with (J1, J2, µ, λ) = (2.4π, 0.5π, 0.4π, 0.25)) [263]. Their coincidence implies that we can use
the dynamic winding numbers introduced in Section 2.6.1 to probe the half-integer-quantized
topological invariants of 1D non-Hermitian Floquet topological insulators with chiral symmetry.
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Figure 5. Non-Hermitian FTI with NHSE [263]: Top panel shows a sketch of the driven lattice model,
with a and b denoting two different sublattices. (a,b) Topological phase diagrams vs µ and J1 under
PBCs. Other parameters are (J2, λ) = (0.5π, 0.25). Each region with a uniform color denotes a
topological phase characterized by w0 and wπ , with their values denoted in (a,b). (c,f) Spin textures
and dynamic winding angles in time frames α = 1 (c,e) and α = 2 (d,f). System parameters are
(J1, J2, µ, λ) = (2.4π, 0.5π, 0.4π, 0.25). An average over 500 driving periods is made to obtain winding
angles θ1,2

yx in (e,f). In (c,d), red (magenta) points denote (〈σx〉, 〈σy〉) in the first (second) time frame.
Gray solid lines denote the origin of 〈σx〉 − 〈σy〉 plane. In (e,f), red (magenta) points denote dynamic
winding angles θ1

yx (θ2
yx) in time frame 1 (2). (g) Gap functions ∆0 (blue and gray solid lines for

PBC and OBC), ∆π (green and red dotted lines for PBC and OBC), open bulk winding numbers ν0

(circles), νπ (crosses), and PBC winding numbers w0 (diamonds), wπ (pentagrams). Other parameters
are (µ, J2, λ) = (0.4π, 0.5π, 0.25). Only 20 smallest values of (∆0, ∆π) under OBC are shown for
illustrations. The numbers of zero and π edge modes are given below the x axis. (h–k) Profiles of
bulk modes (h,j) and edge modes (i,k). System parameters are (J1, J2, µ, λ) = (π, 0, 5π, 0.4π, 0.25) for
(h,i) and (2π, 0.5π, 0.4π, 0.25) for (j,k). n is the unit-cell index with 200 cells in total. In (h,j), NHSE is
found as the accumulation of bulk modes around edges. In (i,k), one pair (two pairs) of edge modes
at E = 0 and π are coexistent with bulk skin modes.

Under the OBC, the bulk Floquet spectra and the gap-closing points of quasiener-
gies are found to be different from those under the PBC, as shown in Figure 5g (with
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(J2, µ, λ) = (0.5π, 0.4π, 0.25)) [263]. This means that the bulk winding numbers w0 (dia-
monds) and wπ (pentagrams) of U(k) cannot be used to characterize the edge states and
topological phase transitions under the OBC. To overcome this issue, we switch to the
OBC winding numbers (ν0, νπ) (defined as the (W0, Wπ) in Equation (96)). These winding
numbers are found to be integer quantized. They change their values only when the Floquet
spectrum of the system closes its gap at E = 0 or E = π under the OBC. Furthermore,
in each gapped phase, the winding numbers (ν0, νπ) (circles and crosses in Figure 5g)
are related to the numbers of zero and π Floquet edge modes (n0, nπ) through the bulk–
edge correspondence (n0, nπ) = 2(|ν0|, |νπ |). This relation holds even with NHSEs in
our system [263]. Therefore, our work provides a dual topological characterization of
non-Hermitian Floquet topological insulators under different boundary conditions. In
Figure 5h–k, we present examples of the skin-localized bulk states (in Figure 5h,j) and two
types of Floquet edge states (in Figure 5i,k) in our system, which are also consistent with
the theoretical predictions [263].

To summarize, we found different types of 1D non-Hermitian Floquet topological in-
sulators in a series of studies [256–258,260,263]. All the models considered in these studies
exhibit rich non-Hermitian Floquet phases with large topological invariants, many topo-
logical edge states, and unique topological transitions induced by the interplay between
non-Hermitian effects and time-periodic driving fields. The bulk–edge correspondences
and dynamic topological characterizations of these intriguing new phases are also estab-
lished, leading to an explicit and all-round physical picture of 1D non-Hermitian Floquet
topological matter. In the following subsections, we uncover the essential role of Floquet
engineering in other types of non-Hermitian topological matter.

3.2.2. Second-Order Topological Phase

We next consider the example of a non-Hermitian Floquet second-order topological
insulator (SOTI) in two dimensions. An nth-order topological insulator in d (d ≥ n) spatial
dimensions possesses localized eigenmodes along its (d − n)-dimensional boundaries,
which are topologically nontrivial and protected by the symmetries of the d-dimensional
bulk. For example, an SOTI in two dimensions usually has localized topological states
around its zero-dimensional geometric corners. Assisted by time-periodic drivings, degen-
erate corner modes can further appear at different quasienergies in Floquet second-order
topological phases [80,290].

