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Abstract: The multi-process manufacturing of steel rolling products requires the cooperation of
complicated and variable rolling conditions. Such conditions pose challenges to the fault diagnosis
of the key equipment of the rolling mill. The development of transfer learning has alleviated the
problem of fault diagnosis under variable working conditions to a certain extent. However, existing
diagnosis methods based on transfer learning only consider the distribution alignment from a single
representation, which may only transfer part of the state knowledge and generate fuzzy decision
boundaries. Therefore, this paper proposes a multi-representation domain adaptation network with
duplex adversarial learning for hot rolling mill fault diagnosis. First, a multi-representation network
structure is designed to extract rolling mill equipment status information from multiple perspectives.
Then, the domain adversarial strategy is adopted to match the source and target domains of each pair
of representations for learning domain-invariant features from multiple representation networks. In
addition, the maximum classifier discrepancy adversarial algorithm is adopted to generate target
features that are close to the source support, thereby forming a robust decision boundary. Finally, the
average value of the predicted probabilities of the two classifiers is used as the final diagnostic result.
Extensive experiments are conducted on an experimental platform of a four-high hot rolling mill to
collect the fault state data of the reduction gearbox and roll bearing. The experimental results reveal
that the method can effectively realize the fault diagnosis of rolling mill equipment under variable
working conditions and can achieve average diagnostic rates of up to 99.15% and 99.40% on the data
sets of the rolling mill gearbox and bearing, which are respectively 2.19% and 1.93% higher than the
rates achieved by the most competitive method.

Keywords: fault diagnosis; rolling mill; transfer learning; domain adaptation; distribution difference

1. Introduction

The rolling mill is indispensable in the production of steel products, and its safe and re-
liable operation is an effective premise to ensure product quality [1,2]. As modern industrial
equipment tends to be large-scale and complex, rolling mill equipment is also developing
in the direction of diversified production processes and continuous rolling processes. This
complex and variable rolling condition poses great challenges to the condition monitoring
and fault diagnosis of rolling mill equipment [3,4]. Under the continuous effect of long-term
high load, key components, including a hot rolling mill gearbox, roll bearings, and so on,
are prone to failure and damage. If such faults are not detected in a timely manner, they
will severely affect the product quality, resulting in considerable economic losses [5].

With the development of artificial intelligence and sensing technology, fault diagnosis
has shifted from traditional methods based on expert experience and signal analysis to
data-driven fault diagnosis [6]. The support vector machine, random forest, artificial neural
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network, and other algorithms have made great breakthroughs in solving the traditional
problem of relying on complex physical modeling and artificial analysis [7]. However,
these fault diagnosis algorithms based on traditional machine learning must be constructed
by professionals in feature engineering. The features of these structures are usually only
suitable for specific diagnostic tasks and are not universal. In addition, because of the
shallow model architecture, traditional machine learning algorithms cannot fully map the
nonlinear relationship between state data and fault space.

As a branch of machine learning, deep learning can overcome the lack of nonlinear
mapping ability of shallow machine learning algorithms and adaptively learn fault-
sensitive features from multiple hidden layers. In recent years, deep learning has
been widely reported in the field of fault diagnosis [8,9]. Shao et al. [10] proposed
a multi-signal fault diagnosis algorithm based on the convolutional neural network
(CNN), which uses vibration and current signals to monitor the state of the motor.
For mining the deep-seated state information of mechanical signals, Han et al. [11]
used the time- and frequency-domain information together as the model input and
proposed an intelligent fault diagnosis method of a dual-stream CNN based on multi-
level information fusion. Jia et al. [12] constructed a local connection network through a
normalized sparse autoencoder for intelligent fault diagnosis of gearboxes and bearings.
Shi et al. [13] studied the health status monitoring of rolling mills based on multi-source
sensor fusion under imbalanced and small samples. Yang et al. [14] proposed a residual
wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault
diagnosis. Yu et al. [15] developed an approach based on multi-sensor information fusion
and improved deep belief networks (DBNs) for the health state diagnosis of rolling mills.
The existing literature reveals that the method based on traditional deep learning can
achieve superior performance when it can collect sufficient label status data from the
target mechanical equipment [16]. However, the actual industrial production process
is complex and accompanied by a large amount of environmental noise. The complex
and variable working conditions of the hot rolling mill result in the model trained under
certain working condition data suffering significant performance degradation when
applied for mechanical diagnosis under other working conditions [17].

