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Abstract: This paper tackles the problem of estimating the covariance matrix in large-dimension and
small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a
novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix
estimators. We model the second-order Stein-type regularization as a quadratic polynomial concern-
ing the sample covariance matrix and a given target matrix, representing the prior information of the
actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical
and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors,
which measure the distances between the actual covariance matrix and its estimators. We formulate
the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal
second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can
significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover,
a real data analysis in portfolio selection verifies the performance of the proposed estimators.

Keywords: covariance matrix estimation; Stein-type regularization; unbiased estimate

1. Introduction

As a fundamental problem in modern multivariate statistics and various practical
applications, estimating the covariance matrix of a large-dimensional random vector has
attracted significant interest in the last two decades [1,2]. The traditional sample covariance
matrix (SCM) becomes unstable and ill-conditioned when the dimension increases propor-
tionally with the sample size. The algorithm, which still employs SCM as the covariance
matrix estimator, will result in a drop in performance or failure [3,4]. Although remaining
unbiased, the SCM is not a satisfactory estimator of the actual covariance matrix any-
more [5,6]. Therefore, it is of great concern to develop well-conditioned covariance matrix
estimators in large-dimensional scenarios [7–9].

A comprehensive point of view to obtain well-conditioned estimators is by improving
the SCM [10]. In the Stein-type regularization (linear shrinkage estimation), a target matrix
is preset by rectifying the SCM according to prior information on the covariance structure.
For example, the spherical target is a scalar matrix, with the coefficient being the average
of the diagonal elements of the SCM [11]. The diagonal target is a diagonal matrix which
retainsthe diagonal elements of the SCM [12,13]. Moreover, the Toeplitz-structured target
is formed by averaging each diagonal of the SCM [14]. To some extent, the target matrices
are covariance matrix estimators. Despite being biased, they usually enjoy low variances.
The Stein-type estimator combines the SCM and the target matrix to balance the bias and
variance. This method generates a well-conditioned estimator for the spherical target
matrix by retaining the sample eigenvectors and shrinking the sample eigenvalues toward
their grand mean. Moreover, the Stein-type regularization can be translated as a weighted
average between the SCM and the target matrix. Many Stein-type estimators have been
developed for various target matrices. Additionally, it is worth mentioning that the optimal
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Stein-type estimator can be expressed in closed form and significantly outperforms the
traditional SCM under some appropriate criteria [15–17].

In addition, the nonlinear shrinkage estimation is proposed based on the random
matrix theory [18]. By taking spectral decomposition on the SCM, this method retains the
sample eigenvectors and estimates the actual eigenvalues by taking a nonlinear transfor-
mation on the sample eigenvalues. Then, the nonlinear shrinkage estimator is obtained by
assembling the estimated eigenvalues and the sample eigenvectors. In the mean squared
error (MSE) sense, the resulting nonlinear shrinkage estimator enjoys a significant advan-
tage over the SCM. It also outperforms the Stein-type estimator for the spherical target.
However, both the sample eigenvalues and sample eigenvectors have serious deficiencies
in a high-dimensional case [19]. Hence, the existing nonlinear shrinkage strategy, which
modifies the sample eigenvalues whileretaining the sample eigenvectors, has some limita-
tions in improving the SCM performance. Moreover, the method can hardly handle the
prior structure information employed in the Stein-type regularization. Hence, developing
a new nonlinear shrinkage technique is essential to generate outperformed covariance
matrix estimators.

This paper combines the SCM and the target matrix via a nonlinear shrinkage strategy
to obtain well-conditioned estimators of a large-dimensional covariance matrix. The main
contributions are the following:

1. The second-order Stein-type estimator is modeled as a quadratic polynomial con-
cerning the SCM and an almost surely (a.s.) positive definite target matrix. For the
spherical and diagonal target matrices, the MSEs between the second-order Stein-type
estimator and the actual covariance matrix are unbiasedly estimated under Gaussian
distribution.

2. We formulate the second-order Stein-type estimators for the two target matrices as
convex quadratic programming problems. Then, the optimal second-order Stein-type
estimators are immediately obtained.

