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Abstract: Quantum process tomography is a fundamental and critical benchmarking and certification
tool that is capable of fully characterizing an unknown quantum process. Standard quantum process
tomography suffers from an exponentially scaling number of measurements and complicated data
post-processing due to the curse of dimensionality. On the other hand, non-unitary operators are
more realistic cases. In this work, we put forward a variational quantum process tomography method
based on the supervised quantum machine learning framework. It approximates the unknown
non-unitary quantum process utilizing a relatively shallow depth parametric quantum circuit and
fewer input states. Numerically, we verified our method by reconstructing the non-unitary quantum
mappings up to eight qubits in two cases: the weighted sum of the randomly generated quantum
circuits and the imaginary time evolution of the Heisenberg XXZ spin chain Hamiltonian. Results
show that those quantum processes could be reconstructed with high fidelities (>99%) and shallow
depth parametric quantum circuits (d ≤ 8), while the number of input states required is at least
two orders of magnitude less than the demands of the standard quantum process tomography. Our
work shows the potential of the variational quantum process tomography method in characterizing
non-unitary operators.

Keywords: quantum process tomography; variational quantum algorithm; non-unitary quantum
process

1. Introduction

Quantum process tomography is a fundamental and indispensable technique in quan-
tum information processing [1]. Recently, it has been increasingly crucial in benchmarking
and verifying the performance of a quantum device and its dynamics when the system
goes larger.

However, standard quantum process tomography (SQPT) [2,3] is cursed by the expo-
nentially exploding Hilbert space dimension used to represent the quantum process, which
needs to prepare an informationally complete set of input states and perform the standard
quantum state tomography on the corresponding output quantum states [3–5]. Specifically,
it requires 4n input states and 42n quantum measurements for an n-qubit quantum process.
Such exponential overhead severely constrains the problem size on which SQPT can be
feasibly conducted. Currently, SQPT has only been experimentally implemented up to
three qubits [6–11]. Many alternative proposals are put forward to address these problems,
including compressed sensing tomography [12,13] and ansatz-based tomography [14,15],
but at the cost of assuming specific structures of the unknown quantum process. While
other benchmarking protocols only partially characterize a quantum system, including
randomized benchmarking [16,17], direct fidelity estimation [18], and so on. Therefore,
quantum process tomography still plays an indispensable role since it is a comprehensive
characterization of quantum systems with full information and no prior assumptions. On
the other hand, realistic quantum processes are often non-unitary operators. So characteriz-
ing a non-unitary quantum process is a practical problem.
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Recently, quantum machine learning combined with parametric quantum circuit (PQC)
has been making considerable progress [19–24]. Reference [25] showed that a gradient-
based quantum machine learning algorithm could efficiently extract the information of
certain quantum states encoded in a PQC, after which the unknown quantum state can
be reconstructed classically with high fidelity using the optimal parameters of the PQC.
Further in Ref. [26], PQC with relatively shallow depth demonstrated the capability of
characterizing unitary mappings with fewer input states.

In this work, we propose a variational quantum process tomography (VQPT) method
of non-unitaries based on the supervised quantum machine learning framework, extending
the work in Ref. [26]. As shown in Figure 1a, we utilize a d-depth PQC C(~θ) to approximate
the unknown quantum process denoted by O, where~θ is the parameter list encoding the
information to be optimized in this PQC. As shown in Ref. [26], when O is a unitary, we
randomly prepare a training set of N quantum states |ψj〉 to train the PQC, each of which
is separately fed into the unknown quantum process O and the PQC C(~θ). Regarding
non-unitary cases, we put forward two methods in this paper—(1) superposing unitary
PQCs to approximate the non-unitary; (2) transforming the non-unitary problem into a
unitary one—to tackle the problem. Then, similarly, as long as each pair of output quantum
states,O |ψj〉 and C(~θ) |ψj〉 are identical, and that N is large enough, the unknown quantum
process should be approximated by C(~θ) no matter O is unitary or not. As a result, all the
information of O is stored in the parameters ~θ, and we can systematically reconstruct O
from those parameters using a classical computer. We numerically verified our approach
by reconstructing two typical non-unitary processes: the weighted sum of the randomly
generated quantum circuits and the imaginary time evolution of the Heisenberg XXZ
spin chain Hamiltonian, respectively. Numerical results show that we could reconstruct a
non-unitary quantum process up to 8 qubits with an average gate fidelity higher than 99%,
and the number of required input quantum states is smaller than that required by SQPT by
at least 2 orders of magnitude.
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Figure 1. (a) The general framework of our VQPT method. By training the PQC with the quantum
states in the training set Ψ and validation set Φ and optimizing the parameters in C(~θ) based on a
gradient-descent approach, the PQC C(~θ) gradually approximates the physical quantum process O.
(b) The structure of the PQC. It begins and ends with a single-qubit layer. Each two-qubit layer is
counted as a depth, and the circuit contains d depths of operations and ends with a single-qubit layer.

