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Abstract: The optimal subsampling is an statistical methodology for generalized linear models
(GLMs) to make inference quickly about parameter estimation in massive data regression. Exist-
ing literature only considers bounded covariates. In this paper, the asymptotic normality of the
subsampling M-estimator based on the Fisher information matrix is obtained. Then, we study
the asymptotic properties of subsampling estimators of unbounded GLMs with nonnatural links,
including conditional asymptotic properties and unconditional asymptotic properties.
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1. Introduction

In recent years, the amount of information that people need to process is increasing
dramatically. It is of great challenge to directly process massive data for statistical analysis.
The divide-and-conquer strategy can mitigate the challenge of directly processing such big
data [1], but it still consumes considerable computing resources. As a cheaper alternative
in computing, subsampling gains its value in the case of limited computing resources.

To reduce the burden on the machine, the subsampling strategy based on big data has
been given more attention in recent years. Ref. [2] proposes simple necessary and sufficient
conditions for a convolved subsampling estimator to produce a normal limit that matches
the target of bootstrap estimation; Ref. [3] provides an optimally distributed subsampling
for maximum quasi-likelihood estimators with massive data; Ref. [4] studies some adaptive
optimal subsampling algorithms; and Ref. [5] describes a subdata selection method based
on leverage scores which conduct the linear model selection on a small subdata set.

GLM is a kind of statistical model with a wide range of applications such as [6–8].
Many subsampling studies are based on GLMs such as [3,9,10]. However, the covariates of
the subsampled GLMs in the literature are bounded. When dealing with some big data
problems, the size of covariate is not strictly bounded, such as the number of clicks on a
web page, which can grow infinitely. This requires the extension of existing theories to
the unbounded design. To fill this gap, this paper aims to study asymptotic properties
of the subsampled GLMs with unbounded covariates based on empirical process and
martingale technology.

Our three contributions are shown as follows: (1) we describe the asymptotic property
of subsampled M-estimator using Fisher information matrix; (2) we give the conditional
consistency and asymptotic normality of unbounded GLMs subsampling estimator; (3) we
provide the unconditional consistency and asymptotic normality of unbounded GLMs
subsampling estimator.
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The rest of the paper is organized as follows. Section 2 introduces the basic concepts
in GLMs and subsampling M-estimation problem. Section 3 presents the asymptotical
properties for unbounded GLMs subsampling estimators. Section 4 gives the conclusion
and discussion, as well as future research directions. All the technical proofs are collected
in the Appendix A.

2. Preliminaries

This section introduces the subsampling M-estimation problem and GLMs.

2.1. Subsampling M-Estimation

Let {l(β; Z) ∈ R|Z ∈ Z} be a set of loss functions with a finite dimensional con-
vex set β ∈ Θ ⊂ Rp, and U = {1, 2, . . . , N} be the index of the full large dataset
with σ-algebra FN = σ(Z1, . . . , ZN), where for each i ∈ U, the random data point
Zi ∈ Z (some probability space) is observed. The empirical risk LN : Θ → R is given by
LN(β) = 1

N ∑i∈U l(β; Zi).
The goal is to get the solution β̂N to minimize the risk, namely

β̂N = arg min
β∈Θ

LN(β). (1)

To solve Equation (1), we need β̂N satisfy: ∇LN(β) = 1
N ∑i∈U ∇l(β; Zi) = 0, and let

ΣN := ∇2LN(β̂N). This is an M-estimation problem; see [11]. For fast solving large-scale
estimation in Equation (1), we propose the subsampling M-estimation. Consider an index
set S = {i1, i2, . . . , in} with replacement from U according to the sampling probability
{πi}N

i=1 such that ∑N
i=1 πi = 1. The subsampling M-estimation problem is to obtain the

solution β̂n satisfying

∇Ln(β) = 0 with Ln(β) =
1

Nn ∑
i∈S

1
π∗i

l(β; Z∗i ),

where Z∗i is the i-th time subsample with replacement and π∗i is the subsampling probability
of Z∗i . For example, if Z∗1 = Z1, then π∗1 = π1; if Z∗2 = Z1, then π∗2 = π1. Denote ai as
the number of i-th subsampled data such that ∑i∈U ai = n. And Ln(β) is constructed by
inverse probability weighting skill such that E[Ln(β)|FN ] = LN(β); see [12]. Details about
properties of conditional expectation are shown in [13].

2.2. Generalized Linear Models

Let the random variable Y be the distribution of the natural exponential families Pα

indexed by parameter α,

Pα(dy) = dFY(y) = c(y) exp{yα− b(α)}ν(dy), c(y) > 0, (2)

where α is often referred to as the canonical parameter belonging to its natural space

Λ = {α :
∫

c(y) exp{yα}ν(dy) < ∞}.

ν(·) is the Lebesgue measure for continuous distributions (Normal, Gamma) or counting
measure for discrete distributions (binomial, Poisson, negative binomial). The c(y) is free
of α.

Let {(Yi, Xi)}N
i=1 be N independent sample data pairs. Here the Xi ∈ Rp is covariates

and we assume that the response Yi follows the distribution of the natural exponential
families with the parameter αi ∈ Λ. The covariates Xi := (xi1, . . . , xip)

T , (i = 1, 2, . . . , N)
are supposed to be deterministic.
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The conditional expectation of Yi for a given Xi is defined as a function of βTXi after a
transformation by a link function αi = ψ(βTXi). The mean value denoted as µi := E(Yi) is
mostly considered for regression.

If αi = βTXi then we call that ψ(βTXi) = βTXi is canonical (or natural) link function,
and corresponding model is canonical (or natural) GLMs; see Page 32 in [14]. Sometimes
the assumption αi = βTXi is somewhat strong and not very suitable in practice, while
nonnatural link GLMs allow more flexible choices for the link function. We can further
assume that αi and βTXi can be related by a nonnatural link function αi = ψ(βTXi).

Let fβ(Yi|Xi) be the joint density function of the i.i.d. data {(Yi, Xi)}N
i=1 from the

exponential family with a link function ψ(·). Then the nonnatural GLMs [15] is defined by

Yi|Xi ∼ fβ(Yi|Xi) = c(Yi) exp
{

Yiψ
(

βTXi

)
− b
(

ψ
(

βTXi

))}
, i = 1, 2, . . . , N. (3)

Here is a classic result for the exponential family (3),

E(Yi|Xi) := µi = ḃ(αi) = ḃ(ψ(βTXi)) and Var(Yi|Xi) := Var(Yi) = b̈(αi), (4)

where i = 1, 2, . . . , N; see P280 in [16].

3. Main Results
3.1. Subsampling M-Estimation Problem

In this part we first look at the term Σ−1
N ∇Ln(β̂N). Define an independent random

vector sequence {ζ j}N
j=1 and the subsampled {ζ∗j }n

j=1, such that each vector ζ takes the

value among { 1
Nπi

Σ−1
N ∇l(β̂N ; Zi)}N

i=1, and let

VM(β̂N ; n) =
1

N2n
Σ−1

N

[
∑
i∈U

1
πi
∇l
(

β̂N ; Zi

)
∇T l

(
β̂N ; Zi

)]
Σ−1

N .