The change in data distribution caused by the change in mechanical equipment work-
ing conditions is called domain shift [18], as shown in the left panel of Figure 1. Transfer
learning is a realistic approach to learning knowledge from one or more tasks and ap-
plying it to other related tasks; it can effectively compensate for the differences across
domains [19]. In particular, domain adaptation, one of the branches of transfer learning,
extracts domain-invariant features through distributed difference measurement or domain
adversarial training, which is one of the common algorithms for mechanical condition mon-
itoring and fault diagnosis under variable working conditions [20], as shown in the middle
panel of Figure 1. Li et al. [21] used the multi-core maximum mean difference (MMD) to
minimize the domain distribution distance in multiple layers of the deep network, which
effectively improved the generalization performance of the model. By integrating CORrela-
tion ALignment (CORAL) into a convolutional autoencoder, Qian et al. [22] realized the
state recognition of a planetary gearbox under variable working conditions. Li et al. [23]
applied the confrontation training method to align the edge distribution and explored
the unmarked distribution matching of auxiliary states in parallel data. The bearings
at different installation positions were effectively diagnosed. Han et al. [24] proposed a
joint distribution domain-adaptive depth transfer network for industrial fault diagnosis,
which improved the distribution matching accuracy. Tang et al. [25] added sample label
information in the process of domain confrontation and applied conditional distribution
domain adaptation to learn domain-invariant features; thus, the accuracy of bearing fault
diagnosis was improved. Guo et al. [26] proposed a deep migration learning network with
simultaneous MMD measurement and domain confrontation training to maximize the
domain recognition error and minimize the probability distribution difference. This pro-
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cess could learn domain-invariant representation. Scholars have applied various domain
adaptation methods to mechanical fault diagnosis to promote this research field [27].
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Although various domain-adaptive and improved transfer learning methods have
alleviated the domain offset problem caused by varying working conditions to a cer-
tain extent, the existing domain-adaptive methods only express the transfer diagnosis
knowledge from a single piece of information; that is, only part of the mechanical state
information is concerned, and the important information related to the machine health
may be lost. Thus, the diagnostic performance is unsatisfactory. Literature [28] shows
that extracting specific features of observational objects from multiple perspectives can
significantly improve the accuracy of cross-domain image classification. To fully transfer
health state knowledge from source tasks to target diagnostic tasks, multi-representation
information distribution matching should be considered. In addition, owing to the
different characteristics of each domain, achieving complete matching of the feature
distribution of different domains is difficult, which easily leads to unclear decision
boundaries and reduces the accuracy of target diagnosis tasks. To deal with the above
two problems, a multi-representation domain adaptation network is proposed in this
paper for the diagnosis problem of key equipment of the hot rolling mill under variable
conditions. The multi-representation network structure is designed to extract multi-
representation information, and the domain adversarial strategy is applied to match
the source and target domains represented by each pair simultaneously. This process
enables the transfer of sufficient mechanical state knowledge. In addition, the maximum
classifier discrepancy is introduced, and adversarial training is introduced to generate
target features close to the source support, thereby forming a robust decision boundary,
as shown in the right panel of Figure 1. The contributions of this study are as follows:

(1) A multi-representation network structure is designed to fully extract the status infor-
mation of rolling mill equipment from multiple perspectives.

(2) Domain confrontation and maximum classifier difference discrepancy confrontation
training are simultaneously applied to express the transfer of diagnostic knowledge
from multiple features and divide the classification boundary of specific tasks.

(3) Extensive experiments are performed to collect the fault state data of the reduction
gearbox and roll bearing from a four-high (4-H) hot rolling mill experimental platform.
Thus, the effectiveness of the proposed method for rolling mill equipment fault
diagnosis under variable working conditions is verified.

The remainder of this paper is organized as follows.

