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Abstract: Stock-market-crash predictability is of particular interest in the field of financial time-
series analysis. Famous examples of major stock-market crashes are the real-estate bubble in 2008
and COVID-19 in 2020. Several studies have studied the prediction process without taking into
consideration which markets might be falling into a crisis. To this end, a combination analysis is
utilized in this manuscript. Firstly, the auto-regressive estimation (ARE) algorithm is successfully
applied to electroencephalography (EEG) brain data for detecting diseases. The ARE algorithm is
employed based on state-space modelling, which applies the expectation-maximization algorithm and
Kalman filter. This manuscript introduces its application, for the first time, to stock-market data. For
this purpose, a time-evolving interaction surface is constructed to observe the change in the surface
topology. This enables tracking of the stock market’s behavior over time and differentiates between
different states. This provides a deep understanding of the underlying system behavior before, during,
and after a crisis. Different patterns of the stock-market movements are recognized, providing novel
information regarding detecting an early-warning sign. Secondly, a Granger-causality time-domain
technique, called directed partial correlation, is employed to infer the underlying interconnectivity
structure among markets. This information is crucial for investors and market players, enabling them
to differentiate between those markets which will fall in a catastrophic loss, and those which will
not. Consequently, they can make successful decisions towards selecting less risky portfolios, which
guarantees lower losses. The results showed the effectiveness of the use of this methodology in the
framework of the process of early-warning detection.

Keywords: complex systems; network analysis; financial markets; expectation-maximization algorithm
and kalman filter; Granger-causality analysis

1. Introduction

A stock price crash is a phenomenon which occurs in the stock market in which a
stock index or individual stock price falls sharply within a short time period, [1]. Therefore,
predicting crashes in the stock-market system has been the focus of numerous studies [1–8].
It is well-known that the existing literature on stock-market crashes is extensive. Numerous
studies have focused on the detection of early-warning signals of market distress from
option contracts [9–13]. In addition, some studies have focused on predicting stock crashes
at the firm level [4,7], while others have studied the construction of generic indicators
to capture critical transitions in the system, as in ecology and climate science [2,3,6,8];
however, the milestone research was conducted by Scheffer et al. [14]. Some studies have
employed the concept of capturing critical transitions in complex systems for the purpose
of constructing correlation indicators [2,15]. Numerous studies have applied multi-fractal
methods to financial time-series data [16–19]. In addition, there is interest in the use of
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artificial intelligence for the detection of crisis scenarios [20–23]. Social-media data may
also be used for the early detection of emergency events [24,25].

Almost all the work carried out has only focused on predicting whether there is
potential, and there has been little research on the indication of which specific markets are
affected most by a crisis. Therefore, the current work expands upon the previous literature
in the following important aspects. We start by constructing the interaction parameter space
for each period under study separately, then analyze the change of topology in each of them.
This is done for the purpose of observing the co-movement motion behavior of the stock
markets, for the comparison of different periods. Then, critical transitions are captured,
along with an analysis of the relationships between the markets where strong interactions
are detected. These analyzed interactions correspond to the high-density regions captured
in the reconstructed spaces.

To this aim, we utilize the auto-regressive estimation (ARE) method introduced by
Schelter (2014) [26,27], which is a mathematical framework to uncover the time-dependent
interaction structure, from measured data, of arbitrary non-stationary stochastic models.
The results are presented as spaces, constructed in terms of the high density detected
among different processes, which refer to strong interactions. The aim of this approach
is to estimate the model parameters without using the windowing approach, avoiding
the potential problems associated with the latter. This provides a deeper understanding
of the dynamical pattern and the interactions inherited in such systems [26,27]. The ARE
algorithm is based on applying the expectation_maximization (EM) algorithm [28] based on
the Kalman filter (KF) [29] for autoregressive parameter estimation. This algorithm provides
an iterative maximum likelihood estimator [30] for SSM model parameter estimation [26,31].
Explicitly, this maximum likelihood approach accounts for observational noise using SSM
which, in turn, provides unbiased estimators [28].

In addition, a Kalman filter is utilized in order to obtain estimates of the hidden
states which, in turn, are used to improve the process parameters estimates. The use of
the EM algorithm is robust in this setting, which refers to its more stable convergence,
ensuring the stability of the model [26]. The usefulness of using SSM together with the EM
algorithm has been demonstrated [32,33]. This algorithm has been successfully applied
to electroencephalography (EEG) [34] and magnetoencephalography (MEG) data [35].
The main idea behind this algorithm is that it depends only on the estimated autoregressive
coefficients using EM and KF to reconstruct the underlying interaction parameter space.
This reconstruction provides a clear idea of the behavior of market motions. This part of
the analysis accounts for the time-varying pattern of the transmission of stock-price shocks.

On the other hand, several statistical analysis techniques have been developed to detect
relationships in multi-variate systems. Examples of such techniques are based on mutual
information [36–40], autoregressive processes [41–43], coherence [44–46], and recurrence
in the state space [47–49]. A typical assumption to be made when estimating the causality
structure from measured data is stationarity; however, the underlying stock-market behav-
ior is, in fact, governed by time-dependent dynamics, such that non-stationarity is present.
This violates the assumptions underlying the standard techniques, which are usually based
on the concept of Granger causality, originating from econometrics [50–54]. The most well-
known frequency- and time-domain techniques based on this concept are renormalized
partial directed coherence (rPDC) [55] and directed partial correlation (DPC) [56].

A widely used approach to remove spurious trends related to the random walk is based
on taking the logarithm of stock-market returns, instead of working with prices (i.e. raw
data) [57–62]. In addition, the moving-window approach allows for time-dependent
parameters to be estimated [63]; however, the main problem associated with this approach
is the appropriate choice of the time-window length, as well as whether there is an overlap
between the windows [61–63]. In general, if the window size is not chosen properly, then
this approach may lead to an under- or an over-estimation of the inferred interactions [63].
In this case, therefore, other approaches should be used.
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In particular, financial markets are well-known for being characterized by non-Gaussian
distributions, as their fluctuations typically present tails in the case of short returns. How-
ever, the long-time returns follow Gaussian distributions. They are often obscured by a
large amount of observational noise, which is assumed to be Gaussian noise. This obser-
vational noise is not a part of the dynamics of the process; on the contrary, dynamic noise
is added to the dynamics of the process. Based on this, both types of noise can be taken
into consideration under stochastic models using SSM. The SSM consists of two equations:
one that describes the dynamics of the process, as well as an observation equation that
models the observation function and observational noise. Such models require accurate
parameter estimates; however, existing naïve parameter estimators neglect observational
noise, resulting in biased estimates being obtained. Therefore, there is an essential need to
determine more robust estimators.

