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Abstract: The Minimum Vertex Weighted Coloring (MinVWC) problem is an important generalization
of the classic Minimum Vertex Coloring (MinVC) problem which is NP-hard. Given a simple
undirected graph G = (V, E), the MinVC problem is to find a coloring s.t. any pair of adjacent
vertices are assigned different colors and the number of colors used is minimized. The MinVWC
problem associates each vertex with a positive weight and defines the weight of a color to be the
weight of its heaviest vertices, then the goal is the find a coloring that minimizes the sum of weights
over all colors. Among various approaches, reduction is an effective one. It tries to obtain a subgraph
whose optimal solutions can conveniently be extended into optimal ones for the whole graph,
without costly branching. In this paper, we propose a reduction algorithm based on maximal clique
enumeration. More specifically our algorithm utilizes a certain proportion of maximal cliques and
obtains lower bounds in order to perform reductions. It alternates between clique sampling and graph
reductions and consists of three successive procedures: promising clique reductions, better bound
reductions and post reductions. Experimental results show that our algorithm returns considerably
smaller subgraphs for numerous large benchmark graphs, compared to the most recent method
named RedLS. Also, we evaluate individual impacts and some practical properties of our algorithm.
Furthermore, we have a theorem which indicates that the reduction effects of our algorithm are
equivalent to that of a counterpart which enumerates all maximal cliques in the whole graph if the
run time is sufficiently long.

Keywords: vertex weighted coloring; graph reduction; discrete optimization; clique sampling

1. Introduction

Below we will introduce the MinVWC problem, current reduction approaches, and
our proposed approach, together with some high-level motivation and comparisons.

1.1. The Problem

Given a simple undirected graph G = (V, E), a feasible coloring for G is an assignment
of colors to V s.t. any pair of adjacent vertices are assigned different colors. Formally a
feasible coloring S for G = (V, E) is defined as a partition S = {V1, · · · , Vk} of V s.t. Vi 6= ∅
for any 1 ≤ i ≤ k, Vi ∩ Vj = ∅ for any 1 ≤ i 6= j ≤ k,

⋃k
i=1 Vi = V, and for any edge
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{u, v} ∈ E, u and v are not in the same vertex subset Vi where 1 ≤ i ≤ k. Notice that k is
unknown until we find a feasible coloring. In the Minimum Vertex Weighted Coloring
(MinVWC) problem, each vertex is associated with a positive weight, i.e., there is an
additional weighting function w : V 7→ Z+, and the goal is to find a feasible coloring that
minimizes cost(S, G) = ∑k

i=1 maxv∈Vi w(v). Obviously, an instance of the NP-hard MinVC
problem can conveniently be reduced to an instance of the MinVWC problem by associating
a weight of 1 with each vertex. As a result, the MinVWC problem is also NP-hard [1,2].
This problem arises in several applications like traffic assignment [3,4], manufacturing [5],
scheduling [6] etc. Up to now, there are two types of algorithms for this problem: complete
algorithms [3,7,8] and incomplete ones [4,9,10].

1.2. Current Reduction Approaches

In MinVC solving, a clique provides a lower bound for reductions because any two ver-
tices in a clique cannot have the same color. In MinVWC solving, a clique is also able to do
so, as can be found in the most recent reduction method RedLS published in [11]. Roughly
it is desirable that we have cliques in hand that are of great sizes and each vertex in them
has a big weight. So one may think that we can call an incomplete maximum vertex
weight clique solver like [12,13] to obtain a list of optimal or near-optimal cliques. Such
examples can be found in the state-of-the-art method RedLS. In detail, RedLS first performs
reduction to obtain a reduced subgraph and then does a local search on that subgraph. In
this paper, we will abuse the name RedLS to refer to its reduction component as well. As
to its reduction component, RedLS first samples a proportion of vertices, and for each of
them namely v, it tries to find one maximum or near-maximum vertex weight clique that
contains v. Second it combines such cliques to obtain a ‘relaxed’ partition set and apply this
set for reductions. In a nutshell, the reduction method of RedLS performs clique sampling
and graph reduction successively without interleaving, which we believe is not so flexible
and may miss a few promising cliques and bounds.

1.3. Our Approach

We do not believe that sampling maximum or near-maximum vertex weight cliques is
a perfect approach for clique reductions. In fact, there are two types of cliques that may
not have great total vertex weights but are still useful: those only with big size and those
only with high-weight vertices, because they also contribute to a bound. Actually, solving
MinVWC requires diversification, to be specific, a list of cliques that vary in both sizes
and vertex weight distributions is preferred. If we call a maximum vertex weight clique
solving procedure, we may finally obtain a list of cliques that lack such diversification,
which results in relatively ineffective reductions. Therefore in this paper, we abandon such
an approach and instead enumerate diverse cliques. In this sense enumerating all maximal
cliques in the input graph seems to be a good choice, however, doing so may be costly and
thus infeasible even in sparse graphs, so we develop an algorithm that only enumerates
a certain proportion of them but leads to equally effective reductions as the counterpart which
enumerates all of them, if our algorithm completes.

Recently complex networks have presented a number of applications like cloud com-
puting [14,15], so research about vertex-weighted coloring in large complex networks is
capturing great interest. In this paper, we will present a reduction algorithm that processes
large sparse graphs in order to speed up current MinVWC solving. Roughly speaking,
it alternates between clique sampling and graph reductions. In a graph reduction proce-
dure, it obtains a subgraph whose optimal solutions can be extended into optimal ones for
the whole graph, and we call this subgraph a VWC-reduced subgraph (Vertex Weighted
Coloring-reduced subgraph). Since most large sparse graphs obey the power-distribution
law [16,17], they can be reduced considerably by cliques of a certain quality. On the other
hand, a smaller graph presents smaller search space and the algorithm may find better
cliques more easily which can then be used for further reductions.
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Our algorithm consists of three successive procedures. Firstly, we collect vertices that
have maximum degrees or weights and enumerate all maximal cliques containing them.
Each time we find a maximal clique we check whether it leads to further reductions and do
so immediately if possible. Secondly, we systematically look for cliques that can trigger more
effective reductions. As in the previous procedure, we will perform reductions immediately
once we have found such a clique. Thirdly, we perform clique reductions which are ignored
in the first two procedures. We evaluated our algorithm on a list of large sparse graphs that
were accessed via http://networkrepository.com/ on 1 January 2018, and compared its
performance with RedLS. Experimental results show that our reduction algorithm often
returns subgraphs that are considerably smaller than those obtained by RedLS. Also, we
evaluated the individual impacts of the three procedures above, and found that they all
had significant contributions. Furthermore, our algorithm was able to confirm that it had
found the best bound on a list of benchmark graphs. Last we have a theorem that indicates
that although our algorithm only samples a certain proportion of maximal cliques in the
whole graph, its reduction effects are equivalent to that of a counterpart that enumerates all
of them in the whole graph, given sufficient run time.

2. Preliminaries

In what follows, we suppose a vertex weighted graph G = (V, E, w(·)) with w : V 7→ Z+

being a weighting function. If e = {u, v} is an edge of G, we say that u and v are adja-
cent/connected and thus neighbors. Given a vertex v, we define the set of its neighbors,
denoted by N(v), as {u ∈ V|{u, v} ∈ E} and we use N[v] to denote N(v) ∪ {v}. The
degree of a vertex v, denoted by d(v), is defined as |N(v)|. A clique C is a subset of V s.t.
any two vertices in C are mutually connected. A clique is said to be maximal if it is not
a subset of any other clique. By convention we define size of a clique C, denoted by |C|,
to be the number of vertices in it. Given a graph G and a vertex subset V′ ⊆ V, we use
G[V′] to denote the subgraph of G which is induced by V′, i.e., G[V′] = (V′, E′) where
E′ = {{u, v} ∈ E|u, v ∈ V′}. Given a graph G, we use V(G) and E(G) to denote the set of
vertices and edges of G, respectively.

In the following, for the ease of discussions, we generalize the notion of a color-
ing and allow it to color vertices not in V, so a coloring has now been redefined as
S = {〈1, V1〉, . . . , 〈k, Vk〉} with

⋃k
i=1 Vi ⊇ V. Then we say that V1, . . . , Vk are color classes

and we redefine cost(S, G) as ∑k
i=1 maxv∈Vi∩V w(v). Obviously according to new defi-

nitions, one coloring can have several representations, e.g., {〈1, U〉, 〈2, V〉, 〈3, W〉} and
{〈1, W〉, 〈2, V〉, 〈3, U〉} represent the same coloring.

Given a graph G, we use S|G to denote a certain coloring for it. Then Proposition 1
below shows that given any feasible coloring, its cost on any induced subgraph does not
exceed that on the whole graph.

Proposition 1. Suppose G = (V, E, w(·)) and U ⊆ V. If S|G is a feasible coloring for G, then

1. S|G is also a feasible coloring for G[U];
2. cost(S|G, G[U]) ≤ cost(S|G, G).

Proof. See Appendix A.

Throughout this paper, when we say an optimal coloring/solution, we mean a feasible
coloring/solution with the minimum cost. Given a vertex u, we use cu to denote u’s color.
In addition, we use cu ← j to denote the operation which assigns u the color j, so cu ← cv
assigns u a color which is equal to that of v, i.e., which puts u in the same vertex subset
with v.

Given a tuple t = 〈x1, · · · , xl〉, we use |t| to denote the number of components in t,
so |t| = l. For ease of expression, if t is an empty tuple, we define |t| to be 0. Given a map
f : X 7→ Y and an element x ∈ X, if y = f (x), then we say that y is x’s image under f or
simply say f (x) is x’s image under f . Such notions will be useful when we discuss the

http://networkrepository.com/
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removal of vertices in clique reductions. Finally, when given vertices u and v, we say that u
is heavier (resp. lighter) than v if w(u) > w(v) (resp. w(u) < w(v)).