3. Some numerical simulations and application examples are provided for comparing the
proposed second-order Stein-type estimators with the existing linear and nonlinear
shrinkage estimators.

The outline of this paper is as follows. Section 2 proposes the second-order Stein-
type estimator based on the Stein-type regularization. In Section 3, the spherical and
diagonal matrices are employed as the target matrices. We obtain unbiased estimates of the
MSEs between the second-order Stein-type estimators and the actual covariance matrix.
The optimal second-order Stein-type estimators are obtained by solving the corresponding
optimization problems. Section 4 provides some numerical simulations and two examples
to discover the performance of the proposed estimators in large-dimensional scenarios.
Section 5 concludes the major work of this paper.

2. Notation, Motivation, and Formulation

The symbol Rp denotes the set of entire p-dimensional real column vectors, Rm×n

denotes the set of entire m× n real matrices, and Sp denotes the set of entire p× p real
symmetric matrices. The bold symbol E denotes the squared matrix having all entries 1 with
appropriate dimensions. The symbol Ip denotes the p× p identity matrix. For a matrix A,
AT , tr(A), and ‖A‖, we denote its transpose, trace, and Frobenius matrix norm, respectively.
For two matrices A and B, A ◦ B means their Hadamard (element-wise) product.

Assume that x1, x2, . . . , xn ∈ Rp is an independent and identically distributed (i.i.d.)
sample drawn from a certain distribution with mean 0 and covariance matrix Σ. The SCM
S is defined by

S = (sij)p×p =
1
n

n

∑
m=1

xmxT
m. (1)
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As is widely known, the SCM is ill conditioned in large-dimension scenarios and is
even singular when p > n. The Stein-type regularization can produce a well-conditioned
covariance matrix estimator based on the SCM [20–23].

For an a.s. positive definite target matrix T representing the prior information of the
covariance structure, the Stein-type estimator combines the SCM and the target matrix with
a linear function

f (S, T) = (1− w)S + wT. (2)

Through an equivalent transformation, the expression given by (2) can be recom-
bined as

f (S, T) = S + w(T− S), (3)

where T− S is a regularization term and w is a tuning parameter. Moreover, the tuning
parameter w lies in (0, 1] so as to keep the Stein-type estimator a.s. positive definite even
when n < p. An interesting fact is that the matrix (T− S)2 is still symmetric and positive
definite, which motivates us to consider further a quadratic function of the SCM and the
target matrix.

For an a.s. positive definite target matrix T, we model the second-order Stein-type
estimator of the covariance matrix Σ as

Σ̂ = S + w1(T− S) + w2(T− S)2, (4)

where w1, w2 are the tuning parameters. It is easy to find out that Σ̂ ∈ Sp. In the same
manner, we further assume w1 ∈ (0, 1] and w2 ≥ 0 to keep the covariance estimator given
by (4) to be a.s. positive definite. We note that the constraint on the tuning parameters is
an easy-to-implement condition but is not necessary. One can also consider alternative
assumptions, such as the condition number constraint, to obtain positive definite estimators
of the large-dimensional covariance matrix [24].

Next, we choose the optimal tuning parameters in (4). In the Stein-type regularization,
the MSE between the actual covariance matrix and its estimator is the most commonly used
loss function. It includes unknown scalars concerning the expectation operator and the
actual covariance matrix. One practical way is to make the MSE available by estimating the
unknown scalars and obtaining the optimal shrinkage intensity by minimizing the available
MSE [15]. Therefore, we still follow the above steps to find optimal tuning parameters in
the second-order Stein-type estimator. To be specific, the loss function of the second-order
Stein-type estimator Σ̂ is defined by

MT(w|Σ) = E[‖Σ̂− Σ‖2], (5)

where w = (w1, w2)
T . Through substituting the expression of Σ̂ into (5), we can obtain

MT(w|Σ) =
1
2

wTH(T)w− 2wTb(T) + c, (6)

where

H(T) = 2
[

E[tr(S− T)2] −E[tr(S− T)3]
−E[tr(S− T)3] E[tr(S− T)4]

]
, (7)

b(T) =
[

E[tr(S− Σ)(S− T)]
−E[tr(S− Σ)(S− T)2]

