
Citation: Agmon, S. The Information

Bottleneck’s Ordinary Differential

Equation: First-Order Root Tracking

for the Information Bottleneck.

Entropy 2023, 25, 1370. https://

doi.org/10.3390/e25101370

Academic Editors: Jan Lewandowsky

and Gerhard Bauch

Received: 16 May 2023

Revised: 8 August 2023

Accepted: 9 August 2023

Published: 22 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

The Information Bottleneck’s Ordinary Differential Equation:
First-Order Root Tracking for the Information Bottleneck
Shlomi Agmon

School of Computer Science and Engineering, The Hebrew University of Jerusalem,
Jerusalem 9190401, Israel; shlomi.agmon@mail.huji.ac.il

Abstract: The Information Bottleneck (IB) is a method of lossy compression of relevant information.
Its rate-distortion (RD) curve describes the fundamental tradeoff between input compression and the
preservation of relevant information embedded in the input. However, it conceals the underlying
dynamics of optimal input encodings. We argue that these typically follow a piecewise smooth
trajectory when input information is being compressed, as recently shown in RD. These smooth
dynamics are interrupted when an optimal encoding changes qualitatively, at a bifurcation. By lever-
aging the IB’s intimate relations with RD, we provide substantial insights into its solution structure,
highlighting caveats in its finite-dimensional treatments. Sub-optimal solutions are seen to collide or
exchange optimality at its bifurcations. Despite the acceptance of the IB and its applications, there
are surprisingly few techniques to solve it numerically, even for finite problems whose distribution
is known. We derive anew the IB’s first-order Ordinary Differential Equation, which describes the
dynamics underlying its optimal tradeoff curve. To exploit these dynamics, we not only detect IB
bifurcations but also identify their type in order to handle them accordingly. Rather than approaching
the IB’s optimal tradeoff curve from sub-optimal directions, the latter allows us to follow a solution’s
trajectory along the optimal curve under mild assumptions. We thereby translate an understanding
of IB bifurcations into a surprisingly accurate numerical algorithm.

Keywords: Information Bottleneck; bifurcations; ordinary differential equation; numerical approximation

1. Introduction

The Information Bottleneck (IB) describes the fundamental tradeoff between the
compression of information on an input X to the preservation of relevant information on a
hidden reference variable Y. Formally, let X and Y be random variables defined, respectively,
on finite source and label alphabets X and Y , and let pY|X(y|x)pX(x) be their joint probability
distribution, or p(y|x)p(x) for short (without loss of generality, p(x) > 0 for every x ∈ X
and so pY|X is well-defined). One seeks [1] to maximize the information I(Y; X̂) over
all Markov chains Y ←→ X ←→ X̂, subject to a constraint on the mutual information
I(X; X̂) := Ep(x̂|x)p(x) log p(x̂|x)

p(x̂) ,

IY(IX) := max
p(x̂|x)

{
I(Y; X̂) : I(X; X̂) ≤ IX

}
. (1)

The latter maximization is over conditional probability distributions or encoders p(x̂|x). The
graph of IY(IX) is the IB curve. We write T := |X̂ |, for a codebook or representation alphabet
X̂ . An encoder p(x̂|x) which achieves the maximum in (1) is IB optimal or simply optimal.

Written in a Lagrangian formulation L := I(X; X̂)− β I(Y; X̂) with β > 0 (normal-
ization constraints omitted for clarity), [1] showed that a necessary condition for extrema
in (1) is that the IB Equations hold. Namely,

Entropy 2023, 25, 1370. https://doi.org/10.3390/e25101370 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25101370
https://doi.org/10.3390/e25101370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9267-9991
https://doi.org/10.3390/e25101370
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25101370?type=check_update&version=2

Entropy 2023, 25, 1370 2 of 62

p(x̂|x) = p(x̂)
Z(x, β)

exp
{
−β DKL

[
p(y|x)||p(y|x̂)

]}
, (2)

p(y|x̂) = ∑
x

p(y|x)p(x|x̂) , and (3)

p(x̂) = ∑
x

p(x̂|x)p(x) . (4)

In these, Z(x, β) := ∑x̂ p(x̂) exp {−βDKL[p(y|x)||p(y|x̂)]} is the partition function, DKL
is the Kullback–Leibler divergence, DKL[p||q] := ∑i p(i) log p(i)/q(i), and p(x|x̂) in (3) is
defined by the Bayes rule p(x̂|x)p(x)/p(x̂). The IB Equations (2)–(4) are a necessary condition
for an extremum of L also when it is considered as a functional in three independent
families of normalized distributions {p(x̂|x)}, {p(y|x̂)} and {p(x̂)}, ref. [1] (Section 3.3),
rather than in {p(x̂|x)} alone. While satisfying them is necessary to achieve the curve (1),
it is not sufficient. Indeed, Equations (2)–(4) have solutions that do not achieve curve (1),
and so are sub-optimal. This results in sub-optimal IB curves, which intersect or bifurcate as
the multiplier β varies (see Section 3.4 in [1]).

Iterating over the IB Equations (2)–(4) is essentially Blahut–Arimoto’s algorithm vari-
ant for the IB (BA-IB) due to [1], brought below for reference. While the minimization
problem (1) can be solved exactly in special cases [2] (Section IV), exact solutions of an
arbitrary finite IB problem whose distribution is known are usually obtained nowadays
using BA-IB; see [3] (Section 3) for a survey of other computation approaches. Write BAβ

for a single iteration of BA-IB. Since BAβ encodes an iteration over the IB Equations (2)–(4),
then an encoder p(x̂|x) is its fixed point, BAβ[p(x̂|x)] = p(x̂|x), if and only if it satisfies the
IB Equations. Or equivalently, if p(x̂|x) is a root of the IB operator,

F := Id− BAβ , (5)

in a manner similar to [4]. We shall then call it an IB root. Agmon et al. [4] used a
similar formulation of rate-distortion (RD) and its relations in [5] to the IB, to show that
BA-IB suffers from critical slowing down near critical points, where the marginal p(x̂) of a
representor x̂ in an optimal encoder vanishes gradually. That is, the number of BA-IB
iterations required until convergence increases dramatically as one approaches such points.

Formulating fixed points of an iterative algorithm as operator roots can also be lever-
aged for computational purposes in a constrained optimization problem, as noted re-
cently by [6] for RD. Indeed, let F(·, β) be a differentiable operator on Rn for some n > 0,
F : Rn ×R → Rn, where β is a (real) constraint parameter. Suppose now that (x, β) is a
root of F,

F(x, β) = 0 , (6)

such that x = x(β) is a differentiable function of β. Write DxF :=
(

∂
∂xj

Fi
)

i,j for its Jacobian

matrix, and DβF :=
(

∂
∂β Fi

)
i for its vector of partial derivatives with respect to β. The point

(x, β) of evaluation is omitted whenever understood. As is often discussed along with the
Implicit Function Theorem, e.g., [7], applying the multivariate chain rule to F(x(β), β) in (6)
yields an implicit ordinary differential equation (ODE)

DxF dx
dβ = −DβF , (7)

for the roots of F. Plugging in explicit expressions for the first-order derivative tensors DxF
and DβF, one can specialize (7) to a particular setting, which allows one to compute the
implicit derivatives dx

dβ numerically. While [6] discovered the RD ODE this way, they showed
that (7) can be generalized to arbitrary order under suitable differentiability assumptions.
Namely, they showed that the derivatives dl x

dβl implied by F = 0 (6) can be computed via
a recursive formula, for an arbitrary-order l > 0. By specializing this with the higher

Entropy 2023, 25, 1370 3 of 62

derivatives of Blahut’s algorithm [8], they obtained a family of numerical algorithms for
following the path of an optimal RD root (Part I there).

In this work, we specialize the implicit ODE (7) to the IB. Namely, we plug into (7)
the first-order derivatives of the IB operator Id− BAβ (5) to obtain the IB ODE, and then
use it to reconstruct the path of an optimal IB root, in a manner similar to [6]. This is not
to be confused with the gradient flow (of arbitrary encoders) towards an optimal root at a
fixed β value, described in [9] (Equation (6)) by an ODE, which is a different optimization
approach. In contrast, the implicit Equation (7) describes how a root evolves with β. So, in
principle, one may compute an optimal IB root once and then follow its evolution along
the IB curve (1). While the discovery of the IB ODE is due to [10], we derive it here anew in
a form that is better suited for computational (and other) purposes, especially when there
are fewer possible labels Y than input symbols X , as often is the case. To that end, we
consider several natural choices of a coordinate system for the IB in Section 2 and compare
their properties. This allows us to make an apt choice for the ODE’s variable x in (7). In
Section 3, we present the IB ODE in these coordinates (Theorem 1). This enables one to
numerically compute the first-order implicit derivatives at an IB root, if it can be written as
a differentiable function in β. So long as an optimal root remains differentiable, a simple
way to reconstruct its trajectory is by taking small steps at a direction determined by the
IB ODE. This is Euler’s method for the IB. The error accumulated by Euler’s method from
the true solution path is roughly proportional to the step size, when small enough. For
comparison, reverse deterministic annealing [11] with BA-IB is nowadays common for
computing IB roots. The dependence of its error on the step size is roughly the same as in
Euler’s method. This is discussed in Section 4, where we combine Euler’s method with
BA-IB to obtain a modified numerical method whose error decreases at a faster rate than
either of the above.

However, the differentiability of optimal IB roots breaks where the solution changes
qualitatively. Such a point is often called a phase transition in the IB literature, or a bifurca-
tion—namely, a point where there is a change in the problem’s number of solutions; e.g., [12]
(Section 2.3) for basic definitions. As noted already by Tishby et al. in [1], their existence
in the IB stems from restricting the cardinality of the representation alphabet X̂ . Since IB
roots are the solutions of the fixed-point Equations (2)–(4), then the gap between achieving
the IB curve (1) to merely satisfying these Equations lies in understanding the solution
structure of the IB operator (5), or equivalently its bifurcations. While IB bifurcations were
analyzed in several works, including [9,13,14] and others, little is known about the practical
value of understanding them. In [15,16] it was shown that they correspond to the onset
of learning new classes, and in [4] that they inflict a hefty computational cost to BA-IB.
Following [6], this work demonstrates that understanding bifurcations can be translated
to a new numerical algorithm to solve the IB. To that end, merely detecting a bifurcation
along a root’s path does not suffice. Rather, it is also necessary to identify its type, as this
allows one to handle the bifurcation accordingly. One can then continue following the path
dictated by the IB ODE.

Almost all of the literature on IB bifurcations is based on a perturbative approach, in a
manner similar to [17] (Section IV.C). That is, suppose that the first variation

∂

∂ε
L[p(x̂|x) + ε∆p(x̂|x); β]

∣∣∣
ε=0

(8)

of the IB LagrangianL vanishes, for every perturbation ∆p(x̂|x). This condition is necessary
for extremality and implies [1] the IB Equations (2)–(4). Then,

(
p(x̂|x), β

)
is said to be a

phase transition only if there exists a particular direction ∆q(x̂|x) at which p(x̂|x) can be
perturbed without affecting the Lagrangian’s value to second order,

∂2

∂ε2L[p(x̂|x) + ε∆q(x̂|x); β]
∣∣∣
ε=0

= 0 . (9)

Entropy 2023, 25, 1370 4 of 62

For finite IB problems, condition (8) boils down to requiring that the gradient of L vanishes,
while condition (9) is equivalent to requiring that its Hessian matrix has a non-trivial kernel
(as both are conditions on the directional derivatives, e.g., [18]). The works [9,14–16] take
such an approach, while [13] focuses on one type of IB bifurcations.

While a perturbative approach is common in analyzing phase transitions, it has
several shortcomings when applied to the IB, as noted by [10]. First, the IB’s Lagrangian L
is constant on a linear manifold of encoders p(x̂|x) [9] (Section 3.1), and so condition (9)
leads to false detections. While this was considered there and in its sequel [19] by giving
subtle conditions on the nullity of the second variation in (9), in practice it is difficult to tell
whether a particular direction ∆q(x̂|x) is in the kernel due to a bifurcation or due to other
reasons, as they note. Second, note that a finite IB problem can be written as an infinite RD
problem [20]. As discussed in Section 5, representing an IB root by a finite-dimensional
vector leads to inherent subtleties in its computation. Among other things, these may well
result in a bifurcation not being detectable under certain circumstances (Section 5.3). To our
understanding, many of the difficulties that hindered the understanding of IB bifurcations
throughout the years are, in fact, artifacts of finite dimensionality. Third, conditions (8)
and (9) do not suffice to reveal the type of the bifurcation, information which is necessary
for handling it when following a root’s path. While [19] (Section 2.9) give conditions
for identifying the type, these partially agree with our findings and do not suggest a
straightforward way for handling a bifurcation.

Rather than imposing conditions on the scalar functional L, our approach to IB bifur-
cations follows that of [6] for RD. That is, we rely on the fact that the IB’s local extrema are
fixed points of an iterative algorithm, and so they also satisfy a vector equation F = 0 (6).
We shall now consider a toy problem to motivate our approach. “Bifurcation Theory can
be briefly described by the investigation of problem (6) in a neighborhood of a root where DxF
is singular” [21]. Indeed, recall that if DxF is non-singular at a root (x0, β0), then by the
Implicit Function Theorem (IFT), there exists a function x(β) through the root, x(β0) = x0,
which satisfies F

(
x(β), β

)
= 0 (6) at the vicinity of β0. The function x(β) is then not only

unique at some neighborhood of (x0, β0), but further, x(β) inherits the differentiability
properties of F [21] (I.1.7). In particular, if the operator F is real-analytic in its variables—as
with the IB operator (5)—then so is its root x(β). While a bifurcation can occur only if DxF
is singular, singularity is not sufficient for a bifurcation to occur. For example, the roots of
the operator

F(x, y; β) := (x− β, 0) (10)

on R2 consist of the vertical line x = β, {(β, y) : y ∈ R}, for every β ∈ R. For a fixed
y, each such root is real-analytic in β. However, one cannot deduce this directly from

the IFT, as the Jacobian
(

1 0
0 0

)
of F (10) is always singular. Note, however, that in this

particular example, the x coordinate alone suffices to describe the problem’s dynamics,
and so its y coordinate is redundant. One can ignore the y coordinate by considering the
“reduction” F̃(x; β) := x − β of F to R1. Further, discarding y also removes or mods-out

the direction
(

0
1

)
from ker DxF, which does not pertain to a bifurcation in this case. This

results in the non-singular Jacobian matrix (1) of F̃, and so it is now possible to invoke the
IFT on the reduced problem. The root guaranteed by the IFT can always be considered
in R2 by putting back a redundant y coordinate at some fixed value. In [6], a similarly
defined reduction of finite RD problems was used to show that their dynamics are piecewise
real-analytic under mild assumptions.

The intuition behind our approach is similar to [20] (Section III), who observed that
“in the IB one can also get rid of irrelevant variables within the model”. Nevertheless, the
details differ. Mathematically, we consider the quotient V/W of a vector space V by its
subspace W. Elements of V are identified in the quotient if they differ by an element of
W: v1 ∼ v2 ⇔ v1 − v2 ∈ W, for v1, v2 ∈ V. This way, one “mods-out” W, collapsing it
to a single point in the quotient vector space V/W. The resulting problem is smaller and
so easier to handle, whether for theoretical or practical purposes (although not needed

Entropy 2023, 25, 1370 5 of 62

for our purposes, this can be made precise in terms of the tangent space of a differentiable
manifold; cf., Section 3 in [22]). This is how the one-dimensional vector space ker DxF in
our toy example (10) was reduced to the trivial ker Dx F̃ = {0}. However, one needs to
understand the solution structure, for example, to ensure that the directions in W are not
due to a bifurcation. We note in passing that V/W has a simple geometric interpretation
as the translations of W in V, in a manner reminiscent of its better-known counterparts of
quotient groups and rings; e.g., [23] (Section 10.2). To keep things simple, however, we
shall not use quotients explicitly. Instead, the reader may simply consider the sequel as a
removal of redundant coordinates, for we shall only remove coordinates that the reader
does not care about anyway, as in the above toy example.

To achieve this approach, one needs to consider the IB in a coordinate system that
permits a simple reduction as in (10), and to understand its solution structure. We achieve
these in Section 5 by exploiting two properties of the IB which are often overlooked. First,
proceeding with the coordinates’ exchange of Section 2, the intimate relations [5,20] of the
IB with RD suggest a “minimally sufficient” coordinate system for the IB, just as the x axis is
for problem (10). Reducing an IB root to these coordinates is a natural extension of reduction
in RD [6]. Reduction of IB roots facilitates a clean treatment of IB bifurcations. These
are roughly divided into continuous and discontinuous bifurcations, in Sections 5.2 and 5.3,
respectively. While understanding continuous bifurcations is straightforward, the IB’s
relations with RD allow us to understand the discontinuous bifurcation examples of which
we are aware as a support switching bifurcation in RD, by leveraging [6] (Section 6). A second
property is the analyticity of the IB operator (5), which stems from the analyticity of the IB
Equations (2)–(4). By building on the first property, analyticity leads us to argue that the
Jacobian of the IB operator (5) is generally non-singular (Conjecture 1) when considered in
reduced coordinates as above. As an immediate consequence, the dynamics underlying
the IB curve (1) are piecewise real-analytic in β, in a manner similar to RD. Indeed, the
fact that there exist dynamics underlying the IB curve (1) in the first place can arguably
be attributed to analyticity (see the discussion following Conjecture 1). Combining both
properties sheds light on several subtle yet important practical caveats in solving the IB
(Section 5.3) due to using finite-dimensional representations of its roots. These subtleties
are compatible with our numerical experience. The results here suggest that, unlike RD,
the IB is inherently infinite-dimensional, even for finite problems.

Finally, Section 6 combines the modified Euler method of Section 4 with the under-
standing of IB bifurcations in Section 5, to obtain an algorithm for following the path of
an optimal IB root, in Section 6.1. That is, First-order Root Tracking for the IB (IBRT1).
For simplicity, we focus mainly on continuous IB bifurcations, as these are the ones most
often encountered in practice (see Section 6.3 on the algorithm’s handling of discontinuous
bifurcations). The resulting approximations in the information plane are surprisingly close
to the true IB curve (1), even on relatively sparse grids (i.e., with large step sizes), as seen in
Figure 1. See Section 6.2 for the numerical results underlying the latter. The reasons for
this are discussed in Section 6.3, along with the algorithm’s basic properties. Unlike BA-IB,
which suffers from an increased computational cost near bifurcations, our IBRT1 algorithm
suffers from a reduced accuracy there, in a manner similar to root tracking for RD [6].

With that, we note that there are standard techniques in Bifurcation Theory for han-
dling a non-trivial kernel of DxF at a root. For example, the Lyapunov–Schmidt reduction
replaces the high-dimensional problem F = 0 (6) onRn by a smaller but equivalent problem
Φ = 0, where Φ(·, β) maps vectors in the (right) kernel of DxF to vectors in its left kernel.
To achieve this, it separates the kernel and non-kernel directions of the problem, essentially
handling each in turn; e.g., [21] (Theorem I.2.3) or [24] (Section 9.7). This technique is
generic, as it does not rely on any particular property of the problem at hand. As such, it
is considerably more involved than removing redundant coordinates, which requires an
understanding of the solution structure. In contrast, reduction in the IB is straightforward.
For the purpose of following a root’s path, carrying on with redundant kernel directions is
burdensome, computationally expensive, and sensitive to approximation errors. Applying

Entropy 2023, 25, 1370 6 of 62

Lyapunov–Schmidt to our toy problem (10), for instance, reduces F = 0 (6) to choosing a
continuously differentiable function Φ on the y-axis there (which is obtained by first solving
for x = β; see the proof of Theorem I.2.3 in [21] for details). However, since y is redundant
in this example, then solving for Φ can provide no useful information on the dynamics
of its roots. In [19], a variant of the Lyapunov–Schmidt reduction was used to consider
IB bifurcations due to symmetry breaking. While our findings are in partial agreement
with theirs for continuous IB bifurcations, they differ for discontinuous bifurcations (see
Sections 5.2 and 5.3).

0.0 0.5 1.0

I(X; X̂)

0.00

0.06

0.12

I
(Y

;X̂
)

Exact

IBRT1, 20 points

IBRT1, 100 points

IBRT1, 1200 points

Figure 1. The approximate IB curves yielded by our algorithm, based on the IB ODE (16). Our
First-order Root Tracking algorithm for the IB (IBRT1) of Section 6.1 was used to approximate
the optimal IB roots of a binary symmetric channel with crossover probability 0.3 and a uniform
source, BSC(0.3), for several grid densities. The points in the information plane yielded from
these approximations are plotted on top of the problem’s exact solution (see Appendix E). Despite
the algorithm’s approximation errors (Section 6.2), the approximate curves it yields are visually
indistinguishable from the true IB curve (1), even on relatively few grid points. The reasons for this
are discussed below (Section 6.3).

Notations

Vectors are written in boldface x, and scalars in regular font x. A distribution p per-
taining to a particular multiplier value β of the IB Lagrangian L is denoted with a subscript,
pβ. Blahut–Arimoto’s algorithm for the IB (BA-IB) is brought below as Algorithm 1, with a
single iteration over the IB Equations (2)–(4) (in steps 1.4–1.8) denoted BAβ. The probability
simplex on a set S is denoted ∆[S] (see Section 5.1). The support of a probability distribution
p on S is supp p := {s ∈ S : p(s) 6= 0}. The source, label, and representation alphabets of an
IB problem are denoted X ,Y , and X̂ , respectively; we write T := |X̂ |. δ denotes Dirac’s
delta function, δi,j = 1 if i = j, and zero otherwise.

Entropy 2023, 25, 1370 7 of 62

Algorithm 1 Blahut–Arimoto for the Information Bottleneck (BA-IB), [1].

1: function BA-IB(p0(x̂|x); pY|X pX , β)
Input:

An initial encoder p0(x̂|x), a problem definition p(y|x)p(x), and β > 0.
Output:

A fixed point p(x̂|x) of the IB Equations (2)–(4).
2: Initialize i← 0.
3: repeat
4: pi(x̂)← ∑x pi(x̂|x)p(x)
5: pi(x|x̂)← pi(x̂|x)p(x)/pi(x̂)

6: pi(y|x̂)← ∑x p(y|x)pi(x|x̂)
7: Zi(x, β)← ∑x̂ pi(x̂) exp

{
− β DKL

[
p(y|x)||pi(y|x̂)

]}
8: pi+1(x̂|x)← pi(x̂)

Zi(x,β) exp
{
− β DKL

[
p(y|x)||pi(y|x̂)

]}
9: i← i + 1

10: until convergence.
11: end function

2. Coordinates Exchange for the IB

Just as a point in the plane can be described by different coordinate systems, so can
IB roots. As demonstrated recently by [6] for the related rate-distortion theory, picking
the right coordinates matters when analyzing its bifurcations. The same holds also for
the IB. Our primary motivations for exchanging coordinates are to reduce computational
costs and to mod-out irrelevant kernel directions, as explained in Section 1. In this Section,
we discuss three natural choices of a coordinate system for parameterizing IB roots and
the reasoning behind our choice for the sequel before setting to derive the IB ODE in the
following Section 3. This work is complemented by the later Section 5.1, which facilitates a
transparent analysis of IB bifurcations.

IB roots have been classically parameterized in the literature by (direct) encoders
p(x̂|x), following [1]. Considering the BA-IB Algorithm 1 reveals two other natural choices,
illustrated by Equation (11) below. First, an encoder p(x̂|x) determines a cluster marginal
p(x̂) and an inverse encoder p(x|x̂), via steps 4 and 5 of Algorithm 1 (denoted 1.4 and 1.5, for
short), respectively. These can be interpreted geometrically as p(x̂)-weighted points qx̂(x)
in the simplex ∆[X] of X, so long as they are well-defined, ∀x̂ p(x̂) 6= 0. No more than
|X |+ 1 points in the simplex are required to represent an IB root [2]. The latter is readily
seen to analyze the IB in these coordinates, although it pre-dates [1] and has generally
escaped broader attention. Second, an inverse encoder determines a decoder p(y|x̂), via
step 6. Along with the cluster marginal,

(
p(y|x̂), p(x̂)

)
can be similarly interpreted as

p(x̂)-weighted points rx̂(y) in the simplex ∆[Y] of Y. This choice of coordinates is implied
already by Theorem 5 in [1]. Cycling around Equation (11), a decoder

(
p(y|x̂), p(x̂)

)
determines via steps 7 and 8 a new encoder, which may differ from the one with which we
have started. For notational simplicity, we shall usually write

(
p(y|x̂), p(x̂)

)
rather than(

rx̂(y), p(x̂)
)

for decoder coordinates (similarly for inverse encoder coordinates).

p(x̂|x)Steps 1.4,1.5

��(
p(x|x̂), p(x̂)

)
Step 1.6

AA

(
p(y|x̂), p(x̂)

)
Steps 1.7,1.8nn

(11)

The above allows us to define three BA operators as the composition of three consecutive
maps in Equation (11), encoding an iteration of Algorithm 1. When starting at an encoder
p(x̂|x), its output is a newly defined encoder. Similarly, when starting at one of the other
two vertices, it sends an inverse encoder

(
p(x|x̂), p(x̂)

)
or a decoder pair

(
p(y|x̂), p(x̂)

)
to

Entropy 2023, 25, 1370 8 of 62

a newly defined one. By abuse of notation, we denote all three compositions by BAβ, with
the choice of coordinate system mentioned accordingly. Indeed, these are representations of
a single BA-IB iteration in three different coordinate systems, and so may be considered as
distinct representations of the same operator. For completeness, BAβ in decoder coordinates
is spelled out explicitly in Equation (A1) in Appendix A. A newly defined encoder (or
inverse encoder or decoder) at a cycle’s completion need not generally equal the one at
which we have started. These are equal precisely at IB roots, when the IB Equations (2)–(4)
hold. Therefore, the choice of a coordinate system does not matter then, and so moving
around Equation (11) from one vertex to another yields different parameterizations of the
same root, at least when ∀x̂ p(x̂) 6= 0. In particular, this shows that the inverse encoders
qx̂ in ∆[X] of an IB root are in bijective correspondence with its decoders rx̂ in ∆[Y], an
observation which shall come in handy in Section 5.

Next, we consider how well each of these coordinate systems can serve for following
the path of an IB root. The minimal number of symbols x̂ needed to write down an IB root
typically varies with the constraints, cf., [1] (Section 3.4) or [2] (Section II.A). Therefore,
inverse encoder and decoder coordinates are better suited than encoder coordinates for
considering the dynamics of a root with β, as they allow us to consider its evolution via
a varying number of points in a fixed space, ∆[X] or ∆[Y], respectively. Indeed, a direct
encoder p(x̂|x) can be interpreted geometrically as a point in the |X |-fold product ∆[X̂]X of
simplices ∆[X̂] [9] (Section 2). So, if a particular symbol x̂′ is not in use anymore, p(x̂′) = 0,
then one is forced to choose between replacing ∆[X̂] by a smaller space ∆[X̂ \ {x̂′}] or
carrying on with a redundant symbol x̂′. The latter leads to non-trivial kernels in the
IB due to duplicate clusters (e.g., Section 3.1 there), making it difficult to tell whether a
particular kernel direction pertains to a bifurcation (or to a “perpetual kernel” [9,19]). In
contrast, when considered in decoder coordinates, for example, an IB root is nothing but
p(x̂)-weighted paths r1, . . . , rT in ∆[Y], with β 7→ rx̂(β) a path for each x̂. And so, once a
symbol x̂′ is not needed anymore, then one can discard the path rx̂′ without replacing the
underlying space ∆[Y]. This permits the clean treatment of IB bifurcations in Section 5.

The computational cost of solving a first-order ODE as in (7) numerically in dx
dβ de-

pends on dim x. Much of this cost is due to computing a linear pre-image under DxF,
which is of order O(dim x)3 [25] (Section 28.4); cf., Section 6. Representing an IB root
on T clusters in encoder coordinates requires |X | · T dimensions (ignoring normaliza-
tion constraints), in inverse encoder coordinates (|X |+ 1) · T dimensions, and in decoder
coordinates (|Y|+ 1) · T dimensions. Thus, the computational cost is lowest in decoder
coordinates, at least when there are fewer possible labels Y than input symbols X .