In this subsection, we focus on one typical model of non-Hermitian Floquet SOTI,
which is obtained following the procedure of coupled-wire construction [80]. A schematic
diagram of the static lattice model is shown in Figure 6a. The system is formed by a stack
of SSH chains along the y-direction, with dimerized couplings (J1, J2) between adjacent
chains. We consider a Floquet variant of the model by applying time-periodic quenches to
the coupling and onsite parameters (J1, J2, µ) along the y-direction. Under the PBC along
both x- and y-directions, the time-dependent Bloch Hamiltonian of the Floquet model takes
the form of

H(kx, ky) = Hx(kx)⊗ τ0 + σ0 ⊗ Hy(ky, t), (149)

where (kx, ky) ∈ [−π, π)× [−π, π) are the quasimomenta. σ0 and τ0 are two-by-two iden-
tity matrices. The Hamiltonians of the 1D subsystems Hx(kx) and Hy(ky, t) are explicitly
given by

Hx(kx) = [(J − δ) + (J + δ) cos kx]σx + (J + δ) sin kxσy, (150)

Hy(ky, t) =

{
2J1 cos kyτx t ∈ [`T, `T + T/2)
2(µ + J2 sin ky)τz t ∈ [`T + T/2, `T + T)

. (151)

Here, T is the driving period and ` ∈ Z. σx,y,z and τx,y,z are Pauli matrices acting on the
sublattice degrees of freedom in the x-and y-directions, respectively. Setting h̄ = T = 1,
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J = δ = ∆/2, and choosing µ = u + iv (u, v ∈ R), the Floquet operator of the system in
k-space is found to be [261]

U(kx, ky) = e−i∆(cos kxσx+sin kxσy) ⊗ e−ihz(ky)τz e−ihx(ky)τx , (152)

where
hx(ky) = J1 cos ky, hz(ky) = u + iv + J2 sin ky. (153)

The non-Hermitian effect is brought about by the onsite gain and loss encoded in the
term ivτz.
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Figure 6. Non-Hermitian Floquet SOTI [261]: (a) Schematic diagram of the lattice model. (b,c)
Topological phase diagram of the model in Equation (149) versus the hopping amplitude J1 and
gain/loss amplitude v. Other system parameters are ∆ = π/20, J2 = 3π, and u = 0. The topological
invariants ν0 and νπ for each non-Hermitian Floquet SOTI phase with a uniform color are given
in (b,c). Spectral gap functions F0 (blue circles) and Fπ (red dots) versus v and the state index N are
shown in (d,e). The system parameters are ∆ = π/20, J1 = 2.5π, J2 = 3π, and u = 0 for (d), with
further v = 2 for (e). v1 and v2 denote topological phase transition points. In (e), the system possesses
twelve (eight) Floquet topological corner modes at the quasienergies zero (π). The spatial probability
distributions of these corner modes are given in (f–h) and (i,j), respectively.

In symmetric time frames, the system has the chiral (sublattice) symmetry S = σz ⊗
τy [261]. One can, thus, characterize its Floquet second-order topological phases by the
integer winding numbers [261]

ν0 =
ν1 + ν2

2
, νπ =

ν1 − ν2

2
. (154)

Here, να = wwα for α = 1, 2. w is the winding number of the static Hamiltonian ∆(cos kxσx +
sin kxσy), which is always equal to one for the topological flat-band limit of the SSH model.
(w1, w2) are the winding numbers of the subsystem Floquet operator e−ihz(ky)τz e−ihx(ky)τx ,



Entropy 2023, 25, 1401 34 of 53

which can be defined via the procedure outlined in Section 2.5. They both take integer-
quantized values, even with the non-Hermitian effects considered in our system [261].

In Figure 6b,c, we show the topological phase diagrams of U(kx, ky) in the parameter
space J1 − v (with (∆, J2, u) = (π/20, 3π, 0)). We find that both the winding numbers
(ν0, νπ) can take large values, which indicates the presence of non-Hermitian Floquet SOTI
phases with large topological invariants in our setting. Furthermore, with the increase in
the gain and loss strength v, the system can undergo topological phase transitions and
even enter non-Hermitian Floquet SOTI phases with larger winding numbers. These non-
Hermiticity-boosted topological signatures are also not expected in non-driven systems.
Their appearance is, thus, due to the interaction between Floquet driving fields and non-
Hermitian gain and loss.

Under the OBC along both x- and y-directions, localized Floquet eigenmodes with
the quasienergies zero and π appear at the four corners of the square lattice. Some
spatial profiles of these corner modes are shown in Figure 6f–j (with (∆, J1, J2, u, v) =
(π/20, 2.5π, 3π, 0, 2)). There are twelve (eight) Floquet corner modes at the quasienergy
zero (π). More generally, their numbers (n0, nπ) are related to the winding numbers (ν0, νπ)
through the algebraic relations [261]

(n0, nπ) = 4(|ν0|, |νπ |). (155)

We, thus, established the bulk–corner correspondence for a class of non-Hermitian
Floquet SOTI with chiral symmetry. With the growth in the non-Hermitian parame-
ter v, topological phase transitions accompanied by the increase in bulk winding num-
bers (ν0, νπ) and corner mode numbers (n0, nπ) are observed from the gap functions
(F0, Fπ) ≡ ( 1

π |ε|,
1
π

√
(|Reε| − π)2 + (Imε)2) under the OBC (here ε denotes the quasienergy),

as showcased in Figure 6d,e. The topological phase transition points v1 and v2 under the
OBC are precisely consistent with the gap-closing points of the 2D bulk under the PBC,
which can be found analytically [261]. Finally, even with non-Hermitian effects, the bulk
winding numbers (ν0, νπ) can be dynamically probed by 2D generalizations of the MCD as
introduced in Section 2.6.2 (see Ref. [261] for more details).