2.1. A Reduction Framework

Below we will present notions that are related to graph reductions for the MinVWC
problem. The first is an extension to a coloring which relates solutions for a subgraph to
that for the whole graph.

Definition 1. Given a coloring S = {〈1, V1〉, · · · , 〈k, Vk〉} and a vertex x s.t. x 6∈ ⋃k
i=1 Vi, we

define an extension to S with respect to (cx ← j)(1 ≤ j ≤ k + 1), denoted by S ] (cx ← j), as

S ] (cx ← j) =
{

S\{〈j, Vj〉} ∪ {〈j, Vj ∪ {x}〉} if 1 ≤ j ≤ k;
S ∪ {〈j, {x}〉} if j = k + 1.

We also define S as an extension of itself. So an extension to S will not change the
color of any vertices that have already been colored before. Instead, it will put a new vertex
into one of the k existing vertex partitions if 1 ≤ j ≤ k, or a new one if j = k + 1. Obviously
given two operations a1 and a2 for extensions, we have (S ] a1) ] a2 = (S ] a2) ] a1, so the
order of the operations does not matter.

Given a set A = {a1, . . . , an}, we use S ] A to denote S ] a1 ] . . . ] an, and we also say
S ] A is an extension to S. Last if S ] A or S ] (cx ← j) is a feasible color for G, then we say
that S ] A or S ] (cx ← j) is a feasible extension to S for G. Below we have a proposition
that will be useful in proving other later propositions.

The proposition below illustrates that extending a coloring will not decrease its cost.

Proposition 2. Given a vertex x ∈ V and a coloring S = {〈1, V1〉, · · · , 〈k, Vk〉} for G[V\{x}], then

cost(S, G[V\{x}]) ≤ cost(S ] (cx ← j), G)

for any 1 ≤ j ≤ k + 1.

Proof. See Appendix B.

Next, we define a type of subgraphs whose feasible solutions can be extended into
feasible ones for the whole graph with the same cost.

Definition 2. Suppose G = (V, E, w(·)) and U ⊆ V. If given any feasible coloring S|G[U] for
G[U], there exists an extension to S|G[U], denoted by S|G, such that S|G is feasible for G and
cost(S|G[U], G[U]) = cost(S|G, G), then we say that G[U] is a VWC-reduced subgraph for G.

This notion of VWC-reduced subgraph has two nice properties which are shown
in Propositions 3 and 4 below. In detail, Proposition 3 shows that the relation of the
VWC-reduced subgraph is transitive and we can compute a VWC-reduced subgraph in an
iterative way.

Proposition 3. Suppose G = (V, E, w(·)), W ⊆ U ⊆ V, G[W] is a VWC-reduced subgraph for
G[U] and G[U] is a VWC-reduced subgraph for G, then G[W] is a VWC-reduced subgraph for G.

Proof. See Appendix C.

Proposition 4 shows that in order to find an optimal solution for G, we can first find
an optimal solution for its VWC-reduced subgraphs.

Proposition 4. Suppose G = (V, E, w(·)), U ⊂ V and G[U] is a VWC-reduced subgraph of
G, then
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1. given any optimal feasible solution S∗|G[U] for G[U], there exists an extension to S∗|G[U]

which is an optimal solution for G;
2. given any non-optimal feasible solution S↓|G[U] for G[U], there exist no extension to S↓|G[U]

that is an optimal solution for G.

Proof. See Appendix D.

These propositions allow our algorithms to interleave between clique sampling and
graph reduction, which is different from the approach in RedLS [11] yet similar to that in
FastWClq [12]. This is why we titled this paper ‘iterative clique reductions’.

In what follows we will introduce a general principle for computing VWC-reduced
subgraphs.

2.2. Clique Reductions

Below we will utilize the notion of VWC-reduced subgraph to introduce clique reduc-
tions which was initially proposed in [11]. First, we introduce the notion of absorb which
illustrates that a vertex’s close neighborhood is a weak sub-structure of a clique.

Definition 3. Given a vertex u and a clique C = {v1, · · · , v|C|} in G s.t. u 6∈ C, |C| > d(u),
w(v1) ≥ · · · ≥ w(v|C|) and w(vd(u)+1) ≥ w(u), then we say that u is absorbed by C.

Note that the condition |C| > d(u) guarantees that w(vd(u)+1) always exists. Also
notice that [11] did not allow the equation in w(vd(u)+1) ≥ w(u) to hold, but we extend
their statements slightly.

Example 1. Consider G1 in which zω
i denotes Vertex zi with a weight ω. Let u = z2

4 and
C = {z6

5, z5
2, z4

6, z3
1}, then u 6∈ C, |C| = 4 and d(u) = 3, thus |C| > d(u) and w(vd(u)+1) =

w(z3
1) = 3 ≥ w(u) = 2. So we say that z2

4 is absorbed by C.
To make our descriptions more intuitive, we show C and N[u] separately below and moreover,

in C a heavier vertex is shown in a darker color. If we left-shift N[u], then we will find that there is
a one-to-one map ξ : N[u] 7→ C namely {〈z2

4, z3
1〉, 〈z5

3, z5
2〉, 〈z1

7, z6
5〉, 〈z5

8, z4
6〉}, s.t.

1. w(u) ≤ w(ξ(u)), that is, u is no heavier than its image under ξ;
2. and for any x ∈ N(u), w(ξ(x)) ≥ w(ξ(u)), that is, images of u’s neighbors are no lighter

than that of u, or we may roughly say that u’s image is the lightest compared to those of
its neighbors.

z4
6

z3
1 z5

3 z2
4

z1
7 z5

8

z5
2

z6
5

G1

z4
6

z3
1 z5

3z2
4

z1
7 z5

8

z5
2

z6
5

N[u]C

z4
6

z3
1 z5

3

z1
7 z5

8

z5
2

z6
5

G1[V\{z2
4}]

Since |C| = 4, there exist at least 4 colors in any feasible solution for G1[V\{u}]. For coloring
vertices in N(u), we only need d(u) = 3 colors, so there exists at least one color among that of
z6

5, z5
2, z4

6, z3
1 which is not in use for N(u), and we can use it to color u namely z2

4 without causing
any conflicts. Because w(z3

1) ≥ w(z2
4), even though we assign z2

4 the same color as that of z3
1, the

lightest vertex in C, the cost of that coloring will not increase. So we can now simply ignore z2
4 and

later assign it an existing color after all its neighbors have been colored, depending on its weight as
well as its neighbors’ colors. Obviously, this is a feasible extension that does not increase the cost of
a coloring. Therefore G1[V\{z2

4}] is a VWC-reduced subgraph of G1.

In general, we have a proposition below [11].

Proposition 5. Given a graph G and a vertex u, if there exists a clique C s.t. u is absorbed by C,
then G[V\{u}] is a VWC-reduced subgraph of G.
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Proof. See Appendix E.

So if a vertex is absorbed by a clique, it can be removed in order to obtain a VWC-
reduced subgraph.

Example 2. Now we continue with Example 1.

1. In G1[V\{z2
4}], we find that z5

8 is absorbed by C, so we have G1[V\{z2
4, z5

8}] is a VWC-reduced
subgraph of G1[V\{z2

4}]. Similarly we have G1[V\{z2
4, z5

8, z5
3}] is that of G1[V\{z2

4, z5
8}]

and G1[V\{z2
4, z5

8, z5
3, z1

7}] is that of G1[V\{z2
4, z5

8, z5
3}].

2. By Proposition 3, we have G1[V\{z2
4, z5

8, z5
3, z1

7}] is that of G1. Also we have an optimal
coloring for G1[V\{z2

4, z5
8, z5

3, z1
7}] is

S∗|G1[V\{z3
1,z5

2,z6
5,z4

6}]
= {〈1, {z3

1}〉, 〈2, {z5
2}〉, 〈3, {z6

5}〉, 〈4, {z4
6}〉}

and cost(S∗|G1[V\{z2
4,z5

8,z5
3,z1

7}]
, G1[V\{z2

4, z5
8, z5

3, z1
7}]) = 3 + 5 + 6 + 4 = 18.

3. Considering Proposition 4, there exists a feasible extension to S∗|G1[V\{z2
4,z5

8,z5
3,z1

7}]
, denoted by

S∗|G1 , s.t. S∗|G1 is an optimal solution for G1. In detail, for coloring the removed vertices in
{z2

4, z5
8, z5

3, z1
7}, we can follow the reversed order of the reductions before.

4. So an optimal coloring for G1 is

S∗|G1 = {〈1, {z3
1}〉, 〈2, {z5

2, z5
8}〉, 〈3, {z6

5, z5
3, z1

7}〉, 〈4, {z4
6, z2

4}〉}

and cost(S∗|G1 , G1) = 18.

z4
6

z3
1 z5

3

z1
7

z5
2

z6
5

G1[V\{z2
4, z5

8}]

z4
6

z3
1

z1
7

z5
2

z6
5

G1[V\{z2
4, z5

8, z5
3}]

z4
6

z3
1 z5

2

z6
5

G1[V\{z2
4, z5

8, z5
3, z1

7}]

z4
6

z3
1

z1
7

z5
2

z6
5

G1[V\{z2
4, z5

8, z5
3}]

z4
6

z3
1 z5

3

z1
7

z5
2

z6
5

G1[V\{z2
4, z5

8}]

z4
6

z3
1 z5

3

z1
7 z5

8

z5
2

z6
5

G1[V\{z2
4}]

z4
6

z3
1 z5

3 z2
4

z1
7 z5

8

z5
2

z6
5

G1

Furthermore we only have to focus on maximal cliques as is shown by the proposition below.

Proposition 6. If u is absorbed by a clique in G, then it must be absorbed by a maximal clique
in G.

From the propositions above, we can see that whether a vertex can be removed to
obtain a VWC-reduced subgraph or not depends on the quality of the cliques in hand. Below
we define a partial order v between cliques which indicates whether vertices absorbed by
one clique are a subset of those absorbed by the other.