Compared to other tomography approaches, our method has several advantages.
First, combined with variational optimization, it avoids exponential measurements and
complicated quantum state tomography subroutines in SQPT. It only requires measuring
a single qubit for each configuration, hence is less prone to errors with relatively shallow
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circuit and simple measurement [27,28]. Second, with a small number of input states, our
approach greatly reduces the exponential state preparation overheads and reconstructs
O with high fidelities. And last, numerical simulations demonstrate the capability of our
method on non-unitary quantum processes up to eight-qubit cases, further proving its
generalities and potentials.

This paper is organized as follows. In Seciton 2, we introduce the scheme of our VQPT
for non-unitary processes. In Secitons 3 and 4, we give two cases for solving the non-unitary
quantum process tomography. We verified our method with numerical simulations of
non-unitary quantum process tomography for the weighted sum of the randomly generated
quantum circuit in Seciton 3 and the imaginary time evolution of a Heisenberg XXZ spin
chain Hamiltonian in Seciton 4. We conclude in Section 5.

2. Variational Algorithm for Approximating Non-Unitary Quantum Processes with
Parametric Quantum Circuits

There are three main components in variational quantum algorithms: ansatzes, cost
function, and optimization methods. Figure 2 gives an illustrative framework of variational
quantum algorithms (VQA) [29]. It is a quantum-classical hybrid architecture. In this
section, we describe the variational algorithm for non-unitary quantum processes from the
above three aspects.

Quantum

Ansatz

Classical

Cost function

Updating

Optimizer

Figure 2. Framework of the variational quantum algorithm consisting of the ansatz, cost function
and optimizer.

2.1. Ansatz of the Parametric Quantum Circuit

Ansatz is an essential aspect of a VQA. It encodes the parameters~θ, and can be further
trained to minimize the cost function. The specific structure of an ansatz varies from
each other depending on the task. Typical ansatzes include hardware-efficient ansatz [30],
variational Hamiltonian ansatz [31], and so on.

Here in our work, the design of our PQC is shown in Figure 1b, where interlaced
layers of single-qubit gates and two-qubits CNOT gates are used. Such an organization
facilitates the quick generation of entanglement between qubits, thus making it possible to
approximate complicated quantum processes. Specifically, each two-qubit layer is counted
as a depth, varying between odd and even depth. Each single-qubit layer contains three
rotational gates (Rz, Ry, and Rz) on each qubit, where Ry and Rz are defined as

Ry(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
;

Rz(θ) =

[
e−i θ

2 0
0 ei θ

2

]
. (1)

The sequences Rz, Ry, and Rz ensure that arbitrary single qubit rotations can be
realized with appropriate parameters. Our PQC ends with a single-qubit layer. As a result,
the total number of parameters for such a circuit with n qubits and d depths is 3n(d + 1).
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It is noted that in practice, the design of the PQC should consider the underlying quantum
hardware, especially the choice and pattern of the two-qubit gates. Hence the ansatz is not
fixed, and our method is a generalized framework with various circuit ansatzes.