From the definition of∇LN(β), we have E(ζ|FN) = Σ−1∇LN(β̂N) = 0 and Var(ζ|FN)
= nVM(β̂N ; n). Then we have the asymptotic property of subsampled M-estimator.

Theorem 1. Suppose that the risk function LN(β) is twice differentiable and λ-strongly convex
over Θ, that is, for β ∈ Θ, ∇2LN(β) ≥ λI, where ≥ denotes the semidefinite positive ordering;
and the sampling-based moment condition,

1
N4

N

∑
i=1

1
π3

i

∥∥∥∇l(β̂N ; Zi)
∥∥∥4

= OP(1).

Then we can obtain: As n→ ∞, conditioning on FN ,

VM(β̂N ; n)−
1
2 (β̂n − β̂N)

d−→ N(0, Ip), (5)

where d−→ means convergence in distribution.

Theorem 1 reveals that the subsampling M-estimation scheme is theoretically feasible
under mild conditions. In addition, the existence of the estimator is given by the Fisher
information matrix.

3.2. Conditional Asymptotic Properties of Subsampled GLMs with Unbounded Covariates

The exponential family is very versatile for containing many common light-tail distri-
butions such as binomial, Poisson, negative binomial, normal and Gamma. Along with
their attendant convexity properties which leads to finite variance property for log-density,
they can serve for a large amount of popular and effective statistical models. It is pre-
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cisely because of the commonality of these distributions so that we study the subsampling
problem for GLMs.

From the loss function introduced in Section 2.1, we set l(β; Zi) := − log fβ(Yi|Xi)
where fβ(Yi|Xi) is defined by Equation (2), then the problem solving the minimum of the
loss function is equivalent to solve the maximum of the likelihood function. For simplicity,
we assume that c(y) = 1, then

∇l(β; Zi) := −
∂ log fβ(Yi|Xi)

∂β
= −

[
Yi − ḃ

(
ψ
(

βTXi

))]
ψ̇
(

βTXi

)
Xi

with the nonnatural link function αi = ψ(βTXi). We also use this idea in Section 3.3.
More generally, we consider a wider class saying quasi-GLMs, rather than GLMs,

which assumes that Equation (4) holds for a certain function µ(·). Strong consistency and
asymptotic normality of quasi maximum likelihood estimate in GLMs with bounded co-
variates are proved in [17]. For unbounded covariates, adopting the subsampled estimation
of GLMs in [9], we calculate the inverse probability weighted estimator of β by solving the
estimating equation based on the subsampled index set S,

− 1
Nn ∑

i∈S

1
π∗i

[
Y∗i − µ

(
ψ
(

βTX∗i
))]

ψ̇
(

βTX∗i
)

X∗i = 0.

where {(Y∗i , X∗i )}i∈S is subsampled data. Equivalently, we have

sn(β) = ∑
i∈S

1
π∗i

[
Y∗i − µ

(
ψ
(

βTX∗i
))]

ψ̇
(

βTX∗i
)

X∗i = 0. (6)

Equation (6) is called quasi-GLMs since Equation (4) is given instead of the distribu-
tion function.

Let β̂n be the estimator of the real parameter β0 in subsampled quasi-GLMs and β̂N
be the estimator of β0 in quasi-GLMs with full data. For the unbounded quasi-GLMs with
full data, β̂N is asymptotic unbiased with respect to β0; see [18]. Next, we focus on the
asymptotical properties of β̂n, as shown in the following theorems.

Theorem 2. Let {(Y∗i , X∗i )}i∈S be subsampled from i.i.d. full data {(Yi, Xi)}i∈U . Consider the
Equation (4) and (6) where ψ(·) is three times continuously differentiable whose every derivative
is bounded, and b(·) is twice continuously differentiable whose every derivative is also bounded.
Assume that:

(A.1) The range of the unknown parameter β is an open subset of Rp.

(A.2) For any i ∈ S, E supβ∈Θ

[
1

π∗i
|Y∗i − µ(ψ(βTX∗i ))|

∣∣FN

]
= O(1).

(A.3) For any β ∈ Θ and i ∈ S, 0 < infi ϕ(βTX∗i ) ≤ supi ϕ(βTX∗i ) < ∞, where ϕ(t) =

[ψ̇(t)]2b̈(ψ(t)).
(A.4) For any β1 ∈ Θ and β2 ∈ Θ, there exists a function |m(X∗i )| < ∞ such that

|ϕ(βT
1 X∗i )− ϕ(βT

2 X∗i )| ≤ |m(X∗i )||βT
1 X∗i − βT

2 X∗i |.

(A.5) When n → ∞, maxi∈S X∗Ti (X∗X∗T)−1X∗i = O(n−1) and λmin[X∗X∗T] → ∞, where
X∗ = (X∗1 , ..., X∗n) and λmin[A] is the smallest eigenvalue of the matrix A.

(A.6) mini=1,...,N(Nπi) = O(1), maxi=1,...,N(Nπi) = O(1).

Then β̂n is consistent with β̂N , i.e.,

‖β̂n − β̂N‖ = oP|FN
(1)

where oP|FN
(1) means o(1) conditioning on FN in probability.
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Theorem 3. Under the conditions in Theorem 2, as N → ∞ and n → ∞, conditional on FN
in probability, √

n(β̂n − β̂N)→ N(0, Vs),

in distribution, where

Vs = Σ−1
N VNΣ−1

N ,

ΣN = ∑
i∈U

ai

[
Yi − ḃ(ψ(β̂T

N Xi))
]
ψ̈(β̂T

N Xi)XiXT
i − ∑

i∈U
ai b̈(ψ(β̂T

N Xi))ψ̇(β̂T
N Xi)

2XiXT
i ,

VN = ∑
i∈U

ai
πi

[
Yi − ḃ(ψ(β̂T

N Xi))
]2

ψ̇(β̂T
N Xi)

2XiXT
i .

In this part, we complete the asymptotic properties without the moment condition of
the covariates {Xi}N

i=1 which is used in [9], and that means Xi’s are unbounded. Here we
only provide the theoretical asymptotic results. Furthermore, the subsampling probability
can be derived by A-optimal criterion like [10].

3.3. Unconditional Asymptotic Properties of Subsampled GLMs with Unbounded Covariates

In real engineering, the measurement of some response variable data is very expensive,
such as superconductor data, deep space exploration data, etc. The accuracy of estimating
the target parameters under measurement constraints of responses is a very important
issue. Ref. [19] completed the unconditional asymptotic properties of parameter estimation
in bounded GLMs with canonical link. But the unbounded GLMs with nonnatural link
situation has not been discussed yet.

In this section, we continue to use the notations of Section 3.2. Through the theory of
empirical process [11], we obtain the unconditional consistency of β̂n in the following theorem.

Theorem 4. (Unconditional subsampled consistency) Assume the conditions:

(B.1) λmin(EXXT) > 0 where X is the unbounded covariate of GLMs.
(B.2) For ∀u1, u2 ∈ [0, 1],

inf
β∈Θ\{β0}

E{b̈(ψ̃u1)ψ̇[(1− u2)(βT
0 X) + u2(βTX)]2(βTX − βT

0 X)2}
E(βTX − βT

0 X)2
≥ C1 > 0,

where ψ̃u1 = (1− u1)ψ(βT
0 X) + u1ψ(βTX) and b̈(·) is the second derivative with respect

to β.
(B.3)

Eβ0 sup
β∈Θ

[|Y− ḃ(ψ(βTX))| · ||X||2] < ∞,

where ḃ(·) is the first derivative with respect to β.
(B.4) ψ(·) in (3) is twice continuously differentiable and its every derivative has a positive minimum.
(B.5) b(·) in (3) is twice continuously differentiable and its every derivative has a positive minimum.