]
, (8)

c = E[tr(S− Σ)2]. (9)

Therefore, the second-order Stein-type regularization can be modeled as the following
optimization problem:
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min
1
2

wTH(T)w− 2wTb(T) + c

s.t. 0 ≤ e1w ≤ 1,

e2w ≥ 0,

(10)

where e1 = (1, 0) and e2 = (0, 1). It is easy to see that the loss function in problem (10) is
a binary quadratic polynomial function about w, and H(T) is the Hessian matrix. By the
Cauchy–Schwarz inequality, we have(

E[tr(S− T)3]
)2
≤ E[tr(S− T)2]E[tr(S− T)4]. (11)

Therefore, the Hessian matrix H(T) is positive definite. Then, the optimization prob-
lem (10) is a convex quadratic program. However, it cannot be solved because the quantities
H(T), b(T), and c in the objective function are unknown. When the underlying distribution
is given and the target matrix is prespecified, we can estimate the unknown quantities
H(T), b(T), and c. Then, the optimization problem (10) turns out to be available based on
plug-in strategy and can be effectively solved.

Remark 1. The unknown quantity c does not affect the choice of optimal tuning parameter w in
the optimization problem (10). Moreover, it is the theoretical MSE between the actual covariance
matrix and the classic SCM and plays an important role in evaluating the performance of improved
covariance estimators based on the SCM.

3. Optimal Second-Order Stein-Type Estimators

In this section, as the target matrix is specified, we estimate the corresponding un-
known quantities under Gaussian distribution, then establish the available version of the
optimization problem to obtain the optimal second-order Stein-type estimator.

3.1. Target Matrices

As mentioned before, the target matrix represents the prior information of the actual
covariance structure. In the Stein-type regularization, the commonly used target matrices
include the spherical target, the diagonal target, the Toeplitz-structured target, and the
tapered SCM. Among these, the spherical target and the diagonal target are a.s. positive
definite, whereas both the Toeplitz-structured target and the tapered SCM are unnecessary.
Thereby, in the second-order Stein-type regularization, we employ the spherical target and
the diagonal target, given by

T1 =
tr(S)

p
Ip, T2 = diag(s11, . . . , spp). (12)

The diagonal target T2 is also denoted as DS because it consists of the diagonal
elements of the SCM.

3.2. Available Loss Functions

For the target matrices T1 and T2, we unbiasedly estimate the loss functions given
by (6) through plugging in the estimates of unknown quantities H(Ti), b(Ti), i = 1, 2 and c
under Gaussian distribution.

First of all, by directly removing the expectation operator, the Hessian matrices H(Ti)
can be estimated by

Ĥ(Ti) = 2
[

tr(S− Ti)
2 − tr(S− Ti)

3

− tr(S− Ti)
3 tr(S− Ti)

4

]
. (13)

Furthermore, Ĥ(Ti), i = 1, 2 are, respectively, unbiased estimates of H(Ti), i = 1, 2.
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Next, for i = 1, 2, we decompose the unknown vectors b(Ti) into two terms,

b(Ti) =

[
E[tr(S− Σ)(S− Ti)]
−E[tr(S− Σ)(S− Ti)

2]

]
(14)

=

[
E[tr(S(S− Ti))]
−E[tr(S(S− Ti)

2)]

]
+

[
−E[tr(Σ(S− Ti))]
E[tr(Σ(S− Ti)

2)]

]
, u(Ti) + v(Ti). (15)

Similar to the Hessian matrices H(T1) and H(T2), the first term u(Ti) can be unbias-
edly estimated by

û(Ti) =

[
tr(S(S− Ti))
− tr(S(S− Ti)

2)

]
. (16)

Therefore, we only need to estimate the second term v(Ti). It is challenging to estimate
v(Ti) unbiased because it includes both the expectation operator and the actual covariance
matrix Σ. We need the following moment properties about the Wishart distribution [25].

