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Abstract: The absence of labeled samples limits the development of speech emotion recognition
(SER). Data augmentation is an effective way to address sample sparsity. However, there is a lack
of research on data augmentation algorithms in the field of SER. In this paper, the effectiveness of
classical acoustic data augmentation methods in SER is analyzed, based on which a strong generalized
speech emotion recognition model based on effective data augmentation is proposed. The model
uses a multi-channel feature extractor consisting of multiple sub-networks to extract emotional
representations. Different kinds of augmented data that can effectively improve SER performance are
fed into the sub-networks, and the emotional representations are obtained by the weighted fusion
of the output feature maps of each sub-network. And in order to make the model robust to unseen
speakers, we employ adversarial training to generalize emotion representations. A discriminator is
used to estimate the Wasserstein distance between the feature distributions of different speakers and
to force the feature extractor to learn the speaker-invariant emotional representations by adversarial
training. The simulation experimental results on the IEMOCAP corpus show that the performance of
the proposed method is 2–9% ahead of the related SER algorithm, which proves the effectiveness of
the proposed method.

Keywords: speech emotion recognition; data augmentation; multi-channel feature extractor;
Wasserstein distance; feature distributions; speaker-invariant emotional representations

1. Introduction

Speech emotion recognition (SER) plays an important role in Human-Computer In-
teraction (HCI) systems, and it has become increasingly involved in a wide variety of
industrial applications. SER, for instance, can be used to detect the presence and severity of
a patient’s distress without requiring any intervention from a human [1]. An intelligent
customer service system in the call center will transfer a call to a human customer service
representative if it recognizes that the customer expresses a negative emotion [2]. In the
field of education, the use of SER can greatly improve teaching and learning outcomes [3].
It is of great practical importance to conduct research for SER to make HCI more intelligent
and humane.

Deep learning has become a viable technical solution for SER, and SER methods based
on deep learning have achieved better performance in a variety of scenarios. The training
of high-performing models requires a large number of samples. Manually labeling emotion
labels is, however, time-consuming and costly, limiting the size of the existing emotion
corpus. SER is limited by the lack of a large-scale labeled emotion corpus. Researchers have
attempted to solve the problem of small emotional corpus samples using data augmentation
methods in recent years, with some success. Aldeneh et al. [4] varied the speed of the
speech, creating two additional speech copies of 0.9× and 1.1× speed to increase the
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size of the training data and achieved a 2.8% recognition rate improvement on the MSP-
IMPROV [5] corpus. Li et al. [6] also used variable speed speech to expand the corpus and
achieved better performance in the speaker-independent case. Braunschweiler et al. [7]
used speed augmentation and volume perturbation, and the experimental results showed
that data augmentation is still effective in improving performance in the case of cross-
corpus recognition. The authors of [8] also reported significant performance gains using
data augmentation which is noise injection and volume perturbation in the EMODB [9]
corpus. Liu et al. [10] used SpecAugment, a data augmentation algorithm proposed by
Google [11], to enrich a few classes of emotional speech samples to balance the corpus. To
some extent, these works fill the research gap regarding data augmentation in the SER field.
However, fewer data augmentation methods have been explored, and no scholars have yet
made detailed and specific studies on acoustic-based data enhancement methods in the
field of SER.

Besides directly altering the acoustic properties of the original speech to create new
speech to augment the training data, some scholars have also used GANs [12] to address
the problem of data scarcity in SER. In [13], the authors used Balancing GAN [14] to
generate speech spectrograms of target categories to increase the number of training
samples. Since it is difficult for generators to generate high-dimensional samples directly,
Yi et al. [15] proposed ADAN (Adversarial Data Augmentation Network), which combines
Autoencoder techniques with GAN to generate low-dimensional emotional vectors in latent
space. However, it is difficult to train a generator that is able to generate accurate emotional
samples from the target categories due to the confusion among some specific emotions [10]
and the possibility of mode collapse of the generators [16].

