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Abstract: A visual servoing system is a type of control system used in robotics that employs visual
feedback to guide the movement of a robot or a camera to achieve a desired task. This problem is
addressed using deep models that receive a visual representation of the current and desired scene, to
compute the control input. The focus is on early fusion, which consists of using additional information
integrated into the neural input array. In this context, we discuss how ready-to-use information can
be directly obtained from the current and desired scenes, to facilitate the learning process. Inspired by
some of the most effective traditional visual servoing techniques, we introduce early fusion based on
image moments and provide an extensive analysis of approaches based on image moments, region-
based segmentation, and feature points. These techniques are applied stand-alone or in combination,
to allow obtaining maps with different levels of detail. The role of the extra maps is experimentally
investigated for scenes with different layouts. The results show that early fusion facilitates a more
accurate approximation of the linear and angular camera velocities, in order to control the movement
of a 6-degree-of-freedom robot from a current configuration to a desired one. The best results were
obtained for the extra maps providing details of low and medium levels.

Keywords: visual feedback control; convolutional neural network; early fusion; segmentation; feature
points; image moments

1. Introduction

Visual feedback control is an important aspect of many modern applications, ranging
from robotics to virtual reality. The ability to perceive and respond to visual information
in real time is essential for achieving desired outcomes. The purpose of a visual feedback
control architecture is to control a robotic system using information obtained from a visual
sensor [1,2]. The visual sensor can be placed either on the robot (known as the “eye-in-hand”
configuration [3]) or in another location in the workspace (known as the “eye-to-hand”
configuration). This paper will examine the eye-in-hand configuration.

Visual feedback control can be achieved through various methods, such as classical
visual servoing, which includes two popular methods, image-based visual servoing (IBVS)
and pose-based visual servoing (PBVS) [3]. In IBVS, the control loop is driven by the error
between the desired and current visual features, such as image coordinates, edges, corners,
or image moments, while in PBVS, the control loop is driven by the error between the
desired and current object pose. Despite their success in many applications, classical visual
servoing methods have several limitations. They rely on hand-crafted features, predefined
models, and linear control laws, which can result in poor performances under challenging
conditions, such as occlusions, lighting changes, and cluttered environments [3].

Recent advances in deep learning have shown promise in enhancing visual feedback
control. Instead of relying on hand-crafted features, deep learning techniques allow the
system to learn and extract features directly from raw visual data. Convolutional neural
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networks (CNNs) have been shown to offer significant benefits when working with images,
particularly in their ability to learn relevant features for a specific problem, without requir-
ing predetermined feature extraction methods. To enable fast training, numerous neural
architectures were built based on CNNs that were pre-trained for classification tasks, such
as AlexNet [4], VGG-16 [5], or FlowNet [6]. In [7], Saxena et al. used FlowNet to perform the
visual servoing task in various environments, without any prior knowledge of the camera
parameters or scene geometry. The network predicts the camera’s pose by taking an input
array that concatenates the images that specify the current and desired final scenes. The
neural architectures presented by Bateux et al. [8] were derived from AlexNet and VGG16.
They are capable of predicting the transformation that occurred in a camera through two
images and customized to perform high-precision, robust, and real-time six degrees of
freedom (DOF) positioning tasks by using visual feedback. The authors used a synthetic
training dataset to support effective learning and improved robustness to illumination
changes. In [9], the authors introduced DeFiNet, designed as a Siamese neural architecture.
The features are extracted by two CNNs, which share neural parameters. The resulting fea-
tures are passed to a regression block to predict the relative pose resulting from the current
and target images that are captured by an eye-to-hand camera. Ribeiro et al. [10] compared
three CNN-based architectures for grasping detection, where the neural network should
provide a 3D pose, starting from two input images that describe the initial and final layouts
of the scene. In the first architecture, a single branch is used, where the two input images
are concatenated along the depth dimension to form the input array, and a single regression
block generates all six outputs. The second model also uses the same input array but has
two separate output branches for position and orientation. In contrast, the last CNN uses a
separate feature extractor for each input image, concatenates the extracted features, and
then uses a single regression block. Based on experimental results, the first model, which
uses a single branch, yields the best performance. Regardless of the neural architectures or
design of the learning techniques, some limitations arise from the inherent characteristics
of data-driven methods. This includes the fact that the generalization capabilities of the
deep model rely on the content of the training dataset, and important modifications of the
visual elements captured in the scenes should involve retraining the model.

The technique of early fusion in neural networks involves incorporating additional
information that is available to the input of the network. Since the method only extends
the depth of the input array, without requesting the use of additional neural layers or
connections, the approach does not involve significantly increased computational resources
and could remain compatible with real-time scenarios [11,12]. This additional information
can be obtained through various methods, such as segmentation [13], feature points [14],
filtering, or utilizing information acquired from multiple sensors or sources to provide
a more comprehensive understanding of the environment [15]. Another approach to
data fusion is to integrate the new information into the hidden neural layers, a technique
referred to as middle fusion. By integrating the supplementary data into the feature
maps at different layers of the feature extractor, the extra information could potentially
have a greater impact on global features. However, implementing middle fusion requires
significant modifications to the neural architecture and may limit the transfer of learning
from pre-trained models. The third possible approach means applying fusion at the decision
level, which is the simplest approach and does not require modifications to the neural
architecture. With this method, the supplementary data are not used during learning and
are only incorporated at the decision-making stage.

The current work is set to evaluate multiple convolutional neural architectures pro-
posed for a visual servoing task. This effectively integrates valuable supplementary knowl-
edge and facilitates the transfer of learning from a CNN pre-trained for the image classifi-
cation task, this being illustrated by comparing it with classical PBVS (pose-based visual
servoing). To achieve this, the CNN architecture utilizes the early fusion method. The
proposed template consists of exploiting traditional visual servoing techniques to produce
additional useful input data for the deep models. In this regard, the extension of the
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input neural arrays is discussed for three relevant approaches: region-based segmentation,
feature points, and image moments. These three approaches can offer different levels of
detail from the initial and final scenes:

• The feature points can be considered as providing low-level information, as they give
specific points in the image where single or multiple objects of interest are located;

• The regions indicated by segmentation can be considered as providing mid-level
information, as they give a more general idea of the location and features of an object,
by dividing the image into different areas;

• The image moments can be considered as providing high-level information, as they
compute a summary of the distribution of pixel intensities in the image, which can be
used to estimate the pose of the object, but also in decoupling the linear and angular
camera velocities.

This paper investigates how traditional techniques could be effectively exploited by
deep learning for the visual servoing task. In this regard, we discuss an early fusion ap-
proach for CNN-based visual servoing systems, which mixes the initial and final images
with maps that illustrate additional information from these scenes. According to our knowl-
edge, this is the first comprehensive analysis of additional ready-to-use information that
can improve CNN’s ability to accurately perform the visual servoing task. The relevance
of this extra information has been already validated by classic visual servoing techniques,
however, the challenge consists of finding proper, simplified descriptions of the initial
and final scenes, which could be useful for CNN. The maps should offer ready-to-use
information to guide the extraction of features, for an effective computation of the linear
and angular camera velocities for a 6 DOF robot. As all necessary information is available
in the original images, the extra maps implicitly introduce data redundancy. The extra
maps also require expanding the deep model with supplementary learnable parameters.
As a consequence, an important aspect to analyze is what level of detail could be more
helpful for CNN to make its training easier and more effective.

The main contributions of this work can be summarized as follows:

• The design of an early fusion approach based on image moments, which allows access
to high-level descriptions of the initial and final scenes for all the neural layers;

• The design of early fusion based on multiple types of maps involving different levels
of detail;

• An extensive analysis of early fusion approaches integrating maps that provide differ-
ent levels of detail, extracted by means of feature points, segmentation, and grid-wise
image moments; the models with early fusion are derived from two deep architectures
and the comparison also includes a traditional visual servoing method;

• Evaluation of the proposed designs for experimental layouts with one or multiple objects.

This paper is organized as follows: Section 2 presents the usage of visual features in
visual servoing. Section 3 unveils the design of the proposed early fusion architectures,
while the results are discussed in Section 4. Section 5 is dedicated to the conclusions.