Lemma 1. Denote A and B as arbitrary symmetric nonrandom matrices, S is the sample covariance
matrix given by (1), and then the following equalities hold under Gaussian distribution:

E[SAS] =
n + 1

n
ΣAΣ +

1
n

tr(ΣA)Σ, (17)

E[tr(AS)S] = tr(AΣ)Σ +
2
n

ΣAΣ, (18)

E[tr(AS) tr(BS)] = tr(AΣ) tr(BΣ) +
2
n

tr(AΣBΣ). (19)

By Lemma 1, letting A = B = Ip, we can obtain

E[tr(S2)] =
n + 1

n
tr(Σ2) +

1
n

tr2(Σ), E[tr2(S)] = tr2(Σ) +
2
n

tr(Σ2). (20)

Moreover, letting A = Σ and B = Ip, we have

E[tr(S2Σ)] =
n + 1

n
tr(Σ3) +

1
n

tr(Σ) tr(Σ2), (21)

E[tr(SΣ) tr(S)] = tr(Σ) tr(Σ2) +
2
n

tr(Σ3). (22)

Lemma 1 is very helpful to compute the second term v(Ti) in (14). For the spherical
target matrix T1, we have

E[tr(Σ(S− T1))] = tr(Σ2)− 1
p

tr2(Σ), (23)

and

E[tr(Σ(S− T1)
2)] = E[tr(S2Σ)]− 2

p
E[tr(S) tr(SΣ)] +

1
p2E[tr

2(S)] tr(Σ)

=
np + p− 4

np
tr(Σ3) +

p2 − 2np + 2
np2 tr(Σ) tr(Σ2) +

1
p2 tr3(Σ). (24)

For the diagonal target matrix T2, we have

E[tr(Σ(S− T2))] = tr(Σ2)− tr(D2
Σ), (25)



Entropy 2023, 25, 53 6 of 18

where DΣ = diag(Σ11, . . . , Σpp). Moreover, we can obtain

E[tr(Σ(S− T2)
2)]

= E[tr(S2Σ)]− 2E[tr(ST2Σ)] +E[tr(T2
2Σ)]

=
n + 1

n
tr(Σ3) +

1
n

tr(Σ) tr(Σ2)− 2n + 4
n

tr(DΣΣ2) +
n + 2

n
tr(D3

Σ). (26)

Denote
a1 = tr(Σ2), a2 = tr2(Σ), a3 = tr(D2

Σ),
b1 = tr(Σ3), b2 = tr3(Σ), b3 = tr(Σ) tr(Σ2),
c1 = tr(D3

Σ), c2 = tr(DΣΣ2),
(27)

then the vectors v(Ti), i = 1, 2 can be rewritten as

v(T1) =

 1
p a2 − a1
np+p−4

np b1 +
1
p2 b2 +

p2−2np+2
np2 b3

, (28)

v(T2) =

[
a3 − a1
n+1

n b1 +
1
n b3 +

n+2
n c1 − 2n+4

n c2

]
. (29)

It is worth noting that each element in v(Ti), i = 1, 2 is a linear combination of the
quantities in (27). Therefore, we only need to find out the estimates of the quantities in (27).

Firstly, the unbiased estimates of the quantities ai, i = 1, 2, 3 were proposed in [12,26,27],

α1 = τa

(
n tr(S2)− tr2(S)

)
, α2 = τa

(
(n + 1) tr2(S)− 2 tr(S2)

)
, (30)

α3 = τa(n− 1) tr(D2
S), (31)

where τa =
n

(n−1)(n+2) .
Secondly, denote the matrix W as

W =

 n2 2 −3n
16 n2 + 3n− 2 −6(n + 2)
−4n −(n + 2) n2 + 2n + 4

, (32)

Then, the unbiased estimates of bi, i = 1, 2, 3 can be obtained by the following theorem.

Theorem 1. Under Gaussian distribution, the following equation holds when n ≥ 3:

E

 tr(S3)
tr3(S)

tr(S) tr(S2)

 = (τbW)−1

 b1
b2
b3

, (33)

where τb = n2

(n−1)(n−2)(n+2)(n+4) .