Log–Mel spectrograms have the advantage of high correlation and are widely used
in various speech tasks [17–20]. We also use log–Mel spectrograms as the input to the
proposed end-to-end SER model. In this paper, we first investigate the impact of acoustic-
based data augmentation methods on SER through a simple model, and, based on that, we
propose a strong generalized speech emotion recognition model based on effective data
augmentation. There are three components to the model: a feature extractor, an emotion
classifier, and a discriminator. We utilize a multi-channel feature extractor consisting of mul-
tiple sub-networks to extract emotional representations under multiple data augmentations.
The discriminators were used to estimate the Wasserstein distance [21] between different
speakers’ emotional representations. By reducing this distance through adversarial training,
the feature extractor can learn the speaker-invariant emotional representations. The main
contributions of this paper are three points:

• The effectiveness of acoustic-based data augmentation methods is evaluated in SER.
• There is a feature extractor architecture proposed that can make better use of data

augmentation methods, which consists of multiple sub-networks, and a model weight
parameter sharing strategy is applied among the sub-networks. The output feature
maps of each sub-network are fused to generate emotional representations.

• In order to generalize the emotional representations, the Wasserstein distance is used
to measure the distribution of emotional representations among speakers. The distri-
bution of representations is approximated in hidden space by adversarial training. In
this way, the feature extractor learns the speaker-invariant emotional representations.

2. Proposed Method
2.1. Strong Generalized Speech Emotion Recognition Model Based on Effective Data Augmentation

The structure of the proposed model is shown in Figure 1. There are three modules
in the model: a feature extractor, an emotion classifier, and a discriminator. Log–Mel
spectrograms of the original and augmented speech are fed into a multi-channel feature
extractor, which is responsible for extracting the emotional representations in the spec-
trograms. Emotional representations are input to the emotion classifier for classification
and to the discriminator for estimating the Wasserstein distance. In the emotion classifier,
there are two fully connected layers (256:64, 64:4) as well as a softmax layer and dropout
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set to 0.5. In the discriminator, there are two fully connected layers (265:64, 64:16, 16:1).
The activation function used in these two modules is the Rectified Linear Unit (ReLU). A
detailed description of the feature extractor is provided in the following Section 2.3. After
the model has been trained, the feature extractor and emotion classifier can form a complete
SER system.
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Figure 1. The structure of the proposed strong generalized speech emotion recognition model based
on effective data augmentation.

2.2. Data Augmentation

Following a summary of acoustic data augmentation methods previously applied to
the SER and other speech tasks, six acoustic data augmentation methods were selected for
analysis: speed augmentation [4,6,7], noise injection [8], time shifting [22], resampling [23],
pitch shifting [24], and reverberation augmentation [25]. Figure 2 shows speech waveforms
and spectrograms with different data augmentation methods. It should be noted that
speed augmentation and reverberation augmentation change the length of the speech,
but we unify the length of their waveforms and spectrograms in Figure 2 for the sake of
comparison. A detailed description and implementation of each type of data augmentation
are provided in the following Section 3.2.

2.3. Feature Extractor

The feature extractor consists of n sub-networks with the same parameter settings,
and each sub-network receives log–Mel spectrograms for different augmented speech as
inputs. The Residual Network [26], which is commonly used in SER, is selected as the
main part of the sub-network in this study based on a literature review [27–30]. Figure 3
shows a specific sub-network setup where log–Mel spectrograms are fed into two parallel
convolution layers with convolutional kernels of (10, 2) and (2, 8), respectively. Such a
convolution kernel setup can fully extract the time and frequency domain information
of log–Mel spectrograms [31]. Five consecutive residual blocks [26] are used to extract
deep emotional information from the concatenated outputs of the two convolutional
layers described above. The feature map size is eventually compressed using adaptive
average pooling to retain only relevant information. In order to facilitate sharing of some
learned knowledge, such as low-level acoustic features, between channels of the feature
extractor while accelerating the convergence speed, a model weight parameter sharing
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strategy is applied in Conv2D_A, Conv2D_B and Residual_Block_1 between each sub-
network. The output feature maps of each sub-network are fused into the emotional
representations needed for the subsequent classification and metric tasks based on their
weighting coefficient. The emotional representation EmoRep is calculated by:

EmoRep = α1 ∗ fθ1(x1) + α2 ∗ fθ2(x2) + . . . . . . + αn ∗ fθn(xn) (1)

where αk is the weighting coefficient, and fθk denotes the function of a sub-network.
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2.4. Measuring Distance of Emotional Representation Distribution

The Wasserstein distance was used to measure the distance between the distribu-
tions of emotional representations among the speakers. In high-dimensional space, if
two distributions do not overlap or the overlap can be ignored, the KL and JS divergence
do not reflect the distance between distributions or provide the gradient. In [21], the
authors solved this problem by using the Wasserstein distance rather than the KL and
JS divergences in the original GAN. Due to the superiority of the Wasserstein distance
as a distribution measure, it is used in this paper to measure the distance between emo-
tional representations. Given probability distributions P1 and P2, the Wasserstein distance
between them is defined as follows:

W(P1,P2) = inf
γ∼∏(P1,P2)

E(x,y)∼γ[||x− y||] (2)

where γ denotes the joint distribution of samples x and y, ∏(P1,P2) denotes the set of all
possible joint distributions of P1 and P2 combined, and ||x− y|| is the inter-sample distance.
Based on the joint distribution γ, the expectation value of the distance between the sample
pair is E(x,y)∼γ[||x− y||]. Wasserstein distance between P1 and P2 is the infimum of the
expectation value in all possible joint distributions. Using the Kantorovich-Rubinstein
duality, Equation (2) can be transformed into:

W(P1,P2) = sup
|| f ||L≤1

Ex∼P1
[ f (x)]−Ex ∼P2

[ f (x)] (3)

where || f ||L ≤ 1 indicates that f is 1-Lipschitz continuous.

2.5. Generalization of Emotional Representation in Adversarial Training

There are individual differences among speakers, such as timbre, expressive habits,
etc., which make it difficult for the model to learn robust emotional representations that
can cover all speakers. In order to generalize the emotional representations, we use ad-
versarial training that forces the feature extractor to learn speaker-invariant emotional
representations. We train the modules in the model alternatively, which consists of
two steps: (1) training the discriminator; (2) training the feature extractor and emotion
classifier. The details of these two steps are described in the following.

2.5.1. Training of Discriminator

The discriminator is primarily responsible for estimating the Wasserstein distance
between the distribution of the emotional representations of the source domain and the
target domain speaker. We can represent all possible functions f in Equation (3) with
discriminators since neural networks can fit various functions. Then the Wasserstein
distance between the source domain and the target domain speakers can be calculated by:

W(Ps,Pt) = sup
|| fD ||L≤1

Ex∼Ps
[ fd( fe(x))]−Ex∼ Pt

[ fd( fe(x))] (4)

where fd denotes the discriminator and fe denotes the feature extractor. To ensure that the
discriminator function is 1-Lipschitz continuous, in [21], the authors propose to clip the
weights of the discriminator within a compact space [−c, c] after each gradient update.
However, Gulrajani et al. [32] found that weight clipping would result in gradient explosion
or vanishing. In order to enhance the stability of gradients, Gulrajani et al. proposed the use
of gradient penalties instead of weight clipping. As suggested in [32], gradient penalties are
used to make the discriminator function 1-Lipschitz continuous in this paper. The gradient
penalty term is defined as follows:

GP = λEx∼χ[||∇ fd( fe(x))||2 − 1]2 (5)
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where λ is the penalty factor, χ denotes the sample space distribution, and ∇ fd is the
gradient of the discriminator.

Then the loss function Ld of the discriminator is shown as follows:

Ld = Ex∼Pt

[
fd( fe(xt))] −Ex∼Ps

[ fd( fe(xs))] + GP (6)

The discriminator weight parameters are updated by minimizing Equation (6). In
this training step, the weight parameters of the feature extractor and the emotion classifier
are frozen.