Overall, we discovered rich non-Hermitian Floquet SOTI phases in a periodically
quenched 2D lattice with balanced gain and loss. Different from the static case, each
SOTI phase is now depicted by two topological invariants (ν0, νπ). Many non-Hermitian
Floquet SOTIs with large topological invariants and gain- or loss-induced topological
phase transitions were identified. Under the OBC, the winding numbers (ν0, νπ) determine
the numbers of symmetry-protected Floquet corner modes at zero and π quasienergies.
The interplay between driving and dissipation, thus, results in a series of non-Hermitian
Floquet SOTI phases with multiple zero and π corner modes, which may find applications
in topological state preparations, information scrambling, and quantum computation.
The work of Ref. [261] offers one of the earliest findings of rich non-Hermitian Floquet
topological phases beyond one spatial dimension. In the meantime, it introduces a generic
scheme to construct non-Hermitian Floquet higher-order topological phases across different
physical dimensions, which is expected to be applicable to insulating, superconducting,
and semi-metallic systems. Note in passing that some latter studies also considered the
NHSEs and anomalous π modes in Floquet higher-order topological phases with somewhat
different focuses [237,240,248].

3.2.3. qth-Root Topological Phase

We now consider an exotic class of non-Hermitian Floquet topological phase, which
could have symmetry-protected boundary states at the quasienergies pπ/q, with p, q ∈ Z±
and p/q 6= 0, 1. A systematic procedure for obtaining these new phases is to take the
nontrivial qth-root of a propagator Û that describes Floquet topological matter. The general
procedure is developed in Ref. [265], which extends the previous schemes of taking 2nth
and 3nth roots for static Hamiltonians [291–300] to Floquet systems. The basic idea is
first outlined in Ref. [301], and then expanded by utilizing Zq generalizations of Pauli
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matrices as ancillary degrees of freedom before taking the qth-root of a Floquet operator in
an enlarged Hilbert space. This is in parallel with Dirac’s original idea of adding internal
degrees of freedom for electrons before taking the square root to obtain their relativistic
wave equation [302].
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Figure 7. Cubic-root non-Hermitian Floquet topological insulator [265]: Top left: Schematic diagram
of taking the cubic-root for a Floquet operator. (a) Real parts of quasienergy E versus J1 for the cubic-
root model U1/3 under the OBC (blue dots) and PBC (gray dots in the background). (b) Gap function
Fε of U1/3, with blue solid and red dotted lines denoting the gap functions Fπ/3 (=Fπ) and F2π/3 (=F0)
under the OBC. Corresponding gap functions under PBC are given by the gray solid and dotted lines
in (b). Other system parameters are (J2, µ, λ) = (0.5π, 0.4π, 0.25) and the length of lattice is L = 400
for (a,b). (c) Floquet spectrum of U1/3 versus the state index j for (J1, J2, µ, λ) = (π, 0.5π, 0.4π, 0.25),
zoomed in around E = (π/3, 2π/3). (d,e) show the spatial profiles of degenerate edge modes with
E = π/3 and 2π/3 in (c). The two edge modes at each E are plotted in different colors. (f) shows a
pair of typical bulk states (in different colors) of U1/3 from (c), which appear around the boundaries
and represent non-Hermitian Floquet skin modes.

To be explicit, we consider the construction of a cubic-root non-Hermitian Floquet
topological insulator. An illustration of the scheme is given in Figure 7. Let us consider a
three-step periodically quenched parent system, whose time-periodic Hamiltonian takes
the form of [265]

Ĥ(t) =


Ĥ3, t ∈ [`, `+ 1/3),
Ĥ2, t ∈ [`+ 1/3, `+ 2/3),
Ĥ1, t ∈ [`+ 2/3, `+ 1),

(156)

where ` ∈ Z and we have assumed h̄ = T = 1. The Floquet operator of the system is then
given by Û = e−

i
3 Ĥ1 e−

i
3 Ĥ2 e−

i
3 Ĥ3 . Following the methodology of Ref. [265], the nontrivial

cubic root Û1/3 of Û is found to be

Û1/3 =


0 e−i Ĥ1

3 0

0 0 e−i Ĥ2
3

e−i Ĥ3
3 0 0

. (157)
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The cube of Û1/3 then gives

Û3
1/3 =

e−
i
3 Ĥ1 e−

i
3 Ĥ2 e−

i
3 Ĥ3 0 0

0 e−
i
3 Ĥ2 e−

i
3 Ĥ3 e−

i
3 Ĥ1 0

0 0 e−
i
3 Ĥ3 e−

i
3 Ĥ1 e−

i
3 Ĥ2

. (158)

It is clear that Û3
1/3 contains three identical copies of Û, in the sense that its three diagonal

blocks are all related by similarity transformations and, thus, share the same spectrum and
topological properties with Û [265].