2. Visual Features in Visual Servoing

In order to perform the visual feedback control, our work consists of using visual
information from cameras to determine the desired motion of a 6 DOF robot. For this, we
integrated features that are highly recommended by traditional visual servoing approaches.
We reconfigured these visual features to adequately incorporate them as information in the
input neural layers. In order to obtain this, the main requirement is the transposition of
this visual information into two-dimensional maps of the same sizes as the original RGB
images. Thus, by using these types of features, some feature maps have been created to
better illustrate the changes between the initial and final scenes and to draw attention to
the regions from where CNN’s feature extractor can obtain relevant high-level features.
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2.1. Image Segmentation Maps

A first method to extract visual features from images is established by the integration
of image segmentation as input information, which has proven to be a valuable approach
for enhancing the performances of a visual servoing system. For example, in [16] the
authors are using the luminance of all pixels in an image as visual features instead of
relying on geometric features, such as points, lines, or poses. Specifically, they used the
grayscale intensity value of each pixel as the luminance feature in order to compute an
optimization-based control law that minimizes the difference between the current and a
desired image. By using the luminance of all pixels in the image, the authors avoid the
need for feature extraction, which can be computationally expensive and error-prone.

Our work proposes the usage of region-based segmentation maps in which each region
belonging to the background or objects is labeled with their mean intensity. The location
and shape of objects can be implicitly inferred from these maps, as demonstrated in Figure 1.
The resulting segmented map provides a simplified layout of the scene that can guide the
feature extractor. As segmentation is region-based, it can be applied to simple or complex
scenes, with uniform or non-uniform backgrounds. The usage of the mean intensities of
the regions, such as labels, offers several advantages: (i) mean intensity is a relevant feature
for a region, despite lighting disturbances; (ii) object matching can be implicitly ensured by
the labels when the initial and final layouts have different object poses; (iii) the range of the
values obtained in the segmented maps is similar to that of RGB images, making it easy for
the CNNs to integrate information from multiple input channels.

Figure 1. Original image (left) and segmented map (right) for complex (up) and simple (down)
scenes.

Algorithm 1 outlines the main steps of the region-based segmentation algorithm
that was used. Since the input images are in RGB format, a conversion to grayscale is
required for the image processing steps. As Figure 1 shows, the background mainly
consists of lighter areas. Therefore, computing the image complement is an important step
in distinguishing between background and objects. Once a better partition is made, basic
segmentation techniques such as Prewitt edge identification and morphological operations
can be applied.
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Algorithm 1 Segmentation algorithm.

Require: RGB image I (e.g., I1 or I2)
1: Convert I to grayscale to obtain Ig.
2: Apply image complement to Ig, in order to obtain Ic.
3: Using a disk of size so, apply morphological opening to Ic, to obtain Io.
4: Subtract Io from Ic, to obtain Iw. Adjust the intensities of Iw.
5: Compute Ib by extracting the edges of Iw (Prewitt).
6: Improve Ib: perform morphological closing using a disk of size sc, fill the holes, and
erode the image using a disk of size se.
7: Obtain A by labeling the objects and background of Ib with the corresponding mean
intensity from Ig.

Ensure: Segmented map, A (e.g., A1 or A2)

External factors, such as changes in illumination, can affect the accuracy of segmenta-
tion results. In response to these challenges, segmented maps can be used in conjunction
with RGB images of the initial and final scene layouts to enable a convolutional neural net-
work to recover crucial information from the original images. This additional information
can be used to mitigate segmentation errors, refine boundary detection, and eliminate false
detections. Moreover, the combined use of segmented maps and RGB images provides
a more comprehensive representation of the scene, which can enhance the overall CNN
performance.

Other possible solutions that could be considered for creating segmentation maps
involve the usage of binary segmented maps, but this method only locates the object,
without differentiating between them. Also, in the case of a non-uniform background,
segmentation maps could be created by merging adjacent superpixels that share similar
color properties.

2.2. Feature Point Maps

The second method that proposes the integration of additional information into the
input array of a convolutional neural network in order to obtain more relevant features is
based on interest point operators. Interest point operators are used to detect key locations
from the image. These operators are specifically chosen to be less sensitive to factors
such as scaling, rotation, and image quality disturbances. These features are typically
extracted from images captured by a camera and used to compute the error between the
current position and the desired position of the robot relative to the object or feature it
is tracking. Previous works relied on the analysis of different point detectors in order to
extract distinctive characteristics of an image and use them to estimate the motion of a
robot. For example, in [17], the authors propose a visual servoing approach that uses SIFT
feature points to track a moving object. The approach is based on a camera mounted on an
anthropomorphic manipulator and the goal is to maintain a desired relative pose between
the camera and the objects of interest. The papers show that the SIFT points are invariant
to scale and rotation and can be used to track the object as the endpoint moves along a
trajectory. The remaining robust feature points provide epipolar geometry, which is used to
retrieve the motion of the camera and determine the robot’s joint angle vector using inverse
kinematics. Another approach is presented in [18] where the authors propose a method
for object tracking based on SURF local feature points. The visual servo controller uses
geometrical features computed from the set of interest points, making the method robust
against occlusion and changes in viewpoint. The experimental results were demonstrated
with a robotic arm and monocular eye-in-hand camera in a cluttered environment.

In this work, we investigate the impact of early fusion on the performance of two
different point operators, namely SURF (speed-up robust features) [19] and BRISK (binary
robust invariant scalable key points) [20]. These two operators are selected due to their
proven high performance and robustness to noise and fast computation.
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By utilizing a map of the detected SURF or BRISK points, we can extract information
about the location of objects in the scene. The SURF algorithm approximates the Hessian
matrix by computing integral images, while the BRISK method relies on circular sampling
patterns to form a binary descriptor. Both methods provide additional information about
the variation of interest points between the initial and final scene layouts, which can
improve CNN’s ability to understand the differences between those two point operators.

Algorithm 2 outlines the main steps used to configure the additional maps, where the
detected points have higher gray-level intensities than the rest of the pixels. To detect the
feature points, the input RGB images are first converted to grayscale and a pre-implemented
algorithm for SURF or BRISK point detection is applied. These points are marked into
bidimensional maps compatible with the proposed early fusion template, hence their
neighborhoods are delimited by a Gaussian filter of size fs and standard deviation fsd.
Finally, the resulting map is generated by mixing the neighborhoods marked around all the
feature points. Examples of SURF and BRISK detectors for a scene with multiple objects
are indicated in Figure 2. The maps were obtained with a Gaussian filter of size fs = 73
(which is about 10% of the minimum dimension of the original images) and a standard
deviation of size fsd = 5. This additional information can guide CNN to better understand
the differences between the initial and final layouts and improve the overall accuracy of
the regression task.

Algorithm 2 Mapping using the SURF or BRISK point algorithms.

Require: RGB image I (e.g., I1 or I2)
1: Convert I to grayscale, resulting in Ig.
2: For Ig, detect the features points, pi, with i = 1, . . . , n.
3: Create a Gaussian kernel, K, of size fs, with standard deviation fsd.
4: For each point of interest, pi, create a map Igi having the same size as Ig; Igi has
non-zero elements only around pi, and the neighborhood of pi is defined by the kernel K
centered in pi.
5: For each pixel (x, y) in Ig, create A of the same size by using the maximum value from
the previously generated maps: A(x, y) = maxi=1,...,n Igi(x, y).

Ensure: Map of feature points, A (e.g., A1 or A2)

Figure 2. Original image (left) and corresponding extra map—with SURF (middle) and BRISK
(right) detectors.

2.3. Image Moment Maps

The third concept that this work uses in order to extract relevant features from the
images involves image moments. Image moments are a set of mathematical properties
that can be used to describe various characteristics of an image. These properties are
computed from the pixel values of the image and can be used to extract features, such
as the position, orientation, and shape of an object in the image. Image moments can be
computed for any binary or grayscale image. In [21], the authors address this problem by
establishing the analytical form of the interaction matrix for any image moment that can be
computed from segmented images. They applied this approach to some basic geometric
shapes and selected six combinations of moments to control the six degrees of freedom of
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an image-based visual servoing system. In comparison, in [22], the authors build upon the
work in [21] but explore the use of both point-based and region-based image moments for
visual servoing of planar objects. The authors use point-based moments to estimate the
pose of the object and region-based moments to refine the pose estimate. They propose a
control scheme that incorporates both types of moments and use experimental results to
demonstrate the effectiveness of the approach.