Definition 4. Given a graph G = (V, E, w(·)) and its two cliques Cx = {x1, · · · , x|Cx |} and
Cy = {y1, · · · , y|Cy |} where w(x1) ≥ · · · ≥ w(x|Cx |) and w(y1) ≥ · · · ≥ w(y|Cy |), we define a
partial order v s.t. Cx v Cy iff

1. |Cx| ≤ |Cy|;
2. w(xt) ≤ w(yt) for 1 ≤ t ≤ |Cx|.
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So if Cx v Cy, then Cy leads to reductions that are at least as effective as that result
from Cx. In what follows, if Cx v Cy, we say that Cx is subsumed by Cy. Obviously we have
a proposition below which shows that the v relation is transitive.

Proposition 7. Given a graph G = (V, E, w(·)) and its three cliques Cx, Cy, Cz, if Cx v Cy and
Cy v Cz, then Cx v Cz.

Then we have two propositions which show that if Cx v Cy, then we can keep Cy and
ignore Cx.

Proposition 8. Suppose u is a vertex and Cx, Cy are cliques s.t. u 6∈ Cx ∪ Cy and Cx v Cy, then
if u is absorbed by Cx, then it is also absorbed by Cy.

The proposition below states that if there occur reductions among Cx, Cy and their
vertices where Cx v Cy, then keeping Cy is at least as good as keeping Cx.

Proposition 9. Suppose Cx, Cy are cliques s.t. Cx = {x1, · · · , x|Cx |} and Cy = {y1, · · · , y|Cy |}
where w(x1) ≥ · · · ≥ w(x|Cx |) and w(y1) ≥ · · · ≥ w(y|Cy |), if Cx ∩ Cy = ∅ and Cx v Cy, then
we have for any 1 ≤ t ≤ |Cx|, if yt is absorbed by Cx, then xt is absorbed by Cy.

So if we utilize Cx and Cy to perform clique reductions where Cx v Cy, we can simply
ignore Cx and keep Cy.

2.3. A State-of-the-Art Reduction Method

To date, as we know, the only work on reductions for vertex weighted coloring is
RedLS [11], which constructs promising cliques like FastWClq [12] and combines these
cliques in an appropriate way to obtain a ‘relaxed’ partition set. Then it utilizes this set to
perform reductions and compute lower bounds. So RedLS consists of clique sampling and
graph reductions as successive procedures without interleaving.

Notice that FastWClq alternates between clique sampling and graph reduction and
it benefits much from this approach. Hence it will be interesting to try whether such
an alternating approach would lead to better reductions in vertex weighted coloring.
Fortunately, the reduction framework introduced above allows us to do so.

For simplicity, we will put the details of RedLS in Section 4, where we will be able to
reuse our notations and algorithms for succinct presentation.

3. Our Algorithm

Our reduction algorithm consists of three successive procedures: Algorithms 1 and 2
and post reductions in Section 3.3. As to Algorithm 1, we will first run it with maximum-
weight vertices assigned to startVertexSet in Line 1 and then run it again with maximum-
degree vertices in the same way.

3.1. Sampling Promising Cliques

Algorithm 1 samples promising cliques that may lead to considerable reductions with
three components as below.

1. startVertexSet contains maximum degree/weight vertices and helps find promising
cliques.

2. criticalCliqSet contains cliques that may probably lead to effective reductions and will
be utilized in post reductions in Section 3.3.

3. topLevelWeights is a list of weights in non-increasing order and will be used for reductions.
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In Line 7, we adopt depth-first search to enumerate all maximal cliques which contain
vertices only in candSet. This operation can be costly, so in Section 3.4, we will set a cutoff
for it. To be specific, before each enumeration, we will first put all related vertices into a
list and shuffle this list randomly, then we will pick decision vertices one after another in
this list to construct maximal cliques. By decision vertices, we mean those vertices that can
both be included and excluded to form different maximal cliques.

Furthermore, Lines 8, 9, 10, and 16 will be introduced in Definition 8. Lines 21 and 22
are based on Proposition 16 and will be introduced in detail there.

Algorithm 1: PromisingCliqueReductions

input: A graph G = (V, E, w(·))
output: A set of critical cliques criticalCliqSet

1 startVertexSet← {v ∈ V|vs. has max. degree or weight.};
2 criticalCliqSet← ∅;
3 topLevelWeights← 〈〉;
4 while startVertexSet 6= ∅ do
5 u← a vertex popped from startVertexSet;
6 candSet← N[u];
7 foreach maximal clique C in G[candSet] do
8 cond1← C intersects with topLevelWeights at certain l;
9 cond2← C deviates above topLevelWeights at certain l;

10 cond3← C is not covered by any C′ ∈ criticalCliqSet;
11 if cond2 then

// refer to Algorithm 3
12 updateTopLevelWeights(C, topLevelWeights);

// remove redundant cliques from criticalCliqSet
13 foreach C′ ∈ criticalCliqSet s.t. C′ v C do
14 remove C′ from criticalCliqSet;

15 foreach C′ ∈ criticalCliqSet do
16 if C′ intersects with topLevelWeights at certain l then
17 continue;

18 remove C′ from criticalCliqSet;

19 if (cond1 and cond3) or cond2 then
20 add C into criticalCliqSet;

21 G ← applyCliqueReductions(G, topLevelWeights, candSet);

22 G ← applyCliqueReductions(G, topLevelWeights, ∅);

23 return criticalCliqSet;

3.1.1. Geometric Representations

First, we introduce a notation for representing weight distributions within given cliques.

Definition 5. Given a clique C = {v1, · · · , v|C|} s.t. C 6= ∅ where w(v1) ≥ · · · ≥ w(v|C|), we
define its weight list, denoted by δ(C), to be 〈w(v1), · · · , w(v|C|)〉.

Second, we introduce an operator for appending items to the end of a weight list, and
it is somewhat like counterparts for vector in C++, ArrayList in Java, or list in Python.

Definition 6. Given a list of weights L and a weight ω, we define L⊕ω as 〈ω〉 if L = 〈〉 and as
〈ω1, · · · , ωt, ω〉 if L = 〈ω1, · · · , ωt〉.
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In order to describe properties of our algorithms intuitively, we introduce Euclidean
geometric representations of a list of weights in a rectangular coordinate system as below.

Algorithm 2: BetterBoundReductions
input: A graph G = (V, E, w(·)), topLevelWeights = 〈ω1, · · · , ωt〉,

a set of critical cliques criticalCliqSet
output: A set of critical cliques criticalCliqSet

1 for i← 1 to t + 1 do
2 if 1 < i ≤ t and ωi = ωi−1 then continue ;
3 candSet← i ≤ t?{v ∈ V(G)|w(v) > ωi} : V(G);
4 foreach maximal clique C in G[candSet] do
5 if |C| ≥ i then
6 criticalCliqSet← criticalCliqSet∪ {C};

// refer to Algorithm 3
7 updateTopLevelWeights(C, topLevelWeights);
8 foreach C′ ∈ criticalCliqSet s.t. C′ v C do
9 remove C′ from criticalCliqSet;

10 foreach C′ ∈ criticalCliqSet do
11 if C′ is intersect with topLevelWeights then continue;
12 remove C′ from criticalCliqSet;

13 G ← applyCliqueReductions(G, topLevelWeights, ∅);
14 break and keep i unchanged for the next iteration;

15 return criticalCliqSet;

Algorithm 3: updateTopLevelWeights

input: C, topLevelWeights = 〈ω1, · · · , ωt〉 or 〈〉
output: Implicit from the context

1 〈w1, · · · , w|C|〉 ← δ(C);
2 for i← 1 to |C| do
3 if topLevelWeights 6= 〈〉 and i ≤ |topLevelWeights| then
4 if wi > ωi then
5 replace ωi in topLevelWeights with wi;

6 else
7 topLevelWeights← topLevelWeights⊕ wi;

Definition 7. Given a list of positive numbers L = 〈d1, · · · , dt〉, we draw a curve on the Rect-
angular Coordinate Plane xOy with the list of coordinates 〈(1, d1), · · · , (t, dt)〉 by connecting
adjacent points, and we call this curve the derived curve of L.

Example 3. Notice G2. There are three maximal cliques, C1 = {z3
1, z4

2, z5
3, z1

4, z2
5}, C2 = {z3

1, z1
4, z7

6, z2
5}

and C3 = {z2
5, z1

4, z6
7, z7

6} with δ(C1) = 〈5, 4, 3, 2, 1〉, δ(C2) = 〈7, 3, 2, 1〉 and δ(C3) = 〈7, 6, 2, 1〉.

z2
5

z3
1

z4
2

z5
3 z1

4

z7
6

z6
7

G2
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We draw the derived curves of δ(C1), δ(C2) and δ(C3) as ABCDE (blue), FGHI (green) and
FJHI (red) in (I) in Figure 1.

O x

y

A

B

C

D

E

G

H

I

F

J

(I)
O x

y

B

F

C

D

E

J

A

G

H

I

(II)

Figure 1. (I) Derived curves of δ(C1), δ(C2) and δ(C3) represented by blue, green and red curves,
respectively; (II) topLevelWeights after being updated by C1 and C2 successively, which is the tightest
envelope of them.

On the other hand, we draw the derived curve of topLevelWeights which has just been
updated with respect to C1 and C2 successively in Algorithm 3 as FBCDE (black) in (II) in
Figure 1.

1. In detail, when topLevelWeights has just been updated with respect to C1, its derived
curve exactly overlaps that of δ(C1).

2. Next when topLevelWeights has just been updated with respect to C2, a part of its
derived curve, namely AB, has moved to its top-right, namely FB, so the derived
curve of topLevelWeights has turned into FBCDE. Notice that having been updated
with respect to C1 and C2, the derived curve of topLevelWeights is the bottom-left most
curve that is not exceeded by that of C1 and C2. In other words, topLevelWeights has
become the tightest envelope of that of C1 and C2.