2. Preliminaries
2.1. Problem Setup

In this study, the general definition of the domain-adaptive fault diagnosis method is
followed. Specifically, it is assumed that a tagged source domain dataset Ds =

{(
xs

i , ys
i
)}ns

i=1
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can be collected under a certain working condition, where ns is the number of source
domain samples, and ys

i ε{1, 2, 3, · · · , k} represents the corresponding health status tag.
The unlabeled data that can be obtained under the working conditions that need to be
diagnosed are defined as the target domain Dt =

{(
xt

i
)}nt

i=1, where nt is the number of
samples in the target domain, and Dt and Ds share the same label space. Because of the
varying working conditions, such as speed of revolution or load, the distribution of the
source domain is inconsistent with that of the target domain, that is, P(Xs) 6= P

(
Xt). The

purpose of fault diagnosis under variable working conditions is to build a cross-domain
diagnosis model y = f (x), which can learn domain-invariance and distinguishability
characteristics by eliminating the distribution differences between the two domains and
minimize the risk of the target diagnosis task E(x,y)[f(x) 6= y] under source supervision.

2.2. Domain Adversarial Training

Domain adversarial training is a typical domain-adaptive method; Ganin et al. [29] first
introduced the concept of adversarial training in the field of transfer learning, aiming at
minimizing the edge distribution distance of two domains. Specifically, the basic architecture
of an adversarial network includes a feature extractor F and a domain classifier D; usually, a
classifier C is also included. For a pattern distinguishability problem, their parameters are
represented by θF, θD, and θC, respectively. In the training process, feature extractor F and
domain classifier D are two players in a minimax game, that is, domain classifier D attempts
to identify whether the representation learned by feature extractor F originates from the
source domain or the target domain, and feature extractor F generates cross-domain-invariant
characteristics as far as possible to fool domain classifier D. In this adversarial training process,
the distribution difference between the source domain and the target domain gradually
reduces. At the same time, under the supervision of the source domain, classifier C is trained
to distinguish the categories of different samples. By adding a gradient reverse layer (GRL)
to feature extractor F and domain classifier D, the model optimization of this process can be
simultaneously realized. (

θ̂F, θ̂C
)
= arg min

θF , θC
l
(
θF, θ̂D, θC

)
(1)

θ̂D = argmax
θD

l
(
θ̂F, θD, θ̂C

)
(2)

l(θF, θD, θC) =
1
ns

∑
xi∈Ds

J (C(F(xi)), yi)− λ
ns+nt

∑
xi∈Ds∩Dt

J (D(F(xi)), di) (3)

where l is the optimization objective of the model, J is the cross-entropy loss function, yi is
the corresponding class label of the source domain sample, di is the domain label, and λ is
the trade-off parameter. θ̂F, θ̂D, θ̂C are the optimized values of θF, θD, θC, respectively.

2.3. Maximum Classifier Discrepancy

Considering that the general domain-adaptive method ignores the relationship between
the characteristics of target samples and the task-specific decision boundary, Saito et al. [30]
proposed the unsupervised domain-adaptive method of maximum mean discrepancy with
the aim of using the decision boundary of a specific task to align the distribution of sources
and targets. In general, a feature extractor F and two predictive classifiers C1 and C2 are
included in the maximum mean discrepancy network architecture. In the training process,
the discrepancy between classifiers C1 and C2 is maximized to detect the target samples close
to the decision boundary. These samples are very easy to be mis predicted by the classifiers
trained under source supervision. At the same time, feature extractor F is trained to generate
a target representation that is far from the classification boundary and close to the source
domain. This optimized process can be formulated as follows:(

θ̂C1 , θ̂C2

)
= arg min

θC1
, θC2

l
(
θ̂F, θC1 , θC2

)
(4)
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θ̂F = argmax
θF

l
(
θF, θ̂C1 , θ̂C2

)
(5)

l
(
θF, θC1 , θC2

)
=

1
ns

2

∑
j=1

∑
xi∈Ds

J
(
Cj(F(xi)), yi

)
− λ

nt
∑

xi∈Dt
|s f (C1(F(xi)))s f (C2(F(xi)))|1 (6)

3. Proposed Method
3.1. Multi-Representation Domain Adaptation Network

The integrated architecture of the proposed multi-representation network is shown
in Figure 2. It mainly consists of four parts: the shared feature extractor, the multi-
representation feature extractor, the domain classifier, and the state classifier. Specifically,
the shared feature extractor includes three convolution layers. The first convolution layer
uses a convolution core with a size of 32 to filter out interference noise, while the other two
convolution layers use a convolution core with a size of 3 to extract common underlying
characteristics. The multi-representation feature extractor module contains different net-
work branches, each of which has a different network structure and convolution scale. It
aims to extract the feature representation of specific characteristics from different angles. In
this study, four different network structures are used as the multi-representation feature
extractor, and the specific structure of each network branch Gi is shown in Figure 2. A
domain classifier is added after each representation network branch to judge the feature
source of the network branch learning. Each characteristic obtained by the representation
branch structure is spliced into a feature vector as the input of the state classifier, and the
two classifiers are trained separately to distinguish different rolling mill running states.
Meanwhile, the discrepancy between the two classifiers is used to detect the target samples
close to the decision boundary. This process allows the feature extractor to learn a more
robust characteristic representation during adversarial training.
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3.2. Model Optimization