2.5.2. Training of Feature Extractor and Emotion Classifier

The feature extractor is responsible for extracting emotional representations under
multiple data augmentations, and the emotion classifier gives the labels to which the
representations belong. In this step, we force the feature extractor to learn the speaker-
invariant emotional representations, and significant classifiable information is retained in
those representations. The loss function Le of the feature extractor and the loss function Lc
of the emotion classifier are as follows:

Le = Ex∼Ps
[ fd( fe(xs))] −Ex∼Pt

[
fd( fe(xt))] (7)

Lc = −∑
i

M

∑
c=1,x∈Xs

yic log[ fc( fe(xs))] (8)

In Equation (8), fc denotes the emotion classifier and yic denotes the sample label.
Then the joint loss function Lec of the feature extractor and the emotion classifier is
as follows:

Lec = βLe + Lc (9)

where β is the coefficient that controls the balance between discriminative and generalized
representation learning. By minimizing Equation (9), the weight parameters of the feature
extractor and emotion classifier are updated. In this step, the weight parameters of the
discriminator are frozen.

Following adversarial training, a feature extractor that generalizes emotional represen-
tations while retaining classifiable information is developed, as well as an emotion classifier
with superior classification performance.

3. Experiments

We evaluated the effectiveness of the proposed data augmentation methods in SER in
Section 3.2. In Section 3.3, data augmentation methods that can significantly improve SER
performance are applied to the proposed strong generalized speech emotion recognition
model based on effective data augmentation.

3.1. Speech Emotion Corpus

To evaluate the proposed model, we conducted our experiments on Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) [33]. The IEMOCAP contains 10,039 utterances
annotated by at least three expert evaluators with a total length of approximately 12 h,
which are divided into 9 emotions. There are five sessions in IEMOCAP, each with two
speakers interacting (one male and one female).

To be consistent with previous studies, our experiment considered four emotions:
happy, angry, sad, and neutral, and merged excitement into the happy class. The total
number of utterances was 5531. Due to the variable length of each utterance, we segmented
each utterance into two-second segments for extraction of log–Mel spectrograms. Log–Mel
spectrogram features of each speech segment were extracted using 64 sets of Mel filters,
25 ms Hamming windows, and 10 ms window shifts. The experiments all adopted a
speaker-independent strategy, i.e., a 5-fold Leave-One-Session-Out cross-validation strategy.
For each fold, four sessions were selected for training and one session for testing. Weighted
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accuracy (WA) is used as a performance evaluation metric, which is commonly used in the
SER field.

3.2. Experiment of Data Augmentation

In this section, a simple model is used to test the effects of the six data augmentation
methods on SER under a variety of parameter settings.

The model used in this section consists of a feature extraction component and a
classification component. The feature extraction component is the same as the sub-network
setup in Section 2.3, and the classification component consists of fully connected layers
and a softmax layer. A 1:1 ratio of original and augmented data amounts are used in the
training set, and the test set data are not augmented. Adam optimizer is chosen with an
initial learning rate of 1 × 10−4 and a weight decay of 1 × 10−6. The batch size is 64 and
the number of training epochs is 50 in each fold.

3.2.1. Speed Augmentation

We change the speed of the original speech to produce new speech to increase the
training set. Table 1 shows the experimental results for the four speed factors. The first
line of Table 1 shows that the WA of the model without data augmentation is 60.43%, and
we use this result as the baseline. We first verified the impact of slow speech augmented
in the training set on performance. Slowing down the speech rate has a small or no effect
on performance improvement, according to the results. In subsequent experiments, two
acceleration strategies are used. Performance is improved more significantly when speech
speed is accelerated in addition to the training set. Compared to the baseline, WA improved
by 2.01% and 0.93% at 1.5× and 2.0× speed, respectively.

Table 1. Experimental results of speed augmentation. Speed factor represents the speed of augmented speech.