By analyzing the resulting interaction surface topology together with the resulting
interaction network structure, the following can be concluded: an early-warning sign of a
potential crisis can be detected in the long run, relatively, as a consequence of capturing
critical transitions. Such transitions are able to imply unwanted collapse. In addition,
the reconstruction of the interaction networks is helpful in distinguishing between the
markets which are most strongly affected by the crisis. This analysis, in turn, enables
investors and market players to differentiate between those markets which will fall into a
catastrophic loss and those which will not. As a consequence, they can make successful
decisions towards selecting less risky portfolios, which guarantees lower losses.

In summary, various algorithms, as well as DPC techniques, can be applied to interna-
tional stock-market time-series data for the purpose of reconstructing the time-dependent
stock-market interaction parameter spaces. This indicates how the topology of the resultant
interaction parameter spaces may change from a non-crisis state into a state in which a
crisis occurs. Furthermore, DPC analysis provides a clear picture of how markets interact.
This gives a clear warning sign which confirms the tendency for a potential crisis. This,
in turn, allows investors to manage their losses, before their occurrence.

The remainder of this manuscript is structured as follows. The methods applied in this
work are presented in Section 2. In Section 3, the applications of the methods to American
stock markets are discussed.

2. Methods

This section presents the methods used in this manuscript, which are applied to
American stock-market time-series data. The work is split into two parts, according to
the aim of the manuscript. The first part introduces the methods used regarding the
aim of constructing the interaction parameter spaces as density heat maps, in order to
track the market motions through their topological changes during different periods of
time. For this aim, the ARE algorithm is used. A diagram illustrating the underlying
mechanism of the EM-KF algorithm is shown in Figure 1. The second part presents the
method used for the aim of reconstructing the interaction network structure between the
strongly interconnected market indices (i.e., DPC). For simplicity, an illustrative diagram of
the methodology utilized in the manuscript is shown, step-wise, in Figure 2.

In the following, the SSM model is presented in the first sub-section. In the second
sub-section, the model order-selection criterion AICi is detailed. The EM-KF scheme is
discussed and illustrated in the third sub-section. Finally, the DPC technique is presented
in the fourth sub-section.
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Figure 1. Kalman filter in the expectation-maximization algorithm. The Kalman filter is utilized
to obtain conditional means using as parameters the P(r) in every iteration r. Maximization of the
expected value of the likelihood function leads to a new set of parameters P(r + 1) [26].

Figure 2. An illustrative diagram for the research methodology design utilized through the
manuscript.

2.1. State Space Model (SSM)

The state space model (SSM) is a method for modeling both observed and hidden
processes in a given system. The SSM model is used in the Kalman filter (KF) to model
the data under analysis. This model contains two equations. The first equation models
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the dynamics or the state of the process and the Gaussian distributed driving noise, and it
is called the state equation. The second equation models the observations with Gaussian
distributed observational noise, and is called the output equation [26].

The dynamics of the underlying process are modeled by a linear stochastic equation,
which is the vector autoregressive process of order p (VAR[p])

xt =
p

∑
τ=1

Atτxt−τ + εt, εt ∼ N (0, Q), (1)

where xt is the current state vector based on the past p state vector and the Gaussian driving
noise εt, with zero mean and co-variance matrix Q. The transition matrix A(τ) varies over
time, which, in turn, determines the dynamics of the process. The state and noise vectors xt
and εt are of dimension d, while A and Q are d× d matrices.

On the other hand, the observation

yt = C xt + εt, ηt ∼ N (0, R), (2)

is modelled by the b× pd observation matrix C together with the observational noise ηt.
The dimension of yt and ηt is b× 1. The observational noise is assumed to be Gaussian-
distributed with zero mean and b× b co-variance matrix R. In general, b 6= pd is where
not all components of the underlying process are observed. This is a special case when
reformulating a VAR[p] as a VAR[1], where the first d hidden states are only observed.
Then, the state space model (SSM) can be written as [26,31]

xt = At xt−1 + ε(t) (3)

yt = C xt + η(t)

To sum up, the SSM consists of two equations: an equation that describes the dynamics
of the process, in addition to an observation equation that models the observation function,
and observational noise.

2.2. Model Order Selection Criterion AICi

In time-series applications, before conducting the analysis, an appropriate model
order must be chosen to characterize the collected data. The most standard criterion of
scientific theory for this determination is the so-called Akaike information criterion (AIC),
introduced by Akaike in 1974 [64]. This criterion is considered a data-driven selection
method. The AIC can be obtained by evaluating:

AIC = −2log f (y|Θ̂k) + 2k, (4)

where Θ̂k denotes the parameter estimate that is obtained by maximizing the likelihood
function for the model, f (y|Θk) is the maximum, and k is the number of estimated parame-
ters. Therefore, f (y|Θ̂k) represents the resulting empirical likelihood.

In addition, the AIC provides insight into how a fitted model is close to the underlying
generating (or true) model; this approach might suit some models, but not all. To this end,
based on extending the original work of Akaike, Sugiura (1978) [65] proposed the AICc,
which is a corrected version of AIC developed in the context of regression models with
normal errors. In such a setting, the AICc can be obtained by evaluating:

AICc = −2log f (y|Θ̂k) +
2Tk

T − k− 1
, (5)

where 2Tk
T−k−1 is the bias correction term and T is the sample size. However, the effectiveness

of the AICc motivates the need for an improved variant of AIC for state-space models,
as has been demonstrated in [66]. This variant is based on an idea presented by Hurvich,
Shumway, and Tasai (1990) [67], in the context of autoregressive models. This model is
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known as the “improved” Akaike information criterion (AICi), which can be obtained by
evaluating:

AICi = −2log f (y|Θ̂k) + B̂T(k, Θs), (6)

where the penalty term B̂T(k, Θs) serves as a Monte-Carlo approximation [67,68].
The development of the AICi for state-space applications, as well as its performance,

have been investigated in [68] through a simulation study. In addition, they compared
the performance of the AIC, AICc, AICi, and other criteria, and found that the AICi
outperformed the others in the context of SSM, where it provides the true model order.

As the AICi is utilized in this manuscript, then the log returns are used. The price of
an asset at time 0 is denoted by P0, and the price of an asset at time T is denoted by PT .
The log-return formula is given by:

ln
PT
P0

. (7)

To this end, in this manuscript, for state-space models, the AICi is utilized to match
the requirements of such models and provide a more accurate model-order selection.

2.3. Expectation-Maximisation (EM) Algorithm and Kalman Filter (KL)

In this subsection, for the estimation of the state-space model parameters, expectation-
maximisation (EM) algorithm and Kalman filter are utilized and presented [27,69,70].
The expectation-maximisation (EM) algorithm is based on an iterative scheme which
consists of two steps: the expectation step and the maximization step, accordingly (see
Figure 1). In the expectation step, conditional expected values of the hidden state x(t) and
its covariance P(t) are obtained using the Kalman filter based on the equations explained
above. In the maximization step, based on these values, the expected value of the likelihood
is maximized with respect to the parameters, which results in a new set of parameters,
which is used in the next iteration of the EM algorithm [26]. In the first iteration of the EM
algorithm, the parameters P(1) need to be initialized. Therefore, for instance, the least-
squares parameter estimates can then be used.