After the model is built, the specific optimization function should be designed to
update the model parameters to achieve the expected diagnostic performance. Specifi-
cally, the loss objective function of the proposed model can be divided into three parts:
supervised source domain classification loss, domain distinguishability loss in the multi-
representation branch structure, and discrepancy loss of two classifiers. Under the
supervised training of source domain samples, the two classifiers can independently
learn to divide the decision boundary of fault classification. The loss function of the two
classifiers can be expressed as follows:

lc =
1
ns

2

∑
j=1

∑
xi∈Ds

J
(
Cj(cat(G1(F(xi)), . . . , G4(F(xi)))), yi

)
(7)

where cat represents vector connection operation.
In each multi-representation network branch, a domain classifier is used to perform

adversarial training to realize the edge distribution matching represented by this feature;
thus, the domain-invariant feature can be learned in this process. The domain adversarial
loss of the multi-representation structure can be formulated as follows:

ld = 1
ns+nt

4
∑

j=1
∑

xi∈Ds∩Dt
J
(

Dj
(
Gj(F(xi))

)
, di

)
(8)

In addition to domain adversarial training, the second adversarial strategy of the
proposed model is maximum classifier difference confrontation, which aims to use the
predicted difference between the two classifiers to establish the relationship between the
target sample and the task specific decision boundary. The two classifiers aim to detect
the target samples far away from the source support, and the feature extractor is used to
generate the target representation close to the source support. In this adversarial training
process, more distinguished domain-invariant features can be learned. The maximum
classifier discrepancy loss function of this model is given as follows:

le = 1
nt

∑xiεDt |s f (C1(cat(G1(F(xi)), . . . , G4(F(xi)))))

−s f (C2(cat(G1(F(xi)), . . . , G4(F(xi)))))|1
(9)

By adding a GRL, the two adversarial training processes and source supervision
training can be carried out synchronously, and the parameters of each module of the model
can be updated synchronously. The total loss function of the proposed model is as follows:

lo = lc − λ(ld + le) (10)

where the weight parameter λ changes gradually according to the formula λ = 2
1+exp(−γ·p) − 1

with γ being set to 10. In this study, p changes linearly from 0 to 1 with the training process.
According to the total loss function formula, the proposed parameter optimization

problem of each module of the model can be expressed by the following formula:

θ̂F, θ̂Gj |
4
j=1 = arg{minlc, maxld, minle} (11)

θ̂Dj |4j=1 = arg{minld} (12)

θ̂Cj |
2
j=1 = arg{minlc, maxle} (13)

where θ̂Dj , θ̂Cj are the optimized values of θDj , θCj , respectively.
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Through the random gradient descent algorithm, the parameter update process for
each network module is as follows:

θF ← θF − η
(

∂lc
∂θF
− ∂ld

∂θF
+ ∂le

∂θF

)
(14)

θGj ← θGj − η

(
∂lc

∂θGj
− ∂ld

∂θGj
+ ∂le

∂θGj

)
(15)

θDj ← θDj − η ∂ld
∂θDj

(16)

θCj ← θCj − η

(
∂lc

∂θCj
− ∂le

∂θCj

)
(17)

where η is the learning rate, which is adjusted with the training progress according to the
formula η0

(1+α·p)β , with η0 = 0.01, α = 10, and β = 0.75. This learning rate attenuation method

helps the model rapidly converge to the optimal value [31].
The overall training process of the proposed method is shown in Figure 3. The pro-

posed method follows a simple end-to-end approach based on the standard unsupervised
transfer learning training process. Only labeled source domain and unlabeled target do-
main samples are input into the network, and unlabeled target samples participate in the
training. The total loss value in Equation (12) is obtained through forward calculation, and
then the parameters in Equations (14)–(17) are optimized through the stochastic gradient
descent (SGD) algorithm.
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4. Experimental Study

In this section, by collecting the operating data of the bearing and reducer under
different working conditions on a 4-H hot rolling mill test bench, an extensive experimental
scheme was designed to verify the performance of the proposed method. The diagnostic
results of several typical diagnostic models and the proposed method under the same
experimental conditions are compared and analyzed.