Assuming that an object in an image is defined by a set of n points of coordinates
(x, y), the image moments mij of order (i + j) are defined as follows:

mij =
n

∑
k=1

xi
kyi

k, (1)

while the centered moments µij of order (i + j) are given by:

µij =
n

∑
k=1

(xk − xg)
i(yk − yg)

i. (2)

The xg = m10
m00

and yg = m01
m00

represent the coordinates of the gravity center, and m00 is
defined as a, the area of the object. The advantage of the centered moments is the invariance
of the translation movements. Many other methods have been developed to find moments
that are invariant to scaling and rotation, among the most well-known are Hu moments [23]
and Zernike moments [24].

Apart from this, another important aspect is to ensure a correct correspondence of
visual features between two successive images. For that, two well-known sets of image
moments are defined by Chaumette in [21] and by Tahri and Chaumette in [22], which
were also implemented in this work. The first one, proposed by Chaumette in [21], states
that a feature vector could be defined as S = (xg, yg, a, sx, sy, α), where xg and yg are the
coordinates of the gravity center and a is the area of an object in the image, all three
considered as linear moments. The last three values of the angular moments are defined as
follows:

sx = (c2c3 + s2s3)/K, (3)

sy = (s2c3 + c2s3)/K (4)

where, c3 = c2
1 − s2

1, s3 = 2s1c1 and K = I1 I3/2
3 /
√

a, with I1 = c2
1 + s2

1 and I3 = µ20 + µ02.
The variables c1, c2, s1, and s2 are defined by the centered moments from (2): c1 = µ20− µ02,
c2 = µ03 − 3µ21, s1 = 2µ11 and s2 = µ30 − 3µ12. The sixth component, α, is defined as:

α =
1
2

arctan
2µ11

µ20 − µ02
. (5)

Considering the velocity of the camera denoted with vc = [v, ω]T , where v = [vx, vy, vz]T

are the linear velocities and ω = [ωx, ωy, ωz]T are the angular velocities, both used to con-
trol the movement of the robot from a current configuration to a desired configuration.
The linear camera velocities are controlled using the first three components of S, while the
angular camera velocities are controlled using the last three components of S.

The second set of image moments considered in this work was obtained according to
the equations proposed by Tahri and Chaumette in [22]. The image moments are defined
by the feature vector fm = (xn, yn, an, τ, ξ, α). The first three components are used to control
the linear camera velocities and are defined as follows:

an = Z∗
√

a∗

a
; xn = anxg; yn = anyg, (6)
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where xn and yn represent the coordinates of the gravity center, Z∗ represents the desired
depth between the desired object position and the camera, a∗ is the desired object area,
and a is the area of the object from the current configuration. Given the fact that the area a
represents the number of point features that characterize the object and it cannot be used
as a visual feature, Tahri and Chaumette propose in [22] that it should be replaced with:

a = µ20 + µ02. (7)

The last three components from fm are used to control the angular camera velocities.
For τ and ξ, the following image moments are proposed:

τ =
In1

In3
, ξ =

In2

In3
, (8)

where

In1 = (µ50 + 2µ32 + µ14)
2 + (µ05 + 2µ23 + µ41)

2,

In2 = (µ50 − 2µ32 − 3µ14)
2 + (µ05 − 2µ23 − 3µ41)

2,

In3 = (µ50 − 10µ32 + 5µ14)
2 + (µ05 − 10µ23 + 5µ41)

2. (9)

The last component that is used to control the angular velocity ωz is defined by the
orientation angle of an object α in the same manner as in Equation (5).

Algorithm 3 summarizes the main steps used to configure the additional maps, based
on angular image moments. As mentioned earlier, image moments are only some statistical
descriptors that capture information about the spatial distribution of intensity values in
an image. To produce maps of the same size as the input image, the image is divided into
multiple cells. Also, due to the fact that the used dataset does not provide any information
about Z∗ (the desired depth between the desired object position and the camera), the
additional maps were generated solely based on the computation of the angular velocities.

Algorithm 3 Mapping using the image moment algorithms.

Require: RGB images of the desired configuration, I1, and for the current configuration, I2
Step 1: Convert I1 and I2 to binary, resulting in I1b and I2b.
Step 2: Divide I1b and I2b into multiple cells, each of size mcell × ncell, resulting in k cells
for an image.
Step 3: Overlap each cell with 25% pixel information from each neighbor cell.
Step 4: Compute angular image moments, with either Tahri or Chaumette equations, for
the pair of images (I1b, I2b), resulting in extra maps (A4

1, A5
1, A6

1, A4
2, A5

2, and A6
2).

Step 5: Compute all minimum and maximum values for all resulting image moment
maps from Step 4.
Step 6: For all image moments, perform normalization using Equation (10).

Ensure: Map of image moments for the desired and current configurations: (A4
1, A5

1, A6
1,

A4
2, A5

2, and A6
2)

The first step to creating such maps based on image moments consists of the conversion
from RGB images to binary, using—by default—the threshold given by Otsu’s algorithm.
After that, in order to compute the angular image moments either with the Tahri [22] or
Chaumette [21] approach, the images were divided into equal cells of size mcell × ncell ,
resulting in k cells for each image. The purpose is to give a more localized and detailed
representation of the image moments. This is also helpful for obtaining a representation as
a map, which can be integrated into the neural input array to be further processed by all
convolutional layers. The next step of the algorithm consists of expanding the resulting
cells to overlap with 25% pixels from each neighbor cell. Lastly, using the extended cells,
six image moment maps are computed, with the following significance:
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• A4
1 and A4

2 are the maps representing the first angular image moments, either for the
desired or the current configuration scene;

• A5
1 and A5

2 are the maps representing the second angular image moments, either for
the desired or the current configuration scene;

• A6
1 and A6

2 are the maps representing the third angular image moments, either for the
desired or the current configuration scene.

The influence of the number of cells and the size of a cell will be discussed in the
next section.

After dividing the image into cells and performing the image moments, the values of
the maps were negative or larger than 255. This is problematic because images are typically
represented as arrays of pixel values that range from 0 to 255. Therefore, if the image
moment maps are not in this range, they alter the impact of the transfer of learning. To
address this issue, a normalization step was necessary, using the minimum and maximum
values of all the computed image moments, with the following equations:

IMnew = (IMold −minValIM)/(maxValIM −minValIM) · 255 (10)

where, IM can be exemplified, as stated in Algorithm 3, with one of the following image
moment maps: (A4

1, A5
1, A6

1, A4
2, A5

2, A6
2). For example, A4

1new is the normalized image
moment map, A4

1old is the image moment map before the normalization, and minValA4
1

and

maxValA4
1

are the minimum and maximum values of all A4
1old computed for the original

training samples, respectively.
Figure 3 exemplifies all the steps described in Algorithm 3 for a pair of desired and

current images corresponding to a simple experimental scene with a single object.

Figure 3. Workflow of computing angular image moments, as shown in Algorithm 3.

3. Early Fusion Architectures for Visual Servoing

In contrast to existing methods that primarily rely on hand-engineered features or
geometric calculations, our proposed framework introduces a novel approach to enhancing
visual feedback control through early fusion. The novelty of our approach lies in the
strategic integration of additional maps alongside RGB images, a departure from the
traditional reliance on visual data alone. The innovative combination not only empowers
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our neural network with a richer contextual understanding of the scene but also ushers in
the potential for greater robustness and precision in a certain visual servoing task.

By using the concept of early fusion, we aim to capitalize on the synergy between
various forms of contextual information. These additional maps, whether derived from
segmentation, feature points, or image moments, are seamlessly combined with the RGB
images. This approach goes beyond the typical use of pre-processed information and
could empower the model to inherently learn the relationships between visual features and
control commands, allowing for a more comprehensive and accurate control mechanism.

The proposed network architecture is presented in Figure 4, where the input arrays
are generated by concatenating the following arrays:

• I1, of size M× N × 3, is an RGB image representing the initial configuration of the
scene;

• I2, of size M × N × 3, is an RGB image that describes the desired configuration of
the scene;

• A1 and A2, both of size M× N, are additional maps that can provide supplementary
important information for the learning process extracted from I1 and I2, respectively.