In other words, the expectation-maximization (EM) algorithm provides an iterative
maximum likelihood estimator for the parameters in the state-space model (SSM) [28,30].
This EM algorithm for SSM is based on the so-called Kalman filter [29]. This filter is utilized
to obtain estimates of the hidden states. The state estimates are then used to improve the
estimates of the process parameters [26,27].

To introduce the Kalman filter, a measurement time series containing n observations is
assumed with time t = 1, . . . , n is used to reference these observations [26]. For conditional
expectations [31]

xs
t = E[xt|y1, . . . , ys], (8)

Ps
t1,t2

= E[(xt1 − xs
t1
)(xt2 − xs

t2
)T ]

= E[(xt1 − xs
t1
)(xt2 − xs

t2
)T |y1, . . . , ys]. (9)

The subscript denotes the estimation time point, while the superscript is up to which
measurement it is conditioned on. The equality in Equation (8) holds if the underlying
process is Gaussian, which is assumed here. The Kalman filter is described in terms of a set
of equations which are based on an effective recursive computational way to estimate the
state of the SSM process, which minimizes the mean of the squared error [26]. The Kalman-
filter equations are [71]

xt−1
t = A xt−1

t−1 (10)

xt
t = xt−1

t + Kt (yt − C xt−1
t ) (11)

Pt−1
t = A Pt−1

t−1 AT + Q (12)

Pt
t = Pt−1

t − Kt C Pt−1
t (13)

Kt = Pt−1
t CT (C Pt−1

t CT + R)−1, (14)
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with initial values x0
0 = E[xt] = µ and P0

0 = E[xt · xT
t ] = Σ. The idea of how the Kalman

filter works is based on a recursive cycle of a time-update and a measurement-update
step [72]. The time update, in Equations (10) and (12), predicts the state from time t− 1 to t,
which results in the prior estimate xt−1

t and its co-variance Pt−1
t [26]. The measurement-

update step consists of Equations (11) and (13), and it corrects the prior estimates by taking
into account the current prediction xt−1

t , the measurement yt and the Kalman-filter gain,
in Equation (14); this leads to the posterior estimates [26]. The Kalman-filter equations
apply a recursive scheme, as only the observations and estimates from the past and the
present are used [73]. Applying the steps of the EM algorithm together with the Kalman
filter iteratively ensures convergence to the best estimator of the underlying dynamics and
the parameters of the process [27].

Maximum-likelihood estimation (MLE) is one of the most effective approaches to fit
model parameters to data. The likelihood is a function which describes the probability of
the recorded data given the model parameters. The maximization of the likelihood function
results in obtaining the parameters of the model where the observed time series is most
likely. An iterative maximum-likelihood estimator of the SSM parameters is derived [26].
For the complete data log-likelihood:

log L = − 1
2

log|∑ | −
1
2
(x0 − µ)T(∑)−1(x0 − µ) (15)

− n
2

log|Q| − 1
2

n

∑
t=1

(xt − Axt−1)
TQ−1(xt − Axt−1)

− n
2

log|R| − 1
2

n

∑
t=1

(yt − Cxt−1)
T R−1(yt − Cxt).

Since the hidden states xt are unknown, only the expected value

G(Θ) = − E(logL|y1, ..., yn)

= −1
2

log|∑ | −
1
2

tr{
−1

∑(Pn
0 + (xn

0 − µ)(xn
0 − µ)T)}

− n
2

log|Q| − 1
2

tr{Q−1(F− EAT − AET + ADAT)} (16)

− n
2

log|R|

− −1
2

tr{R−1
n

∑
t=1

[(yt − Cxn
t )(yt − Cxn

t )
T + CPn

t CT ]}

of the log-likelihood conditioned on y1, ..., yn is accessible. The illustration of the
abbreviations used in the previous equation is as follows:

D =
n

∑
t=1

(Pn
t−1 + xn

t−1xn
t−1

T),

E =
n

∑
t=1

(Pn
t,t−1 + xn

t xn
t−1

T), (17)

F =
n

∑
t=1

(Pn
t + xn

t xn
t

T).

The quantities required in Equation (17) are the results of the Kalman filter of the r− th
EM iteration. To maximize G(Θ), its derivative is set to zero, leading to the update rules:
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Ar+1 = ED−1 (18)

Qr+1 =
1
n
(F− ED−1ET), (19)

Rr+1 =
1
n

n

∑
t=1

[(yt − Cxn
t )(yt − Cxn

t )
T + CPn

t CT ]}. (20)

The update of µ is xn
0 of the last iteration of EM. If the measurement is corrected for the

mean, then the initial value for the first EM iteration of µ is set to zero. In addition, the initial
value of the co-variance of the process ∑ can be estimated or set to a reasonable baseline
value [71]. In addition, the likelihood never decreases; therefore, there is no adjustment of
step size is needed [28].

In summary, applying the EM algorithm together with the Kalman filter is a robust
iterative procedure to estimate model parameters in the SSM, in addition to de-noising the time-
series data. The main drawback of this approach is that it has high computational burden.

2.4. Granger Causality in the Time Domain: Directed Partial Correlation (DPC) [74]

In order to provide a time-domain measure based on the concept of Granger causality,
the directed partial correlation (DPC) was introduced by Eichler (2005) [56]. One of the most
effective features of DPC is that it can be used as a measure of causal-effect strength [56].
When inferring causal relationships from time-series data, VAR[p] models can be fitted
using least-squares estimation [75], which is utilized in this manuscript. For observa-
tions xV(1), . . . , xV(T) from a d-dimensional multiple time series xV , we obtain a vector
autoregressive model (VAR) with the following representation:

xV(t) =
P

∑
r−1

A(r) xV(t− r) + εV(t), (21)

where xV(t) is the vector that represents the entire set of observed processes. Now, let
R̂p = (R̂p(h, ν))h,ν=1,...,p be the pd × pd matrix composed by sub-matrices [56]

R̂p(h, ν) =
1

T − p

T

∑
t=p+1

x(t− h) x(t− ν)T . (22)

Similarly, r̂p is set to be such that r̂p = (R̂p(0, 1), . . . , R̂p(0, p)). Then, the least-squares
estimates of the autoregressive coefficients are given by

Â(h) =
p

∑
ν=1

(R̂p)
−1(h, ν) r̂p(ν), (23)

where h = 1, . . . , p and the covariance matrix Σ is estimated by

Σ̂ =
1
T

T

∑
t=p+1

ε̂(t) ε̂(t)T , (24)

where

ε̂(t) = x(t)−
p

∑
h=1

A(h) x(t− h) (25)

are the least-squares residuals. However, the coefficients Aij(h) depend on the unit
of measurement of xi and xj; thus, they are not suitable for comparisons of the strength
of causal relationships between variables [56]. Therefore, Eichler (2005) [56] proposed
DPC as a measure of the strength of causal relationships. For h > 0, the DPC πij(h) is
defined as the correlation between xi(t) and xj(t− h) after removing the linear effects of
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the other variables included in the vector xV . For h < 0, πij(h) = πij(−h). In addition, it
has been shown in [56] that for h > 0, estimates for the DPC πij(h) can be obtained from
the parameter estimates of a VAR[p] model by re-scaling the coefficients Aij(h)

π̂ij(h) =
Âij(h)√
Σ̂ii ρ̂jj(h)

for j→ i , (26)

where

ρ̂jj(h) = K̂jj +
h−1

∑
ν=1

∑
k,l∈V

Âkj(ν) K̂kl Âl j(ν) +
Âij(h)2

Σ̂ii
. (27)

The matrix K̂ = Σ̂−1 is the inverse of the estimated covariance matrix Σ̂ of the residual
noise processes.