4.1. Experimental Platform and Data Collection
4.1.1. 4-H Hot Rolling Mill Experimental Platform

The overall structure of the 4-H hot rolling mill experimental platform is shown in
Figure 4. It mainly includes a control console, a variable frequency adjustable speed drive
motor, a reduction gearbox, a direction-changing gearbox, and a 4-H rolling mill. The
control console is mainly composed of a variable-frequency motor controller, a loading
motor controller, a pressure sensor display screen, and an emergency stop switch. The
variable-frequency speed regulating motor is the driving source of the whole rolling mill
system. The motor, reduction gearbox, and direction-changing gearbox are connected
through couplings, and the direction-changing gearbox and 4-H rolling mill are connected
through cross universal joints. The 4-H mill is composed of a mill stand, two backup rolls,
and two working rolls. A loading device is installed at the top of the mill housing, which
can exert pressure on the roll by electric or manual methods. Through the motor control
button of the control console, the speed of the drive motor and the roll load can be adjusted
to simulate different rolling conditions.
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4.1.2. Gearbox Dataset Description

The gearbox data were collected on the reduction gearbox of the 4-H hot rolling
mill experimental platform. As shown in Figure 5, the reduction gearbox includes two
cylindrical spur gears—a large gear with 55 teeth and a small gear with 25 teeth. In the data
acquisition experiment, the operating states of six health modes were simulated, including
different single-point faults of large gears and small gears and composite faults of the two
gears. The detailed health states are listed in Table 1. An acceleration sensor was placed on
the reduction gearbox box to collect vibration signals. Gears with different failure modes
were replaced in turn to simulate different gearbox operation states. The driving motor
speed was controlled at 880× g, and three different load pressures were applied in turn
to simulate different working conditions. The vibration signals collected under each load
were used as a data source. The sampling frequency was set to 5120 Hz.
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Figure 5. Reduction gearbox.

Table 1. Description of the health conditions of the reduction gearbox.

Label Condition

0 Normal
1 Large gear pitting
2 Large gear tooth breakage
3 Large gear tooth breakage and small gear wear
4 Large gear pitting and small gear wear
5 Small gear wear

4.1.3. Bearing Dataset Description

The bearing data were collected by monitoring the outer bearing of the working roll
on the rolling mill, and the acceleration sensor was placed in the horizontal direction
of the bearing seat. Four different bearing states were simulated: normal, inner ring
fault (IRF), outer ring fault (ORF), and rolling element fault (REF). These faults were
introduced in different parts of the rolling bearing through EDM, as shown in Figure 6.
During data collection, the load pressure was constant, and the motor speed was set to
600, 840, and 1200× g to simulate different working conditions. The vibration signal
collected at each speed was used as a data source. The sampling frequency of the
acquisition card was set to 10,240 Hz.
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Figure 6. Bearings in different health states.

4.2. Experimental Setup

For the data of each failure mode under different working conditions, we used a sliding
window with a size of 1024 to intercept samples. In the gearbox dataset, 300 samples were
obtained for each fault class; there were 1800 samples under each working condition. In
the bearing dataset, 200 samples were obtained for each fault class, including a total of
800 samples under each working condition. In each diagnostic task, 50% of the samples
were randomly selected as the training set and the remaining 50% as the test set. Because
the data under each working condition was used as a source, in the experiment, a data
source was randomly selected as the source domain in cross-domain fault diagnosis, and
the remaining data sources were selected in turn as the target domain to be diagnosed. In
this study, a total of 12 diagnostic tasks were set, and the detailed information is shown in
Table 2. In the process of model training, the size of the mini batch was set to 32, and a total
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of 20 epochs were trained. In addition, several typical diagnostic methods were introduced
to compare the performance of the proposed model with its actual performance. They are
briefly described as follows:

(1) Convolutional neural network (CNN): CNN implements the traditional supervised
learning paradigm without adding a domain-adaptive algorithm. It uses the source
domain for training and directly tests in the target domain.

(2) Deep adaptation network (DAN) [32]: DAN is a domain-adaptive depth network that
uses the MMD to minimize the difference in edge distribution.