Proof. The actual covariance matrix Σ has the spectral decomposition which is described as
Σ = ΓTΛΓ, where Λ = diag(λ1, . . . , λp) is a diagonal matrix consisting of the eigenvalues

and Γ is the corresponding unitary matrix. Define F = Σ
1
2 , and F is a symmetric matrix;

then we have F2 = Σ. For m = 1, . . . , n, denote zm = F−1xm, then zm is an i.i.d. sample and
zm ∼ N(0, Ip). Let X = (x1, . . . , xn) and Z = (z1, . . . , zn); then, we have X = FZ. Notice
that the SCM is S = 1

n ∑n
m=1 xmxT

m; therefore, we have

nS = XXT = FZZTF. (34)
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Moreover, we can obtain

tr(nS) = tr(FZZTF) = tr(ZTΣZ) = tr(ZTΓTΛΓZ). (35)

Define a matrix QT = ZTΓT = (q1, . . . , qp) and denote vii = qT
i qi and vij = qT

i qj =

qT
j qi for i, j ∈ {1, . . . , p}, then the above equation can be rewritten as

tr(nS) = tr(QTΛQ) =
p

∑
i=1

λivii. (36)

In a same manner, we can obtain

tr(nS)2 =
p

∑
i,j=1

λiλjv2
ij, tr2(nS) =

p

∑
i,j=1

λiλjviivjj, (37)

and

tr(nS)3 =
p

∑
i,j,k=1

λiλjλkvijvikvjk, (38)

tr3(nS) =
p

∑
i,j,k=1

λiλjλkviivjjvkk, (39)

tr(nS) tr(nS)2 =
p

∑
i,j,k=1

λiλjλkv2
ijvkk. (40)

By the moment properties of random variables vii and vij in [26,28], we have

E[vii] = n, E[v2
ii] = n(n + 2), E[v2

ij] = n,
E[viiij2] = n(n + 2), E[vijvikvjk] = n E[v3

ii] = n(n + 2)(n + 4).
(41)

where i, j, k are arbitrary mutually unequal numbers in {1, . . . , p}. Next, we compute the
mathematical expectation of Equations (38)–(40) based on the moment properties in (41).
Denote µ1 = ∑

p
i=1 λ3

i , µ2 = ∑
p
i 6=j λ2

i λj and µ3 = ∑
p
i 6=j 6=k λiλjλk, where i 6= j 6= k means that

i, j, k are mutually unequal, and we have

E[tr(nS)3] = n(n + 2)(n + 4)µ1 + 3n(n + 2)µ2 + nµ3, (42)

E[tr3(nS)] = n(n + 2)(n + 4)µ1 + 3n2(n + 2)µ2 + n3µ3, (43)

E[tr(nS) tr(nS)2] = n(n + 2)(n + 4)µ1 + n(n + 2)2µ2 + n2µ3. (44)

Denote a matrix D as

D =

 n(n + 2)(n + 4) 3n(n + 2) n
n(n + 2)(n + 4) 3n2(n + 2) n3

n(n + 2)(n + 4) n(n + 2)2 n2

, (45)

then the above Equations (42)–(44) can be rewritten in the form of a matrix equation: E[tr(nS)3]
E[tr3(nS)]

E[tr(nS) tr(nS)2]

 = D

 µ1
µ2
µ3

. (46)

Furthermore, the unknown quantities bi, i = 1, 2, 3 can be decomposed as

b1 = µ1, b2 = µ1 + 3µ2 + µ3, b3 = µ1 + µ2. (47)
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Therefore, we have  µ1
µ2
µ3

 =

 1 0 0
1 3 1
1 1 0

−1 b1
b2
b3

. (48)

By the Equations (46) and (48), we have E[tr(nS)3]
E[tr3(nS)]

E[tr(nS) tr(nS)2]

 = D

 1 0 0
1 3 1
1 1 0

−1 b1
b2
b3

. (49)

For n ≥ 3, the following equality holds:

D

 1 0 0
1 3 1
1 1 0

−1

= (τbW)−1. (50)

Therefore, we can obtain

E

 tr(nS)3

tr3(nS)
tr(nS) tr(nS)2

 = (τbW)−1

 b1
b2
b3

. (51)

This completes the proof.