A priori, one might expect that derivatives with respect to β vanish when the solution
barely changes, regardless of the choice of coordinate system. For example, at a very
large “β = ∞” value, an obvious IB root is the diagonal encoder (setting X̂ := X and
p(x̂|x) := δx,x̂), as can be seen by a direct examination of the IB Equations (2)–(4). It
consists of one IB cluster of weight (or mass) p(x) at pY|X=x ∈ ∆[Y] for each x ∈ X , and
so one might expect that it would barely change so long as β is very large. However, the

logarithmic derivative
d log pβ(x̂|x)

dβ in encoder coordinates need not vanish even when the

derivatives
d log pβ(y|x̂)

dβ and
d log pβ(x̂)

dβ in decoder coordinates do (see Section 3 on logarithmic
coordinates), as seen to the right of Figure 2. Indeed, given the derivative in decoder
coordinates, one can exchange it to encoder coordinates by

dlog pβ(x̂|x)
dβ

= Jenc
dec

dlog pβ(y′|x̂′)
dβ

+ Jenc
mrg

dlog pβ(x̂′)
dβ

− DKL
[
p(y|x)||pβ(y|x̂)

]
+ ∑

x̂′′
pβ(x̂′′|x)DKL

[
p(y|x)||pβ(y|x̂′′)

]
, (12)

where Jenc
dec and Jenc

mrg are the two coordinate exchange Jacobian matrices of orders
(T · |X |)× (T · |Y|) and (T · |X |)× T, respectively, given by Equations (A68) and (A70) in

Entropy 2023, 25, 1370 9 of 62

Appendix B.4.2. And so,
d log pβ(x̂|x)

dβ would often be non-zero even if both
d log pβ(y|x̂)

dβ and
d log pβ(x̂)

dβ vanish. This unintuitive behavior of the derivative in encoder coordinates is due
to the explicit dependence of the IB’s encoder Equation (2) on β. This dependence is the
source of the last two terms in Equation (12) (see Equation (A73)). The comparison between
encoder and inverse encoder coordinates can be seen to be similar. See Appendix B.4 for
further details.

3 4 5

log2 β

−4

−2

0

lo
g

1
0
‖d

lo
g
p

d
β
‖ 2

Figure 2. Derivatives’ norm by coordinate system, for the exact solution of BSC(0.3) with a uniform
source, as in Figure 1; see Appendix E. The derivative’s L2-norm is plotted in green for encoder
coordinates and blue for decoder coordinates. The solution barely changes at high β values, and so
the derivative in decoder coordinates is smaller (see main text). Nevertheless, the derivative in encoder
coordinates does not vanish then, due to Equation (12). At low β values, however, the derivative
in either coordinate system may generally be large. Both vanish to the left of the bifurcation in
this problem (dashed red vertical), as the solution there is trivial (single-clustered). The derivatives
diverge near the bifurcation (to its right) regardless of the coordinate system, as might be expected by
the implicit ODE (7)—see also Section 6.1.

In light of the above, we proceed with decoder coordinates in the sequel.

3. Implicit Derivatives at an IB Root and the IB’s ODE

We now specialize the implicit ODE (7) (of Section 1) to the IB, using the decoder coor-
dinates of the previous Section 2. This allows us to compute first-order implicit derivatives
at an IB root (Theorem 1) with remarkable accuracy, under one primary assumption—that
the root is a differentiable function of β. While differentiability breaks at IB bifurcations
(Section 5), this allows us to reconstruct a solution path from its local approximations in the
following Section 4, so long as it holds.

To simplify calculations, we take the logarithm
(

log p(y|x̂), log p(x̂)
)

of the decoder
coordinates of Section 2 as our variables. Exchanging the BAβ operator to log-decoder
coordinates is immediate, by writing log BAβ[exp (log p(y|x̂)), exp (log p(x̂))]. For short,
we denote it BAβ[log p(y|x̂), log p(x̂)] when in these coordinates, by abuse of notation.
Similarly, exchanging the IB ODE (below) back to non-logarithmic coordinates is immediate,
via d

dβ log p = 1
p

d
dβ p. In Section 6, we shall assume that p(x̂) never vanishes. To ensure that

taking logarithms is well-defined, we require that no decoder coordinate p(y|x̂) vanishes
(while it may have a well-defined derivative d

dβ p(y|x̂) even with a vanished coordinate,
calculation details would differ). A sufficient condition for that is that p(y|x) > 0 for every
x and y (Lemma A1 in Appendix A).

Next, define a variable x ∈ RT·(|Y|+1) as the concatenation of the vector(
log pβ(y|x̂)

)
y∈Y ,x̂∈X̂ with

(
log pβ(x̂)

)
x̂∈X̂ . Differentiating ∂/∂ log p with respect to log-

Entropy 2023, 25, 1370 10 of 62

probabilities is given by p · ∂
∂p , by the chain rule (setting u := log p, d f (p)

du = d f
dp

dp
du , or

equivalently d f
d log p = p · d f

dp ; see Appendix B.1 for a gentler treatment). This gives mean-
ing to the Jacobian matrix Dx(·) with respect to our logarithmic variable x. The Jacobian
Dlog p(y|x̂),log p(x̂)BAβ of a single Blahut–Arimoto iteration in these log-decoder coordinates
is a square matrix of order T · (|Y|+ 1). Its (T · |Y|)× (T · |Y|) upper-left block (below)
corresponds to perturbations of BA’s output log-decoder log p(y|x̂) due to varying an input
log-decoder log p(y′|x̂′). Since we prime input but not output coordinates, this is to say that
the columns of this block are indexed by pairs (y′, x̂′) and its rows by (y, x̂) (one could also
enumerate Y := {y1, . . . , y|Y|} and X̂ := {x̂1, . . . , x̂T} explicitly, replacing (y, x̂) and (y′, x̂′)
throughout by (yi, x̂j) and (yk, x̂l), respectively, with i, k = 1, . . . , |Y| and j, l = 1, . . . , T). Its
(T · |Y|)× T upper-right block corresponds to perturbations in BA’s output log-decoder
log p(y|x̂) due to varying an input log-marginal log p(x̂′). That is, its columns are indexed
by x̂′ and rows by (y, x̂). Similarly, for the bottom-left and bottom-right blocks, of respec-
tive sizes T × (T · |Y|) and T × T. See (A25) ff., in Appendix B.2, and the end-result at
Equation (A44) there. Explicitly, when evaluated at an IB root

(
log p(y|x̂), log p(x̂)

)
, BA’s

Jacobian matrix is given by

Dlog p(y|x̂),log p(x̂)BAβ[log p(y|x̂), log p(x̂)] =

β ·∑x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)
·
[

1− δy′′ ,y
pβ(y|x̂)

]
C(x̂, x̂′′; β)y′ ,y′′ (1− β) ·∑y′′

[
1− δy′′ ,y

pβ(y|x̂)
]

B(x̂, x̂′; β)y′′

β ·
[
δx̂,x̂′ pβ(y′|x̂)− B(x̂, x̂′; β)y′

]
(1− β) ·

[
δx̂,x̂′ − A(x̂, x̂′; β)

]

 (13)

where δi,j = 1 if i = j and is 0 otherwise. As mentioned above, primed coordinates y′ and
x̂′ index the columns, and un-primed coordinates y and x̂ the rows. Indices y′′ and x̂′′ with
more than a single prime are summation variables. A, B, and C are a scalar, a vector, and a
matrix, each involving two IB clusters. They are defined by

A(x̂, x̂′; β) :=∑
x′′

pβ(x̂′|x′′)pβ(x′′|x̂) ,

B(x̂, x̂′; β)y :=∑
x′′

p(y|x′′)pβ(x̂′|x′′)pβ(x′′|x̂) , and

C(x̂, x̂′; β)y,y′ :=∑
x′′

p(y|x′′)p(y′|x′′)pβ(x̂′|x′′)pβ(x′′|x̂) .

(14)

In these, y indexes B and the rows of C, y′ the columns of C, and x′′ is a summation
variable. These (x̂, x̂′)-labeled tensors have only |Y| entries along each axis, thanks to our
choice of decoder coordinates. A and B can be expressed in terms of C via some obvious
relations; see Equation (A32) and below in Appendix B.2. Appendix B.1 elaborates on the
mathematical subtleties involved in calculating the Jacobian (13). See also Equation (A45)
in Appendix B.2 for an implementation-friendly form of (13).

Together with DβBAβ (Equations (A58) and (A57) in Appendix B.3), we have both
of the first-order derivative tensors of BAβ in log-decoder coordinates. This allows us
to specialize the implicit ODE (7) (of Section 1) to the IB, in terms of our variable x. By
abuse of notation, we write

(
log pβ(y|x̂), log pβ(x̂)

)
y,x̂ for its |Y| · T + T coordinates, and

similarly for its derivatives vector v (15) below.

Theorem 1 (The IB’s ODE). Let
(

p(y|x̂), p(x̂)
)

be an IB root, and suppose that it can be written
as a differentiable function β 7→

(
pβ(y|x̂), pβ(x̂)

)
in β. If none of its coordinates vanish, then

the vector

v :=
(dlog pβ(y|x̂)

dβ
,

dlog pβ(x̂)
dβ

)
y,x̂

(15)

Entropy 2023, 25, 1370 11 of 62

of its implicit logarithmic derivatives is well-defined and satisfies an ordinary differential equation
in β,

(
I − Dlog p(y|x̂),log p(x̂)BAβ

)
v =

−∑x,x̂′′

[
1− p(y|x)

pβ(y|x̂)

]
·
[
δx̂,x̂′′ − pβ(x̂′′|x)

]
pβ(x|x̂) DKL

[
p(y|x)||pβ(y|x̂′′)

]
∑x,x̂′′

[
δx̂,x̂′′ − pβ(x̂′′|x)

]
pβ(x|x̂) DKL

[
p(y|x)||pβ(y|x̂′′)

]
 (16)

where I is the identity matrix of order T · (|Y|+ 1), and the Jacobian matrix Dlog p(y|x̂),log p(x̂)BAβ

at the given IB root is given by Equation (13). The right-hand side of (16) is indexed as in (15), by
(y, x̂) at its top and x̂ at its bottom coordinates.

While the IB ODE was discovered by [10], it is derived here anew in log-decoder
coordinates due to the considerations in Section 2. It is analogous to the RD ODE, due to [6];
Corollary 1 and around (in Section 5.1) provides a relation between these two ODEs. We
emphasize that the first assumption of Theorem 1, that the IB root is a differentiable function
of β, is essential. It consists of two parts: (i) that the root can be written as a function of
β, and (ii) that this function is differentiable. These are precisely the assumptions needed
to compute the first-order implicit multivariate derivative v (15) at the given root [6]
(Section 2.1). Continuous IB bifurcations violate (ii) (Section 5.2), while discontinuous
ones violate (i) (Section 5.3). In contrast, the requirement that no coordinate vanishes is a
technical one, due to our choice of logarithmic coordinates.

It is not necessary for the Jacobian of the IB operator (5) (to the left of (16)) to be
non-singular in order to solve the IB ODE numerically. Nevertheless, non-singularity
of the Jacobian will follow from the sequel (see Conjecture 1 in Section 5). With that,
the derivatives v = d

dβ

(
log pβ(y|x̂), log pβ(x̂)

)
(15) computed numerically from the IB

ODE (16) at an exact root are remarkably accurate, as demonstrated in Figure 3. As in
RD [6], calculating implicit derivatives numerically loses its accuracy when approaching a
bifurcation because the Jacobian is increasingly ill-conditioned there. For comparison, the
BA-IB Algorithm 1 also loses its accuracy near a bifurcation. This is a consequence of BA’s
critical slowing down [4], just as with its corresponding RD variant.

Each coordinate of
(

p(y|x̂), p(x̂)
)

is treated by the IB ODE (16) as an independent
variable. However, the normalization of p(y|x̂) imposes one constraint per cluster x̂ (and
one for the normalization of p(x̂)). Thus, one might expect the behavior of BA’s Jacobian
(13) to be determined by fewer than T · (|Y|+ 1) coordinates, at least qualitatively. This
intuition is justified by the following Lemma 1, which allows us to consider the kernel of
the IB operator (5) by a smaller and simpler matrix S; see Appendix C for its proof.

Lemma 1. Given an IB root as above, define a square matrix of order T · |Y| by

S(y,x̂),(y′ ,x̂′) := ∑
x

pβ(x|x̂)
[

β · p(y|x)
pβ(y|x̂) + (1− 2β)

]
p(y′|x)

[
δx̂,x̂′ − pβ(x̂′|x)

]
. (17)

Then, the nullity of the Jacobian I − Dlog p(y|x̂),log p(x̂)BAβ of the IB operator (5) equals that of
I − S, where I is the identity matrix (of the respective order), and S is defined by (17),

dim ker(I − S) = dim ker
(

I − Dlog p(y|x̂),log p(x̂)BAβ

)
. (18)

Specifically, write v :=
(
vy,x̂

)
y,x̂ for a left eigenvector which corresponds to 1 ∈ eig S. Then, there

is a bijective correspondence between the left kernels at both sides of (18), mapping

v 7→ (v, u) , (19)

where u := (ux̂)x̂ is defined by ux̂ := 1−β
β ·∑y vy,x̂.

Entropy 2023, 25, 1370 12 of 62

3.0 3.5 4.0 4.5 5.0
log2 β

−10

−12

−14

−16

lo
g

1
0
‖e

rr
or

in
d

lo
g
p
β

d
β
‖ ∞

Machine’s precision

2 3 4 5 6

log2 β

−16

−14

−12

−10

−8

−6

−4

lo
g

10
‖e

rr
or

fr
om

ex
ac

t
so

lu
ti

on
‖ ∞

Stopping condition for Blahut-Arimoto

Machine’s precision

Figure 3. The implicit derivatives computed from the IB ODE (16) are very accurate, as is the
BA-IB Algorithm 1. However, both lose their accuracy near a bifurcation. To verify their accuracy,
we compared both to the exact solutions of BSC(0.3) with a uniform source (see Appendix E). (Top):
Derivatives were computed at the problem’s exact solution using the IB ODE (16) and compared to
the problem’s exact derivatives. These are accurate beyond the machine’s precision, except when
approaching the bifurcation (red vertical), since the Jacobian of the IB operator (5) is ill-conditioned
there. (Bottom): The L∞-errors of the solutions produced by the BA-IB Algorithm 1, with a 10−8

stopping condition, and uniform initial conditions. Error is measured from the true direct encoder to
avoid biases due to clusters of low mass. Both plots are as in Figure 2.3 of [6].

In addition to offering a form more transparent than BA’s Jacobian in (13), Lemma 1
also reduces the computational cost of testing I − Dlog p(y|x̂),log p(x̂)BAβ (16) for singularity,
by using the smaller I − S (17) in its place. This makes it easier to detect upcoming
bifurcations (see Conjecture 1 in Section 5). Further, one can verify directly that the IB ODE
(16) indeed follows the right path. Indeed, if the ODE is non-singular, then, by the Implicit
Function Theorem, there is (locally) a unique IB root, which is a differentiable function of β.
And so, there is a unique solution path for a numerical approximation to follow. Finally, we
note that a relation similar to (18) holds also for eigenvalues of Dlog p(y|x̂),log p(x̂)BAβ (13)
other than 1. This can be seen either empirically or by tracing the proof of Lemma 1.

Entropy 2023, 25, 1370 13 of 62

In Section 5, we shall proceed with this line of thought of removing redundant coor-
dinates. In the following Section 4, we turn to reconstruct a solution path from implicit
derivatives at a point, with bifurcations ignored for now.

4. A Modified Euler Method for the IB

We follow the path of a given IB root away from bifurcation by using its implicit
derivatives computed from the IB ODE (16), of Section 3. We follow the classic Euler
method for simplicity, modifying it slightly to get the most out of the calculated derivatives.
Improvements using more sophisticated numerical methods are left to future work. The
detection and handling of IB bifurcations are deferred to the following Section 5, and thus
are ignored in this section.

Let dx
dβ = f (x, β) and x(β0) = x0 define an initial value problem. In numerical

approximations of ordinary differential equations (ODEs), the Euler method for this problem
is defined by setting

xn+1 := xn + ∆β · f (xn, βn) , (20)

where βn+1 := βn + ∆β, and |∆β| is the step size. The global truncation error maxn ‖xn −
x(βn)‖∞ is the largest error of the approximations xn from the true solutions x(βn). A
numerical method for solving ODEs is said to be of order d if its global truncation error is of
order O(|∆β|d), for step sizes |∆β| small enough. Euler’s method error analysis is a standard
result, provided as Theorem 2 below. See [26] (Theorem 212A) or [27] (Theorem 2.4), for
example. It shows that Euler’s method (20) is of order d = 1, under mild assumptions, as
demonstrated in Figure 4. The immediate generalization of (20) using derivatives until
order d is Taylor’s method, which is a method of order d.

Theorem 2 (Euler’s method error analysis). Let an initial value problem be defined on [β0, β f]

by dx
dβ = f (x, β) as above (with x0 allowed to deviate from x(β0)), and suppose that f satisfies the

Lipschitz condition with some constant L > 0. Namely, ‖ f (x, β)− f (x′, β)‖∞ ≤ L · ‖x− x′‖∞
for every x, x′ and β ∈ [β0, β f].

Then, Euler’s method (20) global truncation error satisfies

max
β0≤βn≤β f

‖xn − x(βn)‖∞ ≤ e(β f−β0)L‖x0 − x(β0)‖∞ +
e(β f−β0)L − 1

L
· 1

2 |∆β| max
β0≤β≤β f

∥∥∥ d2x(β)
dβ2

∥∥∥
∞

. (21)

Specializing Euler’s method to our needs, replace x in (20) above by the log-decoder
coordinates of an IB root, as in Section 3. So long as an IB root pβ :=

(
pβ(y|x̂), pβ(x̂)

)
is a

differentiable function of β in the vicinity of βn, it can be approximated by

log pβn+1(y|x̂) ≈ log pβn(y|x̂) + ∆β · d log pβ(y|x̂)
dβ

∣∣∣∣
pβn

and

log pβn+1(x̂) ≈ log pβn(x̂) + ∆β · d log pβ(x̂)
dβ

∣∣∣∣
pβn

,
(22)

where
d log pβ(y|x̂)

dβ and
d log pβ(x̂)

dβ are calculated from the IB ODE (16). Thus, applying (22)
repeatedly, we obtain an Euler method for the IB. We shall take only negative steps ∆β < 0
when approximating the IB, due to reasons explained in Section 5.3 (after Proposition 1).
In contrast to the BA-IB Algorithm 1, Euler’s method (22) can be used to interpolate
intermediate points, yielding a piecewise linear approximation of the root.

The problem of tracking an operator’s root belongs in general to a family of hard-to-
solve numerical problems—known as stiff —if the problem has a bifurcation [6] (Section 7.2).
See [26] or [27] for example on stiff differential equations. Stopping early in the vicinity of
a bifurcation restricts the computational difficulty and permits convergence guarantees.
Early stopping in the IB shall be handled later, in Section 5.2. [6] (Theorem 5) proves that

Entropy 2023, 25, 1370 14 of 62

Euler’s method convergence guarantees (Theorem 2) hold for the closely related Euler
method for RD with early stopping. While Euler’s method may inadvertently switch
between solution branches of the IB ODE (16), the latter guarantees ensure that it indeed
follows the true solution path between bifurcations, if the step size |∆β| is small enough
and initializing close enough to the true solution (see Sections 5 and 6.3 on the distinction
between IB bifurcations and singularities of the IB ODE (16)). Although we do not dive into
these details for brevity, we note that similar convergence guarantees can also be proven
here. Alternatively, Euler’s method can be ensured to follow the true solution path by
noting that an optimal IB root is (strongly) stable when negative steps ∆β < 0 are taken;
these details are deferred to Section 6.3, as they depend on Section 5.

−4 −3 −2 −1 0

log10 |∆β|

−7

−6

−5

−4

−3

−2

−1

lo
g

10
L
∞

-e
rr

or

Euler method

Euler, with added BA iteration

Reverse annealing, single BA iteration

Figure 4. Error by step-size for a vanilla Euler method using the IB ODE (16), and with an added
BA-IB iteration at each step, for BSC(0.3) with a uniform source (Appendix E). The linear regression
(dashed black) of the third leftmost markers for the vanilla Euler method is of slope 0.99 (R2 ' 1),
matching the theory’s prediction almost perfectly. A similar regression (not shown) for Euler’s
method with a single added BA iteration is of nearly double slope 1.93. For comparison, reverse
deterministic annealing with a single BA iteration at each grid point yields a slope of 0.91 in this
example. Taking a larger (pre-determined) number of iterations at each grid point pushes the error
downwards, as expected. Yet, the resulting slopes approach 1 as the number of iterations is increased
(not shown). See main text and Appendix D for details. The error was calculated as the supremum
of the pointwise errors as in Figure 3, over the interval [βc +

1
10 , β0] which contains no bifurcation.

Each method was initialized with the exact solution at β0 = 25, with ∆β = − 103
32 halved between

consecutive markers.

Following the discussion in Section 2, there is a subtle disadvantage in choosing de-
coder coordinates as our variables compared to the other two coordinate systems there.
Indeed, recall that the IB is defined as a maximization over Markov chains Y ←→ X ←→ X̂.
An (arbitrary) encoder p(x̂|x) defines a joint probability distribution p(x̂|x)p(y|x)p(x)
which is Markov. An inverse encoder pair also similarly defines a Markov chain. In con-
trast, an arbitrary decoder pair

(
p(y|x̂), p(x̂)

)
need not necessarily define a Markov chain.

Rather, by invoking the error analysis of Euler’s method, one can see that Markovity is
approximated at an increasingly improved quality as the step-size |∆β| in (22) becomes
smaller. To enforce Markovity, we shall perform a single BA iteration (in decoder coordi-

Entropy 2023, 25, 1370 15 of 62

nates) after each Euler method step. This ensures that the newly generated decoder pair
satisfies the Markov condition, as it is now generated from an encoder.

As a side effect, adding a single BA-IB iteration after each Euler method step improves
the approximation’s quality significantly. By linearizing BAβ around a fixed point, one
can show that deterministic annealing with a fixed number of BA iterations per grid point
is a first-order method. Thus, deterministic annealing may arguably be considered a
first-order method, as is with Euler’s method. A similar argument shows that adding a
single BA iteration after each Euler method step yields a second-order method. However,
while a larger number of added BA iterations obviously improves the approximation’s
quality, it does not improve the method’s order. See Appendix D for an approximate error
analysis. The predicted orders are in good agreement with the ones found empirically,
shown in Figure 4. We note that while [6] did not attempt an added BA iteration, they do
discuss a variety of other improvements to root tracking (see Section 3.4 in [6]).

5. On IB Bifurcations

For the IB Equations (2)–(4) to exhibit a bifurcation, it is necessary that the Jacobian
of the IB operator (5) be singular, as illustrated by Figure 5. However, a priori singularity
is not sufficient to detect a bifurcation (cf., Section 3.1 in [9]), nor does this allow one to
distinguish between bifurcations of different types. At an IB root, singularities of the IB ODE
(16) (Section 3) coincide with those of Id− BAβ (5) (in log-decoder coordinates). Thus, in order
to be able to exploit the IB ODE (16), we shall now take a closer look into IB bifurcations. These
can be broadly classified into two types: where an optimal root is continuous in β and where
it is not. As noted after Theorem 1, each type violates an assumption necessary to compute
implicit derivatives. Sections 5.2 and 5.3 provide the means to identify bifurcations, distinguish
between their types, and handle them accordingly, mainly for continuous bifurcations. To
facilitate the discussion, Section 5.1 considers the IB as a rate-distortion problem, following [20]
and others. This allows us to leverage recent insights on RD bifurcations [6], while suggesting
a “minimally sufficient” choice of coordinates for the IB. The latter permits a clean treatment
of continuous IB bifurcations in Section 5.2. Viewing the IB as an infinite-dimensional RD
problem facilitates the understanding of its discontinuous bifurcations, which in turn highlight
subtleties in its finite-dimensional coordinate systems (of Section 2). These provide insight
into the IB and are also of practical implications (Section 5.3), and so are necessary for our
algorithms in Section 6.

3 4 5

log2 β

−5

−3

−1

1

ei
gs

of
D
p
(y
|x̂

),
p
(x̂

)B
A
β

Figure 5. While the Jacobian Dlog p(y|x̂),log p(x̂)(Id − BAβ) must be singular at a bifurcation, this
does not suffice to identify its type. The Jacobian eigenvalues of BAβ (13) with respect to log-
decoder coordinates are plotted for BSC(0.3) with a uniform source, as in Figure 1; see Appendix E
for its exact solution. An eigenvalue reaches one (dashed green) precisely at the bifurcation (dashed
red vertical), as expected by Conjecture 1 in Section 5.1. In particular, the Jacobian is increasingly
ill-conditioned when approaching the bifurcation, as noted in Figure 3 (top). While this allows one to
detect the bifurcation, identifying its type is necessary for handling it.

Entropy 2023, 25, 1370 16 of 62

5.1. The IB as a Rate-Distortion Problem

We now explore the intimate relation between the IB and RD, following [5,20]. This
leads to a “minimally sufficient” coordinate system for the IB, thereby completing the work
of Section 2. In this coordinate system, results [6] on the dynamics of RD roots are readily
considered in the IB context. This leads to Conjecture 1, that the IB operator (5) in these
coordinates is typically non-singular. The discussion here facilitates the treatment of IB
bifurcations in the following Sections 5.2 and 5.3.

First, recall a few definitions. A rate distortion problem on a source alphabet X and a
reproduction alphabet X̂ is defined by a distortion measure d : X × X̂ → R≥0 (a non-negative
function on X × X̂ with no further requirements—see Section 2.2 in [28]) and a source
distribution pX(x). One seeks the minimal rate I(X; X̂) subject to a constraint D on the
expected distortion E[d(x, x̂)] [29,30],

R(D) := min
p(x̂|x)

{
I(X; X̂) : Ep(x̂|x)pX(x)[d(x, x̂)] ≤ D

}
, (23)

known as the rate-distortion curve. The minimization is over test channels p(x̂|x). A test
channel that attains the RD curve (23) is called an achieving distribution. We say that an RD
problem is finite if both of the alphabets X and X̂ are finite. Using Lagrange multipliers
for (23) with I(X; X̂) + β E[d(x, x̂)] (normalization omitted for clarity), one obtains a pair
of fixed-point equations

p(x̂|x) = p(x̂)e−β d(x,x̂)

∑x̂ p(x̂)e−β d(x,x̂)
and p(x̂) = ∑

x
p(x̂|x)p(x) (24)

in the marginal p(x̂) and test channel p(x̂|x), similar to the IB Equations (2) and (4). Iterating
over these is Blahut’s algorithm for RD [8], denoted BARD

β here. As with the IB (1), β

parameterizes the slope of the optimal curve (23) also for RD. See [28] or [31] for an
exposition of rate-distortion theory.

We clarify a definition needed to rewrite the IB as an RD problem. We define the simplex
∆[S] on a (possibly infinite) set S as the collection of finite formal convex combinations
∑s as · s of elements of S. That is, as the S-indexed vectors (as)s∈S (equivalently, as functions
mapping each s in S to a real number as) that satisfy ∑s as = 1 and as ≥ 0, with as non-zero
for only finitely many elements s (the support of (as)s). Addition and multiplication are
defined pointwise, as in ∑s as · s + ∑s bs · s = ∑s(as + bs) · s. ∆[S] is closed under finite
convex combinations because the sum of finitely supported vectors is finitely supported.
When taking S = {e1, . . . , en} the standard basis vectors (ei)j = δi,j of Rn, then one can
identify the formal operations with those in Rn, reducing the simplex ∆[S] to its usual
definition. We write r for an element of ∆[Y]. In particular, an element of ∆

[
∆[Y]

]
is merely

a finite convex combination ∑x̂ p(x̂)rx̂ of distinct probability distributions rx̂(y) ∈ ∆[Y] on
Y (note that ∆[S] is a set). When setting X̂ ⊂ ∆[Y] to be a finite subset of distributions,
|X̂ | < ∞, then ∆[X̂] is a special case of the decoder coordinates of Section 2 (unlike ∆[X̂]
here, the decoder coordinates of Section 2 are not required to have their clusters r distinct).