Then ‖β̂n − β0‖ = oP(1).

Theorem 4 directly obtains the unconditional consistency of the subsampling estimator
with respect to the true parameters under the unbounded assumption.

To prove the asymptotic normality of β̂n with respect to β0, we briefly review the
subsampled score function in Section 3.2

sn(β) = ∑
i∈S

1
π∗i

[
Y∗i − µ

(
ψ
(

βTX∗i
))]

ψ̇
(

βTX∗i
)

X∗i := ∑
i∈S

1
π∗i

φβ(X∗i , Y∗i ).

Next we will apply a multivariate martingale central limit theorem (Lemma 4 in [19]),
which is the extension of Theorem A.1 in [20], to show the asymptotic normality of β̂n. Let
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{FN,i}n
i=1 be a filtration adaptive to the sampling: FN,0 = σ(XN

1 , YN
1 );

FN,1 = σ(XN
1 , YN

1 ) ∨ σ(∗1); . . . ;FN,i = σ(XN
1 , YN

1 ) ∨ σ(∗1) ∨ · · · ∨ σ(∗i); . . . , where σ(∗i)
is the σ-algebra generated by ith sampling step. The subsample of size n is assumed to
increase with N. By the filtration, we define the martingale

M̄ :=
n

∑
i=1

M̄i :=
n

∑
i=1

[
1

π∗i
φβ(X∗i , Y∗i )−

N

∑
j=1

φβ(Xj, Yj)

]
,

where {M̄i}n
i=1 is a martingale difference sequence adapted to {FN,i}n

i=1. In addition, define
Q := n ∑N

j=1 φβ(Xj, Yj); T := sn(β) = M̄ + Q; ξNi := Var−1/2(T)M̄i and

BN := Var−1/2(T)Var(M̄)Var−1/2(T), where matrix A1/2 is the symmetric square root of A,
i.e., A = (A1/2)2, and A−1/2 = (A1/2)−1 = (A−1)1/2. BN is the variance of Var−1/2(T)M̄.

The following theorem shows the asymptotic normality of the estimator β̂n.

Theorem 5. Assume the conditions,

(C.1)

Φ = E(∇sn(β)) = E

[
−∑

i∈S

1
π∗i

µ̇(ψ(βTX∗i ))[ψ̇(βTX∗i )]
2X∗i X∗Ti

]
is finite and nonsingular.

(C.2) E

{[
∑

i∈U

ai
πi

µ̇(ψ(βTXi))[ψ̇(βTXi)]
2XikXij

]2
}

= oP(1), for 1 ≤ k, j ≤ p,

where Xik means k-th element of vector Xi and Xij means j-th element of vector Xi.
(C.3) ψ(x) is three-times continuously differentiable for every x with its domain.
(C.4) For any i ∈ S, ||φ̈β(X∗i , Y∗i )|| < ∞.
(C.5) mini=1,...,N(Nπi) = maxi=1,...,N(Nπi) = O(1) and n/N = o(1).

(C.6) lim
N→∞

n
∑

i=1
E[||ξNi||4] = 0,

(C.7) lim
N→∞

E

[∣∣∣∣∣∣∣∣ n
∑

i=1
E[ξNiξ

T
Ni|FN,i−1]− BN

∣∣∣∣∣∣∣∣2
]
= 0.

Then
Var(T)−1/2Φ(β̂n − β0)

d−→ N(0, Ip).

Here, we establish the unconditional asymptotic properties of subsampling estimator
for unbounded GLMs. The condition n/N = o(1) ensures that small-scale subsamples also
have expected performance, which greatly release the computational cost. We also present
the theoretical asymptotic results, which leads to the subsampling probability using the
A-optimal criterion in [10].

4. Conclusions and Future Work

In this paper, we derive the asymptotic normality of the subsampling M-estimator by
Fisher information. In the unbounded GLMs with nonnatural link function, we separately
obtain the conditional and unconditional asymptotic properties of subsampling estimator.

For future study, it is meaningful to apply the sub-Weibull concentration inequalities
in [21] to make nonasymptotic inference. The importance sampling is not ideal, since
it tends to assign high sampling probability to the observed samples. Hence, effective
subsampling methods are considered for GLMs, such as Markov subsampling in [22].
Moreover, high-dimensional methods in [23,24] for subsampling need further studies.
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Appendix A. Technical Details

Lemma A1 (Theorem 4.17 in [16]). Let X1, . . . , XN be i.i.d. from a p.d.f. fβ w.r.t. a σ-finite
measure ν on (R,BR), where β ∈ Θ and Θ is an open set in Rp. Suppose that for every x in the
range of X1, fβ(x) is twice continuously differentiable on β and satisfies

(D.1)
∂

∂β

∫
ψβ(x)dν =

∫
∂

∂β
ψβ(x)dν

for ψβ(x) = fβ(x) and ψβ(x) =
∂ fβ(x)

∂β .
(D.2) The Fisher information matrix

I1(β) = E

{
∂

∂β
log fβ(X1)

[
∂

∂β
log fβ(X1)

]T
}

is positive definite.
(D.3) For any given β ∈ Θ, there exists a positive number Cβ and a positive function hβ such that

E[hβ(X1)] < ∞ and

sup
γ:‖γ−β‖<Cβ

∥∥∥∥∥∂2 log fγ(x)
∂γ∂γT

∥∥∥∥∥ ≤ hβ(x)

for all x in the range of X1, where || · || is Euclidean norm and ‖A‖ =
√

tr(ATA) for any
matrix A. Then there exist a sequence of estimators β̂N (based on {Xi, i ∈ U}) such that

P(sa(β̂N) = 0)→ 1 and β̂N
P→ β0, (A1)

where sa(γ) =
∂ log L̃N(γ)

∂γ and L̃N(γ) is the likelihood function of full data and β0 is the

real parameter. Meanwhile, there exist a sequence of estimators β̂n (based on {Xi, i ∈ S})
such that

P(ss(β̂n) = 0)→ 1 and β̂n
P→ β0, (A2)

where ss(γ) =
∂ log L̃n(γ)

∂γ and L̃n(γ) is the likelihood function of subsampled data and β0 is
the real parameter.

Let ai be the number of i-th subsampled data such that ∑i∈U ai = n.

Lemma A2. E[Ln(β)|FN ] = LN(β).
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Proof. From the definition of ai, one has

E[Ln(β)|FN ] = E

[
1

Nn ∑
i∈S

1
π∗i

l(β; Z∗i )

∣∣∣∣∣FN

]

= E

[
1

Nn ∑
i∈U

1
πi

l(β; Zi)ai

∣∣∣∣∣FN

]

=
1

Nn ∑
i∈U

aiE
[

1
πi

l(β; Zi)

∣∣∣∣FN

]

=
1

Nn ∑
i∈U

ai
∑i∈U

1
πi

l(β; Zi)πi

∑i∈U πi

=
1

Nn ∑
i∈U

ai ∑
i∈U

l(β; Zi)

=
1

Nn
n ∑

i∈U
l(β; Zi)

=
1
N ∑

i∈U
l(β; Zi)

= LN(β).