As an example, we choose the Floquet model introduced in Ref. [263] as the parent
system, whose Hamiltonian can now be expressed as

Ĥ(t) =


3
4 Ĥ1 t ∈ [`, `+ 1/3)
3
2 Ĥ2 t ∈ [`+ 1/3, `+ 2/3)
3
4 Ĥ1 t ∈ [`+ 2/3, `+ 1)

, (159)

where
Ĥ1 = J2 ∑

n
(iĉ†

n+1 ĉn + H.c.)⊗ σy + iλ ∑
n
(ĉ†

n ĉn+1 + H.c.)⊗ σy, (160)

Ĥ2 = ∑
n
(µĉ†

n ĉn + J1 ĉ†
n ĉn+1 + H.c.)⊗ σx + iλ ∑

n
(iĉ†

n+1 ĉn + H.c.)⊗ σx. (161)

The cubic-root Floquet operator Û1/3 of the system then takes the form of
Equation (157). The non-Hermitian effect is introduced by the asymmetric hopping ampli-
tude iλ. The Floquet quasienergy spectrum and gap functions of Û1/3 versus J1 under the
PBC (gray dots) and OBC (blue dots, red and blue lines) are shown in Figure 7a,b (with
(J2, µ, λ) = (0.5π, 0.4π, 0.25) and the length of lattice L = 400). Here, the gap function

Fε ≡
√
(ReE− ε)2 + (ImE)2, (162)

and the blue (red) lines in Figure 7b denote Fπ/3 (F2π/3). We observe a series of phase
transitions accompanied by quasienergy-gap closings at E = pπ/q for p = 0, 1, 2, 3 and
q = 3. After these transitions, more and more degenerate Floquet edge modes emerge at the
fractional quasienergies E = π/3 and 2π/3, which are impossible in conventional Floquet
topological insulators with two quasienergy bands in one dimension. These fractional-
quasienergy edge modes are, thus, unique to cubic-root Floquet topological insulators,
either Hermitian or non-Hermitian. A zoom in on their quasienergies for one exemplary
case is shown in Figure 7c (with (J1, J2, µ, λ) = (π, 0.5π, 0.4π, 0.25) and the length of lattice
L = 400), and their spatial profiles are shown in Figure 7d (for the E = π/3 eigenmodes)
and Figure 7e (for the E = 2π/3 eigenmodes). Moreover, the numbers of these fractional-
quasienergy edge modes (nπ/3, n2π/3) are determined by the open-bulk winding numbers

(ν0, νπ) [263] of the parent system Û = e−i Ĥ1
4 e−i Ĥ2

2 e−i Ĥ1
4 . More precisely, we have the

following bulk–edge correspondence for our cubic-root non-Hermitian Floquet topological
insulator Û1/3, i.e., [265]

n0 = n2π/3 = 2|ν0|, nπ/3 = nπ = 2|νπ |, (163)

where n0 and nπ are the numbers of zero and π degenerate Floquet edge modes. Finally,
we notice that the system also possesses NHSE under the OBC, as reflected by the profiles
of its Floquet bulk states in Figure 7f (with (J1, J2, µ, λ) = (π, 0.5π, 0.4π, 0.25) and the
length of lattice L = 400). In Figure 7a,b, we also notice the discrepancy between the gap-
closing points of the system under the PBC and OBC. Nevertheless, the open-bulk winding
numbers (ν0, νπ) correctly capture the bulk–edge correspondence of the system under the
OBC, even with NHSEs. Therefore, the work conducted in Ref. [265] also established a
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dual topological characterization for qth-root non-Hermitian Floquet topological insulators.
The formalism developed in Ref. [265] is equally applicable to the construction of qth-root
Floquet topological insulators, superconductors, and semi-metals in other (non-)Hermitian
systems and across different physical dimensions. The fractional quasienergy edge modes
at E = pπ/q might also be employed to generate boundary time crystals with different
temporal periodicity and topological properties [99]. They may also find applications in
Floquet quantum computing.

3.3. Non-Hermitian Floquet Topological Superconductors

Similar to the static case, non-Hermitian Floquet topological phases could also appear
in superconducting systems. We review one such example in this subsection, which admits
many Floquet Majorana zero and π edge modes, even with non-Hermitian effects.

The model we are going to consider describes a Floquet Kitaev chain, whose super-
conducting pairing terms are subject to time-periodic kicks. The Hamiltonian of the model
takes the form of

Ĥ(t) =
1
2 ∑

n
[J(ĉ†

n ĉn+1 + H.c.) + ∆δT(t)(ĉn ĉn+1 + H.c.) + µ(2ĉ†
n ĉn − 1)], (164)

where J is the nearest-neighbor hopping amplitude, ∆ is the p-wave superconducting
pairing amplitude, and µ is the chemical potential. δT(t) ≡ ∑`∈Z δ(t/T − `) implements
delta kickings periodically with the period T. The system is made non-Hermitian by setting
J = Jr + i Ji or µ = µr + iµi with Ji 6= 0 or µi 6= 0, respectively. Possible experimental
realizations of the delta kickings and non-Hermitian terms in this model are discussed in
Ref. [259].

Under the PBC and in symmetric time frames, the Floquet operator of Ĥ(t) respects the
chiral (sublattice) symmetry S = σx. Its bulk topological phases can then be characterized
by the winding numbers (w0, wπ) (see Equations (89)–(93)), for which we choose

Ĥ0 =
1
2 ∑

n
[J(ĉ†

n ĉn+1 + H.c.) + µ(2ĉ†
n ĉn − 1)], (165)