Now, let a finite IB problem be defined by a joint probability distribution pY|X pX , as
in Section 1. To write it down as an RD problem [5,20], define the IB distortion measure by

dIB(x, r) := DKL

[
pY|X=x||r

]
, (25)

for x ∈ X , r ∈ ∆[Y], and pY|X=x ∈ ∆[Y] the conditional probability distribution at
X = x. The distortion measure dIB (25) and pX define an RD problem on the continuous
reproduction alphabet X̂ := ∆[Y]. Minimizing the IB Lagrangian L (in Section 1) is
equivalent to minimizing the Lagrangian of this RD problem [20] (Theorem 5). That is, the
IB is a rate-distortion problem when considered in these coordinates. IB clusters r ∈ ∆[Y]
assume the role of RD reproduction symbols, while an IB root (considered now as an RD
root) is equivalently described either by the probabilities of each cluster—namely, by a

Entropy 2023, 25, 1370 17 of 62

point in ∆
[
∆[Y]

]
—or, by a test channel p(r|x). The astute reader might notice that the

IB Equations (2) and (4) are then equivalent to RD’s fixed-point Equations (24), with the
decoder Equation (3) implied by the IB’s Markovity. The IB’s Y-information I(Y; X̂) equals
the expected distortion E[dIB(x, x̂)] in (23) up to a constant [20] (Section 5), and so is linear
in the test channel p(r|x). Unlike the finite-dimensional coordinate systems of Section 2,
this definition of the IB entails no subtleties due to finite dimensionality, such as duplicate
clusters (see more below). However, while it allows us to spell out the IB explicitly as an
RD problem, handling an infinite reproduction alphabet is difficult for practical purposes.
Since no more than |X |+ 1 reproduction symbols are needed to write down an IB root [2],
this motivates one to consider the IB’s local behavior, with clusters fixed.

So instead, one may require the reproduction symbols of dIB (25) to be in a list (rx̂)x̂∈X̂
indexed by some finite set X̂ , with each rx̂ in ∆[Y] (the elements rx̂1 , . . . , rx̂T need not be
distinct a priori). This defines a finite RD problem, for which dIB (25) is merely an |X |-by-T
matrix. Yet, placing identical clusters in the list (rx̂)x̂ inadvertently introduces degeneracy
to the matrix dIB (25), as discussed below. In [5] (Section 6), (rx̂)x̂ is taken to be the decoders
defined by a given encoder p(x̂|x), as in Equation (11) (Section 2). We shall then refer
to dIB (25) as the distortion matrix defined by p(x̂|x). When pβ0(x̂|x) is an optimal IB root
then the problem (dIB, pX) defined by it is called the tangent RD problem. Indeed, its RD
curve (23) coincides with the IB curve (1) at this point (since an optimal choice of IB clusters
is already encoded into dIB (25), then solving the IB boils down to finding the clusters’
optimal weights p(x̂), which is an RD problem). However, the curves differ outside this
point since IB clusters usually vary with β, while the distortion of the tangent problem was
defined at pβ0(x̂|x) and so is fixed. By definition (1), it follows that the IB curve is the lower
envelope of the curves of its tangent RD problems [5] (Corollary 2). We note that a similar
construction can also be carried out in inverse encoder coordinates, cf., [2].

Regardless of the formulation used to rewrite the IB as an RD problem, the associated
RD problem has an expected distortion E[dIB] of I(X; Y)− I(X̂; Y) at an IB root (Section 5
in [20] and Lemma 8 in [5]). That is, the IB is a method of lossy compression that strives to
preserve the relevant information I(X̂; Y). Due to the Markov condition, information on Y is
available only through X. Thus, one may intuitively consider the IB as a lossy compression
method of the information on Y that is embedded in X. These intimate relations between
the IB and RD suggest that studying bifurcations in either context could be leveraged to
understand the other. Bifurcations in finite RD problems are discussed at length in [6]
(Section 6). To facilitate the study of IB bifurcations in the sequel (Sections 5.2 and 5.3) using
results from RD, we need a “minimally-sufficient” coordinate system for the IB.

Consider an IB root in decoder coordinates as finitely many p(x̂)-weighted points
rx̂(y) in ∆[Y], as in Section 2. Exchanging to decoder coordinates (Equation (11) there) is
well-defined as long as there are no zero-mass clusters, ∀x̂ p(x̂) 6= 0. Yet, even then, the
points rx̂ in ∆[Y] yielded by BA’s steps 4 through 6 (Algorithm 1) need not be distinct.
Namely, they may yield identical clusters rx̂ = rx̂′ at distinct indices x̂ 6= x̂′. This leads to
a discussion of structural symmetries of the IB (its degeneracies), which is not of use for
our purposes; cf., [9]. To avoid such subtleties, we shall say that an IB root is reduced if it
has no zero-mass clusters, ∀x̂ p(x̂) 6= 0, and all its clusters are distinct, x̂ = x̂′ ⇔ rx̂ = rx̂′ .
A root that is not reduced is called degenerate or degenerately represented. An IB root can
be reduced by removing clusters of zero mass and merging identical clusters of distinct
indices—see our reduction algorithm in Section 5.2 below. It is straightforward to see
from the IB Equations (2)–(4) that reduction preserves the property of being an IB root.
Similarly, reducing a root does not change its location in the information plane. So, a root
achieves the IB curve (1) if and only if its reduction does. Therefore, reduction decreases the
dimension in which the problem is considered while preserving all its essential properties.
This allows us to represent an IB root on the smallest number of clusters possible—its
effective cardinality—by factoring out the IB’s structural symmetries. See also [13] (2.3 in
Chapter 7), upon which this definition is based.

Entropy 2023, 25, 1370 18 of 62

While the purpose of reduction is to mod-out redundant kernel coordinates (Section 1),
it highlights the differences between the various IB definitions found in the literature,
bringing to light a subtle caveat of finite dimensionality. To see this, note that reduction
could have been defined above in terms of the other coordinate systems of the IB. Its
definition in inverse encoder coordinates is nearly identical to that above, while defining
it in encoder coordinates is a straightforward exercise. Since the coordinate systems of
Section 2 are equivalent at an IB root (without zero-mass clusters), the precise definition
does not matter then. Each of these parameterizations encodes the coordinates r(y) of
a root’s clusters r using a finite-dimensional vector x (note Equation (11)). This enables
one to represent duplicate clusters x̂ 6= x̂′ with rx̂ = rx̂′ , and obliges one to choose the
order in which clusters are being encoded into the coordinates of x. A finite-dimensional
representation x of an IB root is invariant to interchanging clusters x̂ 6= x̂′ precisely when
they are identical, rx̂ = rx̂′ . The IB’s functionals (e.g., its X- and Y-information) are invariant
to any cluster permutation; cf., [9,19]. Both of these structural symmetries result from using
a finite-dimensional parameterization, with the former eliminated by reduction. In contrast,
the elements of ∆[Y] are distinct by definition (since ∆[Y] is a set), and so parameterizing
the IB by points in ∆[∆[Y]] does not permit identical clusters. An element ∑r p(r)r of
∆[∆[Y]] assigns a probability mass p(r) to every point r in ∆[Y], with only finitely many
points r supported. Thus, it implicitly encodes all the entries r(y) of every probability
distribution r ∈ ∆[Y] in a “one size fits all” approach, giving no room for the choices above.
This leads us to argue that the IB’s structural symmetries are not an inherent property but
rather an artifact of using its finite-dimensional representations. This is best understood in
the context of discontinuous bifurcations, in Section 5.3 below. For comparison, both of
the IB formulations [2,20] do not impose an a priori restriction on the number of clusters.
The latter does not enable one to encode duplicate clusters, while the former does. The
formulation [1] ignores these subtleties altogether, and [9,19] consider the IB on a pre-
determined number of possibly duplicate clusters.

In rate-distortion, the reduction of a finite RD problem is defined similarly [6] (Sec-
tion 3.1), by removing a symbol x̂ from the reproduction alphabet X̂ and its column d(·, x̂)
from the distortion matrix once it is not in use anymore (of zero mass). A distortion matrix d
is non-degenerate if its columns are distinct, d(·, x̂) 6= d(·, x̂′) for all x̂ 6= x̂′. Non-degeneracy
arises naturally when considering the RD problem tangent to a given IB root p(x̂|x). In-
deed, the distortion matrix dIB (25) defined by p(x̂|x) has duplicate columns if the root
has identical clusters, while the other direction holds under mild assumptions (if the |X |
vectors pY|X=x span R|Y|, then DKL[pY|X=x||rx̂] = DKL[pY|X=x||rx̂′] for all x implies that
rx̂ = rx̂′). Under these assumptions, the distortion matrix induced by an IB root p(x̂|x) is
reduced and non-degenerate precisely when p(x̂|x) is a reduced IB root.

Reduction in RD provides the means to show that the dynamics underlying the RD
curve (23) are piecewise analytic in β [6], under mild assumptions. Just as in definition (5)
of the IB operator, [4] (Equation (5)) similarly define the RD operator Id− BARD

β in terms
of Blahut’s algorithm for RD [8]. By using their Theorem 1, [6] (Section 3.1) observed that
reducing a finite RD problem to the support of a given RD root mods-out redundant kernel
coordinates if the distortion measure is finite and non-degenerate (the support of p(x̂) is
defined by supp p(x̂) := {x̂ : p(x̂) > 0}). That is, the Jacobian D(Id− BARD

β) of the RD
operator on the reduced problem is then non-singular (in the right coordinate system—see
therein), just as with our toy problem (10) in Section 1. By the Implicit Function Theorem,
there is therefore a unique RD root of the reduced problem through the given one; this
root is real-analytic in β (details there). Considering this for the RD problem tangent to a
reduced IB root immediately yields the following:

Corollary 1. Let pβ0(x̂|x) be a reduced IB root of a finite IB problem defined by pY|X pX , such that
the matrix pY|X is of rank |Y|. Then, near β0, there is a unique function continuous in β, which is
a root of the tangent RD problem through pβ0(x̂|x); it is real-analytic in β.

Entropy 2023, 25, 1370 19 of 62

Corollary 1 shows that the local approximation of an IB problem (the roots of its
tangent RD problem) is guaranteed to be as well-behaved as one could hope for, provided
that the IB is viewed in the right coordinate system. Note, however, that the RD root
through pβ0(x̂|x) of the tangent problem does not in general coincide with the IB root
outside of β0 since the IB distortion dIB (25) varies along with the clusters that define it.
However, when the IB clusters are fixed, then one might expect that the Jacobian (13) of
BAβ in log-decoder coordinates would be the same as the Jacobian of its RD variant. Indeed,
the Jacobian matrix of BARD

β is the T × T bottom-right sub-block of the Jacobian (13) of
BAβ, up to a multiplicative factor. For this, see Equations (5) and (6) in [4], Equations (14)
and (13) in Section 3, and (A25) in Appendix B.2.

As in RD, we argue that reduction in the IB also provides the means to show that
the dynamics underlying the optimal curve (1) are piecewise analytic in β. Corollary 1
concludes that, under mild assumptions, through every reduced IB root passes a unique
real-analytic RD root. However, its crux is that the Jacobian of the RD operator Id− BARD

β is
non-singular at a reduced root. Due to the IB’s close relations with RD, and since reduction
in the IB is a natural extension of reduction in RD, we argue that the same is also to be
expected of the IB operator Id− BAβ (5) in decoder coordinates. To see this, note that IB
roots are finitely supported [2] (Lemma 2.2(i)), and so one may take finitely supported
probability distributions ∆

[
∆[Y]

]
for the IB’s optimization variable. Thus, the IB’s BAβ

operator in decoder coordinates (of Section 2) may be considered as an operator on ∆
[
∆[Y]

]
.

Next, consider the RD problem defined by pX and dIB (25) on the continuous reproduction
alphabet ∆[Y], as in [20]. This defines on ∆

[
∆[Y]

]
also the BA operator BARD

β for RD. Now
that both BA operators are considered on an equal footing, we note the following. First,
while BARD

β iterates over the IB Equations (2) and (4), its IB variant BAβ iterates also over
the decoder Equation (3) (plug the IB distortion measure dIB (25) into the Equations (24)
defining BARD

β to see this). The latter Equation (3) is a necessary condition for Y → X → X̂
to be Markov, and so can be understood as an enforcement of Markovity (in contrast, an
arbitrary triplet (Y, X, X̂) of random variables only satisfies p(y|x̂) = ∑x p(y|x, x̂)p(x|x̂)).
That is, IB roots are RD roots with an extra constraint. Second, by Theorem 1 in [4], reducing
Id − BARD

β from the continuous reproduction alphabet ∆[Y] to a root of finite support
renders it non-singular, under mild assumptions. This suggests that reducing Id− BAβ (5)
from ∆

[
∆[Y]

]
to a root’s effective cardinality should also render it non-singular, due to the

similarity between these operators, and since reduction in the IB is a natural extension of
reduction in RD. In line with the discussion of Section 1 on reduction, we therefore state
the following:

Conjecture 1. The Jacobian matrix I − Dlog p(y|x̂),log p(x̂)BAβ at (16) of the IB operator (5) in
log-decoder coordinates is non-singular at reduced IB roots so long as it is well-defined, except
perhaps at points of bifurcation.

The intuition behind this conjecture stems from analyticity, as follows. The IB operator
Id− BAβ (5) is real-analytic, since each of the Equations 1.4–1.8 defining it (in the BA-IB
Algorithm 1) is real-analytic in its variables. For a root x0 of a real-analytic operator F,
one might expect that, in general, (i) no roots other than x0 exist in its vicinity and that
(ii) DxF|x0 has no kernel. That is, unless the operator is degenerate at x0 in some manner
or x0 is a bifurcation. To see this, recall [32] (Section IX.3) that a real-valued function
Fi in x ∈ Rn is real-analytic in some open neighborhood of x0 if it is a power series in
x = (x1, . . . , xn), within some radius of convergence (although a strictly positive radius is
needed, we omit these details for clarity). For every practical purpose, one may replace Fi by
a polynomial in (x1, . . . , xn) when x is close enough to the base-point x0, by truncating the
power series. Viewed this way, a root of an operator F(x) =

(
F1(x), . . . , Fn(x)

)
is nothing

but a solution of n polynomial equations in n variables. However, a square polynomial
system typically has only isolated roots, which is (i). This is best understood in terms
of Bézout’s Theorem; see [33] (6 in IV.4) for example. For (ii), a vector v is in ker DxF

Entropy 2023, 25, 1370 20 of 62

precisely when it is orthogonal to each of the gradients ∇Fi. However, ∇Fi is the vector
of the first-order monomial coefficients of x1, . . . , xn in Fi. In a general position, these n
coefficient vectors∇F1, . . . ,∇Fn are linearly independent, and so v must vanish as claimed.
If F is degenerate such that Fi = Fj for particular i 6= j, for example, then both points fail, of
course. See also Section I.2 of [34] for (i) and (ii). This intuition accords with the comments
of [28] (Section 2.4) on RD: “usually, each point on the rate distortion curve [...] is achieved by
a unique conditional probability assignment. However, if the distortion matrix exhibits certain
form of symmetry and degeneracy, there can be many choices of [a minimizer]”. Indeed, the fact
that the dynamics underlying the RD curve (23) are piecewise real-analytic [6] (under mild
assumptions) can be similarly understood to stem from the analyticity of the RD operator
Id− BARD

β .
Subject to Conjecture 1, a Jacobian eigenvalue of the IB operator (5) must vanish

gradually as one approaches a bifurcation, causing the critical slowing down of BA-IB [4]
(observe that BA’s Jacobian (13) is continuous in the root at which it is evaluated). When
an IB root traverses a bifurcation in which its effective cardinality decreases, then it is
not reduced anymore. One can then handle the bifurcation by reducing the root anew.
To ensure proper handling by the bifurcation’s type, we consider the latter closely in
Sections 5.2 and 5.3 below. In a nutshell, following the IB’s ODE (16) along with a proper
handling of its bifurcations is the idea behind our root-tracking algorithm (in Section 6), for
approximating the IB numerically.

Conjecture 1 is compatible with our numerical experience. However, we leave its proof
to future work. To that end, one could examine closely the smaller matrix S (17) (of Lemma 1
in Section 3), for example. However, even if Conjecture 1 were violated, then one could
detect that easily by inspecting the Jacobian’s eigenvalues. Conjecture 1 also implies that
IB roots are locally unique outside of bifurcations when presented in their reduced form.
Non-uniqueness of optimal roots is detectable by inspecting the Jacobian’s eigenvalues—see
Corollary 3 in Section 5.3 and the discussion following it. See also Section 6.3 in [6] for the
respective discussion in RD. With that, most of the results in Sections 5.2 and 5.3 below do not
depend on the validity of Conjecture 1.

5.2. Continuous IB Bifurcations: Cluster Vanishing and Cluster Merging

Following [10], we consider the evolution of IB roots which are a continuous function
of β. By representing an IB root in its reduced form (Section 5.1), it is evident that there
are two types of continuous IB bifurcations. We provide a practical heuristic (Algorithm 2)
for identifying and handling such bifurcations. The discussion here is complemented by
Section 5.3 below, which considers the case where continuity does not hold.

The evolution of an IB root in β obeys the ODE (16) as long as it can be written as a
differentiable function in β, as in Theorem 1. Considering the root in decoder coordinates,
this amounts to an evolution of a T-tuple of points rx̂ in ∆[Y] and their weights p(x̂). These
typically traverse the simplex smoothly as the constraint β is varied, as demonstrated
in Figure 6. We now consider two cases where this evolution does not obey the ODE (16),
due to violating differentiability.

Consider an optimal IB root in its reduced form (see Section 5.1). Namely, consider
the reduced form of a root that achieves the IB curve (1). Suppose that its decoders rx̂ and
weights p(x̂) are continuous in β. Then, a qualitative change in the root can occur only if
either (i) two (or more) of its clusters collide or (ii) the marginal probability p(x̂) of a cluster
x̂ vanishes. In either case, the minimal number of points in ∆[Y] required to represent
the root decreases. That is, its effective cardinality decreases (a qualitative change where
the effective cardinality increases is obtained by merely reversing the dynamics in β). We
call the first a cluster-merging bifurcation and the second a cluster-vanishing bifurcation, or
continuous bifurcations collectively. Both types were observed already in [17] (Section IV.C)
in the related setting of RD problems with a continuous source alphabet. Among the two,
cluster-vanishing bifurcations are more frequent in practice than cluster merging. This can

Entropy 2023, 25, 1370 21 of 62

be understood by considering cluster trajectories in the simplex. In a general position, one
might expect clusters to seldom be at the same “time” and place (that is, β and r ∈ ∆[Y]).

2 3 4 5
log2 β

0.3

0.5

0.7

p(
y

=
0|x̂

)

2 3 4 5
log2 β

0.5

1.0

p(
x̂

)

Figure 6. A cluster-merging bifurcation. The reduced form of the optimal IB root in decoder
coordinates as a function of β, for the exact solution of BSC(0.3) with a uniform source, as in Figure 1
(see Appendix E). At high enough β, the root consists of two clusters (in green and blue), each of
a marginal probability 1

2 . The clusters collide at βc = 61/4 (dashed red vertical) and merge to one,
yielding the trivial solution—a single cluster of probability 1 at pY . Carefully note that only a single
IB root is plotted here, in its reduced form, with one cluster to the left of βc and two to the right. The
violation of clusters’ differentiability at βc can be observed visually (top), and the root is otherwise
real-analytic in β, as can be deduced from Figure 5. Since the trivial solution is an IB root for every
β > 0 (not shown), then βc is indeed a bifurcation, where the trivial and non-trivial roots intersect. To
see this, consider the degenerate form of the trivial solution on two copies of pY , each of probability 1

2 .
The marginals p(x̂) (bottom) appear to be discontinuous at βc because the root was reduced before
plotted (the latter degenerate form of the trivial root is not plotted to the left of βc).

We argue that cluster merging and cluster vanishing are indeed bifurcations, where
IB roots of distinct effective cardinalities collide and merge into one. We offer two ways
to see this. First, using the inverse encoder formulation of the IB in [2] (Section II.A), one
can consider an optimization problem in which the number of IB clusters is constrained
explicitly (the inverse encoders of an IB root with no zero-mass clusters are in bijective
correspondence with its decoders, as noted in Section 2, and so inverse encoder and decoder
coordinates are interchangeable). By the arguments therein, the constrained problem has
an optimal root (due to compactness), which achieves the optimal curve of the constrained
problem. The latter curve must be sub-optimal if fewer clusters are allowed than needed
to achieve the IB curve (1). Thus, whenever the effective cardinality of an optimal root (in
the un-constrained problem) decreases, it must therefore collide with an optimal root of
the constrained IB problem (by Corollary 3 in Section 5.3 below). This accords with [1]
(Section 3.4), which describes IB bifurcations as a separation of optimal and sub-optimal IB
curves according to their effective cardinalities. Second, consider the reduced form of an IB
root at the point of a continuous bifurcation. Since its effective cardinality decreases there
strictly, say from T2 to T1, then the root can be represented on T1 clusters at the bifurcation
itself. However, the Jacobian of the IB operator (5) in log-decoder coordinates is non-
singular when represented on T1 clusters, as discussed after Proposition 1 (in Section 5.3).
Thus, by the Implicit Function’s Theorem, there is a unique IB root on T1 clusters through

Entropy 2023, 25, 1370 22 of 62

this point. It exists at both sides of the bifurcation (above and below the critical point).
When represented on T2 clusters, however, the latter intersects at the bifurcation with the
root of effective cardinality T2, and so the two roots collide and merge there to one. This
argument is identical to [6] (Section 6.2), which proves that distinct RD roots collide and
merge at cluster-vanishing bifurcations in RD.

At a continuous bifurcation, IB roots of distinct effective cardinalities collide and
merge into one, as discussed above. Specifically, one root achieves the minimal value of
the IB Lagrangian and so is stable, while the other root is sub-optimal. As we shall now
elaborate, continuous IB bifurcations are thus pitchfork bifurcations (e.g., Section 3.4 in [35]),
in accordance with [19]. Even though the optimal root is continuous in β (by assumption),
its differentiability is violated at the point of bifurcation. This can be inferred from the
comments following Theorem 1 and seen in Figure 6. Strictly speaking, several copies
of the root of larger effective cardinality collide at a continuous bifurcation. When two
clusters r 6= r′ collide in a cluster merging bifurcation, then the root itself is invariant to
interchanging their coordinates after the collision but not before it, breaking the IB’s first
structural symmetry discussed in Section 5.1. Interchanging the coordinates of r and r′ (and
their marginals) before the collision yields two distinct copies of essentially the same root.
For a cluster vanishing bifurcation, the IB’s functionals (e.g., its X- and Y-information) do
not depend on the coordinates (r(y))y of a vanished cluster r, rendering these redundant;
cf., [9] (Section 3.1). Before the cluster r vanishes, there is one copy of the root for each index
x̂, with r placed at its x̂ coordinates. Considered in reduced coordinates, these coincide to a
single copy after the cluster vanishes. This breaks the IB’s second structural symmetry.

With that, we note that cluster-vanishing bifurcations cannot be detected directly by
standard local techniques (i.e., considering the derivative’s kernel directions at the bifurca-
tion point), whether considering the Hessian of the IB’s loss function as in [9] or the Jacobian
of the IB operator (5) as here. The technical reason for this is as follows, while the root cause
underlying it is best understood in the context of discontinuous bifurcations (after Proposi-
tion 1 in Section 5.3). Observe that the I(Y; X̂) and I(X; X̂) functionals do not depend on
the coordinates (r(y))y of clusters r of zero mass. Thus, the directions corresponding to
these coordinates are always in the kernel regardless of whether evaluating at a bifurcation
or not, and so cannot be used to detect a bifurcation (the direction corresponding to a
cluster’s marginal is useless when one does not know which coordinates (r(y))y to pick for
r). Indeed, with its dynamics in β reversed, “a new symbol grows continuously from zero mass”
in a cluster-vanishing bifurcation, as [17] (Section IV.C) comments in a related setting. It
is then not clear a priori which point in ∆[Y] should be chosen for the new symbol, ren-
dering the perturbative condition at Equation (9) difficult to test. In accordance with this,
Ref. [9] (Section 5) offers a perturbative condition for detecting arbitrary IB bifurcations,
while ref. [13] (3.2 in Part III) offers a condition for detecting cluster-merging bifurcations
by analyzing cluster stability. However, both conditions are equivalent (Appendix F), and
so must detect the same type of bifurcations. In contrast, a cluster-splitting (or merging)
bifurcation is straightforward to detect because the stability of a particular cluster x̂ is a
property of the root itself—see Appendix F and the references therein for details.

One may wonder whether bifurcations exist in the IB for the same reason as they do
in RD. As in the IB, RD problems typically have many sub-optimal curves [6] (Section 6.1).
While (continuous) bifurcations in the IB stem from restricting the effective cardinality [1]
(Section 3.4), in RD they stem from the various restrictions that a reproduction alphabet has.
For example, a reproduction alphabet X̂ := {r1, r2, r3} of an RD problem may be restricted
to the distinct subsets {r1, r2} and {r2, r3}, usually yielding distinct sub-optimal RD curves
(e.g., Figure 6.1 in [6]). In contrast to RD, the IB’s distortion dIB (25) defined by a root’s
clusters is determined a posteriori by the problem’s solution rather than a priori by the
problem’s definition. As a result, both reasons for the existence of bifurcations coincide.
To see this, consider the IB as an RD problem whose reproduction symbols X̂ are a finite
subset of ∆[Y] which is allowed to vary (i.e., as if defining the tangent RD problem anew at
each β). Distinct restrictions of a reproduction alphabet X̂ can be forced to agree by altering

Entropy 2023, 25, 1370 23 of 62

the symbols themselves, so long as they are of the same size. For example, restricting the set
{r1, r2, r3} of reproduction symbols to {r1, r2} is the same as restricting it to {r2, r3} instead,
and then replacing r3 with r1 ∈ ∆[Y] in the restricted problem (this is not to be confused
with cluster permutations, which change the order in which clusters are listed but do not
alter the symbols themselves).

The dynamical point of view above, considering an IB root as weighted points travers-
ing ∆[Y], offers a straightforward way to identify and handle continuous IB bifurcations. It
is spelled out as our root-reduction Algorithm 2. For cluster-vanishing bifurcations, one
can set a small threshold value δ1 > 0 and consider the cluster x̂ as vanished if p(x̂) < δ1
(Step 2.3), as in [6] (Section 3.1). Similarly, for cluster-merging bifurcations, one can set a
small threshold δ2 > 0 and consider the clusters x̂ 6= x̂′ to have merged if ‖rx̂ − rx̂′‖∞ < δ2
(Step 2.9). A vanished cluster is then erased (and merged clusters replaced by one), result-
ing in an approximate IB root on fewer clusters. This not only identifies continuous IB
bifurcations but also handles them, since the output of the root-reduction Algorithm 2 is a
numerically reduced root, represented in its effective cardinality. To re-gain accuracy, we
shall later invoke the BA-IB Algorithm 1 on the reduced root, as part of our root-tracking
algorithm (in Section 6). We note that one should pick the thresholds δ1 and δ2 small enough
to avoid false detections, and yet not too small so as to cause mis-detections. Mis-detections
will be handled later, in Section 6.1, using a heuristic algorithm.

Algorithm 2 Root reduction for the IB

1: function REDUCE ROOT(p(y|x̂), p(x̂); δ1, δ2)
Input:

An approximate IB root
(

p(y|x̂), p(x̂)
)

in decoder coordinates,
a cluster-mass threshold 0 < δ1 < 1 and a cluster-merging threshold 0 < δ2 < 1.

Output: An approximate IB root
(

p̃(y|x̂), p̃(x̂)
)

at its effective cardinality.
2: for x̂ do
3: if p(x̂) < δ1 then . Delete clusters of near-zero mass.
4: delete the coordinates of x̂, from p(x̂) and p(y|x̂).
5: end if
6: end for
7: p(x̂)← normalize p(x̂) . Preserve normalization, in case clusters were removed.

8: for x̂ 6= x̂′ do
9: if ‖p(y|x̂)− p(y|x̂′)‖∞ < δ2 then . Merge nearly identical points in ∆[Y].