To decide the significance of an estimated causal influence, we use a statistical evalua-
tion procedure based on bootstrapping to construct the confidence interval as follows [74]:

1. Generate B bootstrap surrogates (resamples) with the same length as the original
data. A rough minimum of 1000 bootstrap surrogates is often sufficient to compute
accurate confidence intervals, as has been suggested by Efron and Tibshirani [76].
Here, B is set to 10,000. The surrogates are generated using a non-parametric method—
the amplitude-adjusted Fourier transform (AAFT) which was originally proposed by
Theiler et al. (1992) [77,78]. This method works under the null hypothesis that the orig-
inal data are generated from a stationary, Gaussian and linear stochastic process [79].
The algorithm for generating the surrogates is described as follows [79,80]:

(a) The original data are re-scaled to a normal distribution. This is based on a
simple rank ordering, which is performed by generating a time series with
Gaussian distribution which is then sorted according to the original data.

(b) A Fourier-transformed surrogate of the re-scaled data is constructed.
(c) The final surrogate is scaled to the distribution of the original data by sorting

the original data to the ranking of the Fourier-transformed surrogate.

The use of this algorithm is advantageous as it preserves the distribution, as well as
approximately preserving the power spectrum (i.e., the autocorrelation structure), of
the original data [79,80]. For the implementation of the AAFT method, we used the
Tisean package (for details about the Tisean package, we refer to http://www.mpipks-
dresden.mpg.de/tisean/) [78]. Note that the Tisean program performs the algorithm
described above, iteratively, until no further improvement can be made [78].

2. Estimate the DPC for each B bootstrap surrogates to yield a bootstrap sampling
distribution, i.e. {τ̂?

r }r=1,...,B. To obtain the (1− α)100 percentile bootstrap confidence
interval for τ̂, the sampling distribution values of τ̂?

r are sorted in ascending order.
Then, the α percent and (1− α) percent points are chosen as the end points of the
confidence interval, giving [τ̂?

r (αB), τ̂?
r ((1− α)B)] [81]. For a 95% confidence interval

with B = 10,000, this would be approximately [τ̂?(500), τ̂?(9500)].
3. If the DPC value estimated from the original time series lies outside the confidence

interval, then the value is considered to be significantly different from zero.

2.5. Degree-Centrality Measures

In this subsection, degree-centrality measures are described. Degree centrality cor-
responds to the total number of connections linked to a node of a network [82]. Degree
centrality has two measures: mainly in-degree and out-degree. In-degree refers to the
number of connections that point inward at a node, while out-degree refers to the number
of connections that originate at a node and point outward to other nodes [83]. In this
manuscript, the use of these measures is considered advantageous. The in-degree measure
identifies the most affected market indices, while the out-degree measure identifies the

http://www.mpipks-dresden.mpg.de/tisean/
http://www.mpipks-dresden.mpg.de/tisean/
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most influential market indices. This differentiation is crucial for investors and market
players in the decision-making process related to investment portfolios.

3. Application to American Stock Markets—Subprime Mortgage Crisis (2007–2008)

This section presents the results of applying the ARE algorithm to American stock
markets. American stock-market time-series data are introduced in the first part of this
section. Before estimating the parameters, the model order must be obtained. To this end,
a model order selection criterion is utilized in the second part of this section. The final part
of this section presents the results and our conclusions.

3.1. Data

The data sets included of 41 American stock-market indices for 14 countries. Therefore,
the sample size was 41 data sets, each of which had 1417 observations. The indices for the
markets of respective countries are displayed in Table A1. The data were collected from the
Yahoo Finance database, on the basis of daily closing prices [84]. The analysis covered the
whole period of years 2006–2010 which were divided into 5 periods, namely,

1. (a) 1/1/2006 to 30/6/2006 (first half of 2006)
2. (b) 1/7/2006 to 30/6/2007 (second half of 2006 to first half of 2007)
3. (c) 1/7/2007 to 31/12/2007 (second half of 2007)
4. (d) 1/1/2008 to 31/12/2008 (2008)
5. (e) 1/1/2009 to 31/12/2010 (2009–2010)

3.2. Model-Order Selection Criterion AICi

In this subsection, the results of employing the AICi criterion to calculate the SSM
model order are presented in Table 1. It can be seen that the true model order corresponded
to the largest AICi value, which means that the optimal chosen order was three for the
estimation process of the autoregressive coefficients for the SSM Model. Knowing the
true model order enables accurate estimation of the autoregressive coefficients, (i.e.,α1, α2,
and α3) of the SSM by EM-KF scheme. These three autoregressive coefficients were esti-
mated for each time period studied.

Table 1. Results for order selection using AICi. The table shows that the optimal order for the SSM is
three. More precisely, the true model order corresponds to the largest AICi value.

Order AICi

1 49

2 42

3 732

4 34

5 20

6 5

7 0

8 0

9 0

10 0

3.3. Results

The numerical algorithm ARE was applied to the 41 stock-market time-series data
sets. The main objective of utilizing the ARE algorithm was to observe the pattern and the
tendency of the market’s movements, in order to distinguish between different crisis states.
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In other words, the focus of the ARE algorithm was to observe the general pattern of the
market flow and how the markets move from one state to another over time (2006–2010).
This allows for tracking market motions, for the purpose of early-warning detection of
any unusual specific pattern. This tool is ideal for knowledge discovery in data sets, as it
determines the grouping structure in time-series data [26,27,35,69]. The ARE analysis
was conducted for each of the above-mentioned periods (detailed in Section 3.1 separately,
with no overlap between them, in order to demonstrate how the topology of the constructed
interaction surfaces of the stock markets under study changed from one state to another.
Furthermore, the DPC technique was further employed to identify the most affected
markets, as well as to determine the entire causal interaction structure.