Ĥ1 =
1
2 ∑

n
∆(ĉn ĉn+1 + H.c.), (166)

and assume h̄ = T = 1. Typical topological phase diagrams of the system are shown
in Figure 8a (for J ∈ R, µ ∈ C, (µr, ∆) = (0.3π, 0.5π)) and Figure 8b (for µ ∈ R, J ∈ C,
(µ, ∆) = (0.4π, 0.9π)). Different uniformly colored regions correspond to different topo-
logical phases and the winding numbers (w0, wπ) of each phase are labeled therein. The
boundaries between different phases can be analytically determined from the gap-closing
conditions of the system (see Ref. [259]). Two notable features are brought about by the
interplay between periodic drivings and non-Hermitian effects. First, the system could
undergo rich topological phase transitions and enter Floquet superconducting phases with
arbitrarily large topological winding numbers in principle. These phases could support
arbitrarily many zero and π Majorana edge modes in the thermodynamic limit, which
might be employed to engineer boundary time crystals and realize Floquet quantum com-
puting protocols. Second, Floquet superconducting phases with larger winding numbers
and, therefore, stronger topological signatures may appear with the increase in the non-
Hermitian parameter. Therefore, new topological states could be induced and stabilized
solely by non-Hermitian effects in Floquet superconducting systems. This is not expected
in the non-driven counterparts of our model, where nontrivial topological properties are
usually destroyed with the growth of non-Hermitian effects.
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Figure 8. Periodically kicked non-Hermitian Kitaev chain [259]: (a,b) Topological phase diagrams
under the PBC. (a) (w0, wπ) versus the hopping amplitude J and imaginary part of onsite potential
µi. The real part of onsite potential and the superconducting pairing strength are µr = 0.3π and
∆ = 0.5π. Every patch with a uniform color corresponds to a non-Hermitian Floquet topological
superconducting phase with the winding numbers denoted therein. (b) (w0, wπ) versus the real
and imaginary parts of hopping amplitude Jr and Ji. The onsite potential and superconducting
pairing strength are µ = 0.4π and ∆ = 0.9π. (c,d) Real parts of the quasienergy spectrum versus
µi in (c) and Jr in (d) under the OBC, with the lattice size L = 1000. Other system parameters are
(µr, J, ∆) = (0.3π, 4π, 0.5π) for (c) and (µ, Ji, ∆) = (0.4π, 1, 0.9π) for (d). (e,f) show gap functions
F0 (blue solid lines) and Fπ (red dashed lines) versus µi in (e) and Jr in (f) under the OBC (see
Equation (167)), with the same lattice size and system parameters as for (c,d), respectively.

Under the OBC, the quasienergy spectrum and edge states of the system can be
obtained by diagonalizing the Floquet operator Û = e−iĤ0 e−iĤ1 in Majorana or BdG
bases [259]. As examples, the real parts of Floquet spectra and gap functions (F0, Fπ) versus
µi (with (J, ∆, µr) = (4π, 0.5π, 0.3π)) and Jr (with (Ji, ∆, µ) = (1, 0.4π, 0.9π)) are shown in
Figure 8c,e, and Figure 8d,f, respectively. y1 ∼ y8 refer to gap-closing points of the Floquet
spectrum under the PBC (see Table 1). The gap functions are defined as

F0 =
1
π

√
(Reε)2 + (Imε)2, Fπ =

1
π

√
(|Reε| − π)2 + (Imε)2, (167)

where ε includes all the quasienergies of Û under the OBC. The eigenmodes with F0 = 0
and Fπ = 0 thus have the quasienergies zero and π, respectively. In Table 1, we list the
numbers of Floquet Majorana edge modes (n0, nπ) with the quasienergies (0, π) and the
bulk topological winding numbers (w0, wπ). A simple bulk–edge correspondence can be
further found between these numbers, i.e.,

n0 = 2|w0|, nπ = 2|wπ |. (168)
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These relations hold in other parameter regions of our model as well. We conclude that
our non-Hermitian Floquet Kitaev chain could indeed possess many Majorana zero and π
edge modes due to its large winding numbers. The localization nature of these Majorana
modes was also demonstrated in Ref. [259].

Table 1. Periodically kicked non-Hermitian Kitaev chain: Bulk topological winding numbers (w0, wπ)

and numbers of Floquet Majorana zero and π edge modes (n0, nπ) in different topological phases.
The numerical values of phase transition points y1 ∼ y8 for µi can be analytically found and are
approximately given by 0.64, 1.03, 1.57, 1.94, 2.60, 3.15, 4.41, and 6.11. The numerical values of phase
transition points y1 ∼ y8 for Jr/π can also be found analytically and are given approximately by 0.42,
0.63, 1.47, 1.68, 2.51, 2.72, 3.56, and 3.77 [259].

µi (in
Figure 8e) (w0, wπ) (n0, nπ)

Jr (in
Figure 8f) (w0, wπ) (n0, nπ)

(0, y1) (4, 4) (8, 8) (0, y1) (0, 0) (0, 0)
(y1, y2) (3, 4) (6, 8) (y1, y2) (1, 0) (2, 0)
(y2, y3) (3, 3) (6, 6) (y2, y3) (1, 1) (2, 2)
(y3, y4) (3, 2) (6, 4) (y3, y4) (1, 2) (2, 4)
(y4, y5) (2, 2) (4, 4) (y4, y5) (2, 2) (4, 4)
(y5, y6) (1, 2) (2, 4) (y5, y6) (3, 2) (6, 4)
(y6, y7) (1, 1) (2, 2) (y6, y7) (3, 3) (6, 6)
(y7, y8) (1, 0) (2, 0) (y7, y8) (3, 4) (6, 8)
(y8, 6.5) (0, 0) (0, 0) (y8, 4π) (4, 4) (8, 8)