10: p(x̂)← p(x̂) + p(x̂′)
11: delete the coordinates of x̂′, from p(x̂) and p(y|x̂).
12: end if
13: end for

14: return
(

p(y|x̂), p(x̂)
)

15: end function

Using the root-reduction Algorithm 2 allows one to stop early in the vicinity of a
bifurcation when following the path of an IB root. As mentioned in Section 4, early
stopping restricts the computational difficulty of root tracking [6]. Further, reducing the
root before invoking BA-IB (Algorithm 1) allows us to avoid BA’s critical slowing down [4],
since reduction removes the nearly vanished Jacobian eigenvalues that pertain to the nearly
vanished (or nearly merged) cluster(s), which are the cause of BA’s critical slowing down.
cf., Proposition 1 (Section 5.3) and the discussion around it. See also [6] (Figure 3.1(C) and
Section 3.2) for the respective behavior in RD. Finally, we comment that the root-reduction
Algorithm 2 can also be implemented in the other two coordinate systems of Section 2.

Entropy 2023, 25, 1370 24 of 62

5.3. Discontinuous IB Bifurcations and Linear Curve Segments

In the previous Section 5.2, we considered continuous IB bifurcations—namely, when
the clusters rx̂ ∈ ∆[Y] and weights p(x̂) of an IB root are continuous functions of β. By
exploiting the intimate relations between the IB and RD (Section 5.1), we now consider IB
bifurcations where these cannot be written as a continuous function of β. In our experience,
discontinuous bifurcations are infrequent in practice. However, the theory they evoke has
several subtle consequences of practical implications important for computing IB roots (in
Section 6). Though, perhaps more importantly, they oblige one to ask what is the IB? We
start with several examples before diving into the theory; e.g., Figure 7.

−0.5 0.0 0.5

log2 β

0.0

0.3

1.0

p(
y

=
0|x̂

)

−0.5 0.0 0.5

log2 β

0.3

0.7

1.0

p(
x̂

)

0.00 0.88

I(X; X̂)

0.00

0.88

I
(Y

;X̂
)

Figure 7. A discontinuous IB bifurcation at βc = 1, of the problem defined by pY|X pX =

(
0.3

0.7

)
.

(Left): to the left of βc, the optimal solution is the trivial one, supported on the IB cluster pY . To the
right it is supported on the boundary points (1, 0) and (0, 1) of ∆[Y]. (Middle): the marginals are
constant, except at the point of bifurcation. Any convex combination of the trivial and non-trivial roots
is optimal there (dotted). That is, this is a support-switching bifurcation as in RD [6] (Figure 6.2).
(Right): the IB curve exhibits a linear segment of slope 1/βc = 1, connecting the image of the trivial
solution in the information plane (bottom-left) to that of the non-trivial one (top-right). See comments
in the main text.

The examples of discontinuous IB bifurcations of which we are aware can be under-
stood in RD context as follows. Consider the IB as an RD problem on the continuous repro-
duction alphabet ∆[Y], with IB roots parameterized by points in ∆[∆[Y]] (see Section 5.1).
In RD, the existence of linear curve segments is well-known [28]—e.g., Figure 2.7.6 in the
latter and its reproduction in [6] (Figure 6.2). Section 6.5 in [6] offers an explanation of
linear segments in terms of a support-switching bifurcation. Namely, a bifurcation where
two RD roots of distinct supports exchange optimality at a particular multiplier value
βc. Both roots evolve smoothly in β while only exchanging optimality at the bifurcation.
At βc itself, every convex combination of these two roots is also an RD root. In partic-
ular, the optimal RD root cannot be written as a continuous function of β. The sudden
emergence of an entire segment of roots at βc can be understood by RD’s convexity and
analyticity properties, as follows. The RD curve (23) is parameterized by the slope −β of
its tangents [28] (Theorems 2.5.1 and 2.5.2). Above and below βc, specifying the tangent’s
slope determines a curve-achieving distribution on the optimal root (the root whose curve
is lower at this slope value). Equivalently, the lower convex envelope of these roots in the
RD plane coincides with one root above βc and with the other below it, as seen in Figure 8
(black). At βc itself, specifying the slope determines a distribution on both roots. Thus, the
convexity of the RD curve and of the set of achieving distributions implies a linear segment
at βc (Theorem 2.4.1 in [28] and Theorem 5 below). Finally, this behavior is possible due to
analyticity, since the roots of a real-analytic operator Id− BARD

β are either isolated (typical)
or an algebraic curve (atypical) by Bézout’s Theorem—see (i) in the discussion following
Conjecture 1.

Entropy 2023, 25, 1370 25 of 62

0.0 0.1 0.2 0.3

Distortion

0.0

0.5

1.0

R
at

e
(b

it
s)

supp = {x̂2, x̂3}

supp = {x̂1, x̂2}

Figure 8. A support-switching bifurcation in RD, reproducing Figure 6.2(F) in [6] (details therein).
The RD curve (23) (black) is the envelope of its tangents, parameterized by their slope −β, [28]. At
high slopes, the envelope coincides with that of the problem restricted to the reproduction alphabet
{x̂1, x̂2} (green), and at low slopes with that restricted to {x̂2, x̂3} (blue). At a critical slope −βc, the
tangent touches both curves (red circles). Convexity then implies a linear segment (dashed)—see
main text.

For one example of linear curve segments in the IB, say that a matrix M decomposes if it
can be written (non-trivially) as a block matrix by permuting its rows or columns. In light
of the above, we have the following refinement of Theorem 2.6 in [2]:

Theorem 3. The IB curve (1) has a linear segment at β = 1 if and only if the problem’s definition
pY|X pX decomposes.

Recall that the slope of the IB curve is 1/β at a multiplier value β [1] (Equation (32)).
Thus, Theorem 3 equates decomposable problems with linear curve segments of slope 1
(the slope cannot exceed one due to the data processing inequality). Figure 7 provides
a simple decomposable example, exhibiting a support-switching bifurcation between its
trivial and non-trivial roots. Non-decomposable examples also exist, exhibiting a support-
switching bifurcation at lower slope values (higher critical β’s). For example, a symmetric
binary erasure channel exhibits a support-switching bifurcation [2] (Section IV.B), which is
manifested by a linear segment of slope 1/βc ≤ 1, for βc ≥ 1 (switching between the trivial
root at pY and a bi-clustered root supported on (β−1

c , 1− β−1
c , 0) and (0, 1− β−1

c , β−1
c) ∈ ∆[Y]; the

linear segment of slope β−1
c is Equation (4.8) there). See [2] (Section IV) for further examples.

We argue that in the IB, support-switching bifurcations exhibit the same behavior as in RD.
That is, two roots that evolve smoothly in β and exchange optimality at the bifurcation.
While the sequel can justify this in general, there is a simple way to see this in practice.
Namely, following the two roots of Figure 7 through the bifurcation by using BA-IB with
deterministic annealing [11] (follow the trivial root of Figure 7 from left to right and the
non-trivial one from right to left, through the bifurcation at βc = 1 there). As deterministic
annealing usually follows a solution branch continuously, this immediately reveals either
root at the region where it is sub-optimal (not displayed).

A support-switching bifurcation evidently has similar characteristics to a transcritical
bifurcation (e.g., Section 3.2 in [35]), though it should perhaps be classified as an imperfect
transcritical since the roots do not intersect per se as in a classical transcritical. This extends
the results of [19], who conclude that IB bifurcations “are only of pitchfork type” (Theorem 5
therein says that the bifurcations detected by their Theorem 3 are degenerate rather than
transcritical, concluding that “the bifurcation guaranteed by Theorem 3 is [generically] pitchfork-
like”). To see the reason for this discrepancy, note that they employ the mathematical
machinery in [36] of bifurcations under symmetry. Since pitchfork bifurcations are “common
in physical problems that have a symmetry” [35] (Section 3.4), then detecting only pitchforks
by using the above machinery might not come as a surprise. Both [9] and its sequel [19]
consider the IB’s symmetry to interchanging the coordinates of identical clusters (Definition

Entropy 2023, 25, 1370 26 of 62

1(1) in [19]). However, this is a structural symmetry of the IB which stems from represent-
ing IB roots by finite-dimensional vectors (Section 5.1), and is broken in continuous IB
bifurcations (Section 5.2). On the other hand, discontinuous IB bifurcations need not break
this symmetry, as can be seen by inspecting the roots of Figure 7 closely (the trivial solution
to the left of βc there may be given a degenerate bi-clustered representation, which is fully
supported on pY but has a second cluster r 6= pY of zero mass. Neither of its roots then
possesses a symmetry to interchanging cluster coordinates, at either side of βc).

A few convexity results from rate-distortion theory are needed to consider discontinu-
ous bifurcations in general. These have subtle practical implications, which are of interest
in their own right.

Theorem 4 (Theorem 2.4.2 in [28]). The set of conditional probability distributions p(x̂|x) which
achieve a point (D, R(D)) on the rate-distortion curve (23) is convex.

Viewing the IB as an RD problem as in [20] immediately yields an identical result for
the IB:

Corollary 2. The set of IB encoders that achieve a point (IX , IY) on the IB curve (1) is convex.

The proof is provided below for completeness. We note that a version of
Corollary 2 in inverse encoder coordinates can also be synthesized from the ideas leading
to Theorem 2.3 in [2].

Proof of Corollary 2. Consider a finite IB problem pY|X pX as an RD problem (dIB, pX) on
the continuous reproduction alphabet ∆[Y], as defined by (25) in Section 5.1. As noted
above, its encoders (or test channels) are conditional probability distributions p(r|x), with
r ∈ ∆[Y], supported on finitely many coordinates (r, x).

Let p1(r|x) and p2(r|x) be encoders achieving a point (IX, IY) on the IB curve (1).
Define their support by supp p(r|x) := supp p(r), where p(r) is defined from p(r|x) via
marginalization, as in (4). By Theorem 5 in [20], p1(r|x) and p2(r|x) may be considered
as test channels achieving the curve (23) of the RD problem (dIB, pX). The reproduction
symbols r ∈ ∆[Y] supporting a convex combination pλ := λ · p1 + (1− λ) · p2, 0 ≤ λ ≤ 1,
are contained in the the supports of p1 and p2: supp pλ ⊆ supp p1 ∪ supp p2. Therefore,
pλ is finitely supported. Although Berger’s Theorem 4 assumes that the reproduction
alphabet is finite, one can readily see that its proof works just as well when the distributions
involved are finitely supported. Thus, by Theorem 4, pλ achieves the above point on the RD
curve (23). Since this point (IX , IY) is on the IB curve (1), then pλ is an optimal IB root.

The RD curve (23) is the envelope of lines of slope−β and intercept minp(x̂|x)
(

I(X; X̂)+

β E[d(x, x̂)]
)

along the R-axis, e.g., [28]. Thus, Theorem 4 can be generalized by considering
the achieving distributions that pertain to a particular slope value rather than to a particular
curve point (D, R(D))—see [6] (Section 6.3).

Theorem 5 (Theorem 20 in [6]). For any β > 0 value, the set of distributions achieving the RD
curve (23) that correspond to β is convex.

As with Corollary 2, we immediately have an identical result for roots achieving the
IB curve (1):

Corollary 3. For any β > 0 value, the set of optimal IB encoders that correspond to β is convex.

See also [2] (Section IV) for an argument in inverse encoder coordinates. In particular,
note the duality technique leading to (b) and (c) in Theorem 4.1 there. This duality boils
down to describing a compact convex set in the plane by its lines of support, as in the
observation leading to Theorem 5. Commensurate with the IB being a special case of RD,

Entropy 2023, 25, 1370 27 of 62

Corollary 3 can also be proven directly from the IB’s definitions in direct encoder terms [37].
Note that the requirement that the IB root indeed achieves the curve is necessary. Otherwise,
one could take convex combinations with the trivial IB root p(r|x) = δr,pY (which satisfies
the IB Equations (2)–(4) for every β > 0, as one can verify directly). This yields absurd
results, since the trivial root contains no information on either X or Y.

As in [6] (Section 6.3), the convexity of optimal IB roots (Corollary 3) has several
important consequences. For one, unlike the (local) bifurcations we have considered so far,
bifurcation theory also has global bifurcations. These are “bifurcations that cannot be detected by
looking at small neighborhoods of fixed points” [12] (Section 2.3). From convexity, it immediately
follows that

Corollary 4. There are no global bifurcations in finite IB problems.

Indeed, if at a given β value there exists more than one optimal root, then the Jacobian
of the IB operator Id− BAβ (5) must have a kernel vector pointing along the line connecting
these optimal roots, by Corollary 3.

With that comes an important practical caveat. Corollaries 2 and 3 hold for the IB
when parameterized by points in ∆[∆[Y]]. However, the above kernel vector (which exists
due to convexity) may not be detectable if an IB root is improperly represented by a
finite-dimensional vector. For example, consider the bifurcation in Figure 7, where a line
segment at βc connects the trivial (single-clustered) root to the 2-clustered root. Obviously,
the bifurcation there cannot be detected by the Jacobian of the IB operator (5) when it is
computed on T = 1 clusters (Jacobian of order 1 · (|Y|+ 1)). Indeed, the root of effective
cardinality two cannot be represented on a single cluster, and so the line segment connecting
it to the trivial root does not exist in a 1-clustered representation. This is demonstrated
in Figure 9, which compares Jacobian eigenvalues at reduced representations to those at
2-clustered representations. The same reasoning gives the following necessary condition:

Proposition 1 (A necessary condition for detectability of IB bifurcations). A bifurcation at
βc in a finite IB problem which involves roots of effective cardinalities T1 and T2 is detectable by a
non-zero vector in ker(I−Dlog p(y|x̂),log p(x̂)BAβc) only if the latter is evaluated at a representation
on at least max{T1, T2} clusters.

Indeed, suppose that T1 � T2 (the conclusion is trivial if T1 = T2). By definition, a
root of effective cardinality T2 does not exist in representations with less than T2 clusters.
Thus, there is no bifurcation in a T-clustered representation if T < T2, and so there is then
nothing to detect. As a special case of this argument, note that Conjecture 1 (Section 5.1)
implies that the Jacobian is non-singular in a T1-clustered representation of the T1-clustered
root (namely, at its reduced representation). With that, we have observed numerically that
the eigenvalues of Dlog p(y|x̂),log p(x̂)BAβ do not depend on the representation’s dimension
if computed on strictly more clusters than the effective cardinality (which makes sense
considering Theorem 2.6.1 in [28] or Lemma 2.2(i) in [2]). Rather, only the eigenvalues’
multiplicities vary by dimension. We omit practical caveats on exchanging between the
coordinate systems of Section 2 for brevity.

Entropy 2023, 25, 1370 28 of 62

−0.5 0.0 0.5

log2 β

−1.0

−0.5

0.0

0.5

1.0

ei
gs

of
D

lo
g
p
(y
|x̂

),
lo

g
p
(x̂

)B
A
β

1 cluster 2 clusters

−0.5 0.0 0.5

log2 β

−1.0

−0.5

0.0

0.5

1.0

ei
gs

of
D

lo
g
p
(y
|x̂

),
lo

g
p
(x̂

)B
A
β

2 clusters

Figure 9. Bifurcations can be detected by BAβ’s Jacobian only if computed on enough clusters.
The approximate eigenvalues of Dlog p(y|x̂),log p(x̂)BAβ are plotted by the representation’s dimension
for the problem in Figure 7. The eigenvalues are evaluated at solutions obtained by the BA-IB
Algorithm 1 (stopping condition = 10−9), initialized anew at random for each β. While the random
initializations account for much of the eigenvalues’ spread, they reveal the solution’s behavior
through its various approximations. Other factors which contribute to this spread are the degeneracy
of the solutions (when β < 1, right panel), BA’s loss of accuracy near the bifurcation (Figure 3 bottom),
and the decoders’ proximity to the simplex boundaries (see Equation (13)). (Left): when computed
at reduced representations (on T = 1 clusters to the left, T = 2 to the right), then the eigenvalues at
the trivial solution give no indication of the upcoming bifurcation (at β < 1), unlike the eigenvalues
at the 2-clustered root (β > 1). (Right): the bifurcation’s presence is clearly noticed also at the
trivial solution (β < 1) when evaluated at its degenerate 2-clustered representations. Indeed, the
trivial solution is then represented on the same number of clusters (T = 2) as the root to the right
(β > 1)—see Proposition 1. However, due to the bifurcation, the eigenvalues’ trajectories are not
smooth at βc = 1. Both: a similar dependency on the representation’s dimension also exists in the
other bifurcation examples in this paper (though without the eigenvalues’ spread).

The discussion of discontinuous bifurcations naturally leads one to consider the IB as
an RD problem on the continuous reproduction alphabet ∆[Y], as in Corollaries 2 and 3,
unlike its usual definitions in the literature. When considered this way, IB roots are merely
paths p(β) in ∆[∆[Y]], following a piecewise smooth trajectory dictated by the IB ODE (16)
(which may be considered as a non-autonomous ODE on ∆[∆[Y]]). Due to Conjecture 1 and
the IFT, these paths are isolated outside bifurcations. Two (or more) roots may intersect in a
continuous bifurcation. If one of the intersecting roots is optimal, then the other must be of
a strictly smaller effective cardinality due to the arguments in Section 5.2. If two distinct
roots are optimal simultaneously, then ∆[∆[Y]] contains an entire segment of optimal IB
roots, due to Corollary 3. Viewing the IB this way also highlights several subtleties in its
calculation. First, parameterizing IB roots with ∆[∆[Y]] avoids its structural symmetries
(Section 5.1). Second, it shows that, a priori, it is possible to follow the path of an optimal
root using local techniques (Corollary 4). Third, it highlights that one must compute on
enough clusters to detect a bifurcation (Proposition 1). Though obvious in retrospect, this
caveat was not given proper attention in the IB literature. Fourth, as we shall now see,
cluster-vanishing bifurcations can only be detected by following an optimal root to its
collision with a root of smaller effective cardinality. Fifth, this implies (below) that only
negative step sizes ∆β < 0 should be used to follow an optimal root.

The arguments above imply that cluster-vanishing bifurcations cannot be detected
directly by considering kernel directions of the IB operator (5) at the bifurcation, as argued in
Section 5.2. Indeed, consider a continuous bifurcation, where roots p1 and p2 of respective
effective cardinalities T1 < T2 intersect. These are paths in ∆[∆[Y]] that coincide at the
bifurcation itself, p1(βc) = p2(βc), and so in particular are of the same effective cardinality
T1 there. This is in contrast to the situation in Corollary 3, where two distinct roots are

Entropy 2023, 25, 1370 29 of 62

simultaneously optimal at βc, leading to an entire segment of optimal roots. Asking whether
a bifurcation is detectable amounts to considering the evaluation of ker D(Id− BAβ) at a
finite-dimensional representation (or “projection”) of p. The Jacobian D(Id− BAβ) of the
IB operator (5) is non-singular when evaluated on a T1-clustered representation of p1(βc)
in log-decoder coordinates, as noted after Proposition 1. We argue that evaluating it on
representations with more clusters T 	 T1 does not allow one to detect the bifurcation (even
if T ≥ T2). See Appendix H for a formal argument. Intuitively, this is because picking a
degenerate representation amounts to duplicating clusters of the reduced representation or
adding clusters of zero mass (see reduction in Section 5.1). Introducing degeneracies to a
reduced root adds no information about the problem at hand.

Due to the above, cluster-vanishing bifurcations cannot be detected by following a
root p1 of effective cardinality T1 through the bifurcation point, but only by following a root
p2 with T2 > T1 to its collision with p1. As discussed after Conjecture 1 (Section 5.1), the
Jacobian of Id− BAβ in reduced log-decoder coordinates can then be used to indicate the
upcoming collision of p2 with p1, in addition to the root-reduction Algorithm 2. The exact
same arguments as above apply also to cluster-merging bifurcations. However, as noted in
Section 5.2 (and Appendix F), the stability of a particular IB cluster x̂ is a property of the
root itself. Thus, these are detectable by standard local techniques at the point of bifurcation.
Unlike continuous bifurcations, discontinuous bifurcations are inherently detectable due to
the line segment in ∆[∆[Y]] connecting the roots at the bifurcation (Corollary 3), as long as
the IB root is represented on sufficiently many clusters (Proposition 1)—see Figure 9. These
results make sense, considering that cluster-vanishing bifurcations are more frequent in
practice than other types. Intuitively, branching from a suboptimal root p1 to an optimal one
p2 is harder than the other way around, just as learning new relevant information is harder
than discarding it. Cases where both directions are equally difficult are the exception, as
one might expect. This is consistent with the later discussion in Section 6.3 on the stability
of optimal IB roots (Appendix G).

When following the path of a reduced IB root (as in Section 4), one would like to
ensure that its bifurcations are indeed detectable by BA’s Jacobian. Due to the caveats
involved in detecting bifurcations of either type, it is necessary to follow the path as the
effective cardinality decreases rather than increases. As a result, we take only negative
step sizes ∆β < 0, since the effective cardinality of an optimal IB root cannot decrease
with β. To see this, first note that the IB curve IY(IX) (1) is concave, and so its slope 1/β

cannot increase with IX. That is, β cannot decrease with IX. Second, note that allowing
more clusters cannot decrease the X-information ∑x̂ p(x̂)H

(
p(x|x̂)

)
achieved by the IB’s

optimization variables. Indeed, a T-clustered variable
(

p(x|x̂), p(x̂)
)

(not necessarily a
root) can always be considered as (T + 1)-clustered, by adding a cluster of zero mass;
cf., the construction of [2] (Section II.A). Thus, the effective cardinality of an optimal root
cannot decrease as the constraint IX on the X-information is relaxed. With both points
combined, the effective cardinality cannot decrease with β, as argued. In contrast to the IB,
we note that the behavior of RD problems is more complicated since the distortion of each
reproduction symbol is fixed a priori; e.g., Example 2.7.3 and Problems 2.8–2.10 in [28].

Returning to discontinuous IB bifurcations, we proceed with the argument
of Section 5.2 when continuity fails. That is, consider the reduced form of an optimal
IB root, and suppose that either its decoders or its weights (or both) cannot be written as
a continuous function of β at βc. Write r+x̂ and r−x̂ for its distinct decoders as β→ β+

c and
β→ β−c , respectively. Similarly, write p+(x̂) and p−(x̂) for its non-zero weights. Consider
the tangent RD problem on the reproduction alphabet X̂ := {r+x̂ }x̂ ∪ {r−x̂ }x̂ ⊂ ∆[Y], as in
Section 5.1. See also [4] (Section V), upon which this argument is based. By construction, the
IB coincides with its tangent RD problem at the two points

(
r+x̂ , p+(x̂)

)
, and

(
r−x̂ , p−(x̂)

)
.

Since both points achieve the optimal curve at the same slope value 1/βc, then the linear
segment of distributions connecting these points is also optimal, by Theorem 5. Alterna-
tively, one could apply Corollary 3 directly to the IB problem. Either way, there exists a line
segment of optimal IB roots, which pertain to the given slope value. In summary,

Entropy 2023, 25, 1370 30 of 62

Theorem 6. Let a finite IB problem have a discontinuous bifurcation at βc ≥ 1. Then, its IB curve
(1) has a linear segment of slope 1/βc.

Unless the decoder sets {r+x̂ }x̂ and {r−x̂ }x̂ are identical, then this is a support-switching
bifurcation [6] (Section 6.5), as in Figure 7. A priori, the IB roots

(
r+x̂ , p+(x̂)

)
and

(
r−x̂ , p−(x̂)

)
may achieve the same point in the information plane, in which case the linear curve segment
is of length zero. However, we are unaware of such examples. Yet, even if such bifurcations
exist, they would be detectable by the Jacobian of BA-IB (when represented on enough
clusters), subject to Conjecture 1.

6. First-Order Root Tracking for the Information Bottleneck

Gathering the results of Sections 2–5, we can now not only follow the evolution of an
IB root along the first-order Equation (16), but can also identify and handle IB bifurcations.
This is summarized by our First-order Root-Tracking algorithm for the IB (IBRT1) in
Section 6.1, with some numerical results in Section 6.2. Section 6.3 discusses the basic
properties of IBRT1, and mainly the surprising quality of approximations of the IB curve (1)
that it produces, as seen in Figure 1. We focus on continuous bifurcations (Section 5.2),
since these are far more frequent in our experience than discontinuous ones and are
straightforward to handle (see Section 6.3 on the handling of discontinuous bifurcations).

6.1. The IBRT1 Algorithm 5

To assist the reader, we first present a simplified version of IBRT1 as Algorithm 3, with
edge cases handled later by Algorithm 4—clarifications follow. When combined, these two
form our IBRT1 Algorithm 5, specified below.

We now elaborate on the main steps of the Simplified First-order Root Tracking for the
IB (Algorithm 3), following Root Tracking for RD [6] (Algorithm 3). Its purpose is to follow
the path of a given IB root pβ0(x̂|x) in a finite IB problem. The initial condition pβ0(x̂|x) is
required to be reduced and IB-optimal. Its optimality is needed below to ensure that the
path traced by the algorithm is indeed optimal. The step-size ∆β is negative, for reasons
explained in Section 5.3 (Proposition 1 ff.). The cluster mass and cluster merging thresholds
are as in the root-reduction Algorithm 2 (Section 5.2).

Denote p̃ (step 3 of Algorithm 3) for the distributions generated from an encoder (see
Equation (11) in Section 2). Algorithm 3 iterates over grid points p̃, with each while iteration
generating the reduced form of the next grid point, as follows. On step 6, evaluate the IB
ODE (16) at the current root p̃, solving the linear equations numerically. By Conjecture 1
(Section 5.1), the IB ODE has a unique numerical solution v if p̃ is a reduced root and
not a bifurcation. Steps 7 and 8 approximate the root at the next grid point at β + ∆β, by
exponentiating Euler method’s step (22) (Section 4). Normalization is enforced on step 9,
since it is assumed throughout. Off-grid points can be generated by repeating steps 7
through 9 for intermediate ∆β values if desired. The approximate root at β + ∆β is reduced
on step 11, by invoking the root-reduction Algorithm 2 (Section 5.2). Note that Algorithm 2
returns its input root unmodified unless reducing it numerically. If reduced, then the
root is a vector of a lower dimension—either a cluster mass p(x̂) has nearly vanished
or distinct clusters have nearly merged. To re-gain accuracy, we invoke (on step 14) the
Blahut–Arimoto Algorithm 1 for the IB until convergence, on the encoder defined at step 13
by the reduced root. Although BA-IB is invoked near a bifurcation, this does not incur a
hefty computational cost due to its critical slowing down [4]—see comments at the bottom
of Section 5.2. Invoking BA (on step 14) before reducing (on step 11) would have inflicted a
hefty computational cost to BA-IB due to the nearby bifurcation. Finally, a single BA-IB
iteration in decoder coordinates is invoked on the approximate root (step 17), whether
reduced earlier or not. This enforces Markovity while improving the order of this method
(see Section 4, and Figure 4 in particular). Algorithm 3 continues this way (step 4) until the
approximate solution is trivial (single-clustered), or β is non-positive. In the IB, the trivial
solution is always optimal for tradeoff values β < 1. However, here β plays the role of

Entropy 2023, 25, 1370 31 of 62

the ODE’s independent variable instead. Thus, we allow Algorithm 3 to continue beyond
β = 1, as long as β > 0, which is assumed throughout (the condition β > |∆β| on step 4
ensures that the target β value of the next grid point is non-negative). This shall be useful
for overshooting—see below.

Algorithm 3 Simplified First-order Root-Tracking for the IB

1: function SIBRT1(pY|X pX , β0, pβ0(x̂|x); ∆β, δ1, δ2)
Input:

An IB problem definition pY|X pX with ∀x pX(x) > 0.
A reduced IB-optimal root pβ0(x̂|x) at β0. A step size ∆β < 0.
Cluster-mass threshold δ1 and cluster-merging threshold δ2, with 0 < δi < 1.

Output: Approximations p̃βn of the optimal IB roots pβn at βn := β0 + n∆β.
2: Initialize β← β0 and results← {}.
3: Initialize p̃ :=

(
p̃(x̂|x), p̃(x|x̂), p̃(y|x̂), p̃(x̂)

)
from pβ0(x̂|x), via Steps 1.4–1.6.