In the following, the discussion of each reconstructed interaction space, as well as
the corresponding causal interaction structure, is presented. Note that the main interest
of conducting DPC analysis was to draw conclusions regarding the interaction structures
among the most affected markets, which are strongly interconnected. As only strong
interactions were of interest here, only the interconnectivity links which were larger than
or equal to 0.65 are shown. For the ARE constructed surface, each interaction surface was
constructed based on the three leading estimated autoregressive parameters (i.e., α1, α2,
and α3). These estimated parameters are the coordinates of each point, which corresponds
to each stock market; that is, for every point in time. The three-dimensional parameter
spaces are shown as snapshots (i.e., time frames) representing the motion and the behavior
of the markets over each period separately. More precisely, the estimation process resulted
in a sequence of different sets of parameter values describing the state of each point, which
represents each market in the parameter space. For a smoother view of the constructed
surfaces, they are presented as heat maps, according to the density reflecting the interaction
levels among markets.

The results of conducting the ARE algorithm, when there was no crisis, are presented
in Figure 3, which shows the inferred interaction parameter space during the time period
1/1/2006 to 30/6/2006. This space was reconstructed based on the three auto-correlation
coefficients estimated using the EM-KF scheme. This estimate determines the coordinates of
the position of each market. This, in turn, provides the pattern of the market’s movements.
The color bar shows the heat map, representing the density where markets are positioned
in the same place. In other words, the color becoming more red, reflects higher density.
As such, the strong interactions among markets are found only in the yellow-red regions
presented in Figure 3, while the low and the medium interactions are found in the blue
regions. Finally, the white regions represent no interaction.

On the other hand, in order to identify which markets were strongly interacting, DPC
analysis was conducted. Figures 4 and 5 show the inferred interaction network structures
corresponding to the two yellow-red regions in Figure 3. Figure 4 reflects the underlying
constructed interaction network structure corresponding to the first yellow-red region,
which is located on the lower left side of the surface in Figure 3, while Figure 5 reflects the
underlying constructed interaction network structure corresponding to the second yellow-
red region, which is located on the top-right side of the surface in Figure 3. In Figures 4
and 5, the color of the nodes corresponds to the country indices (see Table A1 in the
Appendix A). In addition, the thickness of the arrows refers to the strength of interactions
among markets. Note that, in this study, we focus only on interaction parameters equal to
0.65 and above, which reflect the strongest interactions. Each node represents the name of
the market index. Here, there were four U.S. markets (nodes 3, 4, 5 and 6), and one Panama
market (node 2) and one Canada market (node 1). According to Figure 4, which represents
Figure 3, region 2, on the one hand, there was a strong interaction between U.S. market
indices. This formed a community of strongly interacting U.S. market indices with an
influence on one of Brazil’s market indices. It can be observed that the link (8 (Brazil) →5
(U.S.)) was present only due to the strong interaction among U.S. markets which, in turn,
affects Brazil. This led to Brazil influencing one of the U.S. markets in return. On the other
hand, Figure 5, which represents Figure 3, region 2, demonstrates that the U.S. market
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indices strongly influenced both Panama and Canada markets. The link (2 (Panama) →1
(Canada)) is present as a result of the strong influence of U.S. market indices on node 2
(Panama). The same situation occurs for the link (2 (Panama) →6 (U.S.)), as this link is
present due to the strong influence of U.S. markets on Panama markets. This also occurred
for the link (1 (Canada) →6 (U.S.)), appearing as a consequence of the strong influence of
the U.S. market indices on node 1 (Canada).

Figure 3. The constructed stock-market three-dimensional interaction parameter space, which
corresponds to period (a) that represents the first half of 2006. This space was reconstructed based on
the three estimated auto-correlation coefficients of the SSM model, where the estimate determines the
coordinates of the position of each market. The figure demonstrates the level of interaction, which
differs from one region to another. Note that the density bar is divided into three parts (low, medium,
and high), with the corresponding interaction coefficients for each part. Therefore, the high-density
spots correspond to high interaction among markets.

Figure 4. The constructed stock-market interaction network structure. The constructed network
reflects the interaction structure among markets corresponding to region 1 in the constructed space
presented in Figure 3. The red-colored nodes correspond to U.S. stock markets, while the green-
colored node corresponds to a stock market belonging to Brazil. The causal strength of interest to
be represented in this manuscript is above 0.65, reflecting strong interactions. More precisely, three
kinds of strongly connected causal links are presented here. The first are the dashed links, which
correspond to a causal strength between 0.65 and 0.74; the second are the light-colored links, which
corresponds to a causal strength between 0.75 and 0.84, the third are the dark-colored links, which
correspond to a causal strength between 0.85 and 0.95. The network shows that the majority of
connected indices mostly belong to U.S. markets.
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Figure 5. The constructed stock-market interaction network structure. The constructed network
reflects the interaction structure among markets which corresponds to region 2 in the constructed space
presented in Figure 3. The red-coloured nodes correspond to U.S. stock markets, the blue-colored
node corresponds to a stock market belonging to Canada and the purple-colored node corresponds
to a stock market belonging to Panama. Recall that the causal strength of interest to be represented in
this manuscript is above 0.65. The network shows that the strong connectivity structure is captured
between Panamanian and Canadian markets with U.S. markets.

In general, for the first time period, it can be observed that a small number of the
markets were strongly interconnected, where the rest moved in a distributed manner over
the constructed surface. In particular, the interaction surface formed two small communities
of markets which were very close to each other.

For the second time period (1 July 2006 to 30 June 2007), ARE and DPC analyses were
also conducted. The ARE results are presented in Figure 6, and it can be seen that almost
all markets were settled in one particular region with high density. In addition, there were
a small number of markets that did not belong to the high-density cluster. Furthermore, it
can be seen that the density of the collective motion becomes lower in the middle of the
surface and almost zero at the end of it. This indicates a special pattern that occurs, which
can be considered a warning sign regarding a crisis that will happen at some point in the
future. Furthermore, to identify which markets are the most strongly interconnected, a DPC
analysis was conducted. The inferred interaction network structure that corresponds to the
yellow-red region is presented in Figure 7. The strong interconnectivity structure among
U.S. markets was clearly detected. The reason behind the appearance of links going out to
nodes 13 (Brazil), 14 (Brazil), 15 (Canada), 16 (Canada), and 17 (Colombia) was the strong
influence of all U.S. market indices on Brazilian, Canadian, and Colombian markets. This
indicates that the Brazilian, Canadian, and Colombian markets will potentially be the most
affected markets due to the U.S. home mortgage crisis. This conclusion is evidenced in
Figure 10.
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Figure 6. The constructed stock-market three-dimensional interaction parameter space, which
corresponds to period (b) that represents the second half of 2006 to the first half of 2007. This space is
reconstructed based on the three estimated auto-correlation coefficients of the SSM model, where the
estimate determines the coordinates of the position of each market. The figure shows that there is a
region where the density is very high, which refers to strong interactions among stock markets.