Therefore, our study in Ref. [259] established the topological characterization and
bulk–edge correspondence of 1D non-Hermitian Floquet topological superconductors that
belong to an extended BDI symmetry class. The interaction between time-periodic driv-
ing fields and non-Hermitian effects was found to produce rich Floquet superconducting
phases with large topological winding numbers and many Majorana edge modes at two
distinct quasienergies zero and π. These non-Hermitian Floquet Majorana modes might
allow Floquet quantum computing schemes to be more robust to environmental-induced
nonreciprocity, dissipation, and quasiparticle poisoning effects. The existence of many pairs
of Floquet Majorana modes may also create stronger transport signals at the ends of the
chain, making it easier to experimentally detect their topological properties in open-system
settings [228]. In future studies, topics like non-Hermitian Floquet topological superconduc-
tors under different driving protocols, in other symmetry classes, with more complicated
lattice effects (e.g., sublattice structures, long-range hoppings or disorder), in higher-spatial
dimensions and with NHSEs, deserve to be explored. Possible changes in topological
classifications due to many-body effects in non-Hermitian Floquet superconductors are
also awaiting to be revealed.

3.4. Non-Hermitian Floquet Quasicrystals

In this subsection, we go beyond the clean limit of driven non-Hermitian lattices
and showcase that the interplay among correlated disorder, temporal driving, and non-
Hermitian effects could yield Floquet quasicrystals with rich PT-symmetry-breaking transi-
tions, localization transitions, and topological phase transitions. We will consider systems
under both high-frequency and near-resonant driving fields.

We start with the example of a 1D non-Hermitian quasicrystal under high-frequency
harmonic driving forces. The Hamiltonian of the model takes the form of [264]

Ĥ(t) = ∑
n
{J(e−γ ĉ†

n ĉn+1 + eγ ĉ†
n+1 ĉn) + [V cos(2παn)− nK cos(ωt)]ĉ†

n ĉn}. (169)

An illustration of the model is given in Figure 9a. Here, γ ∈ R and Je−γ (Jeγ) describes
the right-to-left (left-to-right) nearest-neighbor hopping amplitude. The hopping is non-
reciprocal and thus Ĥ(t) 6= Ĥ†(t) if γ 6= 0. ĉ†

n (ĉn) creates (annihilates) a particle on the
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lattice site n. V ∈ R is the amplitude of an onsite potential, and α is chosen to be irrational
in order for the potential to be spatially quasiperiodic. K ∈ R is the driving amplitude and
ω is the driving frequency. This model can be viewed as a Floquet and quasicrystal variant
of the Hatano–Nelson model [185]. In the absence of the driving force and under the PBC,
all the eigenstates of the system are extended (localized) with complex (real) eigenvalues
if |V| < |2J|e|γ| (|V| > |2J|e|γ|) [191]. The system could, thus, undergo a PT transition, a
localization–delocalization transition, and also a topological transition accompanied by the
quantized change in its spectral winding number (Equation (81)) at |V| = |2J|e|γ| [191].

⋯ ⋯

𝐽𝐽𝐿𝐿𝐽𝐽𝑅𝑅

𝑉𝑉𝑛𝑛
𝑉𝑉𝑛𝑛−1

𝑉𝑉𝑛𝑛−2
𝑉𝑉𝑛𝑛+1 𝑉𝑉𝑛𝑛+2

(a)

(b) (c)

(d)
w = -1

w = -1 w = -1 w = -1 w =
-1

w = 0

Figure 9. Floquet NHQC under high-frequency driving forces [264]: (a) Schematic diagram of the
driven lattice model. (b) The maximal imaginary parts of quasienergies, (c) the minimal values of
IPRs, and (d) the signs of Lyapunov exponents of the Floquet NHQC in Equation (169). Other system
parameters are α = (

√
5− 1)/2, J = V = 1, and the length of lattice is L = 610. The red dashed

line in each panel denotes the boundary between extended phase (with complex quasienergies)
and localized phase (with real quasienergies), which satisfies the condition in Equation (171). The
topological winding number w of each phase is denoted explicitly in (d).

Transforming the Hamiltonian Ĥ(t) in Equation (169) to a rotating frame and applying
the method discussed in Section 2.3, we can obtain the Floquet effective Hamiltonian of our
system in the high-frequency limit [264], i.e.,

ĤF = ∑
n

[
J0

(
K
ω

)
J(e−γ ĉ†

n ĉn+1 + eγ ĉ†
n+1 ĉn) + V cos(2παn)ĉ†

n ĉn

]
. (170)

Here, J0(K/ω) is the Bessel function of first kind, which is a non-monotonous function of
K/ω. Under the PBC, the Floquet NHQC described by ĤF could, thus, undergo multiple
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and re-entrant PT, localization and topological transitions with the change in the ratio K/ω
between the driving amplitude and driving frequency whenever [264]

|V| = |2JJ0(K/ω)|e|γ|. (171)

This is indeed the case, as demonstrated by the maximum of the imaginary parts of
quasienergies, the minimum of IPRs, and the winding numbers in Figure 9b–d (for
(J, V, α) = (1, 1,

√
5−1
2 ) and the length of lattice L = 610). In the metallic phase, we

have max |ImE| > 0, min(IPR) → 0, and the winding number w = −1, which means
that all the Floquet eigenstates of ĤF are extended with complex quasienergies. In the
insulating phase, we have max |ImE| = 0, min(IPR) > 0, and the winding number w = 0,
implying that all the Floquet eigenstates of ĤF are localized with real quasienergies. The
boundaries between these phases (red dashed lines in Figure 9b–d) are precisely depicted
by Equation (171). The Lyapunov exponent λ = ln |(Ve−|γ|)/[2JJ0(K/ω)]| is quasienergy-
independent for all the Floquet eigenstates, which is positive (negative and thus ill-defined)
in the localized (extended) phases [264]. Therefore, it is clear that the phases and transitions
in the quasicrystal Hatano–Nelson model can be significantly modified by Floquet driving
fields even in the high-frequency limit. The periodic driving also provides us with a flexible
knob to control and engineer different types of phase transitions in NHQCs, with further
examples discussed in Ref. [264].