Actually, if we switch the order of C1 and C2 in the procedure above, we will obtain the same
sequence in topLevelWeights. In general, from the second time on, each time Algorithm 3
ends with topLevelWeights being updated, parts of the derived curve of topLevelWeights
move to their top-right.

Now we consider the derived curves of topLevelWeights and δ(C) and define several
notions below which describe the relationship between a vertex weighted clique and a list
of non-increasing weights.

Definition 8. Given a list of weights L = 〈ω1, · · · , ωt〉 s.t. ω1 ≥ · · · ≥ ωt and a clique C with
C 6= ∅ and δ(C) = 〈w1, · · · , w|C|〉,
1. we say that C is covered by L iff t ≥ |C| and ωi ≥ wi for any 1 ≤ i ≤ |C|;
2. we say that C intersects with L at l iff 1 ≤ l ≤ min{|C|, t} and wl = ωl ;
3. we say that C deviates above L at l iff 1 ≤ l ≤ min{|C|, t} ∧ wl > ωl or |C| ≥ l > t.

Example 4. Consider Example 3 with topLevelWeights having been updated with respect to C1
and C2. By referring to (II) in Figure 1, we can find the following.

1. C1 and C2 are covered by topLevelWeights.
2. C1 intersects with topLevelWeights at 2, 3, 4 and 5 (see B, C, D and E). C2 intersects with

topLevelWeights at 1 (see F).
3. C3 deviates above topLevelWeights at 2 (see J).
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Obviously, we have a proposition below which helps determine whether a clique is
effective in reductions.

Proposition 10. 1. C1 v C2 iff δ(C1) is covered by δ(C2).
2. If L1 is covered by L2, L2 is covered by L3, then L1 is covered by L3.
3. If C1 deviates above L at certain l and C2 is covered by L, then C1 6v C2.

3.1.2. Algorithm Execution

As to the execution of Algorithm 3, the next proposition presents a sufficient and
necessary condition in which topLevelWeights will be updated.

Proposition 11. The topLevelWeights in Algorithm 3 will be updated if and only if topLevelWeights
= 〈〉 or the input clique C deviates above topLevelWeights at certain l.

Also, we have propositions below which illustrate how topLevelWeights will be updated.

Proposition 12 (First Top-level Insertion). Suppose that topLevelWeights = 〈〉 and δ(C) =
〈w1, · · · , w|C|〉, then w1, · · · , w|C| will successively be appended to the end of topLevelWeights in
Line 7 in Algorithm 3.

Proposition 13 (Successor Top-level Updates). Suppose topLevelWeights = 〈ω1, · · · , ωt〉
where t ≥ 1,

1. for any 1 ≤ l ≤ t, ωl will be replaced with wl in Line 5 in Algorithm 3 iff C deviates above
topLevelWeights at l;

2. for any l > t, a weight wl will be inserted in Line 7 in Algorithm 3 iff C deviates above
topLevelWeights at l.

The following proposition shows the relation between topLevelWeights and C if it has
been updated in Algorithm 3.

Proposition 14. If topLevelWeights has been updated in Algorithm 3, then topLevelWeights covers
the clique C at the end of this algorithm.

Such a covering relation will still hold after Algorithm 3 returns program control back
to Algorithm 1. Then we have a proposition about criticalCliqSet in Algorithm 1.

Proposition 15. 1. Right before the execution of Line 21, for any C′ ∈ criticalCliqSet, C′ is
covered by topLevelWeights.

2. In Line 19, if C deviates above topLevelWeights, then for any C′ ∈ criticalCliqSet, we have
C 6v C′.

Intuitively right before the execution of Line 21, topLevelWeights can do whatever any
clique in criticalCliqSet can, with exceptions being dealt with in Section 3.3. In Line 19, if C
updates topLevelWeights, then it will be allowed an entry into criticalCliqSet.

Example 5. After Algorithm 1 is run on G2 in Example 3, criticalCliqSet has become {C1, C3}
and topLevelWeights has been updated to be 〈7, 6, 3, 2, 1〉, as is shown as FJCDE in Figure 2. The
details are as follows.

1. C2 6∈ criticalCliqSet because C2 v C3 but C3 6v C2. So either C2 was refused to enter
criticalCliqSet or it was removed from criticalCliqSet, depending on whether the algorithm
found C2 earlier than it found C3.

2. C1 (blue) and C3 (red) are both covered by topLevelWeights.
3. As to the two cliques above, neither subsumes the other.
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O x

y
F

J

C

D

E

Figure 2. topLevelWeights after being updated by C1, C2 and C3. Derived curves of δ(C1), δ(C2), δ(C3)

and topLevelWeights represented by blue, green, red and black curves respectively.

So in Line 19, cond2 implies cond3. In other words, if cond2 holds, then C is not covered
by any clique in criticalCliqSet, i.e., C is not subsumed by any clique in criticalCliqSet. In this
sense, we add it to criticalCliqSet and this will not cause obvious redundancy.

Based on the discussion above, we have

1. right before the execution of Line 21 in Algorithm 1, topLevelWeights contains best-
found bounds formed by all previous enumerated cliques;

2. and if any clique improves this bound, then no previously enumerated clique sub-
sumes it. Unlike [11], we will apply topLevelWeights instead of ‘relaxed’ partition set
to perform reductions in Algorithms 1 and 2.

Furthermore, for the sake of efficiency, we should keep criticalCliqSet as small as
possible and as powerful as possible. So in Algorithm 1, if C′ v C, i.e., C′ is subsumed
by C, then we will simply remove C′ in Line 14 and this will do no harm to the power of
criticalCliqSet. In addition, if C′ does not intersects with the derived curve of topLevelWeights,
its reduction power is overwhelmed by topLevelWeights, so we remove it in Line 18 as well.

3.1.3. Reductions Based on Top Level Weights

Next we have a proposition below which states that topLevelWeights can be utilized
for clique reductions.

Proposition 16. Given topLevelWeights = 〈ω1, · · · , ωt〉, then

1. for any 1 ≤ l ≤ t, there exists a clique Q = {v1, · · · , vl} and w(v1) ≥ · · · ≥ w(vl) = ωl ;
2. given any feasible coloring S = {〈1, V1〉, · · · , 〈k, Vk〉} for G, k ≥ t;
3. given any vertex u s.t. d(u) < t and ωd(u)+1 > w(u),

(a) u is absorbed by some certain clique in G;
(b) and G[V\{u}] is a VWC-reduced subgraph of G.

Notice that Item 1 states that topLevelWeights is the tightest envelope of all cliques that
have been enumerated (See Figure 2 above for details and intuition).

1. In this sense, if t was decreased or any of ω1, · · · , ωt was decreased, the derived curve
of topLevelWeights would be left or down shift, which in turn, made at least one clique
deviate above topLevelWeights at some certain l. Therefore there must exist a color
whose weight was smaller than its lower-bound.

2. Considering that weights of other colors are all underestimated, we have the sum of
all components in the new variant of topLevelWeights could never be achieved by any
feasible coloring.

So in order to obtain a feasible coloring that avoids lower-bound conflicts in any enumerated
cliques, we have to accept the cost revealed by topLevelWeights or even more. In a word,
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any feasible coloring for G costs at least ∑t
i=1 ωt, which will be shown and proved formally

in Proposition 17 and has also been proved by [11] in another approach.
Given a vertex u, we represent it as a point Pu = (d(u) + 1, w(u)) on the Rectangular

Coordinate Plane xOy in order for intuition (See Figure 3). Then we have Pu is strictly below
the derived curve of topLevelWeights iff d(u) < t and ωd(u)+1 > w(u), and such a location
relation implies Items 3a and 3b above. Moreover each time one neighbor of u is removed,
d(u) will be decreased by 1 and the point Pu will be left shift by 1. Meanwhile, when we
enumerate cliques, topLevelWeights tend to move to its top-right. These opposite trends will
gradually help reduce the input graph.

Example 6. Consider G1 in Example 1 in which there exists a maximal clique C = {z3
1, z5

2, z6
5, z4

6}
with δ(C) = 〈6, 5, 4, 3〉. As to the four other vertices z5

3, z2
4, z1

7, z5
8 with degrees 2, 3, 3, 2, we

represent them by E, F, G, H, respectively, on a rectangular coordinate plane in (I) in Figure 3 below.
For instance, the coordinate of F is (d(z2

4) + 1, w(z2
4)) namely (4, 2). Notice that z5

3 and z5
8 have

the same degree and weight, so their corresponding points overlap on the coordinate plane, to be
specific, z5

3 and z5
8 are represented by E and H, respectively, which overlap.

z4
6

z3
1 z5

3 z2
4

z1
7 z5

8

z5
2

z6
5

G1

On the other hand, we can utilize topLevelWeights instead of specific cliques to perform
clique reductions. For example, Line 21 in Algorithm 1 exploits topLevelWeights to perform
reductions based on Proposition 16 above. In detail, G ← applyCliqueReductions(G,
topLevelWeights, S) performs clique reductions and obtain a VWC-reduced subgraph of G,
but keeps all vertices in S in the returned subgraph. We do this for the following reason:
In Line 21, since we are enumerating cliques in candSet, we should keep all vertices in
it. Otherwise, the procedure may crash. However, in Line 22, since we have completed
the enumeration procedures, we do not have to keep any vertices in the VWC-reduced
subgraph. We also remind readers that in the applyCliqueReductions procedure, each
time one vertex is removed, all its neighbors will be taken into account for further reductions
because their degrees have all been decreased by 1.

Notice that in Proposition 16 we require ωd(u)+1 > w(u) rather than ωd(u)+1 ≥ w(u),
because we have to ensure that u is absorbed by a clique that does not contain u, which
is coincident with the approach in [11]. However, this method may fail to perform some
reductions which can be performed by Proposition 5. Yet this is not a problem, because, at
the end of our reductions, we will deal with that case. See Section 3.3 for more details.