Speed Factor WA (%) Spectrogram

- 60.43
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3.2.2. Noise Injection

To create new speech, we added White Gaussian Noise (WGN) with a mean of 0
and standard deviation of 1 to the original speech. We generated augmented speech by
controlling the ratio of speech signal to WGN. Four signal-to-noise ratio (SNR) strategies
were employed, and the experimental results are shown in Table 2. It should be noted that
SNR here refers to the ratio of speech signal to WGN added. When the SNR was set to
30 dB, the WA decreased by 0.17% and improved by 0.99% when it was set to 60 dB. When
the SNR was set to 90 dB and 120 dB, the WA also improved compared with the baseline.
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Noise interference will fade the spectrogram pattern, as shown in the spectrograms. As
a result of the noise injection, the sentiment details are obscured to some extent, and it
may appear that the performance improvement is not significant after augmentation at
different SNR.

Table 2. Experimental results of noise injection. The SNR represents the ratio of speech signal to
WGN added.

SNR WA (%) Spectrogram

- 60.43
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3.2.3. Time Shifting

Time shifting refers to rolling the speech signal in the time domain. A total of
four different time shifting strategies were compared, and the experimental results are
shown in Table 3. With strategies of 60% and 80% shifting ratios, respectively, WA improved
by 0.96% and 1.68% over the baseline. However, WA decreases at shifting ratios of 20% and
40%. As a result of rolling the speech signal, the overall coherence of speech is disrupted,
which causes confusion for the classifier.

3.2.4. Resampling

Resampling means changing the sampling rate of speech and creating re-sampled
speech to augment the training set. We change the sampling rate of speech from 16,000 Hz
to an intermediate sampling rate, and then back to 16,000 Hz. The experimental results are
shown in Table 4 for four intermediate sampling rates. When the intermediate sampling
rate is 11,000 Hz and 13,000 Hz, that is, when the intermediate sampling rate is smaller than
the original sampling rate, WA performs better by 0.5% and 0.8%, respectively. As can be
seen from the spectrogram, high-frequency details of speech are lost in these cases. A larger
intermediate sampling rate was used in subsequent experiments. When the intermediate
sampling rate was 18,000 Hz, WA improved by 1.4%. However, when the intermediate
sampling rate was 20,000 Hz, WA decreased by 0.25%. As a result of changing the sampling
rate of speech, some information is lost, which is a disadvantage for SER.
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Table 3. Experimental results of time shifting. Shifting ratio represents the proportion of speech
signal rolling in the time domain.

Shifting Ratio WA (%) Spectrogram

- 60.43
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3.2.5. Pitch Shifting

We use Python’s Librosa toolkit to change the pitch of the original speech. Pitch is
altered by setting the parameters n_steps and bins_per_octave, where n_steps is how many
steps to shift and bins_per_octave is how many steps per octave. A total of four different
parameters were set, and the experimental results are presented in Table 5. Bins_per_octave
was fixed at 12 in the first three experiments. As n_steps is set to 4 and 8, the WA is boosted
by 2.42% and 0.56% respectively. When the pitch was adjusted downward, i.e., when
n_steps was set to 6, the WA reached 63.60%, which is 3.17% higher than the baseline. A
WA increase of 2.78% was observed when n_steps was set to 3 and the bins_per_octave
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was adjusted to 24 for the last experiment. Pitch shifting only changes the pitch with-
out affecting the speed of speech, which can improve the generalizability of the data
and the model to a certain extent. After changing the pitch, the waveform frequency
increases, and the amplitude decreases. The corresponding spectrogram is more separable
in frequency, i.e., the harmonics of speech can be separated more clearly, thus improving
classification accuracy.

Table 5. Experimental results of pitch shifting.