4: while β > |∆β| and |supp p̃(x̂)| > 1 do . See main text on stopping condition.
5: Append p̃ to results.

6: v :=
(

d log p̃(y|x̂)
dβ , d log p̃(x̂)

dβ

)
← solve the IB ODE (16) at p̃.

7: p̃(y|x̂)← p̃(y|x̂) exp
(

∆β · d log p̃(y|x̂)
dβ

)
8: p̃(x̂)← p̃(x̂) exp

(
∆β · d log p̃(x̂)

dβ

)
. Exponentiate the linear approximations (22).

9:
(

p̃(y|x̂), p̃(x̂)
)
← normalize

(
p̃(y|x̂), p̃(x̂)

)
10: old_dim← dim p̃(x̂)
11:

(
p̃(y|x̂), p̃(x̂)

)
← REDUCE ROOT(p̃(y|x̂), p̃(x̂); δ1, δ2). . Algorithm 2.

12: if old_dim 6= dim p̃(x̂) then . Root was reduced due to bifurcation.
13: p̃(x̂|x)← the encoder defined by

(
p̃(y|x̂), p̃(x̂)

)
, via Steps 1.7–1.8.

14: p̃← BA-IB(p̃(x̂|x); pY|X pX , β + ∆β).

. Ensure accuracy of the reduced root, using BA-IB Algorithm 1 till convergence.

15: end if
16: β← β + ∆β.
17: p̃← BAβ(p̃(y|x̂), p̃(x̂)) . A single BA-IB iteration in decoder coordinates.
18: end while
19: Append p̃ to results.
20: return results.
21: end function

With that, there are caveats in Algorithm 3, which stem from passing too far or close
to a bifurcation. For one, suppose that the error accumulated from the true solution is
too large for a bifurcation to be detected. The approximations generated by the algorithm
will then overshoot the bifurcation. Namely, it will proceed with more clusters than
needed until the conditions for reduction are met later on (see Section 6.3 below), as
demonstrated by the two sparse grids in Figure 10 (Section 6.2). For another, suppose
that the current grid point p̃ is too close to a bifurcation. This might happen due to a
variety of numerical reasons, e.g., thresholds δ1, δ2 too small, or due to the particular grid
layout. The coefficients matrix I − Dlog p(y|x̂),log p(x̂)BAβ of the IB ODE (16) (which is the
Jacobian of the IB operator (5)) would then be ill-conditioned, typically resulting in very
large implicit numerical derivatives v on step 6; cf., Conjecture 1 ff. in Section 5.1. Any
inaccuracy in v might then send the next grid point astray, derailing the algorithm from
there on (e.g., inaccuracies due to the accumulated approximation error or due to the error
caused by computing implicit derivatives in the vicinity of a bifurcation—see Figure 3
(top) in Section 3). Indeed, the derivatives dx

dβ = −(DxF)−1DβF defined by the implicit
ODE (7) are in general unbounded near a bifurcation of F (in our case, DxF is always
non-singular outside bifurcations, due to Conjecture 1 and the use of reduced coordinates).
This can be seen in Figure 2 (Section 2) for example, where the derivatives “explode” at

Entropy 2023, 25, 1370 32 of 62

the bifurcation’s vicinity. See also [6] (Section 7.2) on the computational difficulty incurred
by a bifurcation. While overshooting a bifurcation is not a significant concern for our
purposes (see Section 6.3), passing too close to one is. The latter is important, especially
when the step size |∆β| is small. While decreasing |∆β| generally improves the error of
Euler’s method, it also makes it easier for the approximations to come close to a bifurcation,
thus potentially worsening the approximation dramatically if it derails. This motivates one
to consider how singularities of the IB ODE (16) should be handled.

Algorithm 4 A heuristic for handling singularities of the IB ODE (16)

1: function HANDLE SINGULARITY(pY|X pX ,
(

p̃(y|x̂), p̃(x̂)
)
, v, β)

Input:
An IB problem definition pY|X pX , with ∀x pX(x) > 0.
An approximate root

(
p̃(y|x̂), p̃(x̂)

)
of the given problem, near a singularity of the IB

ODE (16).
Approximate numerical derivatives v :=

(
d log p̃(y|x̂)

dβ , d log p̃(x̂)
dβ

)
at the given root.

The β > 0 value of the next (output) grid point.
Output: An approximate IB root p̃ at β on one fewer cluster.

2: x̂′, x̂′′ ← the two indices x̂ of largest
∥∥∥ d log p̃(y|x̂)

dβ

∥∥∥
∞

value (norm of y-indexed vectors).

3: p̃(y|x̂′)← 1
2 ·
(

p̃(y|x̂′) + p̃(y|x̂′′)
)
. Replace fastest-moving clusters by their mean.

4: Erase x̂′′ from the decoder p̃(y|x̂).
5: p̃(x̂′)← p̃(x̂′) + p̃(x̂′′)
6: Erase x̂′′ from the marginal p̃(x̂).
7: p̃(x̂|x)← the encoder generated from (p̃(y|x̂), p̃(x̂)), via Steps 1.7–1.8.

. A new encoder on one cluster less than the input.

8: p̃← BA-IB(p̃(x̂|x); pY|X pX , β). . Re-gain accuracy, by the BA-IB Algorithm 1.
9: return p̃

10: end function

Next, we elaborate on our heuristic for handling singularities of the IB ODE (16),
Algorithm 4. The inputs of this heuristic are defined as in Algorithm 3. It starts with
the assumption that the coefficients matrix I − Dlog p(y|x̂),log p(x̂)BAβ of the IB ODE (16)
is nearly singular at the current grid point p̃ due to a nearby bifurcation (although a
priori the Jacobian Dlog p(y|x̂),log p(x̂)(Id− BAβ) may be singular also due to other reasons,
by Conjecture 1 it is non-singular at the approximations generated so far since they are
assumed to be in their reduced form—see Section 5.1). As a result, the implicit derivatives v
at p̃ are not to be used directly to extrapolate the next grid point, as explained above. Instead,
we use them to identify the two fastest moving clusters, on step 2 of Algorithm 4 (while this
can be refined to handle more than two fast-moving clusters at once, that is not expected
to be necessary for typical bifurcations). These are replaced by a single cluster (steps 3
through 6), resulting in an approximate root on one fewer cluster. To re-gain accuracy,
the BA-IB Algorithm 1 is then invoked (on step 8) on the encoder generated (on step 7)
from the latter root, thereby generating the next grid point. If the fastest-moving clusters
have merged (in the true solution) by the next grid point, then the output of Algorithm 4
will be an IB-optimal root if its input grid point is so. Namely, the branch followed by the
algorithm remains an optimal one. Otherwise, if these clusters merge shortly after the next
grid point, then Algorithm 4 yields a sub-optimal branch. However, optimality is re-gained
shortly afterward since the sub-optimal branch collides and merges with the optimal one
in continuous IB bifurcations (Section 5.3). Figure 10 below demonstrates Algorithm 4.
cf., [6] (Section 3.2) on the similar heuristic in root tracking for RD, which may also lose
optimality near a bifurcation and re-gain it shortly after.

Entropy 2023, 25, 1370 33 of 62

Algorithm 5 First-order Root Tracking for the IB (IBRT1)

1: function IBRT1(pY|X pX , β0, pβ0(x̂|x); ∆β, δ1, δ2, δ3)
Input:

An IB problem definition pY|X pX with ∀x pX(x) > 0.
A reduced IB-optimal root pβ0(x̂|x) at β0. A step size ∆β < 0.
Thresholds 0 < δ1, δ2 < 1 for the root-reduction Algorithm 2 (cluster mass and merg-
ing).
A threshold 0 < δ3 < 1 for eigenvalues’ singularity.

Output: Approximations p̃βn of the optimal IB roots pβn at βn := β0 + n∆β.
2: Initialize β← β0 and results← {}.
3: Initialize p̃ :=

(
p̃(x̂|x), p̃(x|x̂), p̃(y|x̂), p̃(x̂)

)
from pβ0(x̂|x), via Steps 1.4–1.6.

4: while β > |∆β| and |supp p̃(x̂)| > 1 do
5: Append p̃ to results.

6: v :=
(

d log p̃(y|x̂)
dβ , d log p̃(x̂)

dβ

)
← solve the IB ODE (16) at p̃.

7: eigs← eig(I − S)
∣∣

p̃ . Test ODE for singularity, using S (17) from Lemma 1.

8: if
(
minv∈eigs |v|

)
< δ3 then . ODE is nearly singular.

9: p̃← HANDLE SINGULARITY(pY|X pX ,
(

p̃(y|x̂), p̃(x̂)
)
, v, β + ∆β)

. Handle an otherwise undetected singularity using Algorithm 4.

10: else
11: p̃(y|x̂)← p̃(y|x̂) exp

(
∆β · d log p̃(y|x̂)

dβ

)
12: p̃(x̂)← p̃(x̂) exp

(
∆β · d log p̃(x̂)

dβ

)
13:

(
p̃(y|x̂), p̃(x̂)

)
← normalize

(
p̃(y|x̂), p̃(x̂)

)
14: old_dim← dim p̃(x̂)
15:

(
p̃(y|x̂), p̃(x̂)

)
← REDUCE ROOT(p̃(y|x̂), p̃(x̂); δ1, δ2).

16: if old_dim 6= dim p̃(x̂) then
17: p̃(x̂|x)← encoder defined from

(
p̃(y|x̂), p̃(x̂)

)
, via Steps 1.7–1.8.

18: p̃← BA-IB(p̃(x̂|x); pY|X pX , β + ∆β).
19: end if
20: end if
21: β← β + ∆β.
22: p̃← BAβ(p̃(y|x̂), p̃(x̂))
23: end while
24: Append p̃ to results.
25: return results.
26: end function

The heuristic Algorithm 4 is motivated by cluster-merging bifurcations. In these, the
implicit derivatives are very large only at the coordinates d log p(y|x̂)

dβ of the points colliding
in ∆[Y] (note that cluster masses barely change in the vicinity of a cluster merging, until the
point of bifurcation itself). While intended for cluster-merging bifurcations, this heuristic
works nicely in practice also for cluster-vanishing ones. To see why, note that one can always
add a cluster of zero mass to an IB root without affecting the root’s essential properties,
regardless of its coordinates in ∆[Y] (cf., Section 5.1 on reduction in the IB). Therefore, a
numerical algorithm may, in principle, do anything with the coordinates p(y|x̂) ∈ ∆[Y] of
a nearly vanished cluster x̂, p(x̂) ' 0, without affecting the approximation’s quality too
much. Thus, for numerical purposes, one may treat a cluster-vanishing bifurcation as a
cluster-merging one. Conversely, in a cluster-merging bifurcation, a numerical algorithm
may, in principle, zero the mass of one cluster while adding it to the remaining cluster,
again without affecting the approximation’s quality too much. To conclude, for numerical
purposes, cluster vanishing is very similar to cluster merging. A variety of treatments
between these extremities may be possible by a numerical algorithm. Empirically, we have
observed that our ODE-based algorithm treats both as cluster-merging bifurcations. To our

Entropy 2023, 25, 1370 34 of 62

understanding, this is because our algorithm operates in decoder coordinates, unlike the
BA-IB Algorithm 1, for example, which operates in encoder coordinates.

Finally, we combine the simplified root-tracking Algorithm 3 with the heuristic
Algorithm 4 for handling singularities, yielding our IBRT1 Algorithm 5. It follows the
lines of the simplified Algorithm 3, except that after solving for the implicit derivatives
on step 6, we test the IB ODE (16) for singularity. To that end, we propose using the
matrix S (17) (from Lemma 1 in Section 3), since its order T · |Y| is smaller than the order
T · (|Y|+ 1) of the ODE’s coefficients matrix. This might make it computationally cheaper
to test for singularity (on steps 7 and 8 of Algorithm 5). Our heuristic Algorithm 4 is
invoked (on step 9) if the ODE (16) is found to be nearly singular, otherwise proceeding as
in Algorithm 3.

6.2. Numerical Results for the IBRT1 Algorithm 5

To demonstrate the IBRT1 Algorithm 5, we present the numerical results used to ap-
proximate the IB curve in Figure 1 (Section 1)—see Section 6.3 below on the approximation
quality and the algorithm’s basic properties. This example was chosen both because it has
an analytical solution (Appendix E) and because it allows one to get a good idea of the
bifurcation handling added (in Section 6.1) on top of the modified Euler method (from
Section 4).

2 3 4 5

log2 β

0.3

0.5

0.7

p
(y

=
0
|x̂

)

Exact

IBRT1, 20 points

IBRT1, 100 points

IBRT1, 1200 points

x5

Figure 10. Clusters of the approximate IB roots generated by the IBRT1 Algorithm 5 for several
step-sizes, on top of the exact solutions of BSC(0.3) with a uniform source (Appendix E). Carefully
note that only a single IB root is plotted here; its two clusters merge at βc (dashed red vertical), as seen
in Figure 6 (Section 5.2). At 20 and 100 grid points, the approximations overshoot the bifurcation,
terminating due to (approximate) cluster collision, while on 1200 grid points, the approximations
pass too close to the bifurcation, terminating due to the nearby singularity. This can be seen in the
inset to the right: The leftmost green marker has passed the cluster-merging threshold (dashed green
lines), and so was numerically reduced to the trivial (single-clustered) solution by the root-reduction
Algorithm 2. On the other hand, the orange markers to the right are still far from the cluster-merging
threshold; the leftmost one was reduced by the singularity-handling heuristic Algorithm 4 since the IB
ODE (16) is nearly singular there. Indeed, the numerical derivative is about five orders of magnitude
larger there than at the algorithm’s initial condition (see Figure 2) due to the bifurcation’s proximity.
The leftmost green and orange markers were drawn after the reductions took place. See main text
and Section 6.1 for details, Figure 11 for errors, and Figure 1 (in Section 1) for the approximate IB
curves. The marginals p(x̂) are not shown, as these barely deviate from their true value in this
problem. For each step-size ∆β, the algorithm was initialized at the problem’s exact solution at
β = 25, with thresholds set to δi = 10−2, for i = 1, 2, 3. The lines connecting consecutive markers are
for visualization only.

Entropy 2023, 25, 1370 35 of 62

We discuss the numerical examples of this Section in light of the explanations provided
in the previous Section 6.1. The error of the IBRT1 Algorithm 5 generally improves as
the step-size |∆β| becomes smaller, as expected. The single BA-IB iteration added to
Euler’s method (in Section 4) typically allows one to achieve the same error by using
much fewer grid points, thus lowering computational costs. For example, the two denser
grids in Figure 10 require about an order of magnitude fewer points to achieve the same
error compared to Euler’s method for the IB; this can be seen from Figure 4 (Section 4).

In sparse grids, the approximations often pass too far away from a bifurcation for the
root-reduction Algorithm 2 to detect it. When overshooting it, the conditions for numerical
reduction are generally met later on, as discussed in Section 6.3 below. Decreasing |∆β|
further often leads the approximations too close to a bifurcation, as can be seen in the
densest grid of Figure 10. The implicit derivatives are typically very large at the proximity
of a bifurcation, while the least accurate there (see Section 6.1). As these might send
subsequent grid points off-track, the heuristic Algorithm 4 is invoked to handle the nearby
singularity (see inset of Figure 10). As noted earlier, the computational difficulty in tracking
IB roots (or root tracking in general) stems from the presence of a bifurcation, manifested
here by large approximation errors in its vicinity. While the algorithm’s error peaks at the
bifurcation, it typically decreases afterward when overshooting, as seen in Figure 11. The
reasons for this are discussed below in Section 6.3.

2 3 4 5

log2 β

−12

−10

−8

−6

−4

−2

0

lo
g

1
0
L
∞

-e
rr

or
fr

om
ex

ac
t

so
lu

ti
on

IBRT1, 20 points

IBRT1, 100 points

IBRT1, 1200 points

Figure 11. The error of the IBRT1 Algorithm 5 from the exact solution for several step-sizes. The
figure shows the (log-) L∞-error of the numerical approximations in Figure 10 from the exact solutions;
the error is measured as in Figure 3 (bottom). Increasing the grid density decreases the error, as one
might expect. While the error peaks at the bifurcation (dashed red vertical), it decreases afterward—see
main text and Section 6.3 below. The rightmost marker for each grid density is missing since the initial
error is zero.

6.3. Basic Properties of the IBRT1 Algorithm 5 and Why It Works

Apart from presenting the basic properties of the IBRT1 Algorithm 5, the primary
purpose of this section is to understand why it approximates the problem’s true IB curve (1)
so well, despite its apparent errors in approximating the IB roots. While shown here only
in Figures 1 and 10 (in Sections 1 and 6.2), this behavior is consistent in the few numerical
examples that we have tested. We offer an explanation why this may be true in general.

To understand why the IBRT1 Algorithm 5 approximates the true IB curve (1) so
well, we first explain why overshooting is not a significant concern, as noted earlier
in Section 6.1. To that end, consider the implicit ODE (7)

dx
dβ = −(DxF)−1DβF ,

Entropy 2023, 25, 1370 36 of 62

from Section 1. As long as DxF and DβF at its right-hand side are well-defined, it defines
a vector field on the entire phase space of admissible x values, at least when DxF is non-
singular. That is, even for x’s which are not roots (6) of F. Ignoring several technicalities,
the IB ODE (16) therefore defines a vector field also outside IB roots (although at a reduced
root singularities of the IB ODE (16) coincide with IB bifurcations, the IB’s vector field
might a priori be singular elsewhere). Indeed, due to Conjecture 1, the Jacobian of the IB
operator Id− BAβ (5) is non-singular in the vicinity of a reduced root (Dlog p(y|x̂),log p(x̂)BAβ

(13) is continuous in the distributions defining it, and thus so are its eigenvalues, under
mild assumptions—cf., Lemma A1 in Appendix A). Now, suppose that pβ is an optimal IB
root, and consider a point p′ 6= pβ in its vicinity. An argument based on a strong notion of
Lyapunov stability (in Appendix G) shows that p′ flows along the IB’s vector field towards
pβ in regions that do not contain a bifurcation, though only if flowing in decreasing β as done
by our IBRT Algorithm 5. An approximation p′ would then be “pulled” towards the true
root. Stability in decreasing (rather than increasing) β values is very reasonable, considering
that pβ follows a path of decreasingly informative representations as β decreases. Indeed,
all the paths to oblivion lead to one place—the trivial solution, whose representation in
reduced coordinates is unique. As a result, a numerical approximation p′ would gradually
settle in the vicinity of the true root pβ as seen in Figures 10 and 11, so long as pβ does
not change much and the step-size |∆β| is small enough. While this explanation obviously
breaks near a bifurcation, it does suggest that the approximation error should decrease
when overshooting it (see Section 6.1), once the true reduced root has settled down. In a
sense, overshooting is similar to being in the right place but at the wrong time.

The above suggests that the IBRT1 Algorithm 5 should generally approximate the true
IB curve (1) well, despite its errors in approximating IB roots. To see this, note that while
β−1 is the slope of the optimal curve (1) of the IB [1] (Equation (32)), for the IB ODE (16) it is
merely an independent “time-like” variable. When solving for the optimal curve (1), one is
not interested in an optimal root or in its β value, but rather in its image

(
I(X; X̂), I(Y; X̂)

)
in the information plane. As a result, achieving the optimal roots but with the wrong β
values does yield the true IB curve (1), as required. This is the reason that the true curve (1)
is achieved in Figure 1 (Section 1) even on sparse grids, despite the apparent approximation
errors in Figures 10 and 11 (Section 6.2). With that, we expect the approximate IB curve
produced by the IBRT1 Algorithm 5 to be of lesser quality when there are more than two
possible labels y. To see why, note that the space ∆[Y] traversed by approximate clusters is
not one-dimensional when |Y| > 2, and so it is possible to maneuver around the clusters
of an optimal root.

Next, we briefly discuss the basic properties of the IBRT1 Algorithm 5. Its compu-
tational complexity is determined by the complexity of a single grid point. The latter is
readily seen to be dominated by the complexity O

(
T2 · |Y|2 · (|X |+ T · |Y|)

)
of computing

the coefficients matrix of the IB ODE (16) and of solving it numerically (on step 6). To
that, one should add the complexity of the BA-IB Algorithm 1 each time a root is reduced.
However, the critical slowing down of BA-IB [4] is avoided since we reduce the root before
invoking BA-IB (see Section 5.2). The complexity is only linear in |X | thanks to the choice
of decoder coordinates. Had we chosen one of the other coordinate systems in Section 2,
then solving the ODE would have been cubic in |X | rather than linear (see there). The
computational difficulty in following IB roots stems from the existence of bifurcations
(Section 4), as it generally is with following an operator’s root [6] (Section 7.2).

As noted in Section 4, convergence guarantees can be derived for Euler’s method
for the IB when away from bifurcation, in terms of the step-size |∆β|, in a manner similar
to [6] (Theorem 5) for RD. These imply similar guarantees for the IBRT1 Algorithm 5, since
adding a single BA-IB iteration in our modified Euler method improves its order (see there).
These details are omitted for brevity, however.

For a numerical method of order d > 0 (see Section 4) with a fixed step-size |∆β| and a
fixed computational cost per grid point, the cost-to-error tradeoff is given by

error ∝ cost−d , (26)

Entropy 2023, 25, 1370 37 of 62

as in [6] (Equation (3.6)), when |∆β| is small enough. See [26] for example. Figure 3.4 in [6]
demonstrates for RD that methods of higher order achieve a better tradeoff, as expected,
as in the fixed-order Taylor methods they employ. Since computing implicit derivatives
of higher orders requires the calculation of many more derivative tensors of Id− BAβ (5)
than done here [6] (Section 2.2), we have used only first-order derivatives for simplicity.
However, while the vanilla Euler method for the IB is of order d = 1, the discussion in
Section 4 (and Figure 4 in particular) suggests that the order d of the modified Euler method
used by the IBRT1 Algorithm 5 is nearly twice than that; cf., Section 6.2 and Appendix D.

With that, we comment on the behavior of the IBRT1 Algorithm 5 at discontinuous bi-
furcations. Consider the problem in Figure 7 (Section 5.3), for example. When Algorithm 5
follows the optimal 2-clustered root there, the Jacobian’s singularity (in Figure 9) is de-
tectable by it because the step size ∆β is negative (see the discussion in Section 5.3 there).
Indeed, due to Conjecture 1 ff., the algorithm can detect discontinuous bifurcations in
general. Whether a particular discontinuous bifurcation is detected by Algorithm 5 in
practice depends on the details, of course, as with continuous bifurcations (e.g., on the
threshold value δ3 for detecting singularity and on the precise grid point layout). Indeed,
the details may or may not cause a particular example to be detected by the conditions on
steps 7 and 8 (in Algorithm 5). If missed, Algorithm 5 will continue to follow the 2-clustered
root in Figure 7 to the left of the bifurcation, where it is sub-optimal, just as BA-IB with
reverse deterministic annealing would. Once detected, though, one may wonder whether
the heuristic Algorithm 4 works well also for discontinuous bifurcations. The example of
Figure 7 has just one single-clustered root to the left of the bifurcation. Thus, the BA-IB
Algorithm 1 invoked on step 8 (of Algorithm 4) must converge to it. However, there
may generally be more than a single root of smaller effective cardinality to the left of the
bifurcation, to which BA-IB may converge. The handling of discontinuous bifurcations
is left to future work. Such handling is expected to be easier in the IB than in RD, since,
in contrast to RD, the effective cardinality of an optimal IB root cannot decrease with β
(bottom of Section 5.3). See Problems 2.8–2.10 in [28] for counter-examples in RD. This
makes detecting discontinuous bifurcations easier in the IB and is also expected to assist
with their handling.

We list the assumptions used along the way for reference. These are needed to guar-
antee the optimality of the IBRT1 Algorithm 5 at the limit of small step-sizes |∆β|, except
at a bifurcation’s vicinity. In Section 1, it was assumed without loss of generality that
the input distribution pX is of full support, p(x) > 0 for every x (otherwise, one may
remove symbols x with pX(x) = 0 from the source alphabet). The requirement p(y|x) > 0
was added in Section 3 as a sufficient technical condition for exchanging to logarithmic
coordinates (Lemma A1 in Appendix A), and could perhaps be alleviated in alternative
derivations. Together, these are equivalent to having a never-vanishing IB problem defi-
nition, p(y|x)p(x) > 0 for every x and y. The algorithm’s initial condition is assumed to
be a reduced and optimal IB root, since reduction is needed by Conjecture 1 in Section 5.1.
Finally, the given IB problem is assumed to have only continuous bifurcations, except
perhaps for its first (leftmost) one. While these assumptions are sufficient to guarantee
optimality, we note that milder conditions might do in a particular problem.

7. Concluding Remarks

The IB is intimately related to several problems in adjacent fields [3], including cod-
ing problems, inference, and representation learning. Despite its importance, there are
surprisingly few techniques to solve it numerically. This work attempts to fill this gap by
exploiting the dynamics of IB roots.

The end result of this work is a new numerical algorithm for the IB, which follows the
path of a root along the IB’s optimal tradeoff curve (1). A combination of several novelties
was required to achieve this goal. First, the dynamics underlying the IB curve (1) obeys an
ODE [10]. Following the discussion around Conjecture 1 (in Section 5.1), the existence of
such a dynamics stems from the analyticity of the IB’s fixed-point Equations (2)–(4), thus

Entropy 2023, 25, 1370 38 of 62

typically resulting in piece-wise smooth dynamics of IB roots. Several natural choices of
a coordinate system for the IB were considered, both for computational purposes and to
facilitate a clean treatment of IB bifurcations below. The IB’s ODE (16) was derived anew in
appropriate coordinates, allowing an efficient computation of implicit derivatives at an IB
root. Combining BA-IB with Euler’s method yields a modified numerical method whose
order is higher than either.

Second, one needs to understand where the IB ODE (16) is not obeyed, thereby vio-
lating the differentiability of an optimal root with respect to β. To that end, one not only
needs to detect IB bifurcations but also needs to identify their type in order to handle them
properly. Unlike standard techniques, our approach is to remove redundant coordinates,
following root tracking for RD [6] (see Section 1). To achieve a reduction, we follow the
arguably better definition of the IB in [20]. Namely, a finite IB problem is an RD problem on
the continuous reproduction alphabet ∆[Y]. Therefore, the IB may be intuitively considered
as a method of lossy compression of the information on Y embedded in X. Viewing a finite
IB problem as an infinite RD problem suggests a particular choice of a coordinate system
for the IB, which enables reduction in the IB; this extends reduction in RD [6]. Furthermore,
this point of view highlights subtleties of finite dimensionality in computing representa-
tions of IB roots. To our understanding, these subtleties hindered the understanding of IB
bifurcations throughout the years.

Combining the above allows us to translate an understanding of IB bifurcations to a
new numerical algorithm for the IB (the IBRT1 Algorithm 5). There are several directions
that one could consider to improve our algorithm. Near bifurcations, one could improve
its handling of discontinuous bifurcations. While we used implicit derivatives only of
the first order for simplicity, higher-order derivatives generally offer a better cost-to-error
tradeoff when away from bifurcations. See also [6] (Section 3.4) on possible improvements
for following an operator’s root.

Funding: This work was partially funded by the Israel Science Foundation grant 1641/21.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Or Ordentlich for helpful conversations and for his
support, and to Noam and Dafna Agmon for their unwavering support throughout this journey. The
author thanks the late Naftali Tishby for insightful conversations and Etam Benger for his involvement
during the early stages of this work. The author thanks the reviewers for their helpful comments.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IB Information Bottleneck
RD Rate Distortion
IFT Implicit Function Theorem
ODE Ordinary Differential Equation
BA Blahut–Arimoto

Appendix A. The BA-IB Operator in Decoder Coordinates

For reference, we give an explicit expression for the BA-IB operator in decoder coordi-
nates, defined in Section 2.