Example 7. Now we call applyCliqueReductions which is based on Proposition 16 as below.
See Figure 3 for visualization.

1. In (I) in Figure 3, we find that the derived curve of topLevelWeights is ABCD and F is strictly
below it, so Item 3 in Proposition 16 is applicable and the corresponding vertex z2

4 is removed.
2. Because of the removal of z2

4, the degrees of z5
3, z1

7 and z5
8 are all decreased by 1, so their

corresponding points on the coordinate plane are all left shift by 1 (see (II) in Figure 3). Notice
that E, H, and B overlap at this time.

3. Notice that G is strictly below the derived curved of topLevelWeights now, so we remove it
like before, and this causes the left movement of H (see (III) in Figure 3).

4. Analogously we remove z5
8 because H is strictly below ABCD now (see (IV) in Figure 3).

5. Note that removing z5
3 is not allowed by Proposition 16, but it is permitted by Proposition 5.

This shows the weakness of our applyCliqueReductions procedure, and we will address
this issue in Section 3.3.
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Figure 3. Iterated Removals. ABCD represents topLevelWeights while E, F, G, H represents z5
3, z2

4, z1
7, z5

8
respectively. (I) Right before reductions; (II) z2

4 been removed; (III) z1
7 been removed; (IV) z5

8
been removed.

Obviously, in order to perform effective reductions, we want ω1, · · · , ωt to be as big
as possible. Hence, in Algorithm 2, we will try to increase their values. Furthermore,
Proposition 16 is helpful in proving Proposition 17 below which computes a lower-bound
of the cost of a feasible coloring.

Proposition 17. Given any feasible coloring S for G and topLevelWeights = 〈ω1, · · · , ωt〉, we
have cost(S, G) ≥ Σt

i=1ωi.

Proof. See Appendix F.

Also, we have a proposition below which will be helpful in Section 3.3.

Proposition 18. Right before the execution of Line 22 in Algorithm 1, there do not exist any
two cliques C1, C2 s.t. C1, C2 ∈ criticalCliqSet and C1 v C2.

Proof. See Appendix G.

3.2. Searching for Better Cliques

Given topLevelWeights = 〈ω1, · · · , ωt〉, Algorithm 2 attempts to increase the values of
ω1, · · · , ωt and it even tries to find a clique whose size is bigger than t. So if Algorithm 2
completes, it will be able to confirm the following.

1. Each component in topLevelWeights has achieved its maximum possible value.
2. There exists no clique whose size is greater than |topLevelWeights|.

In Algorithm 2, we use updated(i) to denote whether ωi is increased in the iteration
for i. In Line 2, updated(i− 1) = false means that we fail to update ωi−1. In our algorithm,
there are two tricks that refer to updated(i) as below.

1. If ωi = ωi−1 and we have confirmed that there are no cliques that improve ωi−1, then
there will be no cliques which improve ωi.

2. If ωi = ωi−1 and we fail to update ωi−1, then it will be hard for us to update ωi as
well, so we adopt a continue statement here to avoid probably hopeless efforts.

We also call the procedure applyCliqueReductions which was explained in the pre-
vious subsection. Notice that in Line 4, we enumerate maximal cliques which contain
vertices in candSet only. To be specific, when i ≤ t, we will do so by considering ver-
tices with weights greater than ωi only, because we are now focusing on increasing ωi.
Like the counterpart in Algorithm 1, we will shuffle related vertices randomly before
each enumeration.
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3.2.1. Increasing Top Level Weights

Like Algorithm 1, we also exploit depth-first search to enumerate maximal cliques.
Yet different from it, we will rarely enumerate all such maximal cliques. Instead, once
we have found a clique that increases any value among ω1, · · · , ωt, we will immediately
perform reductions and break the enumeration procedure (see Line 14). Below we have a
proposition that illustrates a sufficient and necessary condition in which ωi(1 ≤ i ≤ t) will
be increased.

Proposition 19. As to the outermost loop in Algorithm 2, for any 1 ≤ i ≤ t + 1, ωi will be
increased if there exists a clique C ⊆ candSet s.t. |C| ≥ i.

Example 8. Suppose we have topLevelWeights = 〈7, 6, 3, 2, 1〉, and we are now focusing on
increasing ω3 whose current value is 3. Suppose among vertices with weights greater than ω3, we
have found a clique C with δ(C) = 〈w1, w2, w3〉 = 〈5, 5, 4〉 whose derived curve deviates above
that of topLevelWeights at 3 (see FGH and ABCDE in Figure 4). So ω3 can now increase to be 4,
and we will start another iteration to check whether ω3 can further increase.

Notice that Line 14 breaks the clique enumeration loop and the program control of
this algorithm will eventually be returned to Line 3 with an increased ωi. We do this for the
following reason: Since we have increased ωi, any vertices that have a weight bigger than
the previous ωi but not bigger than the current ωi will not help further increase ωi. Hence,
we eliminate these vertices from candSet and enumerate maximal cliques again with respect
to the same i (see Line 14). With a smaller candSet, we can increase ωi to its maximum
possible value more efficiently. In a word, we increase ωi gradually until it reaches its
maximum. Notice that Line 7 might also increase t, so long as the algorithm has found a
clique that is bigger than any that have been found. Last we remind readers that although
we are focusing on increasing ωi, there could be side effects that we increase ωi+1, · · · , ωl
as well where l ≤ t, so long as we have found a clique that contains sufficiently many
vertices with big weights.

O x

y
A

B

D

E

C

F
G

H

Figure 4. A clique is found to improve ω3. ABCDE represents topLevelWeights while FGH represents
the derived curve of δ(C).

3.2.2. Effects of Better Cliques

There is a chance that the clique C obtained in Line 4 is not a maximal clique for the
whole graph G, thus there may exist another clique in G that is a superset of C and has
more reduction power. Alternatively, C may expand to a bigger clique by including vertices
with a weight not greater than ωi and lead to more reductions. Yet this is not a problem. If
such a case exists, the full reduction power will be exploited in later iterations.

In the first few iterations of the outermost loop, i is relatively small and thus ωi is
relatively big, which is likely to result in a relatively small candSet, so enumerating cliques
in candSet probably costs relatively little time. Moreover, these cliques may lead to effective
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reductions which significantly decrease the time cost of later enumerations. When i = t + 1,
we have candSet = V(G), thus in the worst case, we will have to enumerate all maximal
cliques in G, which seems to be time-consuming and thus infeasible. Yet this is not so
serious, because

1. we are dealing with large sparse graphs which often obey the power-distribution law,
2. and we have performed considerable reductions before, so at this time, G is likely to

be small enough to allow maximal clique enumerations. In Section 3.4, we will also
set a cutoff for enumerating cliques.

Last we remind readers that as i increases and ωi decreases, candSet becomes larger
and larger, and thus enumerating cliques will become more and more time-consuming, so
we need to set a cutoff for enumerations (see Section 3.4). Due to this cutoff, once we fail to
confirm that ωi has achieved its maximum, we will not make any effort to confirm whether
ωj has arrived at its best possible value for any j > i.

Moreover, we have a proposition below which shows that, given sufficient run time,
Algorithm 2 will be able to increase ωi to its maximum possible value for any 1 ≤ i ≤ ω(G),
where ω(G) is the maximum size of a clique in G.

Proposition 20. As to the outermost loop in Algorithm 2, we have

1. for any 1 ≤ i ≤ t, right before i is increased by 1, there exist no cliques which deviate above
topLevelWeights at i.

2. for i = t+ 1, when the iteration ends, there exist no cliques which deviate above topLevelWeights
at i.

Then by this proposition, we have a theorem below which shows that our clique
reduction algorithm is as effective as the counterpart which enumerates all maximal cliques
in G, if time permits. To describe this theorem we first define the equality relation between
two lists in Definition 9.

Definition 9. Given two list of weights L1 = 〈ω1
1 · · ·ω1

t1
〉 and L2 = 〈ω2

1 · · ·ω2
t2
〉 we say that

L1 = L2 iff t1 = t2 and ω1
i = ω2

i for any 1 ≤ i ≤ t1 = t2.

Theorem 1. Let L1 be the topLevelWeights returned after Algorithms 1 and 2 are executed succes-
sively, and L2 be the topLevelWeights returned after Algorithm 4 is executed, then L1 = L2.

Note that Algorithm 4 can be time-consuming even for sparse graphs.

Algorithm 4: computeTopLevelWeightsWithBF(G)

input: A graph G, topLevelWeights = 〈〉
output: (Implicit in the Context)

1 foreach maximal clique C in G do
2 updateTopLevelWeights(C, topLevelWeights);

3.3. Post Reductions

Section 3.1 mentions that we have not fully exploited Proposition 5 to perform reduc-
tions, so in this subsection, we deal with the remaining case. At this stage, for each vertex,
we will examine whether it is absorbed by some certain clique in criticalCliqSet and perform
reductions if so.

3.4. Implementation Issues

Although we apply various tricks to enumerate diverse cliques for effective reductions,
our algorithm may still become stuck in dense subgraphs, so we have to set a certain cutoff
for our algorithm.



Entropy 2023, 25, 1376 17 of 26

We believe that a good reduction algorithm should not focus too much on a local
subgraph, so our cutoff will prevent each clique enumeration from spending too much time.
The impact of this compromise is that we have to sacrifice some good properties above,
to be specific, we now cannot expect that all ωi values in topLevelWeights will increase to
their maximum. Yet in our parameter setting, there are still quite a few ωi values that are
confirmed to achieve their optimum.

Furthermore, in some large graphs, we may need to consider a great many vertices and
enumerate cliques that contain them, so there could be numerous enumerations. Hence,
even though each enumeration needs a small amount of time, the total time cost of so many
enumerations might not be affordable, so we also need to limit the total amount of time
spent on enumerations.