Proposition A1. Under the conditions of Lemma A1 and

min
i
(Nπi) = max

i
(Nπi) = O(1)(i = 1, . . . , N).

Assume that β̂N based on {Xi, i ∈ U} is an estimator of β, and β̂n based on {Xi, i ∈ S} is also an
estimator of β, then

β̂n − β̂N = −Σ−1
N ∇Ln(β̂N) + oP|FN

(1). (A3)

Proof. Taking Taylor series expansion of ∇Ln(β̂n) around β̂N , we have

0 =∇Ln(β̂n)

=∇Ln(β̂N) +∇2Ln(β̂N)(β̂n − β̂N) + o(
∥∥∥β̂n − β̂N

∥∥∥)
=∇Ln(β̂N) +∇2Ln(β̂N)(β̂n − β̂N) +∇2LN(β̂N)(β̂n − β̂N)

−∇2LN(β̂N)(β̂n − β̂N) + o(
∥∥∥β̂n − β̂N

∥∥∥)
=∇Ln(β̂N) +∇2LN(β̂N)(β̂n − β̂N) + (∇2Ln(β̂N)−∇2LN(β̂N))(β̂n − β̂N)

+ o(
∥∥∥β̂n − β̂N

∥∥∥).

(A4)
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From the definition of ai, one has

(∇2Ln(β̂N)−∇2LN(β̂N))(β̂n − β̂N) =

(
1

Nn ∑
i∈S

1
π∗i
∇2l(β̂N ; Z∗i )−

1
N ∑

i∈U
∇2l(β̂N ; Zi)

)
· (β̂n − β̂N)

=

(
∑
i∈U

1
Nnπi

∇2l(β̂N ; Zi)ai −
1
N ∑

i∈U
∇2l(β̂N ; Zi)

)
· (β̂n − β̂N)

=

(
∑
i∈U

ai − nπi
Nnπi

∇2l(β̂N ; Zi)

)
(β̂n − β̂N)

≤
(

∑
i∈U

ai
Nnπi

∇2l(β̂N ; Zi)

)
(β̂n − β̂N)

=oP|FN
(1).

(A5)
Combine Equations (A1), (A2) and (A5) into Equation (A4), one has

0 = ∇Ln(β̂N) +∇2LN(β̂N)(β̂n − β̂N) + oP|FN
(1).

This can be transformed to

β̂n − β̂N = −Σ−1
N ∇Ln(β̂N) + oP|FN

(1). (A6)

The proposition is proved.

Remark A1. The last equation in the proof ensures that β̂n − β̂N + Σ−1
N ∇Ln(β̂N) is a higher-

order infinitesimal with respect to 1, which is true according to conditional probability with FN .
oP|FN

(1) in Equation (A6) is denoted as the higher order infinitesimal of 1 according to conditional
probability with FN .
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Proof of Theorem 1. For every constant γ̂ > 0, one has

∑
j∈S

E
{∥∥∥n−

1
2 ζ∗j

∥∥∥2
I(
∥∥∥ζ∗j

∥∥∥ > n
1
2 γ̂)

∣∣∣∣FN

}
≤ ∑

j∈S
E


∥∥∥n−

1
2

∥∥∥2∥∥∥ζ∗j

∥∥∥4

nγ̂2 I(
∥∥∥ζ∗j

∥∥∥ > n
1
2 γ̂)

∣∣∣∣∣∣∣FN


=

1
n2γ̂2 ∑

j∈S
E
{∥∥∥ζ∗j

∥∥∥4
I(
∥∥∥ζ∗j

∥∥∥ > n
1
2 γ̂)

∣∣∣∣FN

}
≤ 1

n2γ̂2 ∑
j∈S

E
{∥∥∥ζ∗j

∥∥∥4
∣∣∣∣FN

}
=

1
n2γ̂2 ∑

i∈U
aiE
{
‖ζ i‖4

∣∣∣FN

}
=

1
n2γ̂2 n ∑i∈U‖ζ i‖4πi

∑i∈U πi

=
1

nγ̂2 ∑
i∈U

∥∥∥∥ 1
Nπi

Σ−1
N ∇l(β̂N ; Zi)

∥∥∥∥4
πi

=
1

nγ̂2
1

N4 ∑
i∈U

1
π3

i

∥∥∥Σ−1
N ∇l(β̂N ; Zi)

∥∥∥4

≤ 1
nγ̂2

1
N4 ∑

i∈U

1
π3

i

1
λ4

∥∥∥∇l(β̂N ; Zi)
∥∥∥4

=
1

nγ̂2
1

λ4 O(1)

= o(1).

Furthermore,

∑
j∈S

Cov(n−
1
2 ζ∗j |FN) = ∑

j∈S
E
{[

n−
1
2 ζ∗j − E(n−

1
2 ζ∗j |FN)

][
n−

1
2 ζ∗j − E(n−

1
2 ζ∗j |FN)

]T
|FN

}
= ∑

j∈S
E[(n−

1
2 ζ∗j )(n

− 1
2 ζ∗j )

T |FN ]

=
1
n ∑

j∈S
E(ζ∗j ζ∗Tj |FN)

=
1
n

nE(ζζT |FN)

= Var(ζ|FN).

Then, by the Lindeberg-Feller central limit theorem (Proposition 2.27 of [11]), conditional
on FN ,

∑
j∈S

n−
1
2 ζ∗j

d−→ N(0, Var(ζ|FN)).

Therefore, combining the above and Proposition A1, Equation (5) holds. Thus, the proof
is completed.
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Proof of Theorem 2. Next, one needs to show convexity (i.e., uniqueness and maximum
value) due to the existence of the estimators from [25]. Let

I1(β) =E(∇sn(β))

=E

∂

(
∑

i∈S

1
π∗i

[Y∗i − µ(ψ(βTX∗i ))]ψ̇(βTX∗i )X∗i

)
∂β


=E
(
−∑

i∈S

1
π∗i

µ̇(ψ(βTX∗i ))[ψ̇(βTX∗i )]
2X∗i X∗Ti

+ ∑
i∈S

1
π∗i

[Y∗i − µ(ψ(βTX∗i ))]ψ̈(βTX∗i )X∗i X∗Ti

)
=−∑

i∈S

1
π∗i

µ̇(ψ(βTX∗i ))[ψ̇(βTX∗i )]
2X∗i X∗Ti ,

where
sn(β) = ∑

i∈S

1
π∗i

[
Y∗i − µ

(
ψ
(

βTX∗i
))]

ψ̇
(

βTX∗i
)

X∗i .