As described in Section 2, additional maps could be represented by either segmentation
maps [13], points of interest [14], image moments, or their combinations, in order to improve
the performances of a visual servoing neural architecture. The resulting array will be of
size M× N × (6 + 2× P), due to the fact that the concatenation is performed on depth,
where P represents the total depth sizes of all additional maps extracted for the initial or
final image.

Figure 4. CNN general architecture using input data fusion.

While it is possible to directly extract feature maps equivalent to A1 and A2 from I1
and I2 using their respective convolutional and pooling layers, including these maps as
inputs to the CNN, allows the information to be effectively processed by all the neural
layers. This approach also allows CNN to focus on the most significant parts of the scene
while extracting deep features. For this early fusion approach, robustness against potential
errors—whether from segmentation, feature points, or image moments—is ensured by the
inclusion of the original images, I1 and I2, in the input arrays. This allows the CNN to
extract any necessary information directly from them.

The input arrays with increased depth are fed into the feature extraction block, which
is made up of convolutional and pooling layers. The purpose of this particular block is
to create a concise description of the neural input, thereby enabling easier calculation of
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the linear and angular velocities. The specific design of the feature extractor and fully
connected block is flexible, as long as it is suited to the size of the neural input and output.
One common approach is to start with a pre-trained CNN model that has been trained
for image classification and modify its architecture for the regression task. In this work,
the well-known AlexNet will be such an example and modifications will be made in the
last layers to make the architecture compatible with the regression task. Depending on
the nature of the additional maps, different modifications must also be made in the first
convolutional layer, to adjust the depth of the convolutional filters to an increased number
of input channels.

One of the notable promises of our framework lies in its potential for real-time exploita-
tion. The modifications induced by our framework do not involve a significant increase
in the complexity of the deep model but rather focus on modifications to the input arrays,
which are augmented with relevant information. Improved accuracy performance is ex-
pected due to the relevance of additional input data, validated by traditional visual serving
techniques. By leveraging the power of a deep model and the efficiency of early fusion, our
approach could have the capability to operate seamlessly in real-world environments. The
early fusion also facilitates the transfer of learning from deep models devoted to image
classification, which permits fast re-training. As specified before, two methods exploit
maps relying on feature points or segmentation. For both methods, two additional maps
are necessary to describe the initial and final scenes. These additional maps have the same
sizes as the RGB images, M× N, and pixel values between [0, 255]. As the concatenation is
performed on depth, the resulting input arrays have the size M× N × 8, with the mean
updated on each input channel.

The first convolutional layer requires another modification because pre-trained net-
works, such as AlexNet, are designed for RGB input images; therefore, the first convo-
lutional layer includes filters defined for three input channels, WF×F×3, where F is the
size of the filters. The filters of the new architecture, W∗F×F×8, can be initialized using the
filters of the pre-trained CNN, but the initialization procedure should take into account the
significance of the extra maps, to allow an effective transfer of learning. The weights of the
input channels linked with I1 and I2 can be set to WF×F×3, while for the other two input
channels, either obtained by segmentation maps or by feature point maps, their weights can
be obtained from WF×F×3, using the conversion from RGB to grayscale, as the segmented
maps and feature point maps are generated in grayscale:

W∗F = 0.299WR + 0.587WG + 0.114WB. (11)

In (11), W∗F are the weights for the new filter, obtained by combining the weights from
the pre-trained filter WF×F×3, which correspond to the RGB channels, namely WR, WG and
WB. During the training phase, these weights will be adjusted to align with the regression
task objective.

In the fully connected block, all fully connected layers from the pre-trained model can
be reused, except for the last layer, which should have six neurons, one for each desired
camera velocity that needs to be approximated by the model. Additionally, the activation
function of the last layer should be compatible with the range of outputs, avoiding the
use of activation functions, such as a rectified linear unit, which does not permit negative
output values. As exemplification, the experimental section will consider the integration of
AlexNet neural layers into the architecture proposed in Figure 4, resulting in three different
early fusion neural architectures, based on segmentation maps, SURF feature points, and
on BRISK feature points.

A novel method proposed in this paper is based on the early fusion with image
moment maps, which is described in Figure 5. Firstly, an AlexNet-based architecture is
trained using the depth concatenation of the angular image moment maps, as derived
from (10), with the mean updated for each input channel. The first convolutional layer
includes filters with 6 input channels, one for each image moment map. These filters can
be also initialized using the filters of the pre-trained AlexNet. After the training stage,
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the weights and bias from the first convolutional layer will be transferred to the main
early fusion angular image moments-based architecture (Figure 5, bottom). The maps
with the angular image moments and the original RGB images are concatenated on depth,
resulting in an array of size M × N × 12. Therefore, the first convolutional layer will
consist of filters with 12 input channels, with the first 6 input channels linked to I1 and
I2 initialized from the pre-trained AlexNet. The remaining 6 input channels are linked to
the image moment maps and initialized from the network trained for the angular image
moment maps (Figure 5, top). Although the training process might appear intricate, the
model maintains its simplicity by exclusively operating at the input neural layer. We have
refrained from increasing the number of layers or making them more complex. By this,
the fusion of contextual information at an early stage not only enhances performance but
also holds the promise of reduced computational resources during runtime utilization.
This holds particular promise for applications that require rapid and continuous visual
feedback control, where computational efficiency is a key factor. As an exemplification, the
experimental section will consider the following comparisons regarding the angular image
moment maps:

• A comparison between the angular image moments computed with the equations
from [21,22];

• A comparison regarding the influence of the cells’ image size, as stated in Algorithm 3;
• A comparison regarding the influence of the overlapping cells vs. non-overlapping cells;
• A comparison between the performances of a simple early fusion visual servoing

architecture (based on segmentation, feature points, or image moment maps) vs.
hybrid early fusion, where different types of additional maps are combined.

Figure 5. Early fusion CNN based on angular image moment maps.
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4. Results

The importance of the additional information at the input level of a neural architecture
is outlined in this section by an experimental analysis performed for the approaches
previously presented. Multiple neural models were developed according to Figures 4 and 5,
each one receiving different information into the input array. For the experimental phase, all
the networks are defined for input images resized to 227× 227, in line with the pre-trained
AlexNet architecture that is used for exemplification.

4.1. Dataset and Training

The experimental investigations were conducted using the visual servoing dataset
proposed by Ribeiro et al. [10]. As the authors of the dataset stated, the images were
collected by a Kinova Gen3 robotic manipulator, in a way that approximates the self-
supervised approach. The gripper’s camera, an OmniVision OV5640, acquires images of
size 1280 × 720 at 15/30 fps. The authors from [10] programmed the robot in such a manner
that it assumes different poses from a Gaussian distribution centered in the reference pose,
with different standard deviations. To assess the impact of the additional maps on various
input layouts, we considered two distinct configurations representing scenes of varying
complexity. Specifically, one configuration featured multiple objects while the other had
a single object placed against a uniform background. These two configurations were
designated as experimental scenes 1 and 2 (ES1 and ES2), respectively. To provide a better
understanding of the dataset, an example of the initial and final configuration is shown
in Figure 6. By using this dataset, a comprehensive evaluation of the proposed method
was performed, on scenes with varying complexity, in order to examine the role of the
additional maps in the regression task.

For each scenario, 30.000 real-time image combinations of current and final layouts
were chosen from the dataset, along with their corresponding target velocity vector. These
triplets were then divided into three sets for the training, validation, and testing phases,
with 70%, 15%, and 15% of the data allocated to each set, respectively. The images are
disturbed by illumination variations and include foreground items that are difficult to
analyze through classic visual servoing techniques. For instance, foreground regions
colored similarly to the background affect the accuracy of segmentation, and areas with
similar texture affect the accuracy of feature point matching.

Figure 6. Example of dataset samples: initial (left) and final (right) layouts for experimental scenes 1
(top) and 2 (bottom).
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The training process was conducted using the adaptive moment estimation (Adam)
method, which is known for its efficiency. The loss function is the root mean squared
error (RMSE). The training parameters were carefully selected to support effective learning.
Specifically, we trained the model for 100 epochs, with an initial learning rate of 0.0001
and a mini-batch size of 64. To evaluate the performance of the trained neural models, the
mean squared output error (MSE) was used, which is calculated for the training, validation,
and testing samples. MSE is a well-known metric used to evaluate the performance of
regression models and it measures the average of the squared differences between the
predicted and actual velocity values. By analyzing the MSE values obtained for the different
datasets, it was possible to gain insights into the generalization ability of the model and its
capacity to accurately predict the target velocity vectors; (12) outlines the MSE computed
on all output channels, for a dataset used for training, validation, or testing:

MSE =
1

6S

S

∑
k=1

6

∑
c=1

(yt
c(k)− ynet

c (k))2, (12)

where S is the number of samples from the dataset, yt
c(k) is the target, and ynet

c (k) is the
network output corresponding to the cth output channel, for the kth sample.