3.4.1. Limiting The Number of Decisions Made in Each Enumeration

Notice that we adopt a depth-first search to enumerate maximal cliques in Algorithms 1
and 2. During each depth-first enumeration, decisions of whether a vertex should be in-
cluded in the current clique have to be made, and the search has to traverse both branches
recursively, so there may be an exponential number of decisions for a single depth-first enu-
meration. Hence, in any enumeration, if topLevelWeights has been unable to be improved
within λ consecutive decisions, we will simply stop this enumeration and go on to the
next one.

3.4.2. Limiting Running Time

Some benchmark graphs contain a large number of vertices that are of the greatest
weights or degrees, so there can be a great amount of enumerations in Algorithm 1. More-
over as to Algorithm 2, there can be many candidate vertices that may form a clique to
improve a particular component in topLevelWeights, hence numerous enumerations may be
performed as well.

Even though we limit the number of decisions and thus limit the time spent in each
enumeration, too many enumerations may still cost our algorithm so much time. Hence
in practice, we employ another parameter T to limit the running time of our algorithm.
More specifically in Algorithm 2, we will check whether the total time spent from the very
beginning of our whole algorithm is greater than T. If so we will simply stop Algorithm 2
and turn to post reductions.

In fact, if Algorithm 2 is stopped because of this parameter, there can be cases as below.
For the sake of presentation, we let K be the number of components in topLevelWeights
which is equal to the size of the greatest clique that has been found.

1. Algorithm 2 is unable to tell whether there exists a clique C s.t. |C| ≤ K and C is able
to improve a particular component in topLevelWeights.

2. Algorithm 2 has confirmed that any clique containing at most K vertices will not
improve topLevelWeights. Yet it is unable to confirm whether there exists a clique
whose size is bigger than K.

3.4.3. Programming Tricks

In graph algorithms, there is a common procedure as follows. Given a graph and
its two vertices u and v, determine whether u and v are neighbors. In our program, this
procedure is called frequently, so we have to implement it efficiently. However, it is
unsuitable to store large sparse graphs by adjacency matrices. Therefore, we adopted a
hash-based data structure which was proposed in [18] to do so.

In our algorithm, we often have to obtain vertices of certain weights or degrees. More-
over, as vertices are removed, the degrees of their neighbors will be decreased. Furthermore,
our algorithm interleaves between clique sampling and graph reductions, which requires us
to maintain such relations in time. So we need efficient data structures to maintain vertices
of each degree and/or weight in the reduced graph. Hence, we adapted the so-called
Score-based Partition in [19] to do so.
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4. Related Works

To our best knowledge, the only algorithm on reductions for vertex weighted coloring
is RedLS [11], and its details are shown in Algorithm 5. In this algorithm, C is a candidate
clique being constructed and each vertex in candSet is connected to each one in C. Hence,
any single vertex in candSet can be added into C to form a greater clique.

Algorithm 5: RedLS
input: A graph G = (V, E, w(·))
output: A reduced graph

1 G′ ← G;
2 startVertexSet← a random subset of V s.t. |startVertexSet| = |V|/100;
3 topLevelWeights← 〈〉;
4 while startVertexSet 6= ∅ do
5 v← a vertex popped from startVertexSet;
6 C ← {v};
7 candSet← N(v);
8 while candSet 6= ∅ do
9 u← a vertex x in candSet with the biggest ∑u′∈N(x)∩candSet w(u′)

10 C ← C ∪ {u};
11 candSet← candSet∩ N(x);

12 updateTopLevelWeights(C, topLevelWeights);

13 G′ ← applyCliqueReductions(G′, topLevelWeights, ∅) without considering degree
decrease;

14 return G′;

In Line 2, 1% of the vertices in V are randomly collected to obtain startVertexSet. As
to the outer loop starting from Line 4, each vertex like v in startVertexSet is picked and a
maximal clique containing v is constructed from Lines 6 to 11, based on a heuristic inspired
by FastWClq [12]. In the inner loop starting from Line 8, Line 9 picks a vertex u in candSet,
Line 10 places the vertex u into C, and Line 11 eliminates vertices which are not connected
to every one in C, i.e., which are impossible to be added into C to make greater cliques.

Notice that Line 9 selects a next vertex to put into C with some look-head technique.
To be specific, rather than choose the heaviest vertices and maximize current benefits, it
tries to maximize the total weight of the remaining possible vertices, i.e., N(x) ∩ candSet,
with a hope for greater future benefits. So given a vertex v, Algorithm 5 always aims to
look for maximum or near-maximum weight cliques that contain it.

Each time a maximal clique C is constructed, Algorithm 5 will compare topLevelWeights
with C and updates topLevelWeights if needed (see Line 12). Actually RedLS adopts the
so-called ‘relaxed’ vertex partition, yet the effects are equivalent to our descriptions with
topLevelWeights in Algorithm 5. After enumerating cliques with respect to vertices in
startVertexSet, Algorithm 5 will call the applyCliqueReductions procedure and perform
reductions based on Proposition 16. However, when determining whether a vertex namely
u can be removed, it always takes d(u) in the whole graph as u’s degree, i.e., no degree de-
crease will be taken into account. In a nutshell, RedLS consists of clique sampling and graph
reductions as successive procedures, which is different from our interleaving approach.

5. Experiments

We will present solvers and benchmarks, parameter settings, presentation protocols,
results, and discussions in this section.
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5.1. Solvers and Benchmarks

We consider a list of networks online that were accessed via http://networkrepository.
com/ on 1 January 2018. They were originally unweighted, and to obtain the correspond-
ing MinVWC instances, we use the same method as in [11,12]. For the i-th vertex vi,
w(vi) = (i mod 200) + 1. For the sake of space, we do not report results on graphs with
fewer than 100,000 vertices or fewer than 1,000,000 edges. There is an instance named
soc-sinaweibo which contains 58,655,849 vertices and 261,321,033 edges and thus is too
large for our program, so our program ran out of memory and we do not report its result.
In the following experiments, we simply disable the local search component in RedLS [11]
and compare its reduction method to our algorithm.

Our algorithm was coded in Java and open source via https://github.com/Fan-Yi/
iterated-clique-reductions-in-vertex-weighted-coloring-for-large-sparse-graphs accessed
on 1 June 2023. It was compiled by OpenJDK 20.0.1 and run in an OpenJDK 64-bit Server
VM (build 20.0.1+9-29, mixed mode, sharing). The experiments were conducted on a
workstation with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz CPU with 266 GB RAM
under CentOS 7.9. Since we shuffle vertices in Algorithms 1 and 2, there exists randomness
in the effectiveness of reduction. Yet we only test one arbitrary seed, since the benchmark
graphs are diverse and each of them contains a large number of maximal cliques.

5.2. Parameter Settings

As to the parameter λ that limits the number of branching decisions in each depth-first
enumeration procedure, we set it as 10, 000 ∗ dmax where dmax is the maximum degree in
the input graph. On the other hand, RedLS was run with the default parameter setting in
the machine environment reported by [11]. In fact, RedLS usually completes reductions
in a significantly shorter time compared to our algorithm, yet this is not a big problem,
because this paper focuses only on the potential effectiveness of a reduction algorithm,
instead of its efficiency. Since the MinVWC problem is NP-hard, even a small number of
additionally removed vertices may decrease a great amount of later search time, so our
idea is meaningful.

As to the parameter T that limits the total running time of enumerations, we set it as
1200 s.

5.3. Presentation Protocols

For each instance, we report the number of vertices and edges in the original graph
(denoted by ‘Original’ in Table 1) as well as that obtained by RedLS and our algorithm
(denoted by ‘RedLS-reduced’ and ‘ours’, respectively, in the same table). In Table 1, we
mainly compare the number of remaining vertices obtained by RedLS and that by our
algorithm (Columns 4 and 6), and better results (smaller numbers) are shown in bold.

To show the effectiveness of our algorithm more clearly, we also report the percentage
of remaining vertices, ρ = |V′|/|V|, where V is the set of original vertices and V′ is the
set of remaining vertices after reductions. So the closer ρ is to 0, the more effective our
algorithm is. Furthermore, the time column reports the number of seconds needed by our
algorithm to perform reductions.

5.4. Main Results and Discussions

From Table 1, we observe the following.

1. Our algorithm obtains significantly better results in most of these instances compared
to RedLS. Among all the graphs, the number of remaining vertices returned by RedLS
is at least 10,000. However, on nearly 20% of the instances, our algorithm returns a
result less than 10,000. Moreover, on more than 10% of the instances, it returns a result
less than 1000.

2. On more than 40% of the instances, our percentage of remaining vertices is smaller
than 10%, while on nearly 20%, the respective results are smaller than 1%.

http://networkrepository.com/
http://networkrepository.com/
https://github.com/Fan-Yi/iterated-clique-reductions-in-vertex-weighted-coloring-for-large-sparse-graphs
https://github.com/Fan-Yi/iterated-clique-reductions-in-vertex-weighted-coloring-for-large-sparse-graphs
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Table 1. Reductions on instances. Those numbers of remaining vertices that are confirmed to be
optimal are marked with ‘*.’