From [16] in Theorem 4.17, one needs to show

max
γ∈G(C0)

∥∥∥∥[I1(β̂N)
]−1/2

∇sn(γ)
[
I1(β̂N)

]−1/2
+ Ip

∥∥∥∥ P|FN−−−→ 0,

where G(C0) =

{
γ :
∥∥∥∥[I1(β̂N)

]1/2
(γ− β̂N)

∥∥∥∥ ≤ C0

}
and Ip = diag(1, 1, . . . , 1) is a p-

dimensional identity matrix.
Let

Mn(γ) = ∑
i∈S

1
π∗i

[ψ̇(γTX∗i )]
2b̈(ψ(γTX∗i ))X∗i X∗Ti (A7)

and
Rn(γ) = ∑

i∈S

1
π∗i

[Y∗i − µ(ψ(γTX∗i ))]ψ̈(γ
TX∗i )X∗i X∗Ti . (A8)

Then
∇sn(γ) = Rn(γ)−Mn(γ) (A9)

and
I1(γ) = −E(∇sn(γ)) = Mn(γ) (A10)

Thus, one only needs to prove

max
γ∈G(C0)

∥∥∥∥[Mn(β̂N)
]−1/2[

Mn(γ)−Mn(β̂N)
][

Mn(β̂N)
]−1/2

∥∥∥∥ P|FN−−−→ 0, (A11)

and

max
γ∈G(C0)

∥∥∥∥[Mn(β̂N)
]−1/2

Rn(γ)
[

Mn(β̂N)
]−1/2

∥∥∥∥ P|FN−−−→ 0 (A12)

for any C0 > 0. From the definition of Mn(γ), and the property of trace in P288 of [16], the
left-hand side of Equation (A11) can be bounded by

√
p max

γ∈G(C0),i∈S

∣∣∣1− ϕ
(

γTX∗i
)

/ϕ
(

β̂T
N X∗i

)∣∣∣.



Entropy 2023, 25, 84 12 of 21

From condition (A.4), one needs to prove
∣∣∣γTX∗i − β̂T

N X∗i
∣∣∣ converges to 0 so that

Equation (A11) holds, and one has

∣∣∣γTX∗i − β̂T
N X∗i

∣∣∣2 =

∣∣∣∣(γT − β̂T
N)
[
I1(β̂N)

]1/2[
I1(β̂N)

]−1/2
X∗i

∣∣∣∣2
≤
∥∥∥∥[I1(β̂N)

]1/2
(γ− β̂N)

∥∥∥∥2∥∥∥∥[I1(β̂N)
]−1/2

X∗i

∥∥∥∥2

≤ C2
0 max

i∈S
X∗Ti

[
I1(β̂N)

]−1
X∗i

= C2
0 max

i∈S
X∗Ti

[
Mn(β̂N)

]−1
X∗i

= C2
0 max

i∈S
X∗Ti

[
∑
i∈S

1
π∗i

[ψ̇(β̂T
N X∗i )]

2b̈(ψ(β̂T
N X∗i ))X∗i X∗Ti

]−1

X∗i

= C2
0 max

i∈S
X∗Ti

[
∑
i∈S

1
π∗i

ϕ(β̂T
N X∗i )X∗i X∗Ti

]−1

X∗i

= C2
0 max

i∈S
X∗Ti

[
∑
i∈S

N
1

Nπ∗i
ϕ(β̂T

N X∗i )X∗i X∗Ti

]−1

X∗i

≤ C2
0

[
N min

i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1
max
i∈S

X∗Ti

(
∑
i∈S

X∗i X∗Ti

)−1

X∗i

= C2
0

[
N min

i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1
max
i∈S

X∗Ti

(
X∗X∗T

)−1
X∗i

P|FN−−−→ 0.

Hence Equation (A11) holds. Let e∗i = Y∗i − µ(ψ(β̂T
N X∗i )), and

Un(γ) = ∑
i∈S

1
π∗i

[
µ(ψ(β̂T

N X∗i ))− µ
(

ψ
(

γTX∗i
))]

ψ̈
(

γTX∗i
)

X∗i X∗Ti ,

Vn(γ) = ∑
i∈S

e∗i
π∗i

[
ψ̈
(

γTX∗i
)
− ψ̈(β̂T

N X∗i )
]

X∗i X∗Ti ,

Wn(β̂N) = ∑
i∈S

e∗i
π∗i

ψ̈(β̂T
N X∗i )X∗i X∗Ti .

Then Rn(γ) = Un(γ) + Vn(γ) + Wn(β̂N). In the same way as proving Equation (A11),
we have

max
γ∈G(C0)

∥∥∥∥[Mn(β̂N)
]−1/2

Un(γ)
[

Mn(β̂N)
]−1/2

∥∥∥∥ P|FN−−−→ 0.

Note that
∥∥∥∥[Mn(β̂N)

]−1/2
Vn(γ)

[
Mn(β̂N)

]−1/2
∥∥∥∥ is bounded by the product of

∥∥∥∥∥[Mn(β̂N)
]− 1

2 ∑
i∈S

e∗i
π∗i

X∗i X∗Ti

[
Mn(β̂N)

]− 1
2

∥∥∥∥∥ (A13)

and
max

γ∈G(C0),i∈S

∣∣∣ψ̈(γTX∗i
)
− ψ̈

(
β̂T

N X∗i
)∣∣∣. (A14)
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Equation (A13) can be bounded as∥∥∥∥∥[Mn(β̂N)
]− 1

2 ∑
i∈S

e∗i
π∗i

X∗i X∗Ti

[
Mn(β̂N)

]− 1
2

∥∥∥∥∥
=

∥∥∥∥∥[I1(β̂N)
]− 1

2 ∑
i∈S

e∗i
π∗i

X∗i X∗Ti

[
I1(β̂N)

]− 1
2

∥∥∥∥∥
≤
∣∣∣∣∣∑i∈S

e∗i
π∗i

∣∣∣∣∣∥∥∥[I1(β̂N)]
− 1

2 X∗i
∥∥∥2

≤
∣∣∣∣∣∑i∈S

e∗i
π∗i

∣∣∣∣∣
[

N min
i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1
max
i∈S

X∗Ti

(
X∗X∗T

)−1
X∗i

≤
∣∣∣∣∣∑i∈S

e∗i

∣∣∣∣∣
∣∣∣∣max

i∈S

1
Nπ∗i

∣∣∣∣[min
i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1
max
i∈S

X∗Ti

(
X∗X∗T

)−1
X∗i

≤ ∑
i∈U

∣∣∣Yi − µ(ψ(β̂T
N Xi))

∣∣∣∣∣∣∣max
i∈S

1
Nπ∗i

∣∣∣∣[min
i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1
max
i∈S

X∗Ti

(
X∗X∗T

)−1
X∗i

≤
[

∑
i∈U

sup
β∈Θ

∣∣∣Yi − µ(ψ(βTXi))
∣∣∣]∣∣∣∣max

i∈S

1
Nπ∗i

∣∣∣∣[min
i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1

·max
i∈S

X∗Ti

(
X∗X∗T

)−1
X∗i

=
1
n ∑

i∈S
E sup

β∈Θ

[
1

π∗i
|Y∗i − µ(ψ(βTX∗i ))|

∣∣FN

]∣∣∣∣max
i∈S

1
Nπ∗i

∣∣∣∣[min
i∈S

1
Nπ∗i

inf
i∈S

ϕ
(

β̂T
N X∗i

)]−1

·max
i∈S

X∗Ti

(
X∗X∗T

)−1
X∗i

=OP|FN
(1/n),

where the penultimate equal sign applies the Lemma A2 with

l(β) = sup
β∈Θ

∣∣∣Yi − µ(ψ(βTXi))
∣∣∣.