4.2. Influence of Early Fusion
4.2.1. Simple Experimental Scene

Some preliminary results for the influence of region-based segmentation and feature
point maps were conducted in [13,14]. Table 1 presents the MSE values computed for the
testing dataset, considering the experimental scene ES1, with the choice of AlexNet as a
pre-trained network. With this, the following architectures were developed, as stated in
Figure 4:

• MES1
1 , with region-based segmentation maps;

• MES1
2 , with SURF feature points;

• MES1
3 , with BRISK feature points;

• MES1
4 , without any early data fusion.

Table 1. MSE for segmentation and feature point models—with and without early fusion—on the
testing dataset of experimental scene 1.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES1
1 yes 1.5920 2.2058 4.3378 3.0857 1.7223 4.4991

2 MES1
2 yes 0.8058 1.1116 2.1964 1.4215 0.8726 2.9742

3 MES1
3 yes 1.2849 1.8305 2.7937 2.0749 1.4618 3.6792

4 MES1
4 no 2.0086 2.3068 5.1554 3.4767 2.3897 6.1174

The early fusion architectures based on feature points, MES1
2 and MES1

3 , were designed
according to Algorithm 2. For that, we used a Gaussian kernel of size fs = 27 (which is
about 4% of the minimum dimension of the original images) and a standard deviation
fsd = 5, which allows marking reasonably sized regions around the feature points. The
early fusion architecture based on region-based segmentation maps, MES1

1 , was developed
according to Algorithm 1, with the parameters so = 100, sc = 10 and se = 8.

As an ablation study, in this test scenario, we considered a comparison between
the models with and without early fusion and a comparison between two feature point
detectors, BRISK and SURF. In Table 1, the best result is outlined in green, and the baseline
model without early fusion is highlighted in gray. The experiments from Table 1 show
that the extra maps help CNN to focus on meaningful details. Better results were obtained
with the feature point maps, due to the fact that they provide low-level details, which
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clearly describe the posture of the object. In contrast, the region-based segmentation maps
divide the image into regions, which can be a useful way of separating the image into
meaningful parts; however, because a single object is visible, these maps may not capture all
the relevant information needed and potential segmentation errors become more influential.
A comparison can be made between any of the models with early fusion and the baseline
model, MES1

4 , which has as input information only the desired and current configurations.
From the perspective of MSE computed values, the early fusion-based models have better
results, outlining the benefits of the proposed framework.

According to Algorithm 3 and Figure 5, Table 2 was computed as the first test scenario
regarding the influence of image moment maps. With this, the following architectures were
developed:

• MES1
5 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 192 cells, each of size 60× 80, with overlap, based on angular
image moment equations from [21];

• MES1
6 is trained on the concatenation of RGB images and angular image moments

(as stated in Figure 5—bottom), with k = 192 cells, each of size 60× 80, with overlap,
based on angular image moment equations from [21];

• MES1
7 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 192 cells, each of size 60× 80, with overlap, based on angular
image moment equations from [22];

• MES1
8 is trained on the concatenation of RGB images and angular image moments

(as stated in Figure 5—bottom), with k = 192 cells, each of size 60× 80, with overlap,
based on angular image moment equations from [22].

Table 2. MSE values for angular image moment models—first scenario—on the testing dataset of
experimental scene 1.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES1
5 yes 4.8836 6.2189 9.0847 15.6177 16.6287 16.2375

2 MES1
6 yes 2.2945 2.7545 5.5684 3.7191 2.5188 5.6436

3 MES1
7 yes 4.5350 6.3571 9.8342 16.1768 14.4885 16.8532

4 MES1
8 yes 2.2290 2.4258 5.3002 3.4879 2.5096 5.4063

5 MES1
4 no 2.0086 2.3068 5.1554 3.4767 2.3897 6.1174

In Table 2, the best results obtained in this test scenario are outlined in green, and
the baseline model from which the architectures were designed is marked in gray. As
an ablation study, we considered a comparison between the origin of the angular image
moment equations, either from [21,22]. Comparing the MSE values computed from Tables 1
and 2 shows that a more accurate approximation was obtained with feature points and
segmentation maps rather than image moment maps. One explanation could be that
we used only angular image moments due to the fact that in the dataset [10] the depth
information Z∗ was not available, but also due to the fact that image moments provide
a compact representation of the shapes of an object, rather than the feature points or
region-based segmentation maps which can capture a wider range of image features, such
as meaningful parts from the image. Also, the early fusion with image moment maps
involves using models with more learnable parameters than in the case of region-based
segmentation maps and feature point maps, and this makes the training task more difficult.
These two explanations are why models MES1

6 and MES1
8 do not perform better than the

baseline model MES1
4 , even if there is additional information at the neural input level.

The most accurate model using image moment maps, MES1
8 , was configured with

192 cells with overlapping and [22] angular image moment equations. Given the fact that
this model is also the best for two-stage training, two distinct configurations were also
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considered: one with the same number of cells defined without overlapping, and one with
a higher number of cells, defined with overlapping and smaller cells. The following second
scenario was considered for experimental scene 1:

• MES1
9 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 192 cells, each of size 60× 80, without overlap;
• MES1

10 is trained on angular image moments, with the concatenation of RGB images
and angular image moments (as stated in Figure 5—bottom), with k = 192 cells, each
of size 60× 80, without overlap;

• MES1
11 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 960 cells, each of size 30× 32, with overlap;
• MES1

12 is trained on angular image moments, with the concatenation of RGB images
and angular image moments (as stated in Figure 5—bottom), with k = 960 cells, each
of size 30× 32, with overlap.

To extend our analysis, for this ablation study we considered a comparison between
a model with and without cell overlapping and between a model with a smaller number
of cells ( k = 192 cells) and a higher number of cells (k = 960 cells). The MSE values are
computed in Table 3, where green represents the best results obtained in this test scenario,
and gray is the baseline model from which the architectures were designed.

Table 3. MSE values for angular image moment models—second scenario—on the testing dataset of
experimental scene 1.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES1
9 yes 4.7235 6.8951 9.8050 16.3303 16.4116 17.1293

2 MES1
10 yes 2.0969 2.6951 5.1780 3.9697 2.5908 5.8394

3 MES1
11 yes 4.2983 5.6004 10.0449 18.2033 13.5218 16.0985

4 MES1
12 yes 2.0795 2.5924 5.1154 3.6769 2.5534 5.6018

4 MES1
4 no 2.0086 2.3068 5.1554 3.4767 2.3897 6.1174

Analyzing MES1
9 with MES1

10 or MES1
11 with MES1

12 it can be observed that the two-stage
training described by Figure 5 improves the MSE values in comparison with a training
stage with only the angular image moment maps. Also, a comparison can be made between
MES1

10 and MES1
12 which outlines the benefits of overlapping cells (given the fact that MES1

10
was designed without overlapping cells) and also the idea that more cells of a smaller size
(in this scenario 960 cells of size 30× 32) are more advantageous that fewer cells (192 cells
of size 60× 80). A reason for that could be the fact that in the first case the 960 cells capture
more fine-grained information, each cell focusing on a smaller region, allowing for better
localization of image features. Given the fact that dense disparity maps were not available
in the dataset and, the image moments imply using more learnable parameters while
inducing data redundancy, the baseline model MES1

4 performs better but the errors are
marginal in comparison with the models based on angular image moments.