Figure 7. The constructed stock-market interaction network structure. The constructed network
reflects the interaction structure among markets corresponding to the high-density region in the
constructed space presented in Figure 6. The red-colored nodes correspond to U.S. stock markets,
the blue-colored nodes correspond to stock markets belonging to Canada, the green-colored nodes
correspond to stock markets belonging to Brazil and the brown-colored nodes correspond to stock
markets belonging to Colombia. The network shows that nodes 14, 15, 16 and 17 are the most
interacting market indices with U.S. markets.

For the third time period (1/7/2007 to 31/12/2007), Figure 8 presents the reconstructed
surface, where the high density of the markets is moving collectively from one state to
another. The behavior direction is indicated by an arrow. Interestingly, this collective motion
is known as “herding behavior” in the literature [85,86]. In order to identify the markets
which are collectively moving, a DPC analysis was conducted, and the corresponding
interaction network structure is reconstructed (see Figure 9). To distinguish between
the most and least affected markets, the degree centrality measure was utilized. Table 2
provides the results for the calculation of the out-degree and the in-degree of each node
presented in Figure 9. According to Table 2, the most influencing nodes were 1, 5, 10, and 16,
while nodes 3 and 8 were the most affected markets.
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Table 2. Degree centrality. This table presents the result of the calculation of out-degree and in-degree
for each node separately corresponding to the node number explanation of Figure 9. The table shows
that nodes 1, 5, 10 and 16 are the most influential nodes in the interaction network corresponding
to the highest out-degree, while nodes 3 and 8 are the most affected nodes corresponding to the
highest in-degree.

Node Number Out-Degree In-Degree

1 3© 0

2 2 2

3 1 3©

4 1 1

5 3© 2

6 1 2

7 0 1

8 1 3©

9 2 2

10 3© 1

11 2 2

12 1 1

13 1 1

14 2 1

15 1 2

16 3© 1

17 0 2

Figure 8. The topology of the constructed stock-market three-dimensional interaction parameter
space, which corresponds to period (c) that represents the second half of 2007. Here, the whole market
is in a state towards a crisis. The figure shows that there is a region in the middle of the space where
the density is very high and wide, which is going in a specific direction, as indicated with an arrow.
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Figure 9. The constructed stock-market interaction network structure. The constructed network
reflects the interaction structure among markets corresponding to the high-density region, which
spans the red region along the directed arrow in the constructed space presented in Figure 8. The
red-colored nodes correspond to U.S. stock markets, the blue-colored nodes correspond to stock
markets belonging to Canada, the green-colored nodes correspond to stock markets belonging to
Brazil and the brown-colored nodes correspond to stock markets belonging to Colombia. The network
shows that all other markets are strongly interconnected with U.S. market indicies.

The analysis for the fourth time period (1 January 2008 to 31 December 2008), the state
where the crisis broke out and reached its peak (in 2008), is shown in Figure 10. It can be
observed that most companies moved to a different state, except a few of them. The figure
also shows that a high density of markets settled at another position on the right side of
the surface. This illustrates that the high-density cluster contained the vast majority of the
markets which were strongly interconnected with each other. In order to distinguish the
most and the least affected markets, a DPC analysis was conducted; the result is shown
in Figure 11, which shows that the markets which strongly interacted before the crisis
happened (see Figure 6) are those that are affected here, forming a cluster (see Figure 10). It
can be observed that nodes 3 and 6 were both influenced by nodes 5 and 11, while nodes
7 and 15 influenced nodes 3 and 6. In addition, node 16 (Canada) was seen to influence
the other markets; namely, nodes 9 (U.S.), 15 (Canada), and 17 (Colombia). To identify
the most central influencing market indices, the degree-centrality measure was applied.
The out-degree and in-degree for each node was calculated, and the results are given in
Table 3. According to Table 3 corresponding to Figure 11, it can be noted that nodes 1,
5, and 10 were the most influencing U.S. markets on all the other markets. Furthermore,
node 8 (U.S.) was the most affected U.S. market during the crisis, which influenced node 15
(Canada) through nodes 2 and 4. In addition, node 3 (U.S.) was the second-most affected
U.S. market, which transmitted the crisis into Brazil (node 14) via node 10 (U.S.); which,
in turn, affected node 13 (Brazil).

In summary, the crisis was transmitted from U.S. markets to Brazil markets, which
were the most affected markets during the crisis, followed by Canada and (the least affected)
Colombia.
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Table 3. Degree centrality. This table presents the result of the calculation of out-degree and in-degree
for each node separately, corresponding to the node number explanation of Figure 11. The table shows
that nodes 1, 5, 10 and 16 are the most influential nodes in the interaction network corresponding
to the highest out-degree, while nodes 3, 6 and 8 are the most affected nodes corresponding to the
highest in-degree.

Node Number Out-Degree In-Degree

1 3© 0

2 2 2

3 2 3©
4 1 1

5 3© 2

6 1 3©
7 1 1

8 1 4©
9 2 2

10 3© 1

11 2 2

12 1 1

13 1 1

14 2 1

15 1 2

16 3© 1

17 0 2

Figure 10. The constructed stock-market three-dimensional interaction parameter space, which
corresponds to period (d) that represents 2008. The figure shows that there is a region where the
density is very high, as it refers to strong interactions among stock markets which are falling into a
crisis forming a cluster.
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Figure 11. The constructed stock-market interaction network structure. The constructed network
reflects the interaction structure among markets corresponding to the high-density region, which
spans the red region along the directed arrow in the constructed space presented in Figure 10. The red-
colored nodes correspond to U.S. stock markets, the blue-colored nodes correspond to stock markets
belonging to Canada, the green-colored nodes corresponding to stock markets belonging to Brazil
and the brown-colored nodes correspond to a stock market belonging to Colombia. The network
shows that nodes 13, 14, 15 and 16 are the most interacting market indices with U.S. markets.

For the final time period (1 January 2009 to 31 December 2010), after the crisis had
finished, the surface returned to a state where no obvious pattern could be captured, and the
markets were distributed all over the surface again (see Figure 12).

Figure 12 shows that the topological structure of the surface is changed and formed
into different clusters. To identify these clusters, the reconstructed interaction network
structure based on DPC is presented in Figure 13. The first cluster contains nodes 2, 3, 7,
and 9 (U.S. market indices), the second cluster contains nodes 5 and 6 (Canada market
indices), the third cluster contains nodes 12 and 13 (Brazil market indices), and the final
cluster contains nodes 1, 4, 8, 10, and 11 (U.S. market indices).

In comparison, Figures 6 and 10 show that all the markets were entirely connected to each
other, forming obvious clusters, in contrast to the connectivity structure presented in Figure 12.
Based on this connectivity structure, no specific pattern could be captured. However, U.S.
markets continued their influence on Brazilian and Canadian markets after the crisis.