Equation (A14) can be bounded as

max
γ∈G(C0),i∈S

∣∣∣ψ̈(γTX∗i
)
− ψ̈

(
β̂T

N X∗i
)∣∣∣ P|FN−−−→ 0,

which can be proved as the same argument of Equation (A11) by Lagrange mean value
theorem. Combine the bounds of Equations (A13) and (A14), one obtains

max
γ∈G(C0)

∥∥∥∥[Mn(β̂N)
]−1/2

Vn(γ)
[

Mn(β̂N)
]−1/2

∥∥∥∥ P|FN−−−→ 0.

Let δ ∈ (0, 1) be a constant. Since sup
i∈S

E(|e∗i |1+δ
∣∣FN) < ∞, one has
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∑
i∈S

E

(∣∣∣∣ e∗i
π∗i

ψ̈
(

β̂T
N X∗i

)
X∗Ti

[
Mn(β̂N)

]−1
X∗i

∣∣∣∣1+δ∣∣∣∣FN

)

≤ ∑
i∈S

E

(∣∣∣∣ e∗i
π∗i

∣∣∣∣1+δ∣∣∣∣FN

)
·max

i∈S

∣∣∣ψ̈(β̂T
N X∗i

)∣∣∣1+δ
·
∣∣∣∣X∗Ti

[
Mn(β̂N)

]−1
X∗i

∣∣∣∣1+δ

≤ ∑
i∈S

(
1

π∗i

)1+δ

E
(
|e∗i |

1+δ

∣∣∣∣FN

)
max
i∈S

∣∣∣ψ̈(β̂T
N X∗i

)∣∣∣1+δ

·

∣∣∣∣∣∣X∗Ti

[
∑
i∈S

N
1

Nπ∗i
ϕ(β̂T

N X∗i )X∗i X∗Ti

]−1

X∗i

∣∣∣∣∣∣
1+δ

= ∑
i∈S

(
1

Nπ∗i

)1+δ

E
(
|e∗i |

1+δ

∣∣∣∣FN

)
max
i∈S

∣∣∣ψ̈(β̂T
N X∗i

)∣∣∣1+δ

·

∣∣∣∣∣∣X∗Ti

[
∑
i∈S

1
Nπ∗i

ϕ(β̂T
N X∗i )X∗i X∗Ti

]−1

X∗i

∣∣∣∣∣∣
1+δ

≤ Cδ ∑
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣1+δ

≤ Cδ ∑
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣max
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δ
= Cδ max

i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δ ∑
i∈S

tr
[

X∗Ti

(
X∗X∗T

)−1
X∗i

]

= Cδ max
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δ ∑
i∈S

tr
[(

X∗X∗T
)−1

X∗i X∗Ti

]

= Cδ max
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δtr

[(
X∗X∗T

)−1
∑
i∈S

X∗i X∗Ti

]

= Cδ max
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δtr
[(

X∗X∗T
)−1(

X∗X∗T
)]

= Cδ max
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δtrIp

= pCδ max
i∈S

∣∣∣∣X∗Ti

(
X∗X∗T

)−1
X∗i

∣∣∣∣δ
P|FN−−−→ 0,

where Cδ > 0 is a constant. Under the definition of Wn(β̂N) and E(e∗i |FN) = 0, together
with Theorem 1.14(ii) in [16], one obtains∥∥∥∥[Mn(β̂N)

]− 1
2 Wn(β̂N)

[
Mn(β̂N)

]− 1
2
∥∥∥∥ P|FN−−−→ 0.

Hence, Equation (A12) holds and the proof is completed.

Proof of Theorem 3. According to the mean value theorem, one has

0 = sn(β̂n) = sn(β̂N) +∇sn(
¯̄β)(β̂n − β̂N),
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where ¯̄β is between β̂n and β̂N , then
√

n(β̂n − β̂N) = −
√

n∇sn(
¯̄β)−1sn(β̂N). (A15)

Let q∗i (β̂N) =
1

π∗i

[
Y∗i − µ(ψ(β̂T

N X∗i ))
]
ψ̇(β̂T

N X∗i )X∗i , then

∑
i∈S

q∗i (β̂N) = ∑
i∈S

1
π∗i

[
Y∗i − µ(ψ(β̂T

N X∗i ))
]
ψ̇(β̂T

N X∗i )X∗i = sn(β̂N).

According to E(Y∗i |FN) = µ(ψ(β̂T
N X∗i )) in Equation (4), one obtains

E(q∗i (β̂N)|FN) =
1

π∗i

[
E(Y∗i |FN)− µ(ψ(β̂T

N X∗i ))
]
ψ̇(β̂T

N X∗i )X∗i = 0.

Applying Lindeberg-Lévy CLT, one has

sn(β̂N)√
n

d−→ N(0, Var(q∗i (β̂N)|FN)), (A16)

where
Var(q∗i (β̂N)|FN) =E(q∗i (β̂N)q∗i (β̂N)

T |FN)

= ∑
i∈U

ai
πi

[
Yi − ḃ(ψ(β̂T

N Xi))
]2

ψ̇(β̂T
N Xi)

2XiXT
i .

Applying [26] in Theorem 2, one has

∇sn(
¯̄β)

n
=

1
n ∑

i∈S

∂q∗i (
¯̄β)

∂ ¯̄β
a.s.−→ E

(
∂q∗i (

¯̄β)

∂ ¯̄β

∣∣∣∣FN

)
,

where

E

(
∂q∗i (

¯̄β)

∂ ¯̄β

∣∣∣∣FN

)
= ∑

i∈U
ai

[
Yi − ḃ(ψ( ¯̄βTXi))

]
ψ̈( ¯̄βTXi)XiXT

i

− ∑
i∈U

ai b̈(ψ( ¯̄βTXi))ψ̇(
¯̄βTXi)

2XiXT
i .

Since ¯̄β is between β̃n and β̂N , and β̃n is consistent with β̂N with respect to FN in probabil-
ity, then

∇sn(
¯̄β)

n
P|FN−−−→ E

(
∂q∗i (β̂N)

∂β̂N

∣∣∣∣FN

)
, (A17)

where

E

(
∂q∗i (β̂N)

∂β̂N

∣∣∣∣FN

)
= ∑

i∈U
ai

[
Yi − ḃ(ψ(β̂T

N Xi))
]
ψ̈(β̂T

N Xi)XiXT
i

− ∑
i∈U

ai b̈(ψ(β̂T
N Xi))ψ̇(β̂T

N Xi)
2XiXT

i .

At last, combining Equations (A15)–(A17) by Slutsky’s theorem, one obtains

√
n(β̂n − β̂N)

d−→ N(0, Vs),

where Vs =

[
E
(

∂q∗i (β̂N)

∂β̂N

∣∣∣∣FN

)]−1

Var(q∗i (β̂N)|FN)

[
E
(

∂q∗i (β̂N)

∂β̂N

∣∣∣∣FN

)]−1

= Σ−1
N VNΣ−1

N . The

proof is completed.