2.2. Cost Function on the Training Set

In our method, we build a cost function on the training set, which evaluates the
distance between C(~θ) and the target O. Concretely, we first randomly generate a training
set of N quantum states, denoted as Ψ = {|ψ1〉 , |ψ2〉 , . . ., |ψN〉}. Here, a random quantum
state is generated by applying an Ry gate with random parameters onto each qubit and
controlled phase (CZ) gates with random control and target qubits. Each state |ψj〉 is fed
into the unknown quantum process O and the PQC C(~θ), with the output quantum states
denoted as |ψideal

j 〉 = O |ψj〉 and |ψout
j 〉 = C(~θ) |ψj〉. Then, we compute the Euclidean

distance between |ψideal
j 〉 and |ψout

j 〉, which is∥∥∥|ψout
j 〉 − |ψ

ideal
j 〉

∥∥∥2
= Re

(
〈ψideal

j |ψideal
j 〉+ 〈ψout

j |ψ
out
j 〉 − 2 〈ψideal

j |ψout
j 〉

)
. (2)

The inner product on the right-hand side of Equation (2) can be efficiently computed
with a quantum computer using a generalized SWAP-test algorithm [26]. Then, the cost
function f (~θ) is defined as the summation of the distance obtained over all input states,
which is

f (~θ) =
1
N

N

∑
j=1

∥∥∥|ψout
j 〉 − |ψ

ideal
j 〉

∥∥∥2

=
1
N

N

∑
j=1

Re
(
〈ψideal

j |ψideal
j 〉+ 〈ψout

j |ψ
out
j 〉 − 2 〈ψideal

j |ψout
j 〉

)
, (3)

namely, f (~θ) is the mean square error between the two sets of output quantum states.

2.3. Gradient-Based Optimization

The cost function f (~θ) is a hybrid quantum-classical function, and its gradient can
be estimated based on the chain rule, where it contains functions to be evaluated with a
quantum computer and functions to be evaluated on a classical computer:

∂ f (~θ)
∂~θj

=
∂ f (~θ)
∂S(~θ)

∂S(~θ)
∂~θj

=
∂ f (~θ)
∂S(~θ)

(
1
2
S
(
~θ+j

)
− 1

2
S
(
~θ−j

))
. (4)

S in our case means the generalized SWAP-test circuit with parametric quantum gates,
and ∂S(~θ)/∂~θj can be computed using the parameter-shift rule [32], where~θj denotes the
j-th parameter in the parameter list ~θ, and ~θ±j = ~θj ± π

2 . Hence, the gradient of the cost

function f (~θ) can be computed following Ref. [33], which proposed a method to embed
Equation (4) into a classical automatic differentiation framework, such that the gradient of
the hybrid quantum-classical cost function can be automatically computed using a hybrid
quantum-classical computer. The gradient can then be fed into a gradient-based optimizer
to minimize the cost function f (~θ).

2.4. Evaluation Criteria

After the training, we evaluate experimental results between O and C(~θ) using the
average gate fidelity [34]. The average gate fidelity Favg between the rebuilt C(~θ) and the
actual O is given by

Favg(C(~θ),O) =
∫

dψ
〈

ψ
∣∣∣C(~θ)†O(|ψ〉〈ψ|)C(~θ)

∣∣∣ψ〉. (5)
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In addition, we borrow the idea from supervised machine learning and design a
validation set to test the generalization ability of the training outcomes. Since during
training, we do not know whether our PQC is expressive enough to represent O, and
whether the number of input states is enough to ensure convergence to O. Moreover, in
practice, we may also have the problem of overfitting such that the optimal C(~θ) is very
distinct from O, but the cost function f (~θ) has already converged to 0. To overcome these
problems, we generate another set of N input states denoted as Φ = {|φ1〉 , |φ2〉 , . . ., |φN〉},
i.e., the validation set, which is independent of the training set. After the training process,
we feed each |φj〉 into the unknown quantum process and the resulting optimal PQC,
obtaining two outputs |φideal

j 〉 = O |φj〉 and |φout
j 〉 = C(~θ) |φj〉. Then, we compute the

quantum fidelity between |φideal
j 〉 and |φout

j 〉 efficiently through the SWAP-test [35] on a
quantum computer and summarize all the instances of the validation set, which is defined
as the accuracy

accuracy(C(~θ),O) = 1
N

N

∑
j∈Φ

Re
(
〈φideal

j |φout
j 〉

)
. (6)