Denote by pY|X̂ and pX̂ the vectors whose coordinates are
(

p(y|x̂), p(x̂)
)
. We denote

the evaluation of BAβ at this point by BAβ[pY|X̂ , pX̂]. Its output is again a decoder–marginal

Entropy 2023, 25, 1370 39 of 62

pair, whose coordinates are denoted, respectively, BAβ[pY|X̂ , pX̂](y|x̂) and BAβ[pY|X̂ , pX̂](x̂).
Explicitly, BAβ in decoder coordinates is given by

BAβ[pY|X̂ , pX̂](y|x̂) := ∑
x

p(y|x)p(x)
Z(x, β)

exp
{
− β DKL

[
p(y′|x)||p(y′|x̂)

]}
and

BAβ[pY|X̂ , pX̂](x̂) := ∑
x

p(x̂)p(x)
Z(x, β)

exp
{
− β DKL

[
p(y′|x)||p(y′|x̂)

]}
,

(A1)

where Z(x, β) is defined in terms of p(y|x̂) and p(x̂) as in the IB’s encoder Equation (2)
(Section 1).

The following lemma is handy when exchanging to logarithmic coordinates in Section 3.

Lemma A1. Let p(y|x)p(x) define a finite IB problem, such that p(y|x) > 0 for every x and y.
Let p(y|x̂) be the decoder of an IB root, and x̂′ such that p(x̂′) > 0. Then p(y|x̂′) > 0 for every y.

Proof of Lemma A1. This follows immediately from the IB’s decoder Equation (3), since
p(x|x̂′) is a well-defined normalized conditional probability distribution if p(x̂′) > 0.

Appendix B. The First-Order Derivative Tensors of Blahut–Arimoto for the IB

We calculate the first-order derivative tensors of the Blahut–Arimoto operator BAβ in log-
decoder coordinates (see Sections 2 and 3). Namely, its Jacobian matrix Dlog p(x̂|x),log p(x̂)BAβ,
and the vector DβBAβ of its partial derivatives with respect to β. See also Appendix A for
explicit formulae of BAβ in decoder coordinates.

While these are “just” differentiations, many subtleties are involved in getting the
math right. For example, one needs to correctly identify the inputs and outputs of BAβ,
when considered as an operator on log-decoder coordinates. For another, one must take
special care as to which variable depends on which, and especially on which they do not
depend, since multiple variables are involved. Above all, these calculations require a deep
understanding of the chain rule. With that, a common caveat in such calculations is that
the BAβ operator (and the equations defining it) should be differentiated before they are
evaluated. While this is obvious for real functions, where f ′(3) stands for the derivative
function of f (x) evaluated at x = 3, for the BAβ operator, this might be obfuscated by the
myriad of variables and variable dependencies that comprise it. Although calculating the
derivative of BAβ (at an arbitrary point) first and only then evaluating at a fixed point
might appear as a mere technical necessity, it is required by this work, for example, when
considering the vector field defined by the IB operator (5) in Section 6.3. cf., [6] (Section 5),
for the derivative tensors of Blahut’s algorithm [8] for RD, of arbitrary order.

The subtitles involved in these differentiations are discussed in Appendix B.1, with the
bulk of the calculations carried out in Appendix B.1.1. The latter are gathered and simplified
in Appendix B.2 to obtain the Jacobian matrix Dlog p(x̂|x),log p(x̂)BAβ, and in Appendix B.3 to
obtain the partial-derivatives vector DβBAβ. The results provided here naturally depend on
the choice of coordinate system. To compare results between log-decoder and log-encoder
coordinates in Section 2 (e.g., in Figure 2), we derive in Appendix B.4 the coordinate-
exchange Jacobians between these coordinate systems.

Appendix B.1. Calculation Setups and Partial Derivatives of Unnamed Functions

We explain the mathematical subtitles relevant to the sequel.
As we are interested in the derivatives of the Blahut–Arimoto Algorithm 1 for the

IB (in Section 1), we shall follow its notation. Namely, distributions are subscripted i or
i + 1 by the algorithm’s iteration number. A subscript i is usually considered an input
distribution, and a subscript i + 1 is usually considered an output distribution, e.g., pi(x̂)
or pi+1(y|x̂). These need not be IB roots but rather are arbitrary distributions. On the other
hand, a subscript β denotes a distribution of an IB root at a tradeoff value β, as in pβ(y|x̂)

Entropy 2023, 25, 1370 40 of 62

for a root’s decoders. To avoid subtleties due to zero-mass clusters, we usually assume in
the sequel that pi(x̂) 6= 0 for every x̂. cf., Sections 2 and 5.1 on reduction in the IB.

It is important to distinguish which variables are dependent and which are indepen-
dent in a particular calculation, e.g., in Appendix B.3. Since this task is easier for a single
real variable (as opposed to distributions, for example), we consider simplifications to
the real case. Note that each of the Steps 1.4 through 1.8 defining the BA-IB Algorithm 1
yields a new distribution in terms of already-specified ones. These define unnamed functions,
whose variables and values are probability distributions. For example, one could have
formally defined pi(x|x̂) in 1.5 by the function

F [pi(x̂|x), pi(x̂)](x, x̂) := pi(x̂|x)p(x)/pi(x̂) , (A2)

where pi(x̂|x) and pi(x̂) are the variables of F , and its output is a conditional probability
distribution, with x conditioned upon x̂. As the input and representation alphabets X and
X̂ are finite, N := |X | and T := |X̂ |, the arguments pi(x̂|x), pi(x̂) and values pi(x|x̂) of
F (A2) are merely real vectors. Thus, enumerating the variables x1, . . . , xN and x̂1, . . . , x̂T
allows us to spell out (A2) by its coordinates,

F [pi(x̂1|x1), pi(x̂1|x2), . . . , pi(x̂1|xN), . . . , pi(x̂T |xN), pi(x̂1), . . . , pi(x̂T)](x, x̂) := pi(x̂|x)p(x)/pi(x̂) . (A3)

While (A3) is too cumbersome to work with, it does highlight that F is merely a vector
of N · T real vector-valued functions, in T + N · T real variables. This allows us to use
partial derivatives rather than their infinite-dimensional counterparts (namely, variational
derivatives), as in

∂F [pi(x̂|x), pi(x̂)]
∂pi(x̂j|xk)

:= lim
h→0

F
[
pi(x̂1|x1), . . . , pi(x̂j|xk) + h, . . . , pi(x̂T)

]
−F

[
. . . , pi(x̂j|xk), . . .

]
h

. (A4)

This is the derivative of F (A3) with respect to a particular (j, k)-entry of its argument, by
definition. However, to maintain a concise notation, we shall carry on with un-named
function definitions, writing ∂pi(x|x̂)/∂pi(x̂j |xk) for the partial derivative of (A2) rather than its
explicit form (A4). If disoriented, the reader is encouraged to return to the definitions (A4).

We often exchange variables implicitly to logarithmic coordinates, as in Section 3.
For example, ∂F [pi(x̂|x),pi(x̂)]

∂ log pi(x̂i |xj)
is to be understood as exchanging variables to ui(x̂, x) :=

log pi(x̂|x), with G[ui(x̂, x), ui(x̂)] := F [exp ui(x̂, x), exp ui(x̂)] now differentiated with
respect to its variables ui(x̂, x) and ui(x̂),

∂F [pi(x̂|x), pi(x̂)]
∂ log pi(x̂i|xj)

=
∂F [exp ui(x̂, x), exp ui(x̂)]

∂ui(x̂, x)
=:

∂G[ui(x̂, x), ui(x̂)]
∂ui(x̂, x)

(A5)

The output of F may similarly be exchanged to logarithmic coordinates, as in
logF [exp ui(x̂, x), exp ui(x̂)].

To proceed, carefully note the dependencies between the various variables in a BA-IB
iteration, in Steps 1.4 through 1.8. These are summarized compactly by the following
diagram:

. . . // pi(x̂|x) //
��

pi(x̂) //
��

..

pi(x|x̂) // pi(y|x̂) //

��

pi+1(x̂|x) // . . .

Zi(x, β)

MM (A6)

by their order of appearance in the BA-IB Algorithm 1. This diagram proceeds to both
sides by the iteration number i. Each node in (A6) serves both as a function of the nodes
preceding it and as a variable for those succeeding it, and so it is a “function-variable”.

Entropy 2023, 25, 1370 41 of 62

To differentiate along the dependencies graph (A6), we shall need the multivariate
chain rule

d f
dy

=
∂ f
∂y

+
∂ f
∂z

dz
dy

, (A7)

for a function f
(
y, z(y)

)
. As the dependencies graph (A6) involves multiple function

variables, such as z(y), we pause on the definition’s subtleties. The partial derivative of a
function g in several variables x1, . . . , xN with respect to its i-th entry is defined by

∂g
∂xi

:= lim
h→0

g(x1, . . . , xi + h, . . . , xN)− g(x1, . . . , xi, . . . , xN)

h
. (A8)

We emphasize that variables x1, . . . , xi−1, xi+1, . . . , xN other than xi are fixed when calcu-
lating ∂g

∂xi
. And so, it makes no difference in (A8) whether or not they depend on xi, as in

xj = xj(xi) for j 6= i.
Next, suppose we would like to calculate how changing an input distribution affects

some output distribution. This is relevant in Appendix B.2 for example, when considering
how a change in a coordinate of an input decoder pi(y|x̂) or marginal pi(x̂) affects a
particular coordinate of the output decoder or marginal. For exposition’s simplicity, though,
suppose that we would like to calculate how a change in the (k1, k2) coordinate pi(x̂k1 |xk2)
of an input encoder affects the (j1, j2) coordinate pi+1(x̂j1 |xj2) of the output encoder. That
is, deriving the rightmost node in (A6) with respect to a coordinate of the leftmost one,

d log pi+1(x̂j1 |xj2)

d log pi(x̂k1 |xk2)
, (A9)

where we have exchanged to logarithmic coordinates to simplify calculations. To calculate
(A9), one needs to apply the multivariate chain rule (A7) along all the possible dependencies
of the output log pi+1(x̂j1 |xj2) on the input coordinate log pi(x̂k1 |xk2). This amounts to
following all the paths in (A6) connecting these two nodes, summing the contributions of
every possible path. For example, traversing from the input pi(x̂k1 |xk2) rightwards at (A6)
to pi(x̂), then downwards to Zi(x, β) and then to the output pi+1(x̂j1 |xj2) yields the term

∂ log pi(x̂′′)
∂ log pi(x̂k1 |xk2)

∂ log Zi(x, β)

∂ log pi(x̂′′)
∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)

corresponding to this path, at particular x and x̂′′ coordinates. To collect the contribution
from every intermediate function variable coordinate, we need to sum the latter over x and
x̂′′. Writing down all such paths, one has for (A9),

d log pi+1(x̂j1 |xj2)

d log pi(x̂k1 |xk2)

=
∂ log pi(x̂′′)

∂ log pi(x̂k1 |xk2)
·
{

∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)
· ∂ log Zi(x, β)

∂ log pi(x̂′′)
+

∂ log pi+1(x̂j1 |xj2)

∂ log pi(x̂′′)

+

[
∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)
· ∂ log Zi(x, β)

∂ log pi(y|x̂)
+

∂ log pi+1(x̂j1 |xj2)

∂ log pi(y|x̂)

]
· ∂ log pi(y|x̂)

∂ log pi(x′|x̂′) ·
∂ log pi(x′|x̂′)
∂ log pi(x̂′′)

}

+

[
∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)
· ∂ log Zi(x, β)

∂ log pi(y|x̂)
+

∂ log pi+1(x̂j1 |xj2)

∂ log pi(y|x̂)

]
· ∂ log pi(y|x̂)

∂ log pi(x′|x̂′) ·
∂ log pi(x′|x̂′)

∂ log pi(x̂k1 |xk2)
(A10)

Repeated unbounded variables are understood to be summed over, as in Einstein’s summa-
tion convention.

Entropy 2023, 25, 1370 42 of 62

Appendix B.1.1. Differentiating along the Dependencies Graph

Next, we differentiate each edge in (the logarithm of) the dependency graph (A6).
These are necessary to evaluate derivatives along dependency paths, which underlie the
subsequent sections’ calculations.

Step 1.4 in the BA-IB Algorithm 1 defines the cluster marginal in terms of the direct
encoder,

∂ log pi(x̂)
∂ log pi(x̂′|x′)

Step 1.4
=

1
pi(x̂) ∑

x
p(x)

∂

∂ log pi(x̂′|x′) pi(x̂|x)

=
1

pi(x̂) ∑
x

p(x)pi(x̂|x) ∂ log pi(x̂|x)
∂ log pi(x̂′|x′)

Step 1.5
= pi(x′|x̂) · δx̂,x̂′ (A11)

In the first and second equalities we have used the identity ∂
∂x y = y ∂

∂x log y for the differen-
tiation of a function’s logarithm, when y is a function of x.

Following the comments around the definition (A8) of a partial derivative, note that
Step 1.5 defines the inverse encoder log pi(x|x̂) as a function of the variables log pi(x̂|x)
and log pi(x̂) (and p(x), which we ignore under differentiation). Thus, differentiating this
equation with respect to an entry of the variable log pi(x̂|x) implies that the entries of
the other variable log pi(x̂) are held fixed, and vice versa. So, for the Bayes rule Step 1.5
we have

∂ log pi(xj1 |x̂j2)

∂ log pi(x̂)
=

∂

∂ log pi(x̂)
[
((((

(((log pi(x̂j2 |xj1)− log pi(x̂j2)
]
= −δx̂,x̂j2

(A12)

where log pi(x̂j2 |xj1) at the right-hand side is different from the variable log pi(x̂) of differ-
entiation, and so its partial derivative vanishes. Next, differentiating Step 1.5 with respect
to a coordinate of its other variable log pi(x̂|x),

∂ log pi(xj1 |x̂j2)

∂ log pi(x̂′|x′) =
∂ log pi(x̂j2 |xj1)

∂ log pi(x̂′|x′) −
��

��
�
��∂ log pi(x̂j2)

∂ log pi(x̂′|x′) = δxj1
,x′ · δx̂j2 ,x̂′ (A13)

Using again the logarithmic derivative identity ∂
∂x y = y ∂

∂x log y, by the decoder Step 1.6 we
have

∂ log pi(y|x̂′′)
∂ log pi(xk1 |x̂k2)

=
1

pi(y|x̂′′) ∑
x′′′

p(y|x′′′) ∂

∂ log pi(xk1 |x̂k2)
pi(x′′′|x̂′′)

=
1

pi(y|x̂′′) ∑
x′′′

p(y|x′′′)pi(x′′′|x̂′′) δx̂k2
,x̂′′ · δxk1

,x′′′ = δx̂k2
,x̂′′ ·

p(y|xk1)pi(xk1 |x̂′′)
pi(y|x̂′′)

(A14)

Next, consider the KL-divergence term in the Definition 1.7 of the partition function Zi,

∂

∂ log pi(y|x̂′′)
DKL

[
p(y|x′′)||pi(y|x̂)

]
= −∑

y′
p(y′|x′′) ∂

∂ log pi(y|x̂′′)
log pi(y′|x̂)︸ ︷︷ ︸

δx̂,x̂′′ ·δy,y′

= −δx̂,x̂′′ · p(y|x′′) (A15)

Since the partition Function 1.7 depends on the decoder pi(y|x̂) only via the KL-divergence,

Entropy 2023, 25, 1370 43 of 62

∂Zi(x′′, β)

∂ log pi(y|x̂′′)
=

∂

∂ log pi(y|x̂′′) ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x′′)||pi(y|x̂)

]}
= −β ∑̂

x
pi(x̂) exp

{
− β DKL

[
p(y|x′′)||pi(y|x̂)

]} ∂

∂ log pi(y|x̂′′)
DKL

[
p(y|x′′)||pi(y|x̂)

]
(A15)
= β pi(x̂′′) exp

{
− β DKL

[
p(y|x′′)||pi(y|x̂′′)

]}
p(y|x′′)

Step 1.8
= β pi+1(x̂′′|x′′)Zi(x′′, β)p(y|x′′) (A16)

Hence,
∂ log Zi(x′′, β)

∂ log pi(y|x̂′′)
= β pi+1(x̂′′|x′′)p(y|x′′) (A17)

For the derivative of the partition function with respect to the marginal pi(x̂),

∂Zi(x, β)

∂ log pi(x̂′)
Step 1.7
=

∂

∂ log pi(x̂′) ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x)||pi(y|x̂)

]}
= ∑̂

x
pi(x̂) exp

{
− β DKL

[
p(y|x)||pi(y|x̂)

]} ∂ log pi(x̂)
∂ log pi(x̂′)

= ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x)||pi(y|x̂)

]}
· δx̂,x̂′

Step 1.8
= Zi(x, β) · pi+1(x̂′|x) (A18)

where the second equality follows from the logarithmic derivative identity. Hence,

∂ log Zi(x, β)

∂ log pi(x̂′)
= pi+1(x̂′|x) (A19)

Finally, for the encoder Step 1.8,

log pi+1(x̂′|x′) := log pi(x̂′)− log Zi(x′, β)− β DKL
[
p(y|x′)||pi(y|x̂′)

]
(A20)

The first two terms to the right, pi(x̂) and Zi(x, β), take the role of a variable in Step 1.8. In
contrast, we consider the last divergence term as a shorthand for summing over pi(y|x̂).
Thus, the latter is a variable of (A20). With (A15), we thus have

∂ log pi+1(x̂′|x′)
∂ log pi(y|x̂′′)

= β δx̂′ ,x̂′′ · p(y|x′) . (A21)

For the other derivatives of the encoder Step 1.8,

∂ log pi+1(x̂′|x′)
∂ log Zi(x′′, β)

= − ∂ log Zi(x′, β)

∂ log Zi(x′′, β)
= −δx′ ,x′′ (A22)

and

∂ log pi+1(x̂|x)
∂ log pi(x̂′)

=
∂ log pi(x̂)
∂ log pi(x̂′)

−
�
��

�
��
�

∂ log Zi(x, β)

∂ log pi(x̂′)
− β
���

���
���

��
∂DKL

[
p(y|x)||pi(y|x̂)

]
∂ log pi(x̂′)

= δx̂,x̂′ (A23)

where the variable pi(x̂) of Step 1.8 differs from the variables Zi and pi(y|x̂), on which the
crossed-out terms depend.

We summarize the calculations of this subsection in the following diagram:

Entropy 2023, 25, 1370 44 of 62

log pi(x̂|x)
pi(x′ |x̂) δx̂,x̂′

//

δx,x′ δx̂,x̂′

��

log pi(x̂) −δx̂,x̂′
//

δx̂,x̂′

$$

pi+1(x̂′ |x)
--

log pi(x|x̂)
p(y|x′)pi(x′ |x̂)

pi(y|x̂)
·δx̂′ ,x̂
// log pi(y|x̂)

β δx̂,x̂′ p(y
′ |x)
//

β pi+1(x̂′ |x)p(y′ |x)

��

log pi+1(x̂|x)

log Zi(x, β)
−δx,x′

JJ
(A24)

A differentiation variable is denoted with commas, at an arrow’s source in this diagram. A
coordinate of the function which we differentiate is written without commas, at an arrow’s
end, e.g.,

log pi(x̂|x)
∂ log pi(x|x̂)

∂ log pi(x̂′ |x′) = ...

// log pi(x|x̂)

Appendix B.2. The Jacobian Matrix of BA-IB in Log-Decoder Coordinates

By gathering the results of Appendix B.1.1 and following the lines of Appendix B.1,
we calculate the Jacobian matrix (13) (in Section 3) of the Blahut–Arimoto operator BAβ in
log-decoder coordinates, defined in Section 2.

The derivative of BAβ in decoder coordinates boils down to the four quantities: the

effect d log pi+1(y|x̂)
d log pi(y′ |x̂′) that varying a coordinate log pi(y′|x̂′) of an input cluster has on a co-

ordinate log pi+1(y|x̂) of an output cluster, the effect d log pi+1(y|x̂)
d log pi(x̂′) that varying an input

marginal coordinate log pi(x̂′) has on a coordinate log pi+1(y|x̂) of an output cluster, and
so forth. And so, the Jacobian Dlog p(y|x̂),log p(x̂)BAβ it is a block matrix,

d log pi+1(y|x̂)
d log pi(y′ |x̂′)

d log pi+1(y|x̂)
d log pi(x̂′)

d log pi+1(x̂)
d log pi(y′ |x̂′)

d log pi+1(x̂)
d log pi(x̂′)

(A25)

Its rows correspond to the output coordinates of BAβ. We index its upper rows by y ∈ Y
and x̂ ∈ {1, . . . , T}, while its lower rows are indexed by x̂ alone. Similarly, its columns
correspond to the input coordinates of BAβ. We index its leftmost columns by y′ and x̂′, and
its rightmost columns by x̂′ alone. Each block in (A25) consists of contributions along all
the distinct paths connecting two vertices in the dependencies graph (A6). For example, the
lower-left block in (A25) consists of the contributions along all the paths in (A6) connecting
pi(y′|x̂′) to pi+1(x̂).

We now spell out the paths contributing to each block in (A25), with repeated dummy
indices understood to be summed over. Afterward, we shall calculate the contributing
paths explicitly, carrying out the summations. The upper-left block of (A25) consists of

d log pi+1(y|x̂)
d log pi(y′|x̂′)

=
∂ log pi+1(y|x̂)

∂ log pi+1(x1|x̂2)
·
[

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂3)

∂ log pi+1(x̂3)

∂ log pi+1(x̂4|x5)
+

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂4|x5)

]
·
[

∂ log pi+1(x̂4|x5)

∂ log pi(y′|x̂′)
+

∂ log pi+1(x̂4|x5)

∂ log Zi(x6, β)

∂ log Zi(x6, β)

∂ log pi(y′|x̂′)

]
(A26)

This Equation (A26) encodes the four paths connecting the vertex pi(y′|x̂′) to pi+1(y|x̂) in
(A6). When accumulating the contributions in (A26), one must carefully sum only over
repeated dummy indices that appear in the given term. For example, the two paths in (A26)

Entropy 2023, 25, 1370 45 of 62

which traverse the edge ∂ log pi+1(x1|x̂2)
∂ log pi+1(x̂4|x5)

(pointing from pi+1(x̂|x) to pi+1(x|x̂)) do not involve

a summation over x̂3. In contrast, the two paths involving ∂ log pi+1(x1|x̂2)
∂ log pi+1(x̂3)

∂ log pi+1(x̂3)
∂ log pi+1(x̂4|x5)

there
do entail a summation over x̂3. This is relevant for the calculations below, as in (A31) for
example.

Similarly, for the upper-right block of (A25),

d log pi+1(y|x̂)
d log pi(x̂′)

=
∂ log pi+1(y|x̂)

∂ log pi+1(x1|x̂2)
·
[

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂3)

∂ log pi+1(x̂3)

∂ log pi+1(x̂4|x5)
+

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂4|x5)

]
·
{

∂ log pi+1(x̂4|x5)

∂ log pi(x̂′)
+

∂ log pi+1(x̂4|x5)

∂ log pi(y7|x̂8)

∂ log pi(y7|x̂8)

∂ log pi(x9|x̂10)

∂ log pi(x9|x̂10)

∂ log pi(x̂′)

+
∂ log pi+1(x̂4|x5)

∂ log Zi(x6, β)

[
∂ log Zi(x6, β)

∂ log pi(x̂′)
+

∂ log Zi(x6, β)

∂ log pi(y7|x̂8)

∂ log pi(y7|x̂8)

∂ log pi(x9|x̂10)

∂ log pi(x9|x̂10)

∂ log pi(x̂′)

]}
(A27)

For the lower-left block of (A25),

d log pi+1(x̂)
d log pi(y′|x̂′)

=
∂ log pi+1(x̂)

∂ log pi+1(x̂1|x2)

[
∂ log pi+1(x̂1|x2)

∂ log pi(y′|x̂′)
+

∂ log pi+1(x̂1|x2)

∂ log Zi(x3, β)

∂ log Zi(x3, β)

∂ log pi(y′|x̂′)

]
(A28)

Last, for the lower-right block of (A25),

d log pi+1(x̂)
d log pi(x̂′)

=
∂ log pi+1(x̂)

∂ log pi+1(x̂1|x2)
·
{

∂ log pi+1(x̂1|x2)

∂ log pi(x̂′)
+

∂ log pi+1(x̂1|x2)

∂ log pi(y3|x̂4)

∂ log pi(y3|x̂4)

∂ log pi(x5|x̂6)

∂ log pi(x5|x̂6)

∂ log pi(x̂′)

+
∂ log pi+1(x̂1|x2)

∂ log Zi(x7, β)

[
∂ log Zi(x7, β)

∂ log pi(x̂′)
+

∂ log Zi(x7, β)

∂ log pi(y3|x̂4)

∂ log pi(y3|x̂4)

∂ log pi(x5|x̂6)

∂ log pi(x5|x̂6)

∂ log pi(x̂′)

]}
(A29)

Next, by using the intermediate results summarized in (A24) (Appendix B.1.1), we calculate
each of the four blocks of (A25) explicitly. For the upper-left block (A26), we have

d log pi+1(y|x̂)
d log pi(y′|x̂′)

=
p(y|x1)pi+1(x1|x̂)

pi+1(y|x̂)
δx̂,x̂2 ·

[(
−δx̂2,x̂3

)
pi+1(x5|x̂3)δx̂3,x̂4 + δx1,x5 δx̂2,x̂4

]
·
[
βδx̂4,x̂′ p(y

′|x5) + (−δx5,x6)βpi+1(x̂′|x6)p(y′|x6)
]

(A30)

For clarity, we elaborate on each step needed to complete the calculation of the upper-left
block (A26) while providing only the main steps for the other blocks. To carry out the
summations over the dummy variables x1, x̂2, x̂3, x̂4, x5, and x6 in (A30), we carefully sum
only over repeated dummy indices, as explained after (A26). We carry out one summation
at a time, starting with x̂2. This yields

β
p(y|x1)pi+1(x1|x̂)

pi+1(y|x̂)
·
[
−δx̂,x̂3 pi+1(x5|x̂3)δx̂3,x̂4 + δx1,x5 δx̂,x̂4

]
·
[
δx̂4,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= β ·
[
−δx̂,x̂3 pi+1(x5|x̂3)δx̂3,x̂4 + δx̂,x̂4

p(y|x5)pi+1(x5|x̂)
pi+1(y|x̂)

]
·
[
δx̂4,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= β · pi+1(x5|x̂)
[
−δx̂,x̂4 + δx̂,x̂4

p(y|x5)

pi+1(y|x̂)

]
·
[
δx̂4,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= −β · pi+1(x5|x̂)
[

1− p(y|x5)

pi+1(y|x̂)

]
·
[
δx̂,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= −β · p(y′|x5)pi+1(x5|x̂)
[

1− p(y|x5)

pi+1(y|x̂)

]
·
[
δx̂,x̂′ − pi+1(x̂′|x5)

]
= −β ∑

x
p(y′|x)pi+1(x|x̂) ·

[
1− p(y|x)

pi+1(y|x̂)

]
·
[
δx̂,x̂′ − pi+1(x̂′|x)

]
(A31)

Entropy 2023, 25, 1370 46 of 62

In the first equality above we carried out the summation over x1, in the second over x̂3, in
the third over x̂4, in the fourth over x6, and in the fifth over x5.

To simplify the notation, we replace summations over x with definitions as in
Equation (14) (Section 3),

C(x̂, x̂′; i)y,y′ :=∑
x

p(y|x)p(y′|x)pi(x̂′|x)pi(x|x̂)

B(x̂, x̂′; i)y :=∑
x

p(y|x)pi(x̂′|x)pi(x|x̂) = ∑
y′

C(x̂, x̂′; i)y,y′

A(x̂, x̂′; i) :=∑
x

pi(x̂′|x)pi(x|x̂) = ∑
y

B(x̂, x̂′; i)y

D(x̂; i)y,y′ :=
1

pi(y|x̂) ∑
x

p(y|x)p(y′|x)pi(x|x̂) = 1
pi(y|x̂) ∑

x̂′
C(x̂, x̂′; i)y,y′

(A32)

and note that
∑

y′ ,x̂′
C(x̂, x̂′; i)y,y′ = pi(y|x̂) . (A33)

The quantities A, B, and C involve two IB clusters. They are a scalar, a vector, and a
matrix, respectively. The definition of D involves only one IB cluster and coincides with CY
in [13] (3.2 in Part III). The relations to the right of (A32) show that each can be expressed
in terms of C(x̂, x̂′; i)y,y′ . Equation (A33) shows that the latter can be rewritten as a right-
stochastic matrix, up to trivial manipulations. As seen below, the Jacobian matrix (A25) of a
BA-IB step in log-decoder coordinates can be computed in terms of the quantities in (A32).