(3) Deep CORAL (D-CORAL) [33]: D-CORAL is a deep domain-adaptive network that
uses the coral algorithm to align the second-order statistical characteristics of the
source and target domains.

(4) Domain adversarial neural network (DANN) [29]: DANN is a deep domain-
adaptive network that generates domain-invariant characteristics by applying
adversarial training.

(5) Joint adaptation network (JAN) [34]: JAN is a domain-adaptive depth network that
uses joint MMD (JMMD) to minimize joint distribution discrepancy.

(6) Multi-adversarial domain adaptation (MADA) [35]: MADA is a deep domain-adaptive
network that applies a multi-pair adversarial domain adaptation algorithm to learn
domain-invariant representation.

Table 2. Description of the cross-domain diagnosis tasks.

Dataset Task Source Target Dataset Task Source Target

Gearbox

A1 load0 load1

Bearing

B1 600× g 840× g
A2 load0 load2 B2 600× g 1200× g
A3 load1 load0 B3 840× g 600× g
A4 load1 load2 B4 840× g 1200× g
A5 load2 load0 B5 1200× g 600× g
A6 load2 load1 B6 1200× g 840× g

For a fair comparison, all comparison methods used the same network parameters
as the proposed model. To avoid the effect of random factors, each trial was repeated
10 times, and the average diagnostic results were adopted.

4.3. Result Discussion and Analysis
4.3.1. Diagnosis Result Discussion

In this section, the diagnostic results of the proposed method and other comparative
methods on different diagnostic tasks are presented and discussed. The diagnostic results
of different methods from the gearbox dataset are shown in Figure 7, and specific diagnostic
accuracy and standard deviation are listed in Table 3. Clearly, the diagnostic performance of
the proposed method on six diagnostic tasks of the gearbox dataset was better than that of
other comparative methods. Because a domain-adaptive algorithm is not applied, the CNN
achieved the lowest average diagnostic accuracy of 78.76% on the six diagnostic tasks. As
the distributed difference measurement algorithm is introduced in the DAN and D-CORAL,
their diagnostic performance slightly improves compared with the CNN, with their average
diagnostic accuracy reaching 81.15% and 81.85%, respectively. However, on diagnostic task
A2, the DAN and D-CORAL showed a negative transfer phenomenon, and their diagnostic
accuracy was lower than that of the CNN. The DANN still achieved 82.88% diagnostic
accuracy, indicating that the DANN with a domain adversarial strategy can better mitigate
the effect of negative transfer than the DAN and D-CORAL. The JAN and MADA consider
the conditional distribution domain adaptation; therefore, their diagnostic performance
is significantly improved compared with that of the global distribution domain-adaptive
method. Their average diagnostic accuracy in the six diagnostic tasks reached 93.50%
and 96.96%, respectively; however, when using a single-feature representation for domain
adaptation, the JAN and MADA may lose some important diagnostic information, and the
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diagnostic performance degrades. The proposed method migrates information from the
perspective of multi-feature representation and considers the decision boundary division of
the target task. The joint distribution difference between the source domain and the target
domain can be well compensated. Therefore, the proposed method obtained the highest
average diagnostic accuracy in this diagnostic task, which is 2.19% higher than the most
competitive MADA, and showed the best model stability.
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Figure 7. Diagnosis results of the different methods on the gearbox dataset.

Table 3. Average diagnostic accuracy (%) and standard deviation of different methods on the
gearbox dataset.

Task CNN DAN D-CORAL DANN JAN MADA Proposed

A1 85.30 ± 3.47 90.70 ± 3.63 88.24 ± 2.61 93.80 ± 1.05 94.53 ± 1.30 97.52 ± 1.33 99.51 ± 0.25

A2 65.48 ± 0.71 65.01 ± 1.36 63.30 ± 5.57 82.88 ± 3.25 90.62 ± 2.28 95.86 ± 2.01 98.38 ± 0.26

A3 84.10 ± 1.98 88.53 ± 2.71 89.26 ± 2.83 86.91 ± 4.35 95.13 ± 2.21 97.36 ± 1.54 99.64 ± 0.23

A4 82.33 ± 4.02 86.80 ± 2.64 83.85 ± 3.70 94.75 ± 0.70 95.75 ± 1.32 97.62 ± 0.85 99.51 ± 0.16

A5 71.02 ± 5.19 69.48 ± 1.70 78.72 ± 4.07 81.98 ± 4.24 89.62 ± 1.22 96.89 ± 1.06 99.49 ± 0.31

A6 84.30 ± 2.66 86.37 ± 2.68 87.72 ± 2.97 81.98 ± 4.24 95.32 ± 2.19 96.53 ± 0.61 98.35 ± 0.14

Average 78.76 ± 3.01 81.15 ± 2.45 81.85 ± 3.63 88.62 ± 2.99 93.50 ± 1.75 96.96 ± 1.23 99.15 ± 0.23