It is noted that accuracy is a faithful tool. If accuracy is close to one, the PQC C(~θ) we
obtained can be well generalized to the new input validation states. The values of accuracy
and Favg are indeed strongly correlated in our numerical simulation. Therefore, we can
pick out the simulation with a larger accuracy value as a more faithful reconstruction of O.
Moreover, the accuracy is an efficient evaluation criterion. Since the direct characterization
of the distance between O and C(~θ) as required in Equation (5) scales exponentially with
the number of qubits n, it is possible to determine whether the training is successful or not
based on the accuracy, without resorting to the complete characterization of Favg.

3. Case Study I: Weighted Sum of the Randomly Generated Quantum Circuits

For an n-qubit randomly generated quantum circuit (RQC) [36], we first apply Hadamard
gates to initialize the state to a symmetric superposition. Then, the circuit is organized
by depth, including CZ gates alternating between odd and even configurations to entan-
gle neighboring qubits and randomly chosen single-qubit gate (T,

√
X or

√
Y). Finally,

Hadamard gates are applied to each qubit. It is noted that such randomly generated
quantum circuits are hard for efficient simulation on a classical computer [36,37].

Here, we take the weighted sum of RQC as the target non-unitary operator O
O = pI + (1− p)URQC, (7)

where the parameter p denotes the weighted probability that the operator is an identity
matrix.

3.1. Methods

For the non-unitary operator in Equation (7), we correspondingly utilize the weighted
sum of the unitary PQCs to approximate the target non-unitary quantum process

C ′(~θi, pi) = ∑
i

piCi(~θi), ∑ pi = 1, (8)

where pi are the weighting parameters and Ci(~θi) are the corresponding individual unitary
PQCs as shown in Figure 3. Here in the known structure case, we assume that C ′(~θ, p) =
pI + (1− p)C(~θ).
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validation set 

... ...

...
...

SWAP test

optimizing

validation set 

... ...

training set Ψ

... ...

Figure 3. Utilizing weighted sum of unitary PQCs to approximate the non-unitary operator.

When dealing with unitary mappings, the cost function in Equation (3) merely involves
the third term with variational parameters since |ψideal

j 〉 and |ψout
j 〉 are both norm-1 state

vectors. In terms of such non-unitary cases, these two output states cannot be kept at norm
one, depending on the circuit operations C ′. Therefore, the cost function involves both
circuit parameters~θi and weighting parameters pi:

f (~θi, pi) =
1
N

N

∑
j=1

Re
(
〈ψideal

j |ψideal
j 〉+ 〈ψout

j |ψ
out
j 〉 − 2 〈ψideal

j |ψout
j 〉

)
=

1
N

N

∑
j=1

Re
(
〈ψideal

j |ψideal
j 〉+ 〈ψj|C ′†C ′|ψj〉 − 2 〈ψideal

j |C ′|ψj〉
)

, (9)

Hence, the gradient calculation and consequent optimization are related to the collabo-
rative optimization of both parameters~θi and pi. In Section 3.2, we give concrete examples
of the non-unitary quantum process and the specific form of cost function and its gradient.

3.2. Numerical Results

• Fixed weighted sum of PQCs

A specific six-qubit randomly generated circuit is organized as shown in Figure 4a.
Here, we first considered the weighted summation as a fixed and known structure to
validate the capability of our VQPT method, where the weighting parameter is set at
p = 0.1. Hence, we utilized the ensemble of identity process I and the PQC C(~θ) to
approximate the non-unitary operator

C ′(~θ) = 0.1I + 0.9C(~θ). (10)

Numerically, we conducted the scalability tests up to eight-qubit cases, as shown in
Figure 4b (Data details are listed in Table A1 in Appendix A). Results show a perfect recon-
struction of the weighted summation operator with Favg > 99.99%. Meanwhile, compared to
the number of input states needed in SQPT (dashed line), our method has at least two orders
of magnitude fewer demands on the input states (rectangle marks). In Figure 4c, we give
the variational optimization details of (4, 5, 8), (5, 6, 12) and (6, 7, 35) configurations, where
we denote (n, d, N) as an n-qubit, d-depth, and N-input PQC configuration in numerical
simulation. The cost function f (~θ) and the fidelity Favg both converge to the optimums.