With the latter definitions (A32), (A31) can be rewritten as

d log pi+1(y|x̂)
d log pi(y′|x̂′)

(A31)
= − β ∑

x

[
δx̂,x̂′ p(y′|x)pi+1(x|x̂)− p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)

− δx̂,x̂′
1

pi+1(y|x̂) p(y|x)p(y′|x)pi+1(x|x̂) + 1
pi+1(y|x̂) p(y′|x)p(y|x)pi+1(x̂′|x)pi+1(x|x̂)

]
(A32)
= − β

[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′ − δx̂,x̂′ D(x̂; i + 1)y,y′ +

1
pi+1(y|x̂)C(x̂, x̂′; i + 1)y,y′

]
= β ∑

x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)(
1− δy′′ ,y

pi+1(y|x̂)

)
C(x̂, x̂′′; i + 1)y′ ,y′′ (A34)

The third equality above follows from (A33), the identities to the right of (A32), and
simple algebra.

For the upper-right block (A27),

d log pi+1(y|x̂)
d log pi(x̂′)

=
p(y|x1)pi+1(x1|x̂2)

pi+1(y|x̂2)
δx̂2,x̂ ·

[(
−δx̂2,x̂3

)
pi+1(x5|x̂3)δx̂3,x̂4 + δx1,x5 δx̂2,x̂4

]
·
{

δx̂4,x̂′ + βδx̂4,x̂8 p(y7|x5)
p(y7|x9)pi(x9|x̂8)

pi(y7|x̂8)
δx̂8,x̂10

(
−δx̂10,x̂′

)
+(−δx5,x6)

[
pi+1(x̂′|x6) + βpi+1(x̂8|x6)p(y7|x6)

p(y7|x9)pi(x9|x̂8)

pi(y7|x̂8)
δx̂8,x̂10

(
−δx̂10,x̂′

)]}
(A35)

In a manner similar to (A31), summing over all ten dummy variables other than x1
and x5 yields

(1− β) · p(y|x1)pi+1(x1|x̂)
pi+1(y|x̂)

·
(

δx1,x5 − pi+1(x5|x̂)
)
·
(

δx̂,x̂′ − pi+1(x̂′|x5)
)

= (1− β) ·
(

−1
pi+1(y|x̂) ∑

x
p(y|x)pi+1(x̂′|x)pi+1(x|x̂) + ∑

x
pi+1(x̂′|x)pi+1(x|x̂)

)
= (1− β) ·∑

x

(
1− p(y|x)

pi+1(y|x̂)
)

pi+1(x̂′|x)pi+1(x|x̂) (A36)

Entropy 2023, 25, 1370 47 of 62

The two terms involving δx̂,x̂′ cancel out when summing over x1 and x5 at the first equality.
Rewriting with the definitions (A32) of A and B further simplifies (A36) to

(1− β) ·
[

A(x̂, x̂′; i + 1)− 1
pi+1(y|x̂)B(x̂, x̂′; i + 1)y

]
= (1− β) ·∑

y′′

[
1− δy′′ ,y

pi+1(y|x̂)
]

B(x̂, x̂′; i + 1)y′′ (A37)

For the lower-left block (A28),

d log pi+1(x̂)
d log pi(y′|x̂′)

= pi+1(x2|x̂)δx̂,x̂1

[
βδx̂1,x̂′ p(y

′|x2) + (−δx2,x3)βpi+1(x̂′|x3)p(y′|x3)
]

(A38)

Summing over dummy variables and simplifying yields

β ·
[
δx̂,x̂′ pi+1(y′|x̂)−∑

x
p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)

]
(A39)

In terms of definitions (A32), this simplifies to

β ·
[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(A40)

Finally, for the lower-right block (A29),

d log pi+1(x̂)
d log pi(x̂′)

= pi+1(x2|x̂)δx̂,x̂1 ·
{

δx̂1,x̂′ + βδx̂1,x̂4 p(y3|x2)
p(y3|x5)pi(x5|x̂4)

pi(y3|x̂4)
δx̂4,x̂6

(
−δx̂6,x̂′

)
+(−δx2,x7)

[
pi+1(x̂′|x7) + βpi+1(x̂4|x7)p(y3|x7)

p(y3|x5)pi(x5|x̂4)

pi(y3|x̂4)
δx̂4,x̂6

(
−δx̂6,x̂′

)]}
(A41)

This simplifies to

(1− β)

(
δx̂,x̂′ −∑

x
pi+1(x̂′|x)pi+1(x|x̂)

)
(A42)

With definitions (A32), this can be written as

(1− β)
(

δx̂,x̂′ − A(x̂, x̂′; i + 1)
)

(A43)

Collecting the results from (A34), (A37), (A40), and (A43) back into (A25), BA’s Jacobian in
these coordinates is

β ∑x̂′′ ,y′′(δx̂′′ ,x̂′−δx̂,x̂′)

·
(

1−
δy′′ ,y

pi+1(y|x̂)

)
C(x̂,x̂′′ ;i+1)y′ ,y′′

(1− β) ·∑y′′
[
1− δy′′ ,y

pi+1(y|x̂)
]

B(x̂, x̂′; i + 1)y′′

β ·
[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(1− β)

(
δx̂,x̂′ − A(x̂, x̂′; i + 1)

)

(A44)

When evaluated at an IB root, this is Equation (13) of Section 3. Equivalently, it can be
written in the following form, which is more convenient for implementation:

Entropy 2023, 25, 1370 48 of 62

β

[
B(x̂,x̂′ ;i+1)y′−δx̂,x̂′ pi+1(y′ |x̂)

+δx̂,x̂′ D(x̂;i+1)y,y′−
1

pi+1(y|x̂)C(x̂,x̂′ ;i+1)y,y′
] (1− β) ·

[
A(x̂, x̂′; i + 1)− 1

pi+1(y|x̂)B(x̂, x̂′; i + 1)y

]

β ·
[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(1− β)

(
δx̂,x̂′ − A(x̂, x̂′; i + 1)

)

(A45)

Appendix B.3. The Partial β-Derivatives of BA-IB in Log-Decoder Coordinates

We calculate the vector DβBAβ of partial derivatives of the BAβ operator in log-
decoder coordinates (of Section 2), which appears at the right-hand side of the IB-ODE (16)
(in Section 3).

To that end, we differentiate backward along the dependencies graph (A6)
(in Appendix B.1) with respect to β, starting at the output coordinates pi+1(y|x̂) and pi+1(x̂)
of BAβ. After differentiating, we mind our independent variables. Here, these are β, and
the input coordinates pi(y|x̂) and pi(x̂) of BAβ. The differentiation of these with respect

to β vanishes (except for dβ
dβ = 1), as they are independent. Finally, we compose the dif-

ferentiations to obtain the effect DβBAβ of changing β on BA’s output. We note that, in
principle, one can differentiate the explicit formulae (A1) of BAβ in decoder coordinates
(Appendix A) with respect to β. However, we find that to be cumbersome and far more
error-prone than our approach, and so proceed in the spirit of the previous Appendix B.2.

We start by differentiating each of the equations defining the Blahut–Arimoto
Algorithm 1 with respect to β, as if all its variables are dependent. For the cluster marginal
Step 1.4,

d
dβ

pi(x̂) = ∑
x

p(x)
d

dβ
pi(x̂|x) (A46)

For the inverse encoder Step 1.5,

d
dβ

pi(x|x̂) = p(x)
pi(x̂)

dpi(x̂|x)
dβ

− pi(x̂|x)p(x)
pi(x̂)2

dpi(x̂)
dβ

(A47)

For the decoder Step 1.6,

d
dβ

pi(y|x̂) = ∑
x

p(y|x) d
dβ

pi(x|x̂) (A48)

For the KL-divergence,

d
dβ

DKL
[
p(y|x)||pi(y|x̂)

]
=

d
dβ ∑

y′′
p(y′′|x) log

p(y′′|x)
pi(y′′|x̂)

= −∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂) (A49)

And for its exponent,

d
dβ

exp
{
− β Dx,x̂

}
= −

(
Dx,x̂ + β

dDx,x̂

dβ

)
· exp

{
− β Dx,x̂

}
(A49)
= −

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)
 · exp

{
− β Dx,x̂

}
(A50)

where we have written Dx,x̂ := DKL
[
p(y|x)||pi(y|x̂)

]
for short. Thus, for the partition

function’s Step 1.7, we have

Entropy 2023, 25, 1370 49 of 62

d
dβ

Zi(x, β) =
d

dβ ∑
x̂′′

pi(x̂′′) exp
{
− β Dx,x̂′′

}
(A50)
= ∑

x̂′′

dpi(x̂′′)
dβ

− pi(x̂′′)Dx,x̂′′ + β pi(x̂′′)∑
y′′

p(y′′|x)
pi(y′′|x̂′′)

d
dβ

pi(y′′|x̂′′)
 · exp

{
− β Dx,x̂′′

}
(A51)

Finally, for the encoder Step 1.8 we have

d
dβ

pi+1(x̂|x) = d
dβ

(
pi(x̂)e−β Dx,x̂

Zi(x, β)

)
(A50)
=

pi(x̂)e−β Dx,x̂

Zi(x, β)

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)
)
− 1

Zi(x, β)

dZi(x, β)

dβ

]
Step 1.8
= pi+1(x̂|x) ·

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)
)
− 1

Zi(x, β)

dZi(x, β)

dβ

]
(A52)

Next, picking β and the inputs log pi(y|x̂) and log pi(x̂) of BAβ as our independent vari-
ables, we compose the differentiations above to obtain DβBAβ at an output coordinate.
That is, we seek d

dβ log pi+1(y|x̂) and d
dβ log pi+1(x̂). By the chain rule, we trace the de-

pendencies graph (A6) (Appendix B.1) backwards, from the output nodes pi+1(y|x̂) and
pi+1(x̂) back to the input nodes. The derivatives of the latter with respect to β vanish, as
these are our independent variables.

Starting with a decoder output coordinate,

d
dβ

log pi+1(y|x̂) =
1

pi+1(y|x̂)
d

dβ
pi+1(y|x̂)

(A48)
=

1
pi+1(y|x̂) ∑

x
p(y|x) d

dβ
pi+1(x|x̂)

(A47)
=

1
pi+1(y|x̂) ∑

x
p(y|x)

[
p(x)

pi+1(x̂)
dpi+1(x̂|x)

dβ
− pi+1(x̂|x)p(x)

pi+1(x̂)2
dpi+1(x̂)

dβ

]
(A46)
= ∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

[
dpi+1(x̂|x)

dβ
− pi+1(x̂|x)

pi+1(x̂) ∑
x′

p(x′)
dpi+1(x̂|x′)

dβ

]
(A52)
= ∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

dpi(y′′|x̂)
dβ

)
− 1

Zi(x, β)

dZi(x, β)

dβ

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)

(
pi+1(x̂|x′) ·

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx′ ,x̂ − β ∑
y′′

p(y′′|x′)
pi(y′′|x̂)

dpi(y′′|x̂)
dβ

)
− 1

Zi(x′, β)

dZi(x′, β)

dβ

])}
(A53)

Since pi(y|x̂) and pi(x̂) are independent input variables, their derivatives with respect to
the independent variable β vanish, yielding

−∑
x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
Dx,x̂ +

1
Zi(x, β)

dZi(x, β)

dβ

]
− pi+1(x̂|x)

pi+1(x̂) ∑
x′

p(x′)pi+1(x̂|x′) ·
[

Dx′ ,x̂ +
1

Zi(x′, β)

dZi(x′, β)

dβ

]}
(A54)

To complete the calculation at (A53), note that the same argument can be used for two of
the three summands in (A51), reducing it to

dZi(x, β)

dβ
= −∑

x̂′′
pi(x̂′′)Dx,x̂′′ e

−β Dx,x̂′′ (A55)

since pi(y|x̂) and pi(x̂) are considered as independent variables. Therefore,

Entropy 2023, 25, 1370 50 of 62

d
dβ

log pi+1(y|x̂)
(A54)
=

(A55)
−∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
Dx,x̂ −∑

x̂′′

(
pi(x̂′′)

Zi(x, β)
e−β Dx,x̂′′

)
Dx,x̂′′

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)pi+1(x̂|x′) ·

[
Dx′ ,x̂ −∑

x̂′′

(
pi(x̂′′)

Zi(x′, β)
e−β Dx′ ,x̂′′

)
Dx′ ,x̂′′

]}
Step 1.8
= −∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
Dx,x̂ −∑

x̂′′
pi+1(x̂′′|x)Dx,x̂′′

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)pi+1(x̂|x′) ·

[
Dx′ ,x̂ −∑

x̂′′
pi+1(x̂′′|x′)Dx′ ,x̂′′

]}
Step 1.5
=

Step 1.6
∑
x

pi+1(x|x̂)Dx,x̂ −∑
x

p(y|x)
pi+1(y|x̂)

pi+1(x|x̂)Dx,x̂

+ ∑
x,x̂′′

p(y|x)
pi+1(y|x̂)

pi+1(x̂′′|x)pi+1(x|x̂)Dx,x̂′′ − ∑
x,x̂′′

pi+1(x̂′′|x)pi+1(x|x̂)Dx,x̂′′

= ∑
x

[
1− p(y|x)

pi+1(y|x̂)

]
pi+1(x|x̂)Dx,x̂ − ∑

x,x̂′′

[
1− p(y|x)

pi+1(y|x̂)

]
pi+1(x̂′′|x)pi+1(x|x̂)Dx,x̂′′ (A56)

At the second equality to the bottom we started with the third summand, then with the
first, and only then with the third and fourth summands. And so,

d
dβ

log pi+1(y|x̂) = ∑
x,x̂′′

[
1− p(y|x)

pi+1(y|x̂)

]
·
[
δx̂,x̂′′ − pi+1(x̂′′|x)

]
· pi+1(x|x̂)Dx,x̂′′ (A57)

Next, consider a cluster marginal output coordinate,

d
dβ

log pi+1(x̂) =
1

pi+1(x̂)
d

dβ
pi+1(x̂)

(A46)
=

1
pi+1(x̂) ∑

x
p(x)

d
dβ

pi+1(x̂|x)

(A52)
=

1
pi+1(x̂) ∑

x
p(x)pi+1(x̂|x) ·

 1
pi(x̂)

dpi(x̂)
dβ

−
Dx,x̂ − β ∑

y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)
− 1

Zi(x, β)

dZi(x, β)

dβ

 (A58)

Since pi(y|x̂) and pi(x̂) are independent variables, their derivatives with respect to β vanish,
yielding

− 1
pi+1(x̂) ∑

x
pi+1(x̂|x)p(x)

[
Dx,x̂ +

1
Zi(x, β)

dZi(x, β)

dβ

]
(A55)
= − 1

pi+1(x̂) ∑
x

pi+1(x̂|x)p(x)

[
Dx,x̂ −∑

x̂′′

(
pi(x̂′′)

Zi(x, β)
e−β Dx,x̂′′

)
Dx,x̂′′

]
Step 1.8
=

Step 1.5
− ∑

x,x̂′′

[
δx̂,x̂′′ − pi+1(x̂′′|x)

]
· pi+1(x|x̂)Dx,x̂′′ (A59)

Thus, for the marginals’ coordinates, we have obtained

d
dβ

log pi+1(x̂) = − ∑
x,x̂′′

[
δx̂,x̂′′ − pi+1(x̂′′|x)

]
· pi+1(x|x̂)Dx,x̂′′ (A60)

When evaluated at an IB root, Equations (A57) and (A60) form, respectively, the de-
coder and marginal coordinates of DβBAβ, which appears at the right-hand side of the
IB ODE (16) (note the extra minus sign in the implicit ODE (7)).

Entropy 2023, 25, 1370 51 of 62

Appendix B.4. The Coordinate Exchange Jacobians between Log-Decoder
and Log-Encoder Coordinates

Following the discussion in Section 2 on the pros and cons of each coordinate system,
we leverage the observations of Appendix B.1 in order to derive the coordinate exchange
Jacobians between the log-decoder and log-encoder coordinate systems. Exchanging
between the other coordinate system pairs adds little to the below and thus is omitted.

Given the encoder’s logarithmic derivative d
dβ log pβ(x̂′|x′), we would like to compute

from it the logarithmic derivative
(d

dβ log pβ(y|x̂), d
dβ log pβ(x̂)

)
in decoder coordinates,

and vice versa. To that end, recall that an (arbitrary) encoder p(x̂′|x̂) determines a decoder–
marginal pair

(
p(y|x̂), p(x̂)

)
and vice versa (e.g., Equation (11) in Section 2). So, one can

follow the dependencies graph (A6) (in Appendix B.1) backward between these coordinate
systems to exchange the coordinates of an implicit derivative. For example, consider pi(y|x̂)
and pi(x̂) as functions of the encoder pi(x̂′|x′) preceding it in the graph (A6). When at an
IB root, multiplying by the coordinates’ exchange Jacobian yields

dlog pβ(y|x̂)
dβ

=
d log pβ(y|x̂)

d log pβ(x̂′|x′)
dlog pβ(x̂′|x′)

dβ
and (A61)

dlog pβ(x̂)
dβ

=
d log pβ(x̂)

d log pβ(x̂′|x′)
dlog pβ(x̂′|x′)

dβ
. (A62)

Similarly, considering an encoder pβ(x̂|x) as a function of pβ(y′|x̂′) and pβ(x̂′),

dlog pβ(x̂|x)
dβ

=
d log pβ(x̂|x)

d log pβ(y′|x̂′)
dlog pβ(y′|x̂′)

dβ
+

d log pβ(x̂|x)
d log pβ(x̂′)

dlog pβ(x̂′)
dβ

+
∂log pβ(x̂|x)

∂β
. (A63)

The last term
∂log pβ(x̂|x)

∂β in (A63) stems from the fact that the encoder Step 1.8 depends
explicitly on β, unlike the marginal and decoder Steps 1.4 and 1.6. cf., the comments around
(A8) in Appendix B.1.

The matrices
d log pβ(y|x̂)

d log pβ(x̂′ |x′) and
d log pβ(x̂)

d log pβ(x̂′ |x′) for exchanging from encoder to decoder

coordinates follow from the chain rule, and are calculated in Appendix B.4.1 below,

at Equations (A64) and (A66). Similarly, the matrices
d log pβ(x̂|x)

d log pβ(y′ |x̂′) and
d log pβ(x̂|x)
d log pβ(x̂′) and

the partial derivative
∂log pβ(x̂|x)

∂β for exchanging from decoder to encoder coordinates are
Equations (A68), (A70), and (A73), in Appendix B.4.2.

Appendix B.4.1. Exchanging from Encoder to Decoder Coordinates

An input encoder pi(x̂′|x′) determines a decoder pi(y|x̂) and a marginal pi(x̂). As
in previous subsections, we follow the dependencies graph (A6) along all the paths
between these.

Using diagram (A24) from Appendix B.1.1, for the marginal one has

d log pi(x̂)
d log pi(x̂′|x′) = pi(x′|x̂′) δx̂,x̂′ , (A64)

while for the decoder,

d log pi(y|x̂)
d log pi(x̂′|x′) =

∂ log pi(y|x̂)
∂ log pi(x1|x̂2)

[
∂ log pi(x1|x̂2)

∂ log pi(x̂′|x′) +
∂ log pi(x1|x̂2)

∂ log pi(x̂3)

∂ log pi(x̂3)

∂ log pi(x̂′|x′)

]
=

p(y|x1)pi(x1|x̂2)

pi(y|x̂2)
δx̂2,x̂

[
δx1,x′ δx̂2,x̂′ − δx̂2,x̂3 pi(x′|x̂3) δx̂3,x̂′

]
(A65)

Entropy 2023, 25, 1370 52 of 62

Summing over the three dummy variables as before, the latter simplifies to

d log pi(y|x̂)
d log pi(x̂′|x′) =

[
p(y|x′)
pi(y|x̂)

− 1
]

pi(x′|x̂) δx̂,x̂′ . (A66)

Appendix B.4.2. Exchanging from Decoder to Encoder Coordinates

In the other way around, a decoder pi(y′|x̂′) and a marginal pi(x̂′) determine the
subsequent encoder pi+1(x̂|x). Using diagram (A24), one has

d log pi+1(x̂|x)
d log pi(y′|x̂′)

=
∂ log pi+1(x̂|x)
∂ log pi(y′|x̂′)

+
∂ log pi+1(x̂|x)

∂ log Zi(x1)

∂ log Zi(x1)

∂ log pi(y′|x̂′)
= β δx̂,x̂′ p(y′|x)− δx,x1 β pi+1(x̂′|x1)p(y′|x1) (A67)

Summing over the dummy variable x1, this is the coordinates’ exchange Jacobian Jenc
dec

mentioned in Section 2:

d log pi+1(x̂|x)
d log pi(y′|x̂′)

= β p(y′|x)
[
δx̂,x̂′ − pi+1(x̂′|x)

]
(A68)

Next, for the derivative with respect to the marginal,

d log pi+1(x̂|x)
d log pi(x̂′)

=
∂ log pi+1(x̂|x)

∂ log pi(x̂′)
+

∂ log pi+1(x̂|x)
∂ log Zi(x1)

∂ log Zi(x1)

∂ log pi(x̂′)

+

[
∂ log pi+1(x̂|x)

∂ log Zi(x1)

∂ log Zi(x1)

∂ log pi(y2|x̂3)
+

∂ log pi+1(x̂|x)
∂ log pi(y2|x̂3)

]
∂ log pi(y2|x̂3)

∂ log pi(x4|x̂5)

∂ log pi(x4|x̂5)

∂ log pi(x̂′)

=δx̂,x̂′ − δx,x1 pi+1(x̂′|x1)

+
[
− δx,x1 β pi+1(x̂3|x1)p(y2|x1) + β δx̂3,x̂ p(y2|x)

] p(y2|x4)pi(x4|x̂3)

pi(y2|x̂3)
δx̂3,x̂5 · (−δx̂5,x̂′) (A69)

Summing over the five dummy variables, this is the coordinates’ exchange Jacobian Jenc
mrg

from Section 2:
d log pi+1(x̂|x)

d log pi(x̂′)
= (1− β)

[
δx̂,x̂′ − pi+1(x̂′|x)

]
(A70)

Finally, note that the encoder Step 1.8 depends on β explicitly, rather than indirectly only
via its other variables. So, to calculate the partial derivative term ∂log pi+1(x̂|x)

∂β in (A63), write
as follows for log Z:

∂

∂β
Zi(x, β)

Step 1.7
= ∑̂

x
pi(x̂)

∂

∂β
exp

{
−β DKL

[
p(y|x)||pi(y|x̂)

]}
= − ∑̂

x
pi(x̂)DKL

[
p(y|x)||pi(y|x̂)

]
exp

{
−β DKL

[
p(y|x)||pi(y|x̂)

]}
(A71)

Thus,

∂

∂β
log Zi(x, β) =

1
Zi(x, β)

∂

∂β
Zi(x, β)

(A71)
= −∑

x̂

pi(x̂) exp
{
−β DKL

[
p(y|x)||pi(y|x̂)

]}
Zi(x, β)

DKL
[
p(y|x)||pi(y|x̂)

]
Step 1.8
= −∑

x̂
pi+1(x̂|x)DKL

[
p(y|x)||pi(y|x̂)

]
. (A72)

Entropy 2023, 25, 1370 53 of 62

And so, from the encoder Step 1.8, we have

∂log pi+1(x̂|x)
∂β

=
∂log pi(x̂)

∂β
− ∂log Zi(x, β)

∂β
− ∂

∂β

(
βDKL

[
p(y|x)||pi(y|x̂)

])
(A72)
= ∑

x̂′′
pi+1(x̂′′|x)DKL

[
p(y|x)||pi(y|x̂′′)

]
− DKL

[
p(y|x)||pi(y|x̂)

]
(A73)

where the term ∂log pi(x̂)
∂β vanishes since it is considered as an independent variable here.

Appendix C. Proof of Lemma 1, on the Kernel of the Jacobian of the IB Operator in
Log-Decoder Coordinates

We prove Lemma 1 from Section 3, using the results of Appendix B.
In the first direction, suppose that

((
vy,x̂

)
y,x̂, (ux̂)x̂

)
is a vector in the left kernel of the

Jacobian of the IB operator (5) in log-decoder coordinates, I − Dlog p(y|x̂),log p(x̂)BAβ, as in
(16) in Section 3. Using the Jacobian’s implicit form (A25) (Appendix B.2), this is to say that

vy′ ,x̂′ = ∑
y,x̂

vy,x̂
d log pi+1(y|x̂)
d log pi(y′|x̂′)

+ ∑̂
x

ux̂
d log pi+1(x̂)
d log pi(y′|x̂′)

and (A74)

ux̂′ = ∑
y,x̂

vy,x̂
d log pi+1(y|x̂)

d log pi(x̂′)
+ ∑̂

x
ux̂

d log pi+1(x̂)
d log pi(x̂′)

(A75)

hold, for every y′ and x̂′. We spell out and manipulate these equations to obtain the desired
result.

By the Jacobian’s explicit form (A44) from Appendix B.2, Equation (A74) spells out as

vy′ ,x̂′ = β ·∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)
·
(

1− δy′′ ,y
pi+1(y|x̂)

)
C(x̂, x̂′′; i + 1)y′ ,y′′

+ β · ∑̂
x

ux̂

[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
, (A76)

while the second Equation (A75) spells out as

ux̂′ = (1− β) ·∑
y,x̂

vy,x̂ ∑
y′′

[
1− δy′′ ,y

pi+1(y|x̂)
]

B(x̂, x̂′; i + 1)y′′

+ (1− β) · ∑̂
x

ux̂

(
δx̂,x̂′ − A(x̂, x̂′; i + 1)

)
. (A77)

Next, we expand and simplify each of the terms in (A76) and (A77), using the definition
(A32) of A, B, and C from Appendix B.2.