4.2.2. Complex Experimental Scene

Similarly to the previous subsection, we designed the neural architectures for ES2,
using the methods previously described. Therefore, Table 4 presents the MSE computed for
the models that integrate at the input neural layer different types of maps, each one with a
different design:

• MES2
1 , with region-based segmentation maps;

• MES2
2 , with binary segmentation maps;

• MES2
3 , with segmentation maps that are disturbed by dilation;

• MES2
4 , with segmentation map that are disturbed by erosion;



Entropy 2023, 25, 1378 17 of 26

• MES2
5 , with SURF feature points and neighbourhoods defined by a Gaussian kernel of

size fs = 73 and a standard deviation fsd = 5;
• MES2

6 , with SURF feature points and neighbourhoods defined by a Gaussian kernel of
size fs = 73 and a standard deviation fsd = 15;

• MES2
7 , with BRISK feature points and neighbourhoods defined with a Gaussian kernel

of size fs = 73 and a standard deviation fsd = 5;
• MES2

8 , with BRISK feature points and neighbourhoods defined with a Gaussian kernel
of size fs = 73 and a standard deviation fsd = 15;

• MES2
9 , without any early data fusion.

Therefore, this ablation study allows the following analysis:

• comparison between region-based segmentation maps and binary segmentation maps,
the last one meaning that each object in the image is segmented with white and the
background with black, without any distinction between the foreground items;

• the sensitivity to segmentation errors that might affect the segmented maps integrated
into the input arrays; the disturbed objects are dilated or eroded using a morphological
square structuring element of maximum size 7 (which is about 3 % of the image size).

• comparison between two feature point detectors, BRISK and SURF, for each using two
standard deviation values to highlight the neighbor pixels fsd.

Table 4. MSE values for segmentation and feature point models with and without early fusion on the
testing dataset of experimental scene 2.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES2
1 yes 1.5070 1.3412 2.4003 4.2160 2.5891 4.0299

2 MES2
2 yes 2.0613 2.6963 5.1033 3.4469 2.0103 5.7278

3 MES2
3 yes 1.5887 1.3959 2.5151 4.4366 2.6301 4.3738

4 MES2
4 yes 1.5899 1.4282 2.5555 4.4581 2.8492 4.3276

5 MES2
5 yes 1.5887 1.3959 2.5151 4.4366 2.6301 4.3738

6 MES2
6 yes 1.6600 1.4653 2.2952 4.8211 3.0827 4.3262

7 MES2
7 yes 2.3339 2.1877 3.2787 7.9396 5.0341 5.5175

8 MES2
8 yes 2.3434 2.2612 3.3294 7.8815 5.0178 5.7616

9 MES2
9 no 2.9209 2.8154 4.0592 8.9356 6.3830 6.4336

For the early fusion based on segmentation, a comparison between MES2
1 and MES2

2
show that region-based segmentation maps are more valuable than the binary maps.
Because the binary maps just locate the objects, without differentiating between them,
the early fusion provides less extra information and consequently has a reduced impact
on the CNN performance. The sensitivity to segmentation errors implies a comparison
between MES2

1 , MES2
3 and MES2

4 . According to this, the errors between the models working
with disturbed and non-disturbed maps are marginal. The explication is related to the
fact that CNNs can also exploit the information provided by the original images to correct
some segmentation errors. This result is important to highlight that input data redundancy
produced by early fusion can be also exploited to improve the robustness of the model.

The last aspect implied in this ablation study involves a comparison between models
working with feature point maps. The experiments were conducted for two detectors,
BRISK and SURF, using two different standard deviations to investigate whether it is
more advantageous to delineate larger or smaller neighbourhoods around the feature
points. A larger neighbourhood can be beneficial if the detector does not yield enough key
points, while smaller neighbourhoods are valuable for narrowing down the recommended
exploration area when all required key points have been adequately identified. The results
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show that both BRISK and SURF detectors identify noteworthy points of interest. However,
as indicated in Table 4, the SURF points tend to be more relevant, on average, leading to
much lower MSE values for MES2

5 and MES2
6 vs. MES2

7 and MES2
8 . The results also indicate

that the choice of the detector has a greater impact than the size of the neighbourhood
defined around the points of interest. The differences between MES2

5 vs. MES2
6 and MES2

7 vs.
MES2

8 are minor, even though the maps account for neighbourhoods of varying sizes.
Also, a comparison can be made between any of the models built via the framework

from Figure 4 and the baseline model, MES2
9 , which has as input information only the

desired and current configurations. Analyzing the MSE values, any model with early
fusion has better results, a fact that outlines the benefits of the proposed framework.
In comparison with the results presented in Table 1, the segmentation maps are more
influential for the neural architecture vs. the feature point maps. Also, it seems that the
feature points are more relevant in the simple experimental scene because they capture
the unique characteristics of the single object in the scene, allowing the neural network to
recognize it easily. On the other hand, in the more complex scene with multiple objects, the
feature points do not directly differentiate between objects. Segmentation maps may be
more effective because they provide a way to isolate each object from the background and
thus make it easier for the neural network to distinguish between them.

As in the simple experimental scene, two different scenarios were considered for
designing the angular image moments into the first neural architecture. For our ablation
study we considered the comparison between the two techniques of defining the angular
image moments, either with the equations from [21,22]. The resulting neural configurations
are described as follows, with the MSE computed in Table 5:

• MES2
10 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 192 cells, each of size 60× 80, with overlap, based on angular
image moment equations from [21];

• MES2
11 is trained on the concatenation of RGB images and angular image moments

(as stated in Figure 5—bottom), with k = 192 cells, each of size 60× 80, with overlap,
based on angular image moment equations from [21];

• MES2
12 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 192 cells, each of size 60× 80, with overlap, based on angular
image moment equations from [22];

• MES2
13 is trained on the concatenation of RGB images and angular image moments

(as stated in Figure 5—bottom), with k = 192 cells, each of size 60× 80, with overlap,
based on angular image moment equations from [22].

In the same manner, as in the Simple experimental scene, a comparison of the MSE
values can be made between Tables 4 and 5. It results that a more accurate approximation
was obtained with feature points and segmentation maps rather than with image moment
maps. One explanation could be that we used only angular image moments due to the fact
that in the dataset [10] the depth information Z∗ was not available, but also due to the fact
that image moments provide a compact representation of the shapes of an object, rather
than the feature points or region-based segmentation maps which can capture a wider
range of image features, such as meaningful parts from the image. Also, the early fusion
with image moment maps involves using models with more learnable parameters than in
the case of region-based segmentation maps and feature point maps, and this makes the
training task more difficult. The presence of these two factors also explains why models
like MES1

6 and MES1
8 do not exhibit superior performance compared to the baseline model

MES1
4 , regardless of the inclusion of extra information in the neural input arrays.
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Table 5. MSE values for angular image moment models—first scenario—on the testing dataset of
experimental scene 2.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES2
10 yes 5.8103 5.0114 7.0448 16.4421 15.5449 13.2508

2 MES2
11 yes 3.7898 3.4630 5.0784 12.5233 8.8326 8.4779

3 MES2
12 yes 5.5286 4.7391 6.7281 13.8621 12.7349 10.6388

4 MES2
13 yes 3.3418 2.8719 4.5878 9.9417 6.8617 7.6917

5 MES2
9 no 2.9209 2.8154 4.0592 8.9356 6.3830 6.4336

A second test scenario was considered for the complex experimental scene, focusing
on the comparison of the model with the best results from the first scenario test, MES2

13 . The
model was configured with Tahri’s angular image moment equations [22], with 192 cells of
size 60 × 80 for which the following modifications were performed:

• MES2
14 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 192 cells, each of size 60× 80, without overlap;
• MES2

15 is trained on angular image moments, with the concatenation of RGB images
and angular image moments (as stated in Figure 5—bottom), with k = 192 cells, each
of size 60× 80, without overlap;

• MES2
16 is trained on angular image moments without RGB images (as stated in

Figure 5—top), with k = 960 cells, each of size 30× 32, with overlap;
• MES2

17 is trained on angular image moments, with the concatenation of RGB images
and angular image moments (as stated in Figure 5—bottom), with k = 960 cells, each
of size 30× 32, with overlap.

From these four configurations, it results as an ablation study the analysis of two dif-
ferent cell sizes and the design of the image moment maps with or without cell overlapping.
Table 6 showcases the computed Mean Squared Error (MSE) values for the four models
under consideration. When examining MES2

14 alongside MES2
15 or MES2

16 alongside MES2
17 , it

can be observed that employing the two-stage training approach depicted in Figure 5 leads
to superior MSE values compared to single-stage training using only the angular image
moment maps.