Figure 12. The constructed stock-market three-dimensional interaction parameter space, when a
crisis has ended for period (e) that represents the period (2009–2010). The figure shows that there is a
region presented as a red curve where the topology of the density structure has changed from the
ones observed before the crisis.
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Figure 13. The constructed stock-market interaction network structure. The constructed network
reflects the interaction structure among markets, which corresponds to the high-density region, which
spans the red region along the directed arrow in the constructed space presented in Figure 12. The
red-colored nodes correspond to U.S. stock markets, the blue-colored nodes correspond to stock
markets belonging to Canada and the green-colored nodes correspond to stock markets belonging to
Brazil. The network shows that there is no interesting pattern to be captured.

Based on the observed interaction pattern, as well as its corresponding structure in
Figures 7 and 11, the following can be concluded. The market indices observed before
the crisis, toward the crisis, and during the crisis were the same for the three phases,
as confirmed by the same clustering pattern being observed in these Figures.

In summary, the states in which the markets were not falling into a crisis or where no
potential crisis existed are shown in Figures 3 and 12. On the other hand

Interestingly, in the comparison between Table 2 referring to Figure 9 with Table 3
referring to Figure 11, it can be determined that the most affected markets corresponded
to nodes 3 and 8. This conclusion indicates the importance of conducting DPC analysis
together with calculating out-degree and in-degree measures, in order to provide a warning
sign and identify which markets may be the most affected.

To sum up, an illustrative graph for showing the transition between the time before
the crisis-period (b)-(second half of 2006 to first half of 2007) and the time during the
crisis-period (d)-(2008), is presented in Figure 14.

Figure 14. A summary graph of the results. The figure presents the combination of the three-
dimensional interaction parameter spaces presented in Figures 6 and 10. It shows that there is a
transition occurring between two states, mainly the time before the crisis and the crisis time, forming
two holes of clusters. This explains when the interactions among markets reach their peak, which,
in turn, can be considered an indication that there is a potential crisis.
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4. Application to American Stock Markets: COVID-19 (2020)

To show the robustness of the methodology presented in this manuscript, in this
section further analysis is performed to cover one more crisis. We take the COVID-19
outbreak as another example to conduct the same analysis.

4.1. Data

The data sets utilized in this section are the same 41 American stock-market indices
for 14 countries. The data were collected from the Yahoo Finance database, on the basis of
daily closing prices [84]. It is known in literature that the COVID-19 outbreak started on
20/2/2020 and reached the peak on 7/4/2020 [87–93]. For this reason, the analysis covered
the period of years 2018–2021, which were divided into five periods, namely,

1. (a) No crisis: 1/10/2018 to 31/3/2019
2. (b) Before crisis: 1/4/2019 to 31/10/2019
3. (c) Towards crisis: 1/11/2019 to 28/2/2020
4. (d) Crisis time: 1/3/2020 to 31/12/2020
5. (e) After crisis: 2021

4.2. Model-Order Selection Criterion AICi

In this subsection, the results of employing the AICi criterion to calculate the SSM
model order are presented in Table 4. It can be seen that the true model order corre-
sponded to the largest AICi value, which means that the optimal chosen order was three
for the estimation process of the autoregressive coefficients for the SSM model. Knowing
the true model order enables accurate estimation of the autoregressive coefficients, (i.e.,
α1, α2, and α3) of the SSM by EM-KF scheme. These three autoregressive coefficients were
estimated for each time period studied.

Table 4. Results for order selection using AICi. The table shows that the optimal order for the SSM is
three. More precisely, the true model order corresponds to the largest AICi value.

Order AICi

1 53

2 34

3 945

4 56

5 28

6 3

7 0

8 0

9 0

10 0

4.3. Results

The same methodology is employed for each period separately, to show the possibility
of detecting a warning sign of a potential crisis, that is, in the framework of COVID-19.
The results are presented in Figure 15. The figure shows that the surface topology for state
(a) no crisis and state (e) after crisis have completely different topologies from the rest of
surfaces. The surface presented in state (b) before crisis can be considered as a warning sign
that there is a potential for crisis. The evidence has been shown in state (d) crisis time, when
the cluster has moved from one state into another. The conclusion of the financial crisis
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resulting from the subprime mortgage crisis, presented in Section 3, can also be drawn for
an early-stage detection of the financial crisis resulting from COVID-19 outbreak.

These results provide evidence that there is the possibility of detecting a warning
sign some time before the actual crisis happens. Further analysis can be carried out by
conducting DPC analysis similar to the one conducted in Section 3.

Figure 15. The constructed stock-market three-dimensional interaction parameter space. This is for
all stages of the effect of COVID-19 crisis on stock markets. More precisely, sub-figure (a) shows the
topology structure where no crisis occurs for the time period (1/10/2018 to 31/3/2019), sub-figure (b)
shows the topology structure for the time period before crisis (1/4/2019 to 31/10/2019), sub-figure
(c) shows the topology structure for the time towards crisis (1/11/2019 to 28/2/2020), sub-figure (d)
shows the topology structure where the crisis occurs for the time period (1/3/2020 to 31/12/2020)
and the final stage, the sub-figure (e) shows the topology structure for the time after crisis (2021).
The figure shows how the topology of the interaction surface has changed from one state to another.
The density regions, represented in dark brown, present the highest interactions between interaction
coefficients 0.65 and 0.95. The transition occurred in stage (b) where the markets were towards falling
into a crisis forming a clear cluster shown in stage (d).

5. Discussion and Conclusions

The prediction of stock-market crashes has attracted interest over the years. Several
researchers have studied this phenomenon using different approaches; however, the identi-
fication of which markets will be affected during the crisis has not been studied properly in
the literature.
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In this manuscript, the behavior of stock markets was demonstrated using the ARE
algorithm. Based on the estimated SSM model order, the three-dimensional interaction
parameter spaces were reconstructed, and a change in the topology of these spaces served
to identify state transitions. Specifically, the EM-KF algorithm provides a means of con-
structing a space which shows how close each market is to others. When observing a cluster
of markets smoothly presented as a heat map, a high density refers to strong interactions
among markets. This, in turn, means that these markets may be the most strongly affected
during a crisis. This approach provides an insight into the idea of collective motions of large
numbers of entities. In other words, the use of this algorithm is beneficial and advantageous
in the case of having big data, as it presents the results in the sense of pattern recognition.

For practical examples to validate the methodology introduced, two crises examples
were studied. According to the analysis and results for both crises, there were two obvious
state transitions; the first state refers to the time period before the crisis and the second
state refers to the time period during the crisis. More precisely, the first state (before crisis)
can be considered as a warning sign of a potential crisis. In addition, in the corresponding
interaction parameter spaces, only the high-density regions were analyzed, in order to
identify the most interacting markets specifically for the first state (before crisis). This
means that both the most affected and most influential markets could be distinguished.
To this end, DPC was utilized, such that interaction networks corresponding to these high-
density regions could be reconstructed. As a first step, identifying the markets which could
potentially succumb to a crisis is crucial. Furthermore, to distinguish between markets,
the most affected and most influential markets, degree-centrality measures were used to
calculate the in-degree and out-degree for each reconstructed network node.