Graph
Original RedLS-Reduced Ours Performances

|V | |E| |V | |E| |V | |E| ρ Time

dbpedia-link 11,621,692 78,621,046 1,966,025 27,556,529 2,668,018 66,546,584 0.2296 3668.492
delaunay_n22 4,194,304 12,582,869 4,148,216 5,174,821 4,146,955 12,440,822 0.9887 7566.296
delaunay_n23 8,388,608 25,165,784 8,296,041 1,359,491 8,292,928 24,878,744 0.9886 4469.89
delaunay_n24 16,777,216 50,331,601 16,593,030 8,182,952 16,586,824 49,760,425 0.9887 17,185.211
friendster 8,658,744 45,671,471 1,361,582 1,121,756 1,315,470 27,948,658 0.1519 2921.834
hugebubbles-00020 21,198,119 31,790,179 21,198,117 2,576,473 21,198,119 31,790,179 1.0000 1520.533
hugetrace-00010 12,057,441 18,082,179 12,057,439 698,458 12,057,441 18,082,179 1.0000 949.587
hugetrace-00020 16,002,413 23,998,813 16,002,411 4,245,244 16,002,413 23,998,813 1.0000 1165.196
inf-europe_osm 50,912,018 54,054,660 8,164,188 6,592,211 156 257 0.0000 2629.477
inf-germany_osm 11,548,845 12,369,181 2,272,030 19,285,716 86∗ 135 0.0000 10,502.181
inf-roadNet-CA 1,957,027 2,760,388 1,443,067 16,681,503 14∗ 18 0.0000 155.53
inf-roadNet-PA 1,087,562 1,541,514 812,126 12,885,609 54∗ 85 0.0000 64.437
inf-road-usa 23,947,347 28,854,312 8,850,794 2,227,418 1588 2523 0.0001 1205.464
rec-dating 168,792 17,351,416 138,886 11,540,694 136,335 17,294,606 0.8077 1213.253
rec-epinions 755,761 13,396,042 600,037 3,356,797 551,260 12,728,686 0.7294 3784.631
rec-libimseti-dir 220,970 17,233,144 188,610 1,235,483 178,847 17,114,097 0.8094 1310.625
rgg_n_2_23_s0 8,388,608 63,501,393 5,504,561 2,630,246 60,568 511,433 0.0072 8026.464
rgg_n_2_24_s0 16,777,216 132,557,200 12,163,095 2,654,218 86,152 771,045 0.0051 6891.269
rt-retweet-crawl 1,112,702 2,278,852 183,284 105,537,956 108,136 889,563 0.0972 2786.033
sc-ldoor 952,203 20,770,807 909,666 6,529,032 909,407 20,768,557 0.9551 1227.66
sc-msdoor 415,863 9,378,650 404,759 19,430,909 404,697 9,377,124 0.9731 1728.423
sc-pwtk 217,891 5,653,221 216,906 121,200,597 216,256 5,627,582 0.9925 4844.375
sc-rel9 5,921,786 23,667,162 5,921,770 11,333,101 5,921,723 23,667,036 1.0000 2205.027
sc-shipsec1 140,385 1,707,759 108,500 1,254,967 12,040∗ 238,889 0.0858 135.641
sc-shipsec5 179,104 2,200,076 99,518 1,555,956 16,316∗ 316,735 0.0911 255.063
soc-buzznet 101,163 2,763,066 61,740 4,821,649 49,386 2,485,394 0.4882 1235.923
soc-delicious 536,108 1,365,961 105,134 18,412,125 35,441 386,667 0.0661 2120.439
soc-digg 770,799 5,907,132 114,210 65,106,957 74,049 4,061,847 0.0961 1232.244
soc-dogster 426,820 8,543,549 194,311 249,959 213,189 7,262,428 0.4995 1439.012
socfb-A-anon 3,097,165 23,667,394 772,099 10,122,746 636,050 18,094,936 0.2054 1301.598
socfb-B-anon 2,937,612 20,959,854 636,188 1,738,199 513,959 15,708,329 0.1750 1380.445
socfb-uci-uni 58,790,782 92,208,195 3,858,784 678,005 1,409,601 6,743,138 0.0240 2423.396
soc-flickr 513,969 3,190,452 71,625 26,730,529 43,056 2,147,398 0.0838 1220.377
soc-flickr-und 1,715,255 15,555,041 174,859 11,028,549 170,039 12,382,047 0.0991 1302.161
soc-flixster 2,523,386 7,918,801 221,304 24,174,416 112,261 2,616,450 0.0445 1380.599
soc-FourSquare 639,014 3,214,986 109,565 40,074,246 78,979 1,769,972 0.1236 1640.654
soc-lastfm 1,191,805 4,519,330 219,171 19,999,513 146,684 2,258,601 0.1231 4018.428
soc-livejournal 4,033,137 27,933,062 262,009 2,552,908 136,522 3,924,419 0.0339 1459.076
soc-livejournal-user-groups 7,489,073 112,305,407 3,117,769 21,348 2,995,174 106,475,490 0.3999 10,996.874
soc-LiveMocha 104,103 2,193,083 83,955 6,651,778 63,514 2,018,567 0.6101 1288.405
soc-ljournal-2008 5,363,186 49,514,271 232,350 59,042,551 666,701 24,572,530 0.1243 1502.869
soc-orkut-dir 3,072,441 117,185,083 2,114,644 27,556,529 2,649,700 114,727,342 0.8624 2247.88
soc-orkut 2,997,166 106,349,209 2,193,033 5,174,821 2,568,364 103,885,482 0.8569 2005.389
soc-pokec 1,632,803 22,301,964 961,510 1,359,491 755,949 17,670,190 0.4630 25,267.249
soc-twitter-higgs 456,631 12,508,442 283,106 1,121,756 256,087 11,116,984 0.5608 1542.861
soc-youtube 495,957 1,936,748 127,815 2,576,473 42,031 793,160 0.0847 1446.011
soc-youtube-snap 1,134,890 2,987,624 184,961 698,458 57,846 1,015,713 0.0510 3398.715
tech-as-skitter 1,694,616 11,094,209 314,778 4,245,244 203,445 4,374,731 0.1201 1915.585
tech-ip 2,250,498 21,643,497 646,599 6,592,211 445,389 18,033,323 0.1979 11,419.378
twitter_mpi 9,862,152 99,940,317 801,988 19,285,716 1,346,594 80,524,123 0.1365 5100.926
web-arabic-2005 163,598 1,747,269 18,352 16,681,503 436∗ 15,910 0.0027 354.495
web-baidu-baike 2,141,300 17,014,946 426,588 12,885,609 396,647 10,610,619 0.1852 2057.537
web-it-2004 509,338 7,178,413 28,302 2,227,418 1064∗ 197,532 0.0021 676.35
web-uk-2005 129,632 11,744,049 39,696 11,540,694 500∗ 124,750 0.0039 332.751
web-wikipedia2009 1,864,433 4,507,315 153,776 3,356,797 8020 145,183 0.0043 1493.974
web-wikipedia-growth 1,870,709 36,532,531 833,848 1,235,483 1,583,733 35,829,670 0.8466 874.927
web-wikipedia_link 2,936,413 86,754,664 151,707 2,630,246 756,853 50,293,310 0.2577 24,039.262
wikipedia_link_en 27,154,756 31,024,475 888,520 2,654,218 510,753 20,830,732 0.0188 8034.773
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3. The most attractive result lies in the road-net category, in which our algorithm re-
turned subgraphs that contained 156, 86, 14, and 54 vertices, respectively, with |E|
slightly more than |V|. However, RedLS returns subgraphs that contain at least
800,000 vertices. Thanks to our algorithm, it seems that optimal solutions for these
graphs can now be easily found by state-of-the-art complete solvers.

5.5. Individual Impacts

We will show individual impacts of our three successive procedures as well as the
optimality of top-level weights returned.

5.5.1. Individual Impacts of Our Successive Procedures

To show that each of our three successive procedures is necessary, we calculate the num-
ber of vertices removed in each procedure during the execution of our algorithm. In Table 2,
we use ∆1, ∆2 and ∆3 to represent the number of vertices removed by Algorithms 1 and 2
and post reductions, respectively. We select representative instances from most categories
in order to reflect the individual impacts comprehensively.

From this table, we find that Algorithm 2 may sometimes remove no vertices, and
post reductions usually have great contributions, which is why we allow equations to hold
and extend statements in [11] to present Definition 3.

Table 2. Individual Impacts of Three Successive Procedures.

Instance ∆1 ∆2 ∆3 Instance ∆1 ∆2 ∆3

bn-human-BNU_1_0025865_session_1-bg 1,212,744 85 7,433 sc-shipsec1 126,939 628 778

ca-hollywood-2009 672,443 103 5131 socfb-A-anon 2,440,611 1380 19,124

delaunay_n22 47,090 0 259 socfb-uci-uni 57,015,654 0 365,527

friendster 7,296,915 5737 40,622 soc-livejournal-user-groups 4,467,520 1972 24,407

inf-roadNet-CA 1,941,528 5653 9832 tech-as-skitter 1,475,837 0 15,334

rt-retweet-crawl 992,569 6378 5619 web-wikipedia2009 1,837,696 8391 10,326

5.5.2. Optimality of Top Level Weights

Finally, we discuss the optimality of topLevelWeights returned by our algorithm which
will play an essential role in future works. Notice that Algorithm 2 tries to enumerate all
possible cliques that may increase any component of topLevelWeights and even attempt to
find a clique whose size is bigger than |topLevelWeights|. In practice, Algorithm 2 was able
to confirm that some particular ωi values had achieved their maximum. To be specific,
we take instances web-it-2004, sc-pwtk and delaunay_n24 as examples, and show our
experimental results in this aspect as below.

1. As to web-it-2004, our experiment guaranteed that each ωi value had achieved its
maximum and there existed no clique whose size was bigger than |topLevelWeights|.
This is the best result which ensures that no better top-level weights can be found.
This also implies that we have found the smallest number of remaining vertices. No
better results can be obtained by clique reductions. In Table 1, all such instances are
marked with ∗ in our |V| column.

2. As to sc-pwtk, our experiment guaranteed that each ωi value had achieved its maxi-
mum, but it was unable to tell whether a clique with a size greater than |topLevelWeights|
existed. In this sense, future works on this instance can focus on finding a clique of
greater size.