Proof of Theorem 4. Here, one needs to prove the consistency of β̂n with respect to β0 due
to the existence of β̂n; see [27].
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Denote pβ(X, y) := exp{yψ(βTX) − b(ψ(βTX))}, mβ(X, y) = log pβ(X, y) :=
yψ(βTX) − b(ψ(βTX)) and ϕ̃(βTX) = ḃ[ψ(βTX)]ψ̇(βTX). Then the negative K-L di-
vergence in [28] is bounded,

−DKL(Pβ0 ||Pβ) :=Eβ0(mβ −mβ0)

=E{(Eβ0 y|X)[ψ(βTX)− ψ(βT
0 X)]− b(ψ(βTX)) + b(ψ(βT

0 X))}
=E{ḃ[ψ(βT

0 X)][ψ(βTX)− ψ(βT
0 X)]− b(ψ(βTX)) + b(ψ(βT

0 X))}
(∃t1 ∈ [0, 1]) =E{ḃ[ψ(βT

0 X)][ψ(βTX)− ψ(βT
0 X)]

− ḃ[(1− t1)ψ(βTX) + t1ψ(βT
0 X)][ψ(βTX)− ψ(βT

0 X)]}
(∃t2 ∈ [0, 1]) =E{b̈[(1− t2)ψ(βT

0 X) + (1− t1)t2ψ(βTX) + t1t2ψ(βT
0 X)]

· [ψ(βT
0 X)− (1− t1)ψ(βTX)− t1ψ(βT

0 X)][ψ(βTX)− ψ(βT
0 X)]}

=− (1− t1)E{b̈[(1− t3)ψ(βT
0 X) + t3ψ(βTX)][ψ(βTX)− ψ(βT

0 X)]2}
(∃t4 ∈ [0, 1]) =− (1− t1)E{b̈[(1− t3)ψ(βT

0 X) + t3ψ(βTX)]

· ψ̇[(1− t4)(βT
0 X) + t4(βTX)]2(βTX − βT

0 X)2}
[By (B.4) and (B.5)] ≤− (1− t1)C1E(βTX − βT

0 X)2

=− (1− t1)C1(β− β0)
T(EXXT)(β− β0)

≤− (1− t1)C1λmin(EXXT)||β− β0||2

[By (B.1)] ≤− (1− t1)C1C2||β− β0||2,

where t3 = t2 − t1t2 ∈ [0, 1] and C2 > 0. Then for any ε > 0, one has the well-separation
condition

sup
||β−β0||2≥ε

Eβ0 mβ(X, y) < Eβ0 mβ0(X, y).

Let M̃n(β) := 1
n ∑n

i=1 mβ(X∗i , Y∗i ), which is essentially a logarithmic likelihood function of
subsampled GLMs, and β̂n is the function’s maximum point. Thus, one has the nearly
maximization M̃n(β̂n) ≥ M̃n(β0) ≥ M̃n(β0)− oP(1).

Let F := {mβ(X, y) = −yψ(βTX) + b(ψ(βTX)), β ∈ Θ}. Now one obtains

|mβ1(X, y)−mβ2(X, y)| =| − yψ(βT
1 X) + b(ψ(βT

1 X)) + yψ(βT
2 X)− b(ψ(βT

2 X))|
=|yψ(βT

1 X)− b(ψ(βT
1 X))− yψ(βT

2 X) + b(ψ(βT
2 X))|

=||yψ̇(ξT
(5)X)(βT

1 X − βT
2 X)X

− ḃ(ψ(ξT
(6)X))ψ̇(ξT

(6)X)(βT
1 X − βT

2 X)X||

≤C4|y− ḃ(ψ(ξT
(6)X))| · |βT

1 X − βT
2 X| · ||X||

≤C4|y− ḃ(ψ(ξT
(6)X))| · ||X||2 · ||β1 − β2||, ∀β1, β2 ∈ Θ,

where ξ(5) and ξ(6) are both between β1 and β2 and C4 > 0.
Let m̄(X, y) = |y− ḃ(ψ(ξT

(6)X))| · ||X||2 and by (B.3), one has

||m̄(X, y)||P,1 := Eβ0 |m̄(X, Y)| ≤ Eβ0 sup
∀β∈Θ

[|y− ḃ(ψ(βTX))| · ||X||2] < ∞,

where || · ||P̃,1 = P̃| · | is the L1(P̃)-norm in P269-P270 of [11] and P̃ := Eβ0 . And then from
the Example 19.7 in [11], one obtains

N[ ]

(
ε,F , L1(Eβ0)

)
≤ K

(
diamΘ

ε/||m̄||Eβ0
,1

)p

< ∞, every 0 < ε < diamΘ < ∞
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where N[ ]

(
ε,F , L1(Eβ0)

)
is called bracketing number which is the minimum number of

ε-brackets needed to cover F ; see P270 in [11]. And K is a constant, and diamΘ =
sup∀β1,β2∈Θ ||β1 − β2||.

Therefore, the class F is P-Glivenko-Cantelli by Theorem 19.4 in [11]. And from the
definition of P-Glivenko-Cantelli in P269 of [11], we have

sup
∀β∈Θ

|M̃n(β)− Eβ0 mβ(X, y)| a.s.−→ 0.

Finally, according to Theorem 5.7 in [11], we get ‖β̂n − β0‖ = oP(1). The proof is then
completed.

Recall (A7) and (A8) respectively, then∇sn(γ) = Rn(γ)−Mn(γ). Let Φ = E(∇sn(β)),
then we have the following lemma.

Lemma A3. For β ∈ Rp, assume that
(E.1) Rn(β) is finite and nonsingular.
(E.2) For 1 ≤ k, j ≤ p,

E

[
∑
i∈S

ai
πi

[Yi − µ(ψ(βTXi))]ψ̈(βTXi)xikxij

]2

= o(1).

(E.3) For 1 ≤ k, j ≤ p,

Var

[
∑
i∈U

ai
πi

[ψ̇(βTXi)]
2µ̇(ψ(βTXi))xikxij

]
= o(1).

Then,
∇sn(β)→ Φ.

Proof. One derives each entry in the matrix by

(∇sn(β))kj =(Rn(β))kj − (Mn(β))kj

= ∑
i∈S

1
π∗i

[Y∗i − µ(ψ(βTX∗i ))]ψ̈(βTX∗i )x∗ikx∗ij

−∑
i∈S

1
π∗i

[ψ̇(βTX∗i )]
2µ̇(ψ(βTX∗i ))x∗ikx∗ij.

By the definition of Φ, one has

Φkj = E(∇sn(β))kj = E

[
−∑

i∈S

1
π∗i

µ̇(ψ(βTX∗i ))[ψ̇(βTX∗i )]
2x∗ikx∗ij

]
.
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Next, one obtains

E
[
(∇sn(β))kj −Φkj

]2

=E
{[

(∇sn(β))kj −Φkj

]2
∣∣∣∣(Xi, Yi)

N
i=1

}
=E
{[

(∇sn(β))kj − E(∇sn(β))kj

]2
∣∣∣∣(Xi, Yi)

N
i=1

}
=E
{[

(Rn(β))kj − (Mn(β))kj + E(Mn(β))kj

]2
∣∣∣∣(Xi, Yi)

N
i=1

}
=E
{
(Rn(β))2

kj +
[
E(Mn(β))kj − (Mn(β))kj

]2
∣∣∣∣(Xi, Yi)

N
i=1

}
+ E

{
2(Rn(β))kj

[
E(Mn(β))kj − (Mn(β))kj

]∣∣∣(Xi, Yi)
N
i=1

}
=E
{
(Rn(β))2

kj

∣∣∣(Xi, Yi)
N
i=1

}
+ Var

{
(Mn(β))kj

∣∣∣(Xi, Yi)
N
i=1

}
=o(1),

where the first equality is based on the fact that after conditioning on the N data points, the
n repeating sampling steps should be independent and identically distributed in each step.
The last equality holds by the conditions (E.2) and (E.3).