The diagnostic results of different methods on the diagnostic task of the rolling mill
bearing dataset are shown in Figure 8 and Table 4. Similar to the aforementioned case,
the proposed method achieved the best diagnostic performance on the bearing dataset,
and the average diagnostic accuracy on the six diagnostic tasks of the bearing dataset
was 99.40%. The DAN, D-CORAL, and DANN obtained similar diagnostic accuracy,
which were 4.92%, 5.26%, and 5.27% higher than that of the CNN, respectively. Compared
with the DAN, D-CORAL, and DANN, the JAN and MADA showed better diagnostic
performance improvement, with their average diagnostic accuracy reaching 95.57% and
97.47%, respectively. The shift from global distribution matching to conditional distribution
matching is the key to improving diagnostic performance. The proposed method further
considers the multi-representation diagnostic information transfer and the target decision
boundary division, which further improves the diagnostic accuracy and reliability of
cross-domain diagnostic tasks.
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Table 4. Average diagnostic accuracy (%) and standard deviation of different methods on the
bearing dataset.

Task CNN DAN D-CORAL DANN JAN MADA Proposed

B1 84.54 ± 2.72 91.65 ± 2.13 94.20 ± 2.22 93.15 ± 1.25 95.54 ± 1.26 98.21 ± 1.05 99.40 ± 0.25

B2 84.65 ± 1.45 94.10 ± 1.81 93.85 ± 2.44 93.50 ± 0.97 95.88 ± 0.61 97.68 ± 0.65 99.35 ± 0.25

B3 84.15 ± 3.31 91.90 ± 2.11 90.95 ± 2.32 90.75 ± 1.76 94.37 ± 1.36 97.53 ± 1.16 99.15 ± 0.24

B4 90.70 ± 3.93 94.10 ± 3.05 95.35 ± 2.10 94.86 ± 0.83 96.54 ± 1.15 97.26 ± 1.12 99.55 ± 0.29

B5 92.00 ± 1.20 93.95 ± 2.47 93.35 ± 3.04 93.75 ± 1.64 94.83 ± 0.96 96.88 ± 0.38 99.35 ± 0.25

B6 93.55 ± 3.34 93.45 ± 1.83 93.45 ± 1.83 95.22 ± 1.19 96.24 ± 1.18 97.25 ± 0.59 99.60 ± 0.20

Average 88.27 ± 2.66 93.19 ± 2.23 93.53 ± 2.33 93.54 ± 1.27 95.57 ± 1.09 97.47 ± 0.83 99.40 ± 0.25

4.3.2. Visualization Results

To compare the diagnostic performance of the proposed method with that of sev-
eral typical methods more clearly, this section presents several visualization results on
diagnostic tasks A3 and B3.