3. As to delaunay_n24, our experiment could only make certain that the first two ωi
values of topLevelWeights returned had achieved their maximum, but there were still
two components that were not confirmed. Hence, more efforts are to be made in
this instance.
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6. Conclusions

In this paper, we have proposed an iterated reduction algorithm for the MinVWC
problem based on maximal clique enumerations. It alternates between clique sampling and
graph reductions and consists of three successive procedures: promising clique reductions,
better-bound reductions and post reductions. Experimental results on several large sparse
graphs show that the effectiveness of our algorithm significantly outperforms that of RedLS
in most of the instances. Moreover, it makes a big improvement on about 10% to 20% of
them, especially on the road-net instances. Also, we have shown and discussed individual
impacts as well as practical properties of our algorithm. Last we have a theorem that
indicates that our algorithm’s reduction effects are equivalent to that of a counterpart which
enumerates all maximal cliques in the input graph if time permits.

However, our clique enumeration procedures are somewhat brute-force, which may
waste a great amount of time checking useless cliques. Furthermore given a vertex, clique
reductions assume that each of its neighbors has a distinct color, yet this is not always the
case and thus may limit the power of reductions.

For future works, we will develop various heuristics to sample promising cliques that
are both effective and efficient for reductions. Also, we plan to develop reductions that
allow neighbors of a vertex to have repeated colors.
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Appendix A. Proof of Proposition 1

Proof.

1. (By contradiction) Assume that S|G is not a feasible coloring for G[U], then there
exists an edge {x, y} in G[U] s.t. cx = cy. Since x, y ∈ U ⊂ V and G[U] is an induced
subgraph of G, we have {x, y} is in G. This in turn implies that there exists an edge
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{x, y} in G s.t. cx = cy, which contradicts the precondition that S|G is a feasible
coloring for G.

2. Suppose that S|G = {〈1, V1〉, · · · , 〈k, Vk〉}, then considering that U ⊂ V, we have
cost(S|G, G[U]) = ∑k

i=1 maxv∈Vi∩U w(v) ≤ ∑k
i=1 maxv∈Vi∩V w(v) = cost(S|G, G).

Appendix B. Proof of Proposition 2

Proof.

1. Case 1: j = k + 1, so Vj = {x}.

cost(S, G[V\{x}])

=
k

∑
i=1

max
v∈Vi∩(V\{x})

w(v)

<
k

∑
i=1

max
v∈Vi∩(V\{x})

w(v) + w(x)

=
k

∑
i=1

max
v∈Vi∩(V\{x})

w(v) + max
v∈Vj∩V

w(v)

=
k

∑
i=1

max
v∈Vi∩V

w(v) + max
v∈Vj∩V

w(v) (since x 6∈
k⋃

i=1

Vi)

= cost(S ] (cx ← j), G).

2. Case 2: 1 ≤ j ≤ k.

cost(S, G[V\{x}])

=
k

∑
i=1

max
v∈Vi∩(V\{x})

w(v)

=
k

∑
i=1∧i 6=j

max
v∈Vi∩(V\{x})

w(v) + max
v∈Vj∩(V\{x})

w(v)

≤
k

∑
i=1∧i 6=j

max
v∈Vi∩(V\{x})

w(v) + max
v∈(Vj∪{x})∩V

w(v)

=
k

∑
i=1∧i 6=j

max
v∈Vi∩V

w(v) + max
v∈(Vj∪{x})∩V

w(v)

≤ cost(S ] (cx ← j), G).

Appendix C. Proof of Proposition 3

Proof. Given any solution S|G[W] for G[W], we have there exists an extension to S|G[W],
denoted by S|G[U], such that S|G[U] is feasible for G[U] and

cost(S|G[W], G[W]) = cost(S|G[U], G[U]).

Also for the same reason, given any solution S|G[U] for G[U], we have there exists an
extension to S|G[U], denoted by S|G, such that S|G is feasible for G and

cost(S|G[W], G[W]) = cost(S|G, G).
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Combining the statements above we have, given any solution S|G[W] for G[W], there exists
an extension to S|G[W], denoted by S|G, such that S|G is feasible for G and

cost(S|G[W], G[W]) = cost(S|G, G).

Appendix D. Proof of Proposition 4

(1) Since G[U] is a VWC-reduced subgraph of G, we have there exists an extension to
S∗|G[U], denoted by S̃∗|G, such that S̃∗|G is feasible for G and

cost(S∗|G[U], G[U]) = cost(S̃∗|G, G).

Now we prove by contradiction that S̃∗|G must be an optimal solution for G. Assume
that S̃∗|G is not an optimal solution for G, then there exists a feasible coloring Š∗|G for G s.t.
cost(S̃∗|G, G) > cost(Š∗|G, G) and thus

cost(S∗|G[U], G[U]) = cost(S̃∗|G, G) > cost(Š∗|G, G),

i.e.,
cost(S∗|G[U], G[U]) > cost(Š∗|G, G).

Since Š∗|G is a feasible coloring for G, by Proposition 1, we have Š∗|G is also a feasible
coloring for G[U] and

cost(Š∗|G, G[U]) ≤ cost(Š∗|G, G).

This in turn implies that there exists a feasible coloring Š∗|G for G[U] and

cost(Š∗|G, G[U]) ≤ cost(Š∗|G, G) < cost(S∗|G[U], G[U]),

which contradicts that S∗|G[U] is an optimal solution for G[U]. Alternatively we have S̃∗|G
is an optimal solution for G.

(2) Based on the statements above, we have the following. Given any optimal solution
S∗|G[U] for G[U], there exists an extension to S∗|G[U], denoted by S̃∗|G, which is an optimal
solution for G and

cost(S∗|G[U], G[U]) = cost(S̃∗|G, G).

Suppose S↓|G is an arbitrary extension to S↓|G[U] which is a coloring for G. Then by
Proposition 2, we have

cost(S↓|G[U], G[U]) ≤ cost(S↓|G, G).

Because S↓|G is an arbitrary extension, we cannot write ‘=.’ Also because S↓|G[U] is a
non-optimal solution for G[U], we have

cost(S∗|G[U], G[U]) < cost(S↓|G[U], G[U]).

Hence,

cost(S̃∗|G, G) = cost(S∗|G[U], G[U]) < cost(S↓|G[U], G[U]) ≤ cost(S↓|G, G).

This in turn implies that S↓|G is not an optimal solution for G.
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Appendix E. Proof of Proposition 5

Proof. Let C = {v1, · · · , v|C|} s.t. w(v1) ≥ · · · ≥ w(v|C|). Suppose S|G[V\{u}] is any feasible
coloring for G[V\{u}]. Now we are to prove that there exists an extension to S|G[V\{u}],
denoted by S|G, such that S|G is feasible for the whole graph G and

cost(S|G[V\{u}], G[V\{u}]) = cost(S|G, G).

Since u is absorbed by C, we have u 6∈ C and d(u) < |C|, thus we have d(u) + 1 ≤ |C|
and v1, · · · , vd(u)+1 ∈ C ⊆ V\{u}. Now we construct

S|G = S|G[V\{u}] ] (cu ← cz),

where
z ∈ {v1, · · · , vd(u)+1} ⊆ C ⊆ V\{u}.

So S|G is an extension to S|G[V\{u}] by coloring u an existing color in S|G[V\{u}].

1. Since u is distinct from v1, · · · , vd(u)+1, we have assigning u a certain color among
those of v1, · · · , vd(u)+1 is possible. (We cannot assign u a color of itself, which is
meaningless.)

2. Since C is a clique, we have cvi 6= cvj for any 1 ≤ i 6= j ≤ |C|. Moreover because
C ⊆ V\{u}, we have there must be at least |C| > d(u) colors in any feasible coloring
for G[V\{u}]. For coloring u’s neighbors, the number of colors in use is at most d(u),
hence, at least one color among those of v1, · · · , vd(u)+1 is not in use. So we can use it
to color u with causing any conflicts, and thus make S|G is a feasible coloring for G.

3. Considering that
w(u) ≤ w(vd(u)+1) ≤ · · · ≤ w(v1),

we have
cost(SG, G) = cost(S|G[V\{v}], G[V\{v}]).

Appendix F. Proof of Proposition 17

Proof. (By contradiction) Assume that cost(S, G) < Σt
i=1ωt. Now we are to show that S is

not a feasible coloring which will contradict the preconditions.
Without loss of generality, suppose S = {〈1, V1〉, · · · , 〈k, Vk〉} is a coloring for G s.t.

maxv∈V1 w(v) ≥ · · · ≥maxv∈Vk w(v), then we have k ≥ t by Proposition 16 and also

cost(S, G) =
k

∑
i=1

max
v∈Vi

w(v) < Σt
i=1ωt.

Since w(v) > 0 for any v ∈ V and ωi > 0 for any 1 ≤ i ≤ t, we have there exists at least
one 1 ≤ l ≤ t s.t. maxv∈Vl w(v) < ωl and thus maxv∈Vk w(v) ≤ · · · ≤ maxv∈Vl w(v) < ωl .

By Proposition 16, we have there exists a clique Q = {v1, · · · , v|Q|} s.t. |Q| = l and

w(v1) ≥ · · · ≥ w(v|Q|) = ωl > max
v∈Vl

w(v) ≥ · · · ≥ max
v∈Vk

w(v).

Therefore,
v1, · · · , v|Q| 6∈

⋃
Vk

i=l

and thus
v1, · · · , v|Q| ∈

⋃
V l−1

i=1 .

Considering that
|Q| = l,
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by the Pigeonhole Principle, we have there exists at least one 1 ≤ s ≤ l − 1 s.t. Vs contains
two or more vertices among v1, · · · , v|Q|, that is, S is not a feasible coloring for G, which
contradicts the preconditions. Alternatively we have proved that cost(S, G) ≥ Σt

i=1ωi.

Appendix G. Proof of Proposition 18

Proof. The proof includes two cases.

1. C1 enters criticalCliqSet first. If C1 v C2, then C1 will be removed from criticalCliqSet at
Line 14 before C2 enters criticalCliqSet, i.e., they will not be in criticalCliqSet simultane-
ously.

2. C2 enters criticalCliqSet first. If C1, C2 ∈ criticalCliqSet, i.e., C1 enters criticalCliqSet later,
then by Proposition 15, we have C1 6v C2.
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