Entropy 2023, 25, 90 7 of 14

...

...

...

...

(a)

CZ gate

(b)

2 3 4 5 6 7

10

10
2

10
3

10
4

10
5

0.90

0.92

0.94

0.96

0.98

1

n
u

m
b

er
 o

f 
in

p
u

ts

number of qubits

max. 

     in SQPT

     in VQPT

8

(c) (d)

0

1.6

0 200 400 600 800 1000

V
al

u
es

Epochs Epochs

0

0.5

1.0

0 200 400 600 800 1000

1.5

Interlacing two-qubit layer

Randomly set single-qubit gate

V
al

u
es

M
ax

im
u

m

1.2

0.8

0.4 =0.20=0.05

=0.1

Figure 4. Numerical results on the weighted sum of the RQCs utilizing the weighting PQCs. (a) A
typical five-qubit RQC organization with interlacing two-qubit layer and randomly set single-qubit
gate. (b) Scalability tests from two-qubit to eight-qubit quantum processes. The left-axis (blue circle)
shows the maximum Favg reached during repetitive trials, and the logarithmic right-axis represents
the corresponding number of input states N needed, while the red rectangular denotes the input
state in our PQC, which is at least two orders of magnitude fewer than that in SQPT. It is noted that
the data presented is valid for both fixed and variational weighting parameter conditions, since we
utilized the same PQC configuration and achieved the same results. (c) VQPT on the weighted sum
of the randomly generated quantum circuit on n-qubit, d-depth, and N-input configurations (denoted
as (n, d, N)). The weighting probability p = 0.1 is a fixed and known parameter. (d) VQPT on the
weighted sum of the randomly generated quantum circuit on (6, 7, 35) cases with unknown weighting
parameters p. We initialized the parameter pinit = 0.1, and we presented two trials with different
target values popt = 0.05 and popt = 0.20 (red dotted lines). Results demonstrated convergence to the
optimal values, and the maximum Favg is over 99%.

• Variational weighted sum of PQCs

Further, we studied the case where the weighting parameter p is unknown,

C ′(~θ, p) = pI + (1− p)C(~θ). (11)

As shown in Section 3.1, when conducting tomography on a non-unitary operator
with an unknown weighting parameter, we could expand the specific cost function form
with both circuit parameters~θ and weighting parameter p. The first item 〈ψideal

j |ψideal
j 〉 in

Equation (9) is a fixed value, and the last two items involve these parameters and can be
further expanded with Equation (11):

〈ψout
j |ψ

out
j 〉 = 〈ψj|C ′(~θ, p)

†C ′(~θ, p)|ψj〉

= p2 〈ψj|ψj〉+ (1− p)2 〈ψj|C(~θ)†C(~θ)|ψj〉+ 2p(1− p) 〈ψj|C(~θ)|ψj〉 , (12)

〈ψideal
j |ψout

j 〉 = 〈ψ
ideal
j |C ′(~θ, p)|ψj〉

= p 〈ψideal
j |ψj〉+ (1− p) 〈ψideal

j |C(~θ)|ψj〉 . (13)

Based on the expanded cost function items in Equations (12) and (13), we can calculate
the corresponding gradient and conduct consequent optimization, where both ~θ and
p are variational targets. We give two examples of (6, 7, 35) with different weighting
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parameters popt = 0.05 and popt = 0.20, respectively, where the initial value is set as
pinit = 0.1. Numerical results in Figure 4d show that our method is capable of optimizing
the variational circuit parameters~θ (solid lines) together with the weighting parameter p
(triangle and rectangular marks) based on the flexible cost function f (~θ, p). Moreover, we
conducted the scalability tests on unknown weighting parameter p cases, which achieved
Favg > 99.99% on all conditions as listed in Table A1 in Appendix A.