Additionally, a comparison between MES2
15 and MES2

17 highlights the advantages of
incorporating overlapping cells (considering that MES2

15 was designed without overlapping
cells). Moreover, the concept of having more cells of a smaller size (in this scenario, 960 cells
of size 30 × 32) proves to be more advantageous than having fewer cells (192 cells of
size 60× 80). One potential reason for this lies in the fact that in the former case, the
960 cells capture finer details and information, with each cell focusing on a smaller region.
Consequently, this facilitates a more precise localization of image features. In the absence of
dense disparity maps and using image moments, which implies more learnable parameters,
the baseline model MES2

9 performs better but the errors are marginal in comparison with
the models based on angular image moments. These results highlight that reducing the
number of additional input maps is essential for an effective early fusion, as each extra map
introduces data redundancy and demands increasing the depth of the filters from the first
convolutional layer.
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Table 6. MSE values for angular image moment models—second scenario—on the testing dataset of
experimental scene 2.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES2
14 yes 6.9171 5.7221 7.1592 13.6263 12.0160 13.4043

2 MES2
15 yes 3.0378 2.8809 4.2012 9.8314 6.6217 6.9574

3 MES2
16 yes 5.3859 4.5193 6.4891 10.5421 10.1589 9.8788

4 MES2
17 yes 3.0113 2.8598 4.1895 9.7834 6.5659 6.8982

9 MES2
9 no 2.9209 2.8154 4.0592 8.9356 6.3830 6.4336

4.2.3. Influence of Hybrid Maps

Regarding our visual servoing task, we considered feature points as low-level in-
formation, segmentation regions as mid-level information, and angular image moments
as high-level information. As observed in Sections 4.2.1 and 4.2.2, an architecture with
high-level information could be too comprehensive for a neural network, so the additional
information might not be eloquent enough in the training process. On the other hand, more
compact information, such as region segmentation maps or feature points, could be more
useful regarding the nature of the information from which the neural layers take valuable
additional features.

Therefore, in our tests, we considered the analysis of the influence of multiple types
of extra maps, meaning the concatenation of segmentation and SURF maps alongside the
RGB images. We considered the best configurations of the segmentation maps (so = 100,
sc = 10 and se = 8—According to Algorithm 1) and SURF feature maps (Gaussian kernel of
size fs = 27 and a standard deviation fsd = 5—According to Algorithm 2), resulting in an
input neural array of size 227 × 227 × 10. Given the nature of the experimental scenes, two
different architectures were designed and tested, with their MSE values being described in
Table 7.

Table 7. MSE values for hybrid maps on the testing dataset of experimental scene 1 and 2.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES1
13 yes 1.3974 1.6353 3.3363 2.4560 1.5672 3.6322

2 MES2
18 yes 2.7728 2.6561 3.7574 9.1100 6.1642 6.69544

Analyzing the MSE values from Table 7 for experimental scene 1, MES1
13 configured

with hybrid maps does not perform better than MES1
2 configured with only SURF interest

point maps, but has close values with MES1
1 , configured with segmentation maps. For

the complex scene, the MSE values of the MES2
18 model are comparable to those of the

MES2
2 model configured with SURF interest point maps, but poorer than those of the MES2

1 ,
configured with segmentation maps. The usage of multiple types of extra maps in the neural
input arrays does not bring benefits to the accuracy of the model. An explanation could be
related to the fact that these hybrid early fusions increase the level of data redundancy, as
well as the complexity of the model, making the training more difficult to manage.

4.2.4. Discussions

To highlight the impact of early fusion, two other test scenarios were performed using
another deep model as a baseline. We selected one of the models from [10] which had the
best results (named by the authors Model 1—Direct Regression). This model was extended
for early fusion, according to the framework from Figure 4. The results are compared with
the models derived from AlexNet. Given the fact that for experimental scene 1 the best
result was obtained with MES1

2 , the following test scenario analysis was performed:



Entropy 2023, 25, 1378 21 of 26

• MES1
2 , with SURF feature points based on AlexNet;

• MES1
4 , without any early data fusion based on AlexNet;

• MES1
14 , with SURF feature points based on the model from [10];

• MES1
15 , without any early data fusion based on the model from [10].

The MSE results are presented in Table 8; for MES1
14 and MES1

15 , the trainings were
performed in the same conditions as in the earlier configurations.

The results listed in Table 8 show that the models based on the baseline AlexNet
perform better than those built from the model indicated in [10] (MES1

2 vs. MES1
14 and

MES1
4 vs. MES1

15 ). The explanation could be related to the fact that, in our implementation,
the parameters of MES1

14 and MES1
15 were initialised by means of the Glorot algorithm [25],

without transfer of learning from a pre-trained model. On the contrary, as explained in
the previous section, in the case of MES1

2 and MES1
4 , the parameters were advantageously

initialised via transfer of learning from the pre-trained AlexNet. As anticipated, the pre-
existing knowledge from a pre-trained model proves valuable in facilitating effective
training. For configurations like MES1

14 and MES1
15 , it becomes evident that a more extended

training phase could potentially yield benefits. Nevertheless, even within this setup, the
model employing input data fusion, as stated by the framework described in Figure 4,
demonstrates superior MSE values compared to the conventional baseline model utilizing
only six input channels. This indicates that additional maps integrated into the input arrays
were helpful for understanding the characteristics of the scenes in the framework of the
visual servoing task.

Table 8. MSE values for different deep learning models on the testing dataset of experimental scene 1.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES1
2 yes 0.8058 1.1116 2.1964 1.4215 0.8726 2.9742

2 MES1
4 no 2.0086 2.3068 5.1554 3.4767 2.3897 6.1174

3 MES1
14 yes 22.7901 20.8532 23.8162 33.2861 31.1923 37.1726

4 MES1
15 no 26.3546 23.8321 26.9956 38.4817 34.2442 39.3864

In the same manner, the testing scenario for experimental scene 2 was defined starting
from the best models obtained for it, namely MES2

1 , which uses region-based segmenta-
tion maps:

• MES2
1 , with region-based segmentation maps, based on AlexNet;

• MES2
9 , without any early fusion data, based on AlexNet;

• MES2
19 , with region-based segmentation maps, based on the model from [10];

• MES2
20 , without any early fusion data, based on the model from [10].

The MSE results are presented in Table 9; for MES2
19 and MES2

20 , the trainings were
performed in the same conditions as in the earlier configurations.

Table 9. MSE values for different deep learning models on the testing dataset of experimental scene 2.

No. CNN with Early
Fusion?

vx [m/s
×10−5]

vy [m/s
×10−5]

vz [m/s
×10−5]

ωx [◦/s
×10−5]

ωy [◦/s
×10−5]

ωz [◦/s
×10−5]

1 MES2
1 yes 1.5070 1.3412 2.4003 4.2160 2.5891 4.0299

2 MES2
9 no 2.9209 2.8154 4.0592 8.9356 6.3830 6.4336

3 MES2
19 yes 16.8315 15.4620 19.1508 32.1703 28.1445 32.0806

4 MES2
20 no 26.3546 23.8321 26.9956 38.4817 34.2442 39.3864

For both deep models that are set as references, the segmented maps provide mean-
ingful input data that can be effectively utilized by the neural layers (MES2

1 vs. MES2
9 and
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MES2
19 vs. MES2

20 ). Across all output channels, the MSE values are notably lower for the ar-
chitectures employing early fusion. Also, the models derived from the pre-trained AlexNet
outperform those constructed from the model from [10]. MES2

19 and MES2
20 are trained from

scratch without any transfer of learning, beginning with the initial values supplied by the
Glorot method [25]. Consequently, these models might require extended training times or
larger datasets. Nevertheless, even in this initial learning phase, early fusion proves to be
advantageous.

4.3. Control Scenario Analysis

In the regression task from this work, multiple CNNs are trained to predict velocities
as outputs, which control the motion of a camera of a robotic system based on visual
input. Alongside the previously computed metrics, we evaluate the best models from
experimental scenes 1 and 2, by illustrating the velocities computed during the control
scenario and the autocorrelation of the residuals resulting from the predicted velocities.
The analysis is conducted for both experimental scenes.