We move on to the example of an NHQC under near-resonant driving fields. In this case,
the interplay between driving and non-Hermitian effects not only induces multiple and re-
entrant localization transitions but also generates critical mobility edge phases that are absent in
non-driven limits. A schematic diagram of our model is shown in Figure 10a. Its Hamiltonian
takes the form of Ĥ(t) = K̂ for t ∈ [`T, `T + T1) and Ĥ(t) = V̂ for t ∈ [`T + T1, `T + T1 + T2),
where ` ∈ Z and the driving period T = T1 + T2. The system is piecewisely quenched between
K̂ = J ∑(eγ ĉ†

n ĉn+1 + e−γ ĉ†
n+1 ĉn) and V̂ = V ∑n cos(2παn)ĉ†

n ĉn over each driving period. For
an irrational α, we thus arrive at a periodically quenched, spatially quasiperiodic variant of the
Hatano–Nelson model, whose Floquet operator is given by [266]

Û = e−iV ∑n cos(2παn)ĉ†
n ĉn e−iJ∑(eγ ĉ†

n ĉn+1+e−γ ĉ†
n+1 ĉn), (172)

where V = VT2/h̄ and J = JT1/h̄. Solving the eigenvalue equation Û|ψ〉 = e−iE|ψ〉 and
using the tools introduced in Section 2.7, we could obtain the maximal imaginary parts of
quasienergies max |ImE|, the density of states with complex eigenvalues ρ, the minimum
of IPRs and the spreading velocity of an initially localized wavepacket v. A collection of
these quantities versus the strength of quasiperiodic potential V is shown in Figure 10b
for a typical case (with (J, γ, α) = (π/6, 0.8,

√
5−1
2 ) and the length of lattice L = 4181). We

observe that with the increase of V from V = 0, the system first undergoes a complex-to-real
PT transition in its quasienergy spectrum, which is also accompanied by a localization
transition of all its Floquet eigenstates from spatially extended to localized. Interestingly,
with the further enhancement of the quasiperiodic potential V (thus with stronger correlated
disorder), some localized Floquet states can again become extended with real eigenvalues.
The system then enters a critical phase, in which extended and localized eigenstates coexist
and are separated by mobility edges on the complex quasienergy plane (see also Figure 3
in Ref. [266]). The further increase in V leads to re-entrant transitions between localized
and critical mobility edge phases in the system. This is also reflected by the two-parameter
phase diagrams in Figure 10c–f (see Section 2.3 for the definitions of ρ, g, IPRmin, and ζ).
Note that both the critical phases and the re-entrant localization transitions are absent in the
non-driven Hatano–Nelson quasicrystal. They are brought about by the nearest-resonant
Floquet driving field. It induces long-range spatial couplings and quasienergy windings
in the system, thus yielding the observed phenomena (see Ref. [266] for more detailed
discussions).
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In experiments, Floquet NHQCs might be realized by ultracold atoms in driven and
quasiperiodic optical superlattices with particle losses [181,225]. Static NHQCs have also
been realized by non-unitary photonic quantum walks [193,194]. Signatures of PT-breaking
transitions, localization transitions, mobility edges, and topological properties related
to NHSEs can be extracted from dynamical observables of initially localized wavepack-
ets [193,194]. Since quantum walk models are intrinsically dynamical, they provide natural
platforms to realize and detect the Floquet NHQCs reviewed in this subsection. Meanwhile,
as the discrete-time quantum walk carries a synthetic spin-half degree of freedom, it may
also be utilized to simulate other types of NHQCs, such as those with lattice dimeriza-
tions or non-Abelian potentials [303–305]. Topological Anderson insulators induced by
uncorrelated disorder could also be explored in similar settings [189].

𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛−1𝑉𝑉𝑛𝑛−2 𝑉𝑉𝑛𝑛+1 𝑉𝑉𝑛𝑛+2
⋯ ⋯

⋯ ⋯
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𝐽𝐽𝑒𝑒+𝛾𝛾 𝐽𝐽𝑒𝑒+𝛾𝛾 𝐽𝐽𝑒𝑒+𝛾𝛾 𝐽𝐽𝑒𝑒+𝛾𝛾

𝑡𝑡 = ℓ𝑇𝑇 + 𝑇𝑇1 𝑡𝑡 = ℓ + 1 𝑇𝑇

(a)

0 1 2 3
0

0.5

1

1.5 (b) (c) (d)

(e) (f)

Figure 10. Floquet NHQC under time-periodic kickings [266]: (a) Schematic diagram of the driven
lattice model. (b) Maximal imaginary parts of quasienergy (blue solid line), density of states with
complex quasienergies (red dashed line), minimum of IPRs (yellow dash-dotted line), and averaged
spreading velocity of a wave packet (purple dotted line) versus the onsite potential V under PBC.
Other parameters are (J, γ) = (π/6, 0.8). The lattice size is L = 4181. The initial state in the
calculation of v is |ψ(0)〉 = ∑n δn0|n〉 and the average in Equation (126) is taken over 1000 driving
periods. (c–f) show the density of states ρ, the averaged AGRs g, the minimum of IPRs IPRmin, and
the measure of critical phase ζ versus γ and V under PBC. The uniform part of hopping amplitude
J = π/6 and the length of the lattice L = 2584 for (c–f).