Parameter 1 (bins_per_octave) Parameter 2 (n_steps) WA (%) Spectrogram

- - 60.43
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3.2.6. Reverberation Augmentation

Reverberation is an effect that simulates the impulse response of a room to speech. We
used the Pyroomacoustics toolkit in Python to add a reverberation effect to the original
speech. It was decided that the spatial dimensions would be fixed at (10, 8, 3.5), which
is similar to the dimensions of a real room. The reverberation time, the sound source
location, and the microphone location were changed to generate six different reverberation
effects. Table 6 presents the experimental results. During the first three experiments, we
fixed the sound source and microphone position and only changed the reverberation time.
Results indicated that higher or lower reverberation times could improve performance.
The WA reached 63.05% when the reverberation time was set to 0.5 s, which is a 2.62%
improvement over the baseline. Clearly, setting the reverberation time to 0.5 s is more
appropriate. Following this, we alter the position of the sound source and microphone in
space and fix the reverberation time. A WA of 61.26% was obtained when the sound source
was placed at the edge of space and the microphone position was fixed. We then placed
the microphone at the edge of space with the source at the previous position (3, 5, 1.75),
and the WA reached 63.85%, an improvement of 3.42% compared to the baseline. We have
achieved not only the highest level in reverberation augmentation, but the highest level
in six of our proposed data augmentation methods. In the last experiment, we positioned
both the sound source and microphone at the edge of space at a much farther distance from
each other. The performance improvement was only 1.06% over the baseline, which was
not satisfactory. As can be seen from spectrograms, after adding the reverberation effect
to speech, there is a certain spread of frequencies. The more reverberation time there is,
the more obvious the spread becomes. Moreover, the reverberation effect blurs the texture
boundary of the spectrogram, making the correlation between adjacent frames stronger.
This indicates that the superposition between signals after adding the reverberation effect
makes emotional information in speech more apparent to some extent.
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Table 6. Experimental results of reverberation augmentation. Time represents the reverberation time
of speech, and Source and Microphone represent the positions of the sound source and microphone
in the simulated space, respectively.

Time Source Microphone WA (%) Spectrogram

— — — 60.43
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In this section, we apply the two best-performing data augmentation strategies from
the experiments in the previous section to the strong generalized speech emotion recogni-
tion model based on effective data augmentation proposed in this paper.

We used pitch shifting and reverberation augmentation, and the most successful
setting from the previous experiments was used. During training, the ratio of augmented
data obtained by each data augmentation strategy and original data is 1:1. The feature
extractor in the model contains three sub-networks, and the Log–Mel spectrogram of
original speech, pitch shifting speech, and reverberation speech is input into each of the
three sub-networks. The weighting coefficients of the sub-networks are set to 0.6, 0.2, and
0.2, respectively, and β is 0.6. The Adam optimizer is chosen with an initial learning rate
of 1 × 10−4 and a weight decay of 1 × 10−6, and the learning rate is dynamically reduced
during the training process according to model performance. The batch size is 32, and the
number of training epochs in each fold is 50.

3.3.1. Ablation Experiments

In Table 7 we report the performance of the strong generalized speech emotion recogni-
tion model based on effective data augmentation proposed in this paper. The WA is 66.51%
under the speaker-independent experimental strategy. In order to verify the effectiveness
of each module of the proposed model, three ablation experimental strategies are designed.
(1) Without augmentation: no data augmentation is performed, and only the Log–Mel
spectrogram features of the original speech are input. (2) Without multi-channel: the feature
extractor has only one sub-network. (3) Without discriminator: remove the discriminator
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and do not generalize emotional representations. Table 7 presents the results of the ablation
experiments. In the absence of data augmentation, WA decreases by 1.43%. With only one
sub-network in the feature extractor, WA is also lower than that of the proposed model.
This illustrates that the multi-channel feature extractor presented in this paper can effec-
tively take advantage of multiple data augmentations to improve SER performance. When
no discriminator is applied, WA decreases by 4.54%. It is evident from this that robust
emotional representations are essential for SER. The results of ablation experiments show
that the proposed model can further improve performance by using data augmentation on
the basis of aligning the distribution of emotional representations.

Table 7. Results of the ablation experiment.