To properly evaluate the performances of the proposed approaches, in the numerical
analysis, we include the results generated by a classic visual servoing control law. The
choice was to add PBVS to the evaluation because the dataset includes the camera’s
pose-related information. PBVS considers as control features the information stored by
a translation vector, t, and an angle–axis representation of the orientation, θu. If the
translation vector is defined as the translation between the current camera frame related to
the desired camera frame, c∗tc, then considering the current features

s = (c∗tc, θu), (13)

and the desired ones
s∗ = (0, 0), (14)

according to [1], the control law that computes the values of the linear and angular camera
velocities vc = [vx vy vz ωx ωy ωz]T results as follows:

vc =

[
−λRTc∗tc
−λθu

]
, (15)

where R is the rotation matrix and λ is the proportional gain.

4.3.1. Velocity Visualization

For the same scenario, MES1
2 for experimental scene 1 and MES2

1 for experimental scene
2, we considered multiple consecutive frames extracted from the testing dataset, where we
analyzed the behaviors of the linear and angular velocities obtained by those two models in
comparison with their expected target data and with the velocities obtained by the control
law from (15). Some plots are exemplified in Figures 7 and 8. The best performance of the
PBVS control law in comparison to the reference velocities was obtained after conducting
multiple tests for the proportional gain λ = 0.72. As observed, the neural models predict
values closer to the references in comparison with the velocities obtained by the control law
from (15). These results show that, compared to PBVS, the proposed approach can decouple
all the degrees of freedom of the camera motion in relation to the visual information, not
only linear velocities versus the angular velocities; this shows the benefits of the framework
based on deep models with early fusion.
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Iterations

Iterations

Figure 7. Linear (top) and angular (bottom) generated velocities for the simple experimental scene,
ES1.

Iterations

Iterations

Figure 8. Linear (top) and angular (bottom) generated velocities for the complex experimental scene, ES2.

4.3.2. Autocorrelation of Residuals

The autocorrelation of residuals was analyzed for the same models, MES1
2 for experi-

mental scene 1 and MES2
1 for experimental scene 2. The residual is computed as the error

between the target and prediction; therefore, the autocorrelation of the residuals helps to
identify systematic patterns or dependencies in the prediction errors at different time lags.
Given the size of the testing dataset, we extracted only 10 predicted and target data for
which we visually analyzed the autocorrelation, with the mention that the same distribution
of the values is maintained for all the values resulting from the testing data. Therefore,
Figure 9 illustrates the analysis for model MES1

2 , for the experimental scene 1, with respect
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to all 6 velocity components predicted by the model. In the same manner, Figure 10 shows
the same analysis for the model MES2

1 in experimental scene 2.

Cross-correlation Cross-correlation Cross-correlation

Cross-correlation Cross-correlation Cross-correlation

Figure 9. Autocorrelation of residuals for the simple experimental scene, ES1.

Cross-correlation Cross-correlation Cross-correlation

Cross-correlation Cross-correlation Cross-correlation

Figure 10. Autocorrelation of the residuals for the complex experimental scene, ES2.

As observed in Figures 9 and 10, the magnitude of autocorrelation is much higher
for the lead/lag 0 than for any other lead. This indicates there is no systematic bias in the
predictions, resulting in, on average, the predicted values being close to the corresponding
target values. Also, in every plot pertaining to each velocity component in both Figure 9



Entropy 2023, 25, 1378 25 of 26

and Figure 10, the autocorrelation values gradually approach to zero. In line with the
system identification methodology, this suggests that the residuals, while highly correlated
with themselves at the same time point, do not exhibit systematic trends over time. This
characteristic mirrors the properties of white noise, where data points are independent and
identically distributed, and there is no meaningful temporal structure.

5. Conclusions

This paper introduces CNN architectures with early fusion for a visual servoing task
in the context of the camera positioning on a 6 DOF gripper robot. The neural input array
is expanded on depth, by combining the RGB images (corresponding to the initial and final
scenes) with some additional maps. The role of these maps is to provide simplified sketches
of the initial and final scenes, which can guide CNN in extracting meaningful features.

Some of the most effective traditional visual servoing techniques were explored to
generate extra maps with different levels of detail, relevant to the approximation of the
linear and angular camera velocities required by the visual controller. This analysis focuses
on the design of early fusion approaches using the following types of maps (stand-alone or
in combination): angular moment maps, region-based segmented maps, and feature point
maps. Each type of map offers a different level of information extracted from initial and
final images. To allow simple training, the transfer of learning from a CNN pre-trained
for image classification is adopted. The transfer of learning is adjusted to also manage the
supplementary neural parameters from the first convolutional layer, which were introduced
due to the use of early fusion.

We evaluated the deep models on two different scenes, with a single object and
multiple objects, respectively. These experimental scenarios allowed investigating what
level of detail is helpful for the CNN design and the limitations resulting from early fusion.
Mainly, each extra map increases the level of input data redundancy and requires the use
of additional neural parameters in the deep model. In this context, we concluded that
low-level (SURF feature points) and mid-level information (segmentation maps) are more
helpful than high-level information, such as image moments. A feature point technique
and region-segmentation technique were configured to produce a single supplementary
map for each image, to highlight the important areas, such that the differences between the
initial and final scenes can be easily found by CNN.

Future work will focus on evaluating the performances of the proposed early fusion-
based CNN architectures in applications for eye-in-hand and eye-to-hand configurations.
An envisaged step involves the acquisition of images combined with dense disparity maps
to allow the integration of additional maps with linear image moments. The potential
for improved precision and robustness offered by the combined input information holds
promise for advancing the field of visual servoing and facilitating practical applications in
domains requiring precise camera positioning and control.
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22–25 August 2022; pp. 199–204.

14. Botezatu, P.; Ferariu, L.; Burlacu, A.; Sauciuc, T. Visual Feedback Control using CNN Based Architecture with Input Data Fusion.
In Proceedings of the 2022 26th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania,
19–21 October 2022; pp. 633–638.

15. Gao, Y.; Hendricks, L.A.; Kuchenbecker, K.J.; Darrell, T. Deep learning for tactile understanding from visual and haptic data. In
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 536–543.

16. Collewet, C.; Marchand, E.; Chaumette, F. Visual servoing set free from image processing. In Proceedings of the 2008 IEEE
International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 81–86.

17. Shademan, A.; Janabi-Sharifi, F. Using scale-invariant feature points in visual servoing. In Machine Vision and its Optomechatronic
Applications; SPIE: Philadelphia, PA, USA, 2004; Volume 5603, pp. 63–70.

18. La Anh, T.; Song, J.B. Robotic grasping based on efficient tracking and visual servoing using local feature descriptors. Int. J.
Precis. Eng. Manuf. 2012, 13, 387–393. [CrossRef]

19. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. SURF: Speeded Up Robust Features. Comput. Vis. Image Underst. J. 2008, 110, 346–359. .
[CrossRef]

20. Leutenegger, S.; Chli, M.; Siegwart, R. BRISK: Binary Robust Invariant Scalable Keypoints. In Proceedings of the IEEE
International Conference ICCV, Barcelona, Spain, 6–13 November 2011.

21. Chaumette, F. Image moments: a general and useful set of features for visual servoing. IEEE Trans. Robot. 2004, 20, 713–723.
[CrossRef]

22. Tahri, O.; Chaumette, F. Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans. Robot.
2005, 21, 1116–1127. [CrossRef]

23. Hu, M. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187.
24. Walin, A.; O.Kubler. Complete sets of complex Zernike moments invariants and the role of the pseudo-invariants. IEEE Trans.

PAMI 1995 17, 1106–1110. [CrossRef]
25. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the JMLR

Workshop and Conference Proceedings—Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/MRA.2006.250573
http://dx.doi.org/10.1109/MRA.2007.339609
http://dx.doi.org/10.1109/ACCESS.2021.3091737
http://dx.doi.org/10.1016/j.robot.2021.103757
http://dx.doi.org/10.1016/j.imavis.2020.104042
http://dx.doi.org/10.1007/s12541-012-0049-8
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/TRO.2004.829463
http://dx.doi.org/10.1109/TRO.2005.853500
http://dx.doi.org/10.1109/34.473239

	Introduction
	Visual Features in Visual Servoing
	Image Segmentation Maps
	Feature Point Maps
	Image Moment Maps

	Early Fusion Architectures for Visual Servoing
	Results
	Dataset and Training
	Influence of Early Fusion
	Simple Experimental Scene
	Complex Experimental Scene
	Influence of Hybrid Maps
	Discussions

	Control Scenario Analysis
	Velocity Visualization
	Autocorrelation of Residuals


	Conclusions
	References