For the first summand to the right of (A76),

β ·∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)(
1− δy′′ ,y

pi+1(y|x̂)

)
C(x̂, x̂′′; i + 1)y′ ,y′′

(A32)
= β ·∑

y,x̂
vy,x̂ ∑

x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)(
1− δy′′ ,y

pi+1(y|x̂)

)
∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂) (A78)

Entropy 2023, 25, 1370 54 of 62

We simplify each of the four addends to the right of (A78) while temporarily ignoring the β
coefficient. For the δx̂′′ ,x̂′ · 1 term,

∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂′′ ,x̂′ ∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= ∑
y,x̂

vy,x̂ ∑
x

p(y′|x)pi+1(x̂′|x)pi+1(x|x̂) (A79)

For the −δx̂′′ ,x̂′ ·
δy′′ ,y

pi+1(y|x̂) term,

−∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂′′ ,x̂′δy′′ ,y ∑
x

1
pi+1(y|x̂) p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= −∑
y,x̂

vy,x̂ ∑
x

1
pi+1(y|x̂) p(y′|x)p(y|x)pi+1(x̂′|x)pi+1(x|x̂) (A80)

For the −δx̂,x̂′ · 1 term,

−∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂,x̂′ ∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= −∑
y

vy,x̂′ ∑
x

p(y′|x)pi+1(x|x̂′) = −∑
y

vy,x̂′ pi+1(y′|x̂′) (A81)

And for the last −δx̂,x̂′ ·
−δy′′ ,y

pi+1(y|x̂) term,

∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂,x̂′ ·
δy′′ ,y

pi+1(y|x̂) ∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= ∑
y

vy,x̂′

pi+1(y|x̂′) ∑
x

p(y′|x)p(y|x)pi+1(x|x̂′) (A82)

Collecting (A79)–(A82) back into (A78), we obtain

β ·∑
y,x̂

vy,x̂ ∑
x

p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]

+ β ·∑
y

vy,x̂′
1

pi+1(y|x̂′) ∑
x

p(y|x)p(y′|x)pi+1(x|x̂′)− β · pi+1(y′|x̂′)∑
y

vy,x̂′ (A83)

for the first summand to the right of (A76).
The second summand to the right of (A76) equals

β · ∑̂
x

ux̂

[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(A32)
= β · ux̂′ pi+1(y′|x̂′)− β ·∑

x
p(y′|x)pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A84)

Combining (A83) and (A84), Equation (A76) is equivalent to

1
β · vy′ ,x̂′ + pi+1(y′|x̂′)∑

y
vy,x̂′ − ux̂′ pi+1(y′|x̂′)

= ∑
y,x̂

vy,x̂ ∑
x

p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]

+ ∑
y

vy,x̂′ ∑
x

p(y′|x)pi+1(x|x̂′) p(y|x)
pi+1(y|x̂′) −∑

x
p(y′|x)pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A85)

Entropy 2023, 25, 1370 55 of 62

for any y′ and x̂′. Summing (A85) over y′ and simplifying, we obtain
1
β ·∑

y
vy,x̂′ − ux̂′

= ∑
y,x̂

vy,x̂ ∑
x

pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]
−∑

x
pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A86)

for any x̂′.
Next, we expand and simplify Equation (A77). Using the definition (A32) of B, the

first summand to its right can be written as

(1− β) ·∑
y,x̂

vy,x̂ ∑
x

pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]

. (A87)

Similarly, the second summand to the right of (A77) can be written as

(1− β) ·
[
ux̂′ −∑

x
pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂)

]
. (A88)

Combining (A87) and (A88), Equation (A77) can now be written explicitly,

β
1−β · ux̂′ = ∑

y,x̂
vy,x̂ ∑

x
pi+1(x̂′|x)pi+1(x|x̂)

[
1− p(y|x)

pi+1(y|x̂)
]
−∑

x
pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A89)

for every x̂′. Next, subtracting (A89) from (A86), we obtain

ux̂ = 1−β
β ·∑

y
vy,x̂ (A90)

for any x̂.
Substituting (A90) into (A85) and using the decoder Step 1.6 to expand

pi+1(y′|x̂′) there,

1
β · vy′ ,x̂′ = ∑

y,x̂
vy,x̂ ∑

x
pi+1(x̂′|x)p(y′|x)pi+1(x|x̂)

[
2β−1

β − p(y|x)
pi+1(y|x̂)

]
−∑

y
vy,x̂′ ∑

x
p(y′|x)pi+1(x|x̂′) · 2β−1

β + ∑
y

vy,x̂′ ∑
x

p(y′|x)pi+1(x|x̂′) p(y|x)
pi+1(y|x̂′) (A91)

Next, inserting ∑x̂ δx̂,x̂′ into the sums on the last line,

1
β · vy′ ,x̂′ = ∑

y,x̂
vy,x̂ ∑

x
pi+1(x̂′|x)p(y′|x)pi+1(x|x̂)

[
2β−1

β − p(y|x)
pi+1(y|x̂)

]
−∑

y,x̂
vy,x̂ ∑

x
δx̂,x̂′ p(y′|x)pi+1(x|x̂)

[
2β−1

β − p(y|x)
pi+1(y|x̂)

]
(A92)

Finally, this simplifies to

vy′ ,x̂′ = ∑
y,x̂

vy,x̂ ∑
x

p(y′|x)
[
δx̂,x̂′ − pi+1(x̂′|x)

]
pi+1(x|x̂)

[
β · p(y|x)

pi+1(y|x̂) + (1− 2β)
]

(A93)

The latter is to say that
(
vy,x̂

)
y,x̂ is a left-eigenvector of the eigenvalue 1 of the matrix to

the right. At an IB root, this is precisely the matrix S (17) from the Lemma’s statement, as
desired.

As a side note, we comment that Equations (A74) and (A75) also imply

∀y ∑̂
x

vy,x̂ = 0 and ∑̂
x

ux̂ = 0 , (A94)

Entropy 2023, 25, 1370 56 of 62

which can be seen by summing (A85) and (A89), respectively, over x̂′, and simplifying.
In the other direction, let v :=

(
vy,x̂

)
y,x̂ be a left-eigenvector of the eigenvalue

1 of S (17). That is, assume that Equation (A93) holds. Define a vector u := (ux̂)x̂
by Equation (A90). Reversing the algebra, (A93) is equivalent to (A91). Substituting (A90)
into the latter yields back (A85), which is equivalent to the explicit form (A76) of Equation
(A74). Next, summing (A85) over y′ and simplifying yields (A86). Adding the latter to
(A90) yields back (A89), which is equivalent to Equation (A77), the explicit form of (A75).
To conclude, both of the Equations (A74) and (A75) hold, as claimed.

Appendix D. Approximate Error Analysis for Deterministic Annealing and for Euler’s
Method with BA

Complementing the results of Section 4, we provide an approximate error analysis for
two computation methods for the IB: deterministic annealing and Euler’s method combined
with a fixed number of BA iterations.

First, we recap the linearization argument around Equation (10) in [4]. Denote repeated
BA iterations initialized at p0 by

pk+1 := BAβ[pk] . (A95)

Linearizing around a fixed-point pβ of BA,

BA[pk] ' pβ + D BAβ|pβ
·
(

pk − pβ

)
, (A96)

where D BAβ|pβ
denotes the Jacobian matrix of BAβ evaluated at pβ. Rewriting in terms

of the error δpk := pk − pβ of the k-th iterate,

δpk+1 ' D BAβ|pβ
· δpk . (A97)

Thus, to first order, repeated applications of BAβ reduce the initial error according to

‖δpk+1‖ '
∥∥∥∥(D BAβ|pβ

)k
· δp0

∥∥∥∥ . (A98)

Next, consider k > 0 applications of BAβ+∆β to a root pβ at β. This is similar to deter-
ministic annealing, but with a capped number of BA iterations. Plugging the initial error
δp0 := pβ − pβ+∆β ' −∆β

dp
dβ

∣∣
β

into Equation (A98) shows that this method is of the first
order:

‖δpk+1‖ ' |∆β| ·
∥∥∥∥(D BAβ+∆β|pβ+∆β

)k dp
dβ

∣∣
β

∥∥∥∥ . (A99)

Finally, we combine BA with Euler’s method for the IB, Equation (22). Consider k > 0
applications of BAβ+∆β to the approximation pβ + ∆β

dp
dβ

∣∣
β

produced by an Euler method
step. Its initial error is

δp0 := pβ + ∆β
dp
dβ

∣∣
β
− pβ+∆β = − 1

2 (∆β)2 d2 p
dβ2

∣∣
β′ , (A100)

where the last equality follows from the second-order expansion pβ+∆β = pβ + ∆β
dp
dβ

∣∣
β
+

1
2 (∆β)2 d2 p

dβ2

∣∣
β′ , with β′ ∈ [β, β + ∆β]. Similar to before, plugging this into Equation (A98)

shows that this method is of the second order:

‖δpk+1‖ ' 1
2 |∆β|2 ·

∥∥∥∥(D BAβ+∆β|pβ+∆β

)k d2 p
dβ2

∣∣
β′

∥∥∥∥ . (A101)

Entropy 2023, 25, 1370 57 of 62

Appendix E. An Exact Solution for a Binary Symmetric Channel

Define an IB problem by Y ∼ Bernoulli(1
2) and X := Y ⊕ Z for Z ∼ Bernoulli(α)

independent of Y, 0 < α < 1
2 , where ⊕ denotes addition modulo 2. Explicitly, it is given

by pY|X =
(

1− α α
α 1− α

)
and pX = (1

2 , 1
2). We synthesize exact solutions for this problem

using Mrs. Gerber’s Lemma [38] and by following [2].
Let h(p) := −p log p− (1− p) log(1− p) be the binary entropy, with h(0) := h(1) := 0.

It is injective on [0, 1
2], with a maximal value of log 2 at p = 1

2 . So, its inverse function h−1

is well-defined on [0, log 2]. Given a constraint IX ∈ [0, log 2] on I(X̂; X), I(X̂; X) ≤ IX,
define a random variable V ∼ Bernoulli(δ) and set X̂ := X ⊕ V, where δ is defined by
h(δ) = log 2 − IX or equivalently in terms of h−1 by δ := h−1(log 2 − IX). Explicitly,

p(x̂|x) =
(

1− δ δ
δ 1− δ

)
, with its rows indexed by x̂ and columns by x. X̂ is also a

Bernoulli(1
2) variable since X is, and so

I(X̂; X) = H(X̂)− H(X̂|X) = log 2− h(δ) = IX , (A102)

showing that the constraint on I(X̂; X) holds. The chain X̂ → X → Y of random variables
is readily seen to be Markov. By Corollary 4 in [38], it follows that I(X̂; Y) ≤ log 2− h(α ∗ δ),
where a ∗ b := a(1− b) + b(1− a). Finally, equality follows by Theorem 1 there. Thus, the
above p(x̂|x) is IB-optimal.

The above defines an IB solution p(x̂|x) as a function of IX . However, our numerical
computations are phrased in terms of the IB’s Lagrange multiplier β. To that end, note
that [2] (Section IV.A) show that

β · (1− 2α) log
1− α ∗ δ

α ∗ δ
= log

1− δ

δ
, (A103)

and that the bifurcation of this problem occurs at

βc =
1

(1− 2α)2 . (A104)

To conclude, we have β = β(δ) as a function of δ, δ = δ(IX) as a function of IX, and
the encoder p(x̂|x) as a function of δ. These functional dependencies are summarized
as follows:

p(x̂|x) // δ

yy
IX β

OO (A105)

where the variable at the tail of each arrow is a function of that at its head.
Writing p =

(
p(x̂|x)

)
x̂,x, its derivative with respect to β can be calculated by the

chain rule:
dp
dβ

=
d

dβ

(
p
(

β−1(δ)
))

=
dp
dδ

(
dβ

dδ

)−1
, (A106)

where we have applied the derivative of an inverse function (f−1)′ = 1/ f ′ to β(δ) in (A103),

to differentiate δ(β). From the argument around (A102), dp
dδ =

(−1 1
1 −1

)
. While this yields

an analytical expression for the derivative dp
dβ , both of the terms to the right of (A106) are

evaluated at δ(β), for a given β value. Although it is straightforward to compute δ(β)
numerically from (A103), this entails numerical error, especially as δ approaches 1/2 near the
bifurcation. For the solution with respect to decoder coordinates, an immediate application
of the Bayes rule shows that

p(x̂) =
1
2

and p(y|x̂) =
(

α ∗ (1− δ) α ∗ δ
α ∗ δ α ∗ (1− δ)

)
, (A107)

Entropy 2023, 25, 1370 58 of 62

where the rows of p(y|x̂) are indexed by y, and columns by x̂. Along with dp(y|x̂)
dδ =

(2α− 1) ·
(

1 −1
−1 1

)
, its derivatives with respect to β follow as in (A106).

Appendix F. Equivalent Conditions for Cluster-Merging Bifurcations

We briefly discuss the equivalent conditions for cluster-merging bifurcations in the IB
(Section 5.2) found in the literature.

Rose et al. [39] (Section 4) derive a condition for cluster-splitting phase transitions
(Equation (17) there) in the context of fuzzy clustering. Following this, [13] (3.2 in Part III)
derives an analogous condition for cluster splitting in the IB (Equation (12) there):

(I − β CX(x̂; β))u = 0 , (A108)

where I is the identity. Namely, for a cluster x̂ to split, it is necessary that 1/β be an
eigenvalue of an |X |-by-|X |matrix CX(x̂; β), whose entries at an IB root are given by

CX(x̂; β)x,x′ := ∑
y

p(y|x)p(y|x′)pβ(x′|x̂)
pβ(y|x̂)

. (A109)

While the coefficients matrix (A109) for the IB differs from the one for fuzzy clustering,
inter-cluster interactions are explicitly neglected in both derivations (see therein). Indeed,
the definition (A109) of CX involves the coordinates of cluster x̂ alone, as one might expect
when considering a root in either decoder or in inverse encoder coordinates (Section 2).
Reversing the dynamics in β, condition (A108) characterizes cluster-merging bifurcations
in the IB (Section 5.2).

In [13] it is noted that (A108) is closely related to the bifurcation analysis of [9]. The
latter provides a condition to identify the critical β values of IB bifurcations, given in
their Theorem 5.3. Indeed, their condition is equivalent to (A108), and therefore it also
characterizes cluster-merging bifurcations. To see this, the necessary condition they give
for a phase transition at β is that 1/β must be an eigenvalue of a matrix V (Equation (21)
there). When written in our notation, this matrix is given by

V(x̂; β)x,x′ := ∑
y

p(x′, y)p(x, y)pβ(x̂|x)
pβ(y, x̂)p(x′)

. (A110)

However, V (A110) is readily seen to be the transpose of CX (A109), and so they have the
same eigenvalues.

Appendix G. Lyapunov Stability of an Optimal IB Root

We provide the essential parts of a proof that an optimal IB root is Lyapunov uniformly
asymptotically stable on closed intervals which do not contain a bifurcation when following
the flow dictated by the IB’s ODE (16) in decreasing β. Definitions for the below are as in [40]
(see especially Section 4.2 there). See Section 6.3 for a discussion of the results below.

Let p∗(β) be an optimal IB root. We start by rewriting it as an equilibrium of a non-
autonomous ODE, as in [40] (Equation (4.1)). Consider the implicit ODE (7)
dp
dβ = −(DpF)−1DβF, specialized to the IB by setting F := Id − BAβ (5). Denote
δp := p − p∗, for an arbitrary p. Subtracting the ODE at p from that at p∗ yields a
non-autonomous ODE in the error δp from the optimal root:

dδp
dβ = (DpF)−1DβF|p∗ − (DpF)−1DβF|p∗+δp (A111)

This rewrites the given root p∗ as an equilibrium δp = 0 of this ODE (A111), simplifying
the below.

Entropy 2023, 25, 1370 59 of 62

Next, we define a Lyapunov function for the flow of the equilibrium δp = 0 along the ODE
(A111), when its dynamics in β is reversed. Consider the IB’s Lagrangian
Lβ := I(X; X̂)− β · I(Y; X̂) as a functional in p, and let L∗β := Lβ[p∗] be its optimal value at
β. Then, (

Lβ −L∗β
)
(δp) (A112)

is the desired Lyapunov function. Specifically, (i) Lβ − L∗β is positive definite and (ii)
d

dβ

(
Lβ −L∗β

)
is negative definite, when the dynamics in β are reversed. Theorem 4.1 in [40]

then implies that δp = 0 is uniformly asymptotically stable [40] (Definition 4.6).
For (i), Lβ − L∗β (A112) is immediately seen to be positive semi-definite from the

definition of L∗β, up to technicalities ignored here (cf., Definition 4.7 in [40]). The results of
Section 5.3 (after Proposition 1) imply that representing p in reduced log-decoder coordi-
nates renders (A112) strictly positive definite. Indeed, D(Id− BAβ) is non-singular in a
reduced representation in these coordinates, as mentioned there, and so an optimal root p∗

is locally unique. As for condition (ii), from the definition of Lβ we have

d
dβLβ = d

dβ I(X; X̂)− β d
dβ I(Y; X̂)− I(Y; X̂) = −I(Y; X̂) , (A113)

where d
dβ I(X; X̂) = β d

dβ I(Y; X̂) in the last equality follows by direct calculations similar to
those in the Appendix of [13] (Part III). Thus, for the β-derivative of (A112), we have

d
dβ

(
Lβ −L∗β

)
(δp) = I(Y; X̂)|p∗ − I(Y; X̂)|p . (A114)

The latter is always positive semi-definite around p∗, since by definition (1) p∗ yields the
maximal Y-information subject to a constraint on the X-information. The same argument
as above shows that it is strictly positive definite. Finally, reversing the dynamics in β
leaves the ODE (A111) unaffected but flips the sign of (A114), rendering it negative definite
as required.

Appendix H. Introducing Degeneracies to the IB Operator in Decoder Coordinates Is
Uninformative at an Isolated Optimal Root

Suppose that the Jacobian of the IB operator Id− BAβ (5) in log-decoder coordinates
is non-singular at a reduced representation of an IB root, as in the argument following
Proposition 1 (Section 5.3). We show that evaluating it on a non-reduced (degenerate)
representation only permits one to detect kernel directions which are due to the selected
degeneracy. Thus, it is inadequate for detecting bifurcations, as explained in Section 5.3.

Let p ∈ ∆[∆[Y]] be an IB root of effective cardinality T1. A T-clustered representation
of a root (e.g., in decoder coordinates) is a function π : ∆[∆[Y]] → R(|Y|+1)·T , defined
on some neighborhood of p. In the other way around, one can consider the inclusion
i : R(|Y|+1)·T → ∆[∆[Y]], defined in the obvious way on normalized decoder coordinates at
some neighborhood of π(p). Let π be a representation of p in its effective cardinality T1,
and π̃ a degenerate one on T2 > T1 clusters. These satisfy

π = reduc ◦ π̃ , (A115)

where reduc is the reduction map (defined similar to the root-reduction Algorithm 2, by
setting its thresholds to zero, δ1 = δ2 = 0, and replacing its strict inequalities with non-strict
ones. Note that Algorithm 2 has a well-defined output for every input). In the other way
around, one can pick a particular degenerating map degen (e.g., “split the third cluster to
two copies of probability ratio 1:2”). Applying a particular degeneracy and then reducing
is the identity,

reduc ◦ degen = Id , (A116)

Entropy 2023, 25, 1370 60 of 62

though not the other way around. Let i and ĩ be the inclusions corresponding to π and π̃,
respectively. Similar to (A115), degenerating a root has no effect before it is included into
∆[∆[Y]],

i = ĩ ◦ degen (A117)

Recall from Section 5.1 (before Conjecture 1) that BAβ in decoder coordinates may be
considered as an operator on ∆[∆[Y]]. To summarize, we have the following diagram:

R
p

// ∆[∆[Y]]

BAβ

��

π̃

,,

π

**

R(|Y|+1)·T2

reduc
��

ĩ
uu

R(|Y|+1)·T1
i

PP

degen

OO
(A118)

Next, consider the representations of the IB operator Id− BAβ (5) on T1 and T2 clusters.
These amount to pre-composing with the inclusions and post-composing with the repre-
sentation maps. Denote by Idi the identity operator on R(|Y|+1)·Ti . By identities (A115),
(A116), and (A117), the T1-clustered representation of Id− BAβ (5) satisfies

Id1 − π ◦ BAβ ◦ i = reduc ◦ degen− reduc ◦ π̃ ◦ BAβ ◦ ĩ ◦ degen

= reduc ◦
[
Id2 − π̃ ◦ BAβ ◦ ĩ

]
◦ degen (A119)

Differentiating, by the chain rule we have

D
(

Id1 − π ◦ BAβ ◦ i
)
= D(reduc)D

(
Id2 − π̃ ◦ BAβ ◦ ĩ

)
D(degen) . (A120)

Multiplying a matrix B from the left can only enlarge the kernel, dim ker(AB) ≥ dim ker B,
and so

dim ker D
(

Id1 − π ◦ BAβ ◦ i
)
≥ dim ker

(
D
(

Id2 − π̃ ◦ BAβ ◦ ĩ
)

D(degen)
)

. (A121)

Since the left-hand side is evaluated at a reduced representation, it vanishes by assumption.
Thus, D

(
Id2 − π̃ ◦ BAβ ◦ ĩ

)
D(degen) is of full rank, yielding

ker D
(

Id2 − π̃ ◦ BAβ ◦ ĩ
)
⊂ (Im D(degen))⊥ , (A122)

where (Im D(degen))⊥ denotes the vectors tangent to the column space Im D(degen) of
D(degen). Stated differently, the Jacobian D

(
Id2 − π̃ ◦ BAβ ◦ ĩ

)
of a T2-clustered represen-

tation of Id− BAβ (5) can only detect directions in (Im D(degen))⊥, which are determined
by the choice of the degenerating map degen, as argued.

For completeness, splitting a cluster r ∈ ∆[Y] into two at some fixed ratio 0 < λ < 1 is
of the form (r, p(r)) 7→ (r, λ · p(r), r, (1− λ) · p(r)). Adding a pre-defined cluster r′ ∈ ∆[Y]
of zero mass is constant (. . .) 7→ (. . . , r′, 0) on the newly added coordinates. A general
degeneracy map degen is a composition of these, and is otherwise the identity map on
unaffected coordinates.

References
1. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the 37th Annual Allerton Conference

on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.
2. Witsenhausen, H.; Wyner, A. A Conditional Entropy Bound for a Pair of Discrete Random Variables. IEEE Trans. Inf. Theory 1975,

21, 493–501. [CrossRef]

http://doi.org/10.1109/TIT.1975.1055437

Entropy 2023, 25, 1370 61 of 62

3. Zaidi, A.; Estella-Aguerri, I.; Shamai, S. On the Information Bottleneck Problems: Models, connections, Applications and
Information Theoretic Views. Entropy 2020, 22, 151. [CrossRef] [PubMed]

4. Agmon, S.; Benger, E.; Ordentlich, O.; Tishby, N. Critical Slowing Down Near Topological Transitions in Rate-Distortion Problems.
In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021;
pp. 2625–2630. [CrossRef]

5. Gilad-Bachrach, R.; Navot, A.; Tishby, N. An Information Theoretic Tradeoff between Complexity and Accuracy. In Learning
Theory and Kernel Machines; Springer: Berlin/Heidelberg, Germany, 2003. [CrossRef]

6. Agmon, S. Root Tracking for Rate-Distortion: Approximating a Solution Curve with Higher Implicit Multivariate Derivatives.
IEEE Trans. Inf. Theory 2023, in press.

7. De Oliveira, O. The Implicit and the Inverse Function Theorems: Easy Proofs. Real Anal. Exch. 2014, 39, 207–218. [CrossRef]
8. Blahut, R. Computation of Channel Capacity and Rate-Distortion Functions. IEEE Trans. Inf. Theory 1972, 18, 460–473. [CrossRef]
9. Gedeon, T.; Parker, A.E.; Dimitrov, A.G. The Mathematical Structure of Information Bottleneck Methods. Entropy 2012, 14, 456–479.

[CrossRef]
10. Agmon, S. On Bifurcations in Rate-Distortion Theory and the Information Bottleneck Method. Ph.D. Thesis, The Hebrew

University of Jerusalem, Jerusalem, Israel, 2022.
11. Rose, K.; Gurewitz, E.; Fox, G. A deterministic annealing approach to clustering. Pattern Recognit. Lett. 1990, 11, 589–594.

[CrossRef]
12. Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 3rd ed.; Springer Science & Business Media: New York, NY USA, 2004;

Volume 112. [CrossRef]
13. Zaslavsky, N. Information-Theoretic Principles in the Evolution of Semantic Systems. Ph.D. Thesis, The Hebrew University of

Jerusalem, Jerusalem, Israel, 2019.
14. Ngampruetikorn, V.; Schwab, D.J. Perturbation Theory for the Information Bottleneck. Adv. Neural Inf. Process. Syst. 2021, 34,

21008–21018. [PubMed]
15. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the Information Bottleneck. PMLR 2020, 115, 1050–1060. [CrossRef]
16. Wu, T.; Fischer, I. Phase Transitions for the Information Bottleneck in Representation Learning. In Proceedings of the Eighth

International Conference on Learning Representations (ICLR 2020), Virtual Conference, 26 April–1 May 2020.
17. Rose, K. A Mapping Approach to Rate-Distortion Computation and Analysis. IEEE Trans. Inf. Theory 1994, 40, 1939–1952.

[CrossRef]
18. Giaquinta, M.; Hildebrandt, S. Calculus of Variations I; Springer: Berlin/Heidelberg, Germany, 2004; Volume 310. [CrossRef]
19. Parker, A.E.; Dimitrov, A.G. Symmetry-Breaking Bifurcations of the Information Bottleneck and Related Problems. Entropy 2022,

24, 1231. [CrossRef] [PubMed]
20. Harremoës, P.; Tishby, N. The Information Bottleneck Revisited or How to Choose a Good Distortion Measure. In Proceedings of

the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 566–570. [CrossRef]
21. Kielhöfer, H. Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, 2nd ed.; Springer: New York, NY,

USA, 2012. [CrossRef]
22. Lee, J.M. Introduction to Smooth Manifolds, 2nd ed.; Spinger: New York, NY, USA, 2012. [CrossRef]
23. Dummit, D.S.; Foote, R.M. Abstract Algebra, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004.
24. Teschl, G. Topics in Linear and Nonlinear Functional Analysis; University of Vienna: Vienna, Austria, 2022. Available online:

https://www.mat.univie.ac.at/~gerald/ftp/book-fa/fa.pdf (accessed on 20 December 2022).
25. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001.
26. Butcher, J.C. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [CrossRef]
27. Atkinson, K.E.; Han, W.; Stewart, D. Numerical Solution of Ordinary Differential Equations; John Wiley & Sons: Hoboken, NJ, USA,

2009; Volume 108. [CrossRef]
28. Berger, T. Rate Distortion Theory: A Mathematical Basis for Data Compression; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971.
29. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
30. Shannon, C.E. Coding Theorems for a Discrete Source with a Fidelity Criterion. IRE Nat. Conv. Rec. 1959, 4, 325–350.
31. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 748. [CrossRef]
32. Dieudonné, J. Foundations of Modern Analysis; Academic Press: Cambridge, MA, USA, 1969.
33. Gowers, T.; Barrow-Green, J.; Leader, I. The Princeton Companion to Mathematics; Princeton University Press: Princeton, NJ, USA, 2008.
34. Coolidge, J.L. A Treatise on Algebraic Plane Curves; Dover: Dover, NY, USA, 1959.
35. Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed.; CRC Press:

Boca Raton, FL, USA, 2018.
36. Golubitsky, M.; Stewart, I.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory II; Springer: New York, NY, USA, 1988.

[CrossRef]
37. Benger, E. (The Hebrew University of Jerusalem, Jerusalem, Israel). Private communications, 2019.
38. Wyner, A.; Ziv, J. A Theorem on the Entropy of Certain Binary Sequences and Applications: Part I. IEEE Trans. Inf. Theory 1973,

19, 769–772. [CrossRef]

http://dx.doi.org/10.3390/e22020151
http://www.ncbi.nlm.nih.gov/pubmed/33285926
https://doi.org/10.1109/ISIT45174.2021.9517956
https://doi.org/10.1007/978-3-540-45167-9_43
http://dx.doi.org/10.14321/realanalexch.39.1.0207
http://dx.doi.org/10.1109/TIT.1972.1054855
http://dx.doi.org/10.3390/e14030456
http://dx.doi.org/10.1016/0167-8655(90)90010-Y
https://doi.org/10.1007/978-1-4757-3978-7
http://www.ncbi.nlm.nih.gov/pubmed/36597463
http://dx.doi.org/10.3390/e21100924
http://dx.doi.org/10.1109/18.340468
https://doi.org/10.1007/978-3-662-03278-7
http://dx.doi.org/10.3390/e24091231
http://www.ncbi.nlm.nih.gov/pubmed/36141117
https://doi.org/10.1109/isit.2007.4557285
https://doi.org/10.1007/978-1-4614-0502-3
https://doi.org/10.1007/978-1-4419-9982-5
https://www.mat.univie.ac.at/~gerald/ftp/book-fa/fa.pdf
https://doi.org/10.1002/9781119121534
https://doi.org/10.1002/9781118164495
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/047174882x
https://doi.org/10.1007/978-1-4612-4574-2
http://dx.doi.org/10.1109/TIT.1973.1055107

Entropy 2023, 25, 1370 62 of 62

39. Rose, K.; Gurewitz, E.; Fox, G.C. Statistical Mechanics and Phase Transitions in Clustering. Phys. Rev. Lett. 1990, 65, 945.
[CrossRef] [PubMed]

40. Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevLett.65.945
http://www.ncbi.nlm.nih.gov/pubmed/10043066

	Introduction
	Coordinates Exchange for the IB
	Implicit Derivatives at an IB Root and the IB's ODE
	A Modified Euler Method for the IB
	On IB Bifurcations
	The IB as a Rate-Distortion Problem
	Continuous IB Bifurcations: Cluster Vanishing and Cluster Merging
	Discontinuous IB Bifurcations and Linear Curve Segments

	First-Order Root Tracking for the Information Bottleneck
	The IBRT1 Algorithm 5
	Numerical Results for the IBRT1 Algorithm 5
	Basic Properties of the IBRT1 Algorithm 5 and Why It Works

	Concluding Remarks
	Appendix A
	Appendix B
	Appendix B.1
	Differentiating along the Dependencies Graph

	Appendix B.2
	Appendix B.3
	Appendix B.4
	Exchanging from Encoder to Decoder Coordinates
	Exchanging from Decoder to Encoder Coordinates

	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	References