Methods WA (%)

Our proposed 66.51
Without augmentation 65.08
Without multi-channel 66.01
Without discriminator 61.97

3.3.2. Comparison with Mainstream SER Algorithms

Additionally, the proposed model was compared with mainstream SER algorithms.
Table 8 shows the results of the comparison of the WA of the algorithms obtained using
a speaker-independent experimental strategy on the IEMOCAP corpus. By comparison
with traditional algorithms such as SVM, HMM, and ELM, the proposed model in this
paper is superior by 9.76%, 7.05%, and 2.31%, respectively. Furthermore, we compare
algorithms that use deep learning. The model proposed in this paper leads by 3.01%
when compared to the RNN algorithm incorporating the attention mechanism. Finally, we
compare an algorithm that utilizes adversarial training to learn speaker-invariant emotional
representations, and the algorithm also employs speed augmentation. Our proposed model
still outperforms this algorithm by 7.89%, which is a significant improvement. It further
demonstrates the superiority of the proposed model in terms of effective data augmentation
and generalization of emotional representations.

Table 8. Performance of the proposed model and mainstream SER algorithms on the IEMOCAP corpus.

Methods WA (%)

Our proposed 66.51
Lexical-Norm + SVM [34] 56.75

MEnAN + Speed augmentation [6] 58.62
MFCC + HMM [35] 59.46

RNN + Attention [36] 63.50
Region-switching + ELM [37] 64.20

3.3.3. T-SNE Visualization of Emotional Representations

We compared the learned emotional representations from the model proposed in this
paper and the baseline model in Section 3.2. Both emotional representations were visualized
as T-SNE [38] in Figure 4. The emotional representations from the baseline model have
a low degree of inter-class separation; particularly, “happy” and “angry” are entangled
in hidden space. Furthermore, there is a domain shift between the representations of
the training set and test set speakers. In contrast, the emotional representations from the
proposed model form four distinguishable clusters, i.e., there is a high degree of separation
between classes. Even the representations of speakers from the test set show excellent
inter-class discrimination. Additionally, the representation distributions are effectively
aligned, allowing for the mixing of representations from different speakers. Accordingly,
the proposed model is capable of generalizing emotional representations while maintaining
the validity of the category information in the representations.
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4. Conclusions

In this paper, we investigated the problem of data augmentation in SER and proposed a
strong generalized speech emotion recognition model based on effective data augmentation.
First, we evaluated the effectiveness of the six proposed data augmentation methods: speed
augmentation, noise injection, time shifting, resampling, pitch shifting, and reverberation
augmentation. The experimental results of data augmentation show that some attributes
of speech can be detrimental to emotion recognition when they are changed. Injection of
noise obscures the emotional details of speech to a certain extent, resampling causes the
loss of information in speech, and time shifting disrupts the overall coherence of speech,
all of which are detrimental to speech recognition. The experimental results indicate that
pitch shifting and reverberation augmentation are the two most effective methods for
improving SER performance. In the pitch shifting experiment, when bins_per_octave and
n_steps were set to 12 and −6, respectively, WA was improved by 3.17% compared to the
baseline results. When the pitch of speech is changed, the spectrogram is more separable in
frequency, i.e., the harmonics of speech can be separated more clearly, thus improving the
classification accuracy. In the reverberation augmentation experiment, WA was improved
by 3.42% when the reverberation time, source location and microphone location were
set to 0.5, (3, 5, 1.75) and (9, 7, 1.2), respectively. The superposition between the signals
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after adding the reverberation effect somehow makes the emotional information in speech
more obvious.

Then, these two data augmentation strategies were applied to the model proposed
in this paper. We conducted ablation experiments on the proposed model, and the results
show that performance degradation is the greatest when the discriminator is not used. This
indicates that individual differences among speakers are responsible for the performance
degradation of SER and that the development of robust emotional representations is
important for SER. The results of mainstream SER algorithms on the IEMOCAP corpus
were compared with the proposed model. The WA of the proposed model is 2–9% higher
than those of the relevant algorithms. According to the T-SNE visualization results, the
representations from the proposed model exhibit better inter-class separability as well as
generalization, which further proves the superiority of this work.

In future work, we may study the problem of representation generalization on cross-
corpus SER. Performance tends to drop significantly in the case of cross-corpus, which is a
challenging task. Moreover, we may consider modalities such as video and text to further
improve the performance of emotion recognition.
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