Here, we give a two-qubit case with the target matrix and the reconstructed matrix
shown in Figure 5.
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4 1

2
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4

(a) (b)

= 99.99%

Figure 5. Density matrices of a two-qubit weighted sum of RQC. Gray shaded boxes are the target
matrix and dashed purple boxes are the rebuilt C ′(~θ). Panels (a,b) are the corresponding real matrix
and the imaginary matrix, respectively.

4. Case Study II: Imaginary Time Evolution of Heisenberg XXZ Spin Chain

We take the Hamiltonian of the Heisenberg XXZ spin chain [38] in a magnetic field as
our example, which is written as,

ĤXXZ =
n−1

∑
l=1

[
J
(

σ̂x
l σ̂x

l+1 + σ̂
y
l σ̂

y
l+1

)
+ ∆σ̂z

l σ̂z
l+1

]
+ h

n

∑
l=1

σ̂z
l . (14)

Here n is the number of spins (qubits), J is the tunneling strength, ∆ is the interaction
strength, and h is the magnetization strength. The imaginary time evolutionary operator
with time τ [39] is denoted as

OXXZ = e−ĤXXZτ . (15)

In the simulations, we fixed h = 0.1 and J = 1.

4.1. Methods

Mathematically, we could transform the target non-unitary processes into unitary ones
and afterward utilize the method in Ref. [26] to conduct consequent unitary learning, as
shown in Figure 6. Here, we mainly introduce the following two methods.

validation set 

... ...

...
...

SWAP test

optimizing

validation set 

... ...

training set Ψ

... ...

Dilation

Decompostion

Figure 6. Mathematical transformation for non-unitary quantum process tomography, including
dilation and decomposition.
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• Unitary dilation

Every contraction operator on a small Hilbert space has a unitary dilation in an
extended Hilbert space, which is guaranteed by the Sz.-Nagy dilation theorem [40].

Theorem 1. A contraction operator T applied up to N times on a smaller space H can be equivalent
to a unitary UT applied up to N times on a larger space K, with

Tn = PHUn
T PH , n ≤ N, (16)

where PH is the projection operator into space H.

In a particular case, the Sz.-Nagy theorem has a minimal dilation when the extended
space K has the smallest dimension. Here, we give an example of a minimal unitary dilation
with N = 1:

UT =

[
T DT†

DT −T†

]
, (17)

where DT = (I − T†T)
1
2 .

Therefore, we can utilize Equation (17) to construct the extended unitary of the original
non-unitary operator by adding one ancilla qubit.

• Unitary decomposition

Reference [41] shows that any quantum operator can be exactly decomposed as a
linear combination of at most four unitary operators.

Specifically, any operatorO can be decomposed into a Hermitian and an anti-Hermitian
component:

S =
1
2

(
O +O†

)
,

A =
1
2

(
O −O†

)
, (18)

such that O = S + A. Further, the Hermitian and anti-Hermitian components can be
expressed as the sum of two unitary operators ui:

S = lim
ε→0

i
2ε

(
e−iεS − eiεS

)
= lim

ε→0

i
2ε

(u1 − u2),

A = lim
ε→0

1
2ε

(
eεA − e−εA

)
= lim

ε→0

i
2ε

(u3 − u4), (19)

as long as the expansion parameter ε approaches zero. With this decomposition, we can
write the action of O as a sum of at most four unitary operators ui, regardless of whether O
itself is unitary or not.

4.2. Numerical Results

• Unitary dilation

Utilizing the unitary dilation method in Equation (17), we can dilate the non-unitary
operator into a unitary by adding one ancilla qubit with the minimum dilation. Then, the
problem is a trivial unitary one. Firstly, we numerically tested the five-qubit XXZ spin
chain evolution with imaginary time τ varies from 0.01 to 0.15. By adding one ancilla qubit,
we utilized the (6, 7, 20) PQC configuration to conduct the tomography. Table 1 shows a
satisfying reconstruction of the extended unitary process with high Favg and low f (~θ).
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Table 1. Numerical simulation results of the imaginary time evolution of the Heisenberg XXZ spin
chain with varying time τ on (6, 7, 20) configuration utilizing unitary dilation method.