Overall, we find that both high-frequency and near-resonant driving fields could be
used to trigger, control, and enrich the phases and transitions in NHQCs, and even create
unique Floquet NHQC phases that are absent in the static limit [264,266]. Non-Hermitian
disordered systems, thus, provide further playgrounds for the exploration of new physics
that are enabled by Floquet engineering and time-periodic driving fields.

4. Conclusions and Outlook

In this review, we recapitulated some progress we made in the study of intriguing
topological phases in non-Hermitian Floquet systems. After a general introduction about
the background and motivation, we first formulated the theoretical frameworks underpin-
ning our study. These include the Floquet theory applicable in general situations and some
approximation schemes suitable for exploring fast and slowly driven systems. Efficient
means of characterizing the symmetry, topology, dynamical, and localization nature of
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non-Hermitian Floquet systems were then introduced. Equipped with these tools, we
discussed prototypical examples of non-Hermitian Floquet topological phases in insulat-
ing, superconducting, and quasicrystalline systems, where the PT transitions, topological
transitions, bulk-edge/corner correspondences and localization transitions within these
non-Hermitian Floquet phases of matter were systematically characterized. Therefore,
the collection of our works [256–266] lays a solid foundation for the study of topologi-
cal phenomena in non-Hermitian Floquet systems and further uncovers the richness of
topological phases that could emerge due to the interplay between periodic drivings and
non-Hermitian effects.

There are several common themes behind the models explored in our reviewed works.
First, all the non-Hermitian Floquet topological insulator and superconductor models we
reviewed possess chiral (sublattice) symmetries, which offer topological protections for
their degenerate Floquet edge or corner modes at different real quasienergies even in the
presence of gain/loss, nonreciprocity, or NHSEs. The symmetry also allows us to treat
the topological characterization of these different models within a coherent framework.
Second, for all the models we considered here, the interplay between non-Hermitian effects
and time-periodic drivings results in phases and transitions that appear to be much richer
than those existing in the Hermitian or static limits of our models, including the Floquet
NHSEs and half-integer-quantized winding numbers that are unfeasible in these limits.
Third, in all the non-Hermitian Floquet topological insulator and superconductor models
considered here, we obtain phases with large topological invariants, many real-quasienergy
topological edge modes, as well as multiple and re-entrant PT/localization transitions in
Floquet non-Hermitian quasicrystals. These phenomena arise thanks to the long-range
couplings induced by Floquet driving fields. We also expect the second and third points to
be generic for non-Hermitian Floquet systems under near-resonant and strong drivings,
and the resulting phases and transitions could go beyond the non-driven limits of the
related non-Hermitian systems.

We note that some other schemes concerning the topological classification and
bulk–edge correspondence of non-Hermitian Floquet matter were discussed in
Refs. [226,230,232,238,247]. The EPs and gapless topological phases in non-Hermitian
Floquet systems were also considered in Refs. [217,233,236,239,241,246,249]. From the per-
spective of quantum control, the periodic driving fields may provide efficient means to
stabilize non-Hermitian systems and control the PT transitions therein [212]. Some interest-
ing aspects regarding the quantum dynamics and anomalous diffusion were revealed in
several chaotic non-Hermitian Floquet systems [229,235,244,250]. Aspects of PT symmetry
in non-Hermitian Floquet phases were also investigated in Refs. [211,218,219,223,234]. On
the experimental side, the quantum walks in cold atoms, photonic setups, and circuit
QED provide useful frameworks to realize and detect non-Hermitian Floquet topological
matter [193,194,210,213–216,224,225,243]. Coupled resonators offer another class of setups
to explore non-Hermitian Floquet topological matter, in which transient and anomalous
Floquet NHSEs [182,183], Floquet PT symmetry [218], Floquet EPs and even non-Bloch
Floquet band structures [306] have been experimentally studied.

Even with all the progress mentioned above, our knowledge about non-Hermitian
Floquet topological matter is still quite limited. This is especially the case for systems be-
yond one spatial dimension, with uncorrelated disorders, and with many-body interactions.
Dynamical quantum phase transitions may exhibit unique critical signatures triggered by
the non-Hermitian Floquet exceptional topology [307–311]. The entanglement and trans-
port properties of non-Hermitian Floquet systems [312,313] may also deviate significantly
from their Hermitian or static counterparts. The exact connection between the topological
phases of non-Hermitian Floquet Hamiltonians and the Floquet master equation (or Floquet
Liouvillian) of driven open systems is unclear. More experimental efforts deserve to be
made in order to realize and observe non-Hermitian Floquet phases with large topological
invariants, many topological edge states, and multiple topological phase transitions. All
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these facts indicate that the area of non-Hermitian Floquet matter is still in its infancy, and
further substantial developments are eagerly needed in this area.
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