These analyses results allow investors and market players to track those markets that
are going through a potential crisis. In addition, it provides them a warning sign of the
potential time that a crisis might occur. These results are expected to be of aid for investors,
in terms of improving the decision-making process in portfolio selection. This allows them
to reduce the risk exposure associated with their portfolios. Furthermore, investors can also
exclude or withdraw their investments from companies which are expected to go through
a potential crisis, in order to protect their investments against certain loss. To sum up, this
methodology allows for early-stage detection of a financial crisis.

Such analysis can not only be carried out for financial markets, but also for other
systems. For example, in neuroscience, recognizing certain patterns can provide early
warnings for brain diseases, one of the main objectives in this field. Another example is the
study of climatic changes to observe and detect certain patterns, which can be useful in
predicting a potential catastrophe.
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Appendix A

This appendix presents the American stock markets, with their corresponding indexes,
used in this study.
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Table A1. American stock markets with respective indexes.

Country Index

United States 1- CTRN:IND NASDAQ TRANSPORTATION IXv
2- SML:IND S & P 600 SMALLCAP INDEX
3- RTY:IND RUSSELL 2000 INDEX
4- NBI:IND NASDAQ BIOTECH INDEX
5- INDU:IND DOW JONES INDUS. AVG
6- CBNK:IND NASDAQ BANK INDEX
7- BBREIT:IND BBG U.S. REITS
8- NYA:IND NYSE COMPOSITE INDEX
9- NDX:IND NASDAQ 100 STOCK INDX
10- CFIN:IND NASDAQ OTHER FINANCIAL
11- CINS:IND NASDAQ INSURANCE INDEX
12- TRAN:IND DOW JONES TRANS. AVG
13- CUTL:IND NASDAQ TELECOMM INDEX
14- SPX:IND S & P 500 INDEX
15- CCMP:IND NASDAQ COMPOSITE INDEX
16- UTIL:IND DOW JONES UTILITY AVG
17- BKX:IND KBW BANK INDEX
18- RIY:IND RUSSELL 1000 INDEX
19- NDF:IND NASDAQ FINANCIAL INDEX
20- RAY:IND RUSSELL 3000 INDEX
21- IXK:IND NASDAQ COMPUTER INDEX
22- CIND:IND NASDAQ INDUSTRIAL INDEX

Argentina 23- BURCAP:IND S & P/BYMA Burcap TR ARS
24- MAR:IND S & PMERVALArgentinaTR ARS
25- MERVAL:IND S & P MERVAL TR ARS

Peru 26- SPBL25PT:IND S & P/BVLLIMA25TRPEN
27- SPBLPGPT:IND S & P/BVLPeruGeneralTRPEN

Brazil 28- IBX:IND BRAZIL IBrX INDEX
29- IBOV:IND BRAZIL IBOVESPA INDEX

Mexico 30- INMEX:IND S & P/BMV INMEX
31- MEXBOL:IND S & P/BMV IPC

Canada 32- SPTSX60:IND S & P/TSX 60 INDEX
33- SPTSX:IND S & P/TSX COMPOSITE INDEX

Chile 34- IGPA:IND S & P/CLX IGPA (CLP) TR
35- IPSA:IND S & P/CLX IPSA (CLP) TR

Venezuela 36- IBVC:IND VENEZUELA STOCK MKT INDX

Costa Rica 37- CRSMBCT:IND BCT Corp Costa Rica Indx

Panama 38- BVPSBVPS:IND Bolsa de Panama General

Jamaica 39- JMSMX:IND JSE MARKET INDEX

Colombia 40- COLCAP:IND COLOMBIA COLCAP INDEX

Bermuda 41- BSX:IND BERMUDA STOCK EXCHANGE
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90. Lyócsa, Š.; Baumöhl, E.; Vỳrost, T.; Molnár, P. Fear of the coronavirus and the stock markets. Financ. Res. Lett. 2020, 36, 101735.

[CrossRef] [PubMed]
91. Liu, H.; Manzoor, A.; Wang, C.; Zhang, L.; Manzoor, Z. The COVID-19 outbreak and affected countries stock markets response.

Int. J. Environ. Res. Public Health 2020, 17, 2800. [CrossRef] [PubMed]
92. Jabeen, S.; Farhan, M.; Zaka, M.A.; Fiaz, M.; Farasat, M. COVID and World Stock Markets: A Comprehensive Discussion. Front.

Psychol. 2022, 4837. [CrossRef] [PubMed]
93. Tiwari, A.K.; Abakah, E.J.A.; Karikari, N.K.; Gil-Alana, L.A. The outbreak of COVID-19 and stock market liquidity: Evidence

from emerging and developed equity markets. N. Am. J. Econ. Financ. 2022, 62, 101735. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1515/bmt-2012-4263
http://dx.doi.org/10.1111/j.1467-9892.1982.tb00349.x
http://dx.doi.org/10.1109/TBME.2007.894827
http://dx.doi.org/10.1016/j.physa.2019.01.002
https://www.jstor.org/stable/2245500
http://dx.doi.org/10.1214/ss/1177013815
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.1063/1.166424
http://www.ncbi.nlm.nih.gov/pubmed/12779839
http://dx.doi.org/10.1103/PhysRevE.64.046128
http://www.ncbi.nlm.nih.gov/pubmed/11690111
http://dx.doi.org/10.1016/S0167-2789(00)00043-9
http://dx.doi.org/10.1081/QEN-120018395
http://dx.doi.org/10.1016/B978-0-12-817756-3.00003-0
http://finance.yahoo.com/world-indices
http://dx.doi.org/10.1016/S0378-4266(99)00096-5
http://dx.doi.org/10.1108/SEF-09-2020-0389
http://dx.doi.org/10.3390/ijerph18179315
http://dx.doi.org/10.1016/j.jbef.2020.100371
http://dx.doi.org/10.1016/j.frl.2020.101735
http://www.ncbi.nlm.nih.gov/pubmed/32868975
http://dx.doi.org/10.3390/ijerph17082800
http://www.ncbi.nlm.nih.gov/pubmed/32325710
http://dx.doi.org/10.3389/fpsyg.2021.763346
http://www.ncbi.nlm.nih.gov/pubmed/35295935
http://dx.doi.org/10.1016/j.najef.2022.101735

	Introduction
	Methods
	State Space Model (SSM)
	Model Order Selection Criterion AICi
	Expectation-Maximisation (EM) Algorithm and Kalman Filter (KL)
	Granger Causality in the Time Domain: Directed Partial Correlation (DPC) elsegai2019granger
	Degree-Centrality Measures

	Application to American Stock Markets—Subprime Mortgage Crisis (2007–2008)
	Data
	Model-Order Selection Criterion AICi
	Results

	Application to American Stock Markets: COVID-19 (2020)
	Data
	Model-Order Selection Criterion AICi
	Results

	Discussion and Conclusions
	Appendix A
	References