τ Max. Favg Avg. f (~θ) τ Max. Favg Avg. f (~θ)

0.01 99.12% 0.061 0.09 94.54% 0.070
0.02 98.22% 0.062 0.10 94.07% 0.077
0.03 97.55% 0.039 0.11 93.76% 0.064
0.04 96.95% 0.061 0.12 93.44% 0.094
0.05 96.32% 0.051 0.13 93.22% 0.101
0.06 95.74% 0.070 0.14 93.03% 0.082
0.07 95.23% 0.074 0.15 92.99% 0.076
0.08 94.82% 0.053

Further, we fixed the evolution time τ = 0.01, and conducted numerical simulations
from four-qubit to six-qubit XXZ spin chain imaginary time evolution (the corresponding
required qubits next are extended to five to seven). It can be observed in Table 2 that
with a shallow depth PQC and fewer input states, our method achieves satisfying results
Favg > 99%. Similarly, in Section 3.2, the number of input states in our PQC NPQC is far
fewer than that in SQPT NSQPT.

Table 2. Numerical simulation details of the imaginary time evolution of the Heisenberg XXZ spin
chain from two-qubit to six-qubit cases utilizing unitary dilation or decomposition.

n next
1 d NVQPT

2 NSQPT
3 # of Paras. 4 Max. Favg

Max.
Accuracy

Decomposition
2 − 2 4 16 72 99.90% 99.99%
3 − 4 8 4096 180 99.61% 99.92%
4 − 4 10 16, 384 240 99.38% 99.89%

Dilation
4 5 6 10 1024 105 99.20% 99.61%
5 6 7 20 4096 144 99.11% 99.34%
6 7 8 55 16, 384 189 99.23% 99.52%

1 Number of qubits in the extended space. Only dilation method needs one more qubit. 2 Number of input states
in VQPT. 3 Number of input states in SQPT. 4 Number of parameters in C(~θ).

• Unitary decomposition

As shown in Equation (19), we mathematically transformed the non-unitary quantum
process tomography into four unitary quantum process tomography utilizing the unitary
decomposition method and numerically simulated the cases up to four-qubit. Specifically,
we prepared four unitary PQCs Ci(~θi), i = 1, 2, 3, 4 and superpose the four PQCs as shown
in Equation (19) to approximate the non-unitary OXXZ. Therefore, the original non-unitary
tomography is transformed into a unitary tomography with fourfold variational parameters.
Taking two-qubit imaginary time evolution as an example, we numerically reconstructed
the non-unitary quantum process O as the following four unitaries Ci(~θi)

Here, we choose the ε = 0.05, and by Equations (18) and (19), we can obtain the su-
perposition C(~θ) = 10C1(~θ1)− 10C2(~θ2) + 10iC3(~θ3)− 10iC4(~θ4) with average gate fidelity
99.90%. More details are presented in Table 2. It is worth noting from Tables 2 and A1 that
the accuracy value is a valid leading indicator to pick out the better PQC configurations
with higher fidelity Favg values. We give detailed data in Appendix B.
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C1(~θ1) =


−0.004− 0.781i −0.245 + 0.078i 0.265 + 0.170i −0.258− 0.395i
−0.199− 0.080i 0.332− 0.509i −0.103− 0.535i 0.116− 0.522i
−0.403 + 0.279i 0.037− 0.354i 0.364 + 0.650i 0.163− 0.222i

0.087− 0.306i −0.036− 0.659i 0.209− 0.057i −0.044 + 0.642i

,

C2(~θ2) =


0.913− 0.076i −0.074− 0.191i 0.273 + 0.091i −0.023 + 0.182i
−0.123 + 0.061i −0.857− 0.382i −0.036 + 0.236i −0.091− 0.181i
−0.207− 0.172i 0.102− 0.181i 0.163 + 0.061i −0.813 + 0.439i

0.251− 0.064i −0.121 + 0.131i −0.900− 0.138i −0.180 + 0.196i

,

C3(~θ3) =


0.625− 0.377i −0.159− 0.554i 0.321− 0.025i 0.071− 0.156i
0.302− 0.422i 0.511 + 0.575i 0.259− 0.165i −0.058 + 0.198i
0.096− 0.349i −0.129 + 0.010i −0.415 + 0.562i 0.308 + 0.517i
−0.072− 0.245i 0.235− 0.049i −0.141 + 0.540i −0.620− 0.423i