First, the t-distributed stochastic neighbor embedding (t-SNE) algorithm [36] was
applied to intuitively understand the transfer learning process of diagnostic knowledge.
The high-level representation learned by the feature extractor is plotted directly after
dimensionality reduction. The values in green denote source instances, and those in blue
denote target instances. Figure 9 shows the feature distribution of the proposed method
and the CNN, DAN, and DANN on the gearbox dataset for diagnosis task A3. It can be
seen that category-level distribution differences of varying degrees exist in the high-level
characteristics of the CNN, DAN, and DANN. Specifically, the characteristic distributions
of category 2 samples in the source and target domains are not well matched. This is
because the same fault mode exists for large gear tooth breakage and small gear wear,
which easily causes feature confusion. Multi-representation feature learning and duplex
adversarial strategies are used to extract features from multiple perspectives and clarify the
clear division of the target decision boundary, as shown in Figure 9d. The proposed method
can compensate for the lack of diagnostic knowledge, match the feature distribution of
each fault state, and accurately transfer diagnostic knowledge. Similarly, on diagnostic task
B3, the proposed method still achieved the best migration effect. As shown in Figure 10,
the CNN, DAN, and DANN had serious feature distribution aliasing, which will greatly
reduce the diagnostic accuracy.
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According to the visual characteristics of learning, the confusion matrixes of the
proposed method and the three comparison methods are further displayed. As shown in
Figure 11, due to the category-level distribution deviation of transfer characteristics, almost
all samples with the large gear tooth breakage fault of the CNN are incorrectly divided into
large gear tooth breakage and small gear wear fault modes. Although the misclassification
of the DAN and DANN in the fault category of broken large gear teeth was alleviated,
the diagnosis rates were still too low at only 35.33% and 36%, respectively. The proposed
method not only achieves a 100% diagnosis rate for the large gear tooth broken fault mode
but also obtains satisfactory recognition accuracy for other fault categories. In diagnosis
task B3, as shown in Figure 12, which corresponds to the characteristic distribution shown
in Figure 10, the CNN, DAN, and DANN misdiagnosed the inner ring fault as normal to
varying degrees, causing the machine to run with the fault; hence, these methods have poor
fault diagnosis. The proposed method can correctly identify the fault mode in the inner
ring fault and does not divide any fault samples into normal states, proving the reliability
of the proposed method’s diagnosis performance.

Finally, the model sensitivity and stability of different methods are analyzed, as shown
in Figures 13 and 14. These figures show the receiver operating characteristic (ROC) curves
of diagnostic tasks A3 and B3 with the proposed methods, CNN, DAN, and DANN. Clearly,
the area under the curve (AUC) of the proposed method for each fault category was
basically close to 1, and the CNN obtained the minimum AUC, followed by the DAN and
DANN. This confirms that the introduction of the domain-adaptive algorithm can improve
the diagnosis performance to a certain extent in the fault diagnosis task under variable
conditions; however, only considering the edge distribution matching is not enough. The
multi-representation feature extraction mechanism and dual adversarial strategy of the
proposed method realize more comprehensive learning of diagnostic knowledge and
accurate transfer, and thus the proposed method has high sensitivity and stability.
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5. Conclusions

This study developed a multi-representation domain adaptation network with duplex
adversarial learning for rolling mill fault diagnosis under varying working conditions.
The proposed method can extract comprehensive features and perform accurate knowl-
edge transfer to realize high-performance fault diagnosis of key components of the hot
rolling mill. Specifically, a multi-representation network structure was designed to extract
rolling mill equipment status information from multiple perspectives. Then, the domain
adversarial strategy was adopted to match the source and target domains of each pair of
representations for learning the domain-invariant features from multiple representations.
In addition, maximum classifier diversity was adopted to generate target features that are
close to the source support, thus forming a robust decision boundary. Extensive experi-
ments were carried out on the reducer and roll bearing fault state data set of a four-high
rolling mill experimental platform. The average diagnostic rates of the proposed method on
different diagnostic tasks reached 99.15% and 99.40%, which were 2.19% and 1.93% higher
than the rates of the most competitive method, respectively. Furthermore, t-SNE feature
visualization, the confusion matrix, and the ROC curve were applied to intuitively display
the implementation results of the proposed method. The experimental results showed
that the proposed duplex adaptive multi-representation domain adaptation method can
effectively diagnose knowledge transfer from multiple perspectives and divide clear fault
category decision boundaries. The proposed method is superior to other domain-adaptive
methods in model stability and fault identification accuracy and can realize effective fault
diagnosis of rolling mill equipment under variable working conditions.

Although the experiments for this method showed good diagnostic accuracy achieved
by the proposed method, only four different representation subnets were used for multi-
view feature extraction. To gain a better understanding of feature representation from
more perspectives, more network branches at different scales are needed. However, that
will inevitably increase the computational complexity of the network as well as require
more sample training to avoid overfitting. Therefore, further research is necessary to learn
representation features from more perspectives and to design lightweight networks.
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Notations List
Notations Instructions
Ds source domain
ns number of source domain samples
ys

i health state label
Dt target domain
nt number of target domain samples
P(Xs) source domain distribution
P
(
Xt) target domain distribution

F feature extractor
D domain classifier
C Classifier
θF feature extractor parameters
θD domain classifier parameters
θC classifier parameters
θ̂F optimized values of θF
θ̂D optimized values of θD
θ̂C optimized values of θC
λ trade-off parameter
η learning rate
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