Lemma A4. Under the conditions (C.1)–(C.5) in Theorem 5, if sn(β̂n) = 0 for all large n and
||β̂n − β0|| = OP(1/N), then

sn(β0) = −Φ(β̂n − β0) + oP(1).

Proof. By Taylor’s expansion:

0 = sn(β̂n) = sn(β0) +∇sn(β0)(β̂n − β0) +
1
2
(β̂n − β0)

TΣ(β̃n)(β̂n − β0),

where Σ(β̃n) = ∇2sn(β̃n) and β̃n is between β0 and β̂n. From assumption (C.3), (C.4) and
(C.5) in Theorem 5, we have

∥∥Σ(β̃n)
∥∥ =

∥∥∥∥∥∑
i∈S

1
π∗i

φ̈β(X∗i , Y∗i )

∥∥∥∥∥
≤ ∑

i∈S

1
π∗i
·
∥∥φ̈β(X∗i , Y∗i )

∥∥ = O(nN).

Then 1
2 (β̂n − β0)

TΣ(β̃n)(β̂n − β0) = oP(1). Therefore, by Lemma A3, one has

0 = sn(β0) + (Φ + o(1))(β̂n − β0) + oP(1),

which implies
sn(β0) = −Φ(β̂n − β0) + oP(1).

Hence, the proof is completed.

Lemma A5. {M̄i}n
i=1is a martingale difference sequence adapt to the filtration {FN,i}n

i=1.
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Proof. The M̄i’s are FN,i-measurable by the definition of M̄i and the definition of the
filtration {FN,i}n

i=1. Then we obtain

E[M̄i|FN,i−1] = E

[
1

π∗i
φβ(X∗i , Y∗i )−

N

∑
j=1

φβ(Xj, Yj)

∣∣∣∣∣FN,i−1

]

= E
[

1
π∗i

φβ(X∗i , Y∗i )
∣∣∣∣FN,i−1

]
− E

[
N

∑
j=1

φβ(Xj, Yj)

∣∣∣∣∣FN,i−1

]

=
∑N

i=1 πi
1
πi

φβ(Xi, Yi)

∑N
i=1 πi

−
∑N

i=1 πi ∑N
j=1 φβ(Xj, Yj)

∑N
i=1 πi

=
N

∑
i=1

φβ(Xi, Yi)−
N

∑
j=1

φβ(Xj, Yj)

= 0.

By the definition of martingale difference sequence in P230 of [29], the proof is com-
pleted.

Under the definition of T, M̄, Q, it is obvious that Var(T) = Var(M̄) + Var(Q).

Lemma A6. sup
N

λmax(BN) ≤ 1.

Proof. By symmetry of BN , we only to show for any N, I− BN is positive definite.

I− BN = Var(T)−
1
2 (Var(T)−Var(M̄))Var(T)−

1
2

= Var(T)−
1
2 Var(Q)Var(T)−

1
2 .

Therefore, I− BN is equivalent to the positive definite matrix Var(Q). The proof is com-
pleted.

Lemma A7 (Multivariate version of martingale CLT, Lemma 4 in [19]). For k = 1, 2, 3, . . . ,
let {ξki; i = 1, 2, . . . , Nk} be a martingale difference sequence in Rp relative to the filtration

{Fki; i = 0, 1, . . . , Nk} and let Yk ∈ Rp be an Fk0-measurable random vector. Set Sk =
Nk
∑

i=1
ξki.

Assume that

(F.1) lim
k→∞

Nk
∑

i=1
E[‖ξki‖4] = 0;

(F.2) lim
k→∞

E

∥∥∥∥∥ Nk
∑

i=1
[ξkiξ

T
ki|Fk,i−1]− Bk

∥∥∥∥∥
2
 = 0 for some sequence of positive definite matrices

{Bk}∞
k=1 with sup

k
λmax(Bk) < ∞ i.e., the largest eigenvalue is uniformly bounded;

(F.3) For some probability distribution L0, ∗ denotes convolution and L(·) denotes the law of
random variates:

L(Yk) ∗ N(0, Bk)
d−→ L0.

Then
L(Yk + Sk)

d−→ L0.

Lemma A8 (Asymptotic normality of sn(β0)). Assume that

(G.1) lim
N→∞

n
∑

i=1
E[||ξNi||4] = 0;
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(G.2) lim
N→∞

E

[∥∥∥∥ n
∑

i=1
E[ξNiξ

T
Ni|FN,i−1]− BN

∥∥∥∥2
]
= 0.

Then
Var(T)−

1
2 · T d−→ N(0, Ip).

Proof. The conditions in lemma A7 can be substituted with

ξki = ξNi, Yk = Var(T)−
1
2 ·Q,

Bk = BN , L0 ∼ N(0, Ip).

By Lemma A5, conditions (F.1) and (F.2) of Lemma A7 are satisfied. Next we only need to
show the third condition in Lemma A7 holds. According to central limit theorem we have

Var(Q)−
1
2 ·Q d−→ N(0, Ip).

For any t ∈ Rp, let t̃ = Var(T)−
1
2 t, X̃ = iQ, due to the properties of the complex multi-

variate normal distributions are equivalent to the properties of real multivariate normal
distributions in P222 of [30], and EQ = 0, one has

Var(X̃) = Var(iQ) = E[(iQ)(iQ)]− [E(iQ)]2

= −EQ2 = −EQ2 + (EQ)2 = −Var(Q).

Thus, according to Equations (45.4)–(45.6) in P108 of [30], one has

Eet̃T X̃ = et̃T E(X̃)+ 1
2 t̃TVar(X̃)t̃ = e−

1
2 tTVar(T)−

1
2 Var(Q)Var(T)−

1
2 t.

Further, we obtain

E[eitTVar(T)−
1
2 Q] · e−

1
2 tTVar(T)−

1
2 Var(M̄)Var(T)−

1
2 t = e−

1
2 tT t.

Therefore, condition (F.3) in Lemma A7 is verified. Then one obtains

Var(T)−
1
2 T = Var(T)−

1
2 ·Q + Var(T)−

1
2 · M̄ d−→ N(0, Ip).

The proof is completed.

Proof of Theorem 5. According to Lemma A4,

Φ(β̂n − β0) + oP(1) = −sn(β0) = −T. (A18)

Multiplying with Var(T)−
1
2 in (A18), one obtains

Var(T)−
1
2 Φ(β̂n − β0) + oP(||Var(T)−

1
2 ||) = −Var(T)−

1
2 T.

Applying Lemma A8, one obtains

Var(T)−
1
2 Φ(β̂n − β0)

d−→ N(0, Ip).

The proof is completed.
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