,

C4(~θ4) =


−0.078 + 0.642i 0.109− 0.382i 0.401− 0.018i −0.505 + 0.077i

0.162− 0.348i 0.386− 0.515i −0.515− 0.102i −0.401− 0.010i
0.549− 0.154i −0.302 + 0.072i 0.172 + 0.460i −0.353− 0.460i
−0.318− 0.084i −0.557− 0.137i −0.064− 0.562i −0.176− 0.457i

.

(20)

5. Conclusions

In this work, we propose a non-unitary variational quantum process tomography
method based on the quantum machine learning algorithm, which encodes the unknown
non-unitary quantum process into a PQC of a certain depth d. A set of randomly generated
quantum states are used as the training data to minimize the cost function, and a validation
set filters out the instance with the highest Favg as a leading indicator, namely the closest
parameter configuration to the unknown quantum process.

We introduce two methods to tackle the non-unitary quantum process tomography.
One focuses on the mathematical transformation of the non-unitary problem, while the
other attempts to utilize superpositions of PQCs to approximate the non-unitary.

We demonstrated our method by two numerical examples, including the superposition
of the random quantum circuits and the imaginary time evolution with the Heisenberg XXZ
spin chain from two-qubit to eight-qubit. The results indicate that a faithful reconstruction
of O (Favg higher than 99%) can be reached with a relatively low-depth PQC (d ≤ 8), and
a relatively small number of training states (at least two orders of magnitude compared
to SQPT). Moreover, only a single qubit measurement is required in each configuration
instead of measuring in the complete set of computational basis. Our work further proves
the potential of the variational quantum process tomography framework on non-unitaries
and presents a promising application of using the quantum machine learning algorithm to
accelerate the quantum process tomography.
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Abbreviations
The following abbreviations are used in this manuscript:

VQPT Variational quantum process tomography
SQPT Standard quantum process tomography
PQC Parametric quantum circuit
VQA Variational quantum algorithm
RQC Randomly-generated quantum circuit

Appendix A

Here, we give the data details of the scalability tests corresponding to the Figure 4a content.

Table A1. Numerical simulation details of scalability test on randomly generated quantum circuits
with d = 2. NPQC denotes the input states number in our variational method, and NSQPT denotes the
input states number in SQPT.

n d NPQC NSQPT # of Paras. Max. Favg
Max.

Accuracy

2 3 3 16 24 99.99% 99.99%
3 4 6 64 45 99.99% 99.99%
4 5 8 256 72 99.99% 99.99%
5 6 12 1024 105 99.99% 99.99%
6 7 35 4096 144 99.99% 99.99%
7 8 55 16, 384 189 99.99% 99.99%
8 8 120 65, 536 216 99.99% 99.99%

Appendix B

Here, we give detailed data on the analysis of the two evaluation criteria: the average
gate fidelity Favg and the accuracy.

As stated in the main text, these two evaluation criteria are strongly correlated. Here,
we conduct 100 independent trials and computed the two values. We utilize the Pearson’s
correlation coefficient r [42] to evaluate such relations in our numerical simulations. The
coefficient r ranges from −1 to 1, where r ≥ 0.7 means highly linear positive correlated.
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Figure A1. Correlations between the average gate fidelity Favg and the accuracy. It is sorted as
the Favg value. Panels (a,b) give the 100 independent trials on the superposition of RQC and the
imaginary time evolution of the Heisenberg XXZ Hamiltonian, respectively. Both cases show high
Pearson correlation coefficient.

It is shown in Figure A1 that the accuracy value on the validation set has a strong
correspondence with the final Favg value with the Pearson correlation coefficient r = 0.9588
and r = 0.9286 on two typical non-unitary trials, respectively. Therefore, it is feasible to
utilize the accuracy value as a criterion to determine the optimal circuit parameters to
reconstruct O with higher Favg.
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