Then, the unknown scalars bi, i = 1, 2, 3 can be unbiasedly estimated by β1
β2
β3

 = τbW

 tr(S3)
tr3(S)

tr(S) tr(S2)

. (52)

Remark 2. In a large sample scenario, the unknown scalars bi, i = 1, 2, 3 can be consistently
estimated by tr(S3), tr3(S) and tr(S) tr(S2) [29]. Theorem 1 shows that these estimates are
biased. Moreover, the biases become non-ignorable in high-dimensional situations [30]. Further-
more, by Theorem 1, the biases can be eliminated by the linear combinations of tr(S3), tr3(S),
and tr(S) tr(S2).

Thirdly, denote the matrices G, R, and K as follows:

G = (gij) with gij = ‖xi ◦ xj‖2, (53)

R = (rij) with rij = ‖xi ◦ xi ◦ xj‖2, (54)

K = (kij) with kij = (xi ◦ xi)(xi ◦ xj)T , (55)

where xi is the observations of i-th variable for i = 1, . . . , p, then the following theo-
rem holds.

Theorem 2. Under Gaussian distribution, the following equations hold when n ≥ 3:

E[n3 tr(D3
S)− 3n tr(GDS) + 2 tr(R)] = τ−1

c c1, (56)

E[n3 tr(DSS2)− 2n tr(KS)− n tr(GDSE) + 2 tr(RE)] = τ−1
c c2, (57)

where τc =
1

n(n−1)(n−2) .
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Proof. Let F = ( fij), and F is a symmetric matrix; then, we have F2 = Σ = (σij). Therefore,
for arbitrary i, j ∈ {1, . . . , p}, the equalities σij = ∑

p
k=1 fik f jk and σii = ∑

p
k=1 f 2

ik hold.
For m = 1, . . . , n, denote xm = (xm1, xm2, . . . , xmp)T and zm = F−1xm, then zm is an i.i.d.
sample and zm ∼ N(0, Ip). Let zm = (zm1, zm2, . . . , zmp)T , then zmk, m = 1, . . . , n, k =
1, . . . , p are mutually independent standard Gaussian random variables. For arbitrary
m ∈ {1, . . . , n} and i, j ∈ {1, . . . , p}, we have xmi = ∑

p
k=1 fikzmk and xmj = ∑

p
k=1 f jkzmk.

Denote that SCM S = (sij), then sij can be decomposed as follows:

sij =
1
n

n

∑
m=1

xmixmj =
1
n

n

∑
m=1

p

∑
k1,k2=1

fik1 f jk2 zmk1 zmk2 . (58)

Then, for arbitrary m ∈ {1, . . . , n} and i, j ∈ {1, . . . , p}, we have

E[xmixmj] =
p

∑
k1,k2=1

fik1 f jk2E[zmk1 zmk2 ] =
p

∑
k=1

fik f jk = σij. (59)

Especially when i = j, we have E[x2
mi] = σii. Then, we can obtain

E[n3 tr(D3
S)− 3n tr(GDS) + 2 tr(R)] =

n

∑
m1 6=m2 6=m3

p

∑
i=1

E[x2
m1ix

2
m2ix

2
m3i]

=
n

∑
m1 6=m2 6=m3

p

∑
i=1

E[x2
m1i]E[x

2
m2i]E[x

2
m3i] =

n

∑
m1 6=m2 6=m3

p

∑
i=1

σ3
ii

= n(n− 1)(n− 2)
p

∑
i=1

σ3
ii = τ−1

c tr(D3
Σ). (60)

Furthermore, we have

E[n3 tr(DSS2)− 2n tr(KS)− n tr(GDSE) + 2 tr(RE)]

=
n

∑
m1 6=m2 6=m3

p

∑
i,j=1

E[x2
m1ixm2ixm2 jxm3ixm3 j] =

n

∑
m1 6=m2 6=m3

p

∑
i,j=1

E[x2
m1i]E[xm2ixm2 j]E[xm3ixm3 j]

=
n

∑
m1 6=m2 6=m3

p

∑
i,j=1

σiiσ
2
ij = n(n− 1)(n− 2)

p

∑
i,j=1

σiiσ
2
ij = τ−1

c tr(DΣΣ2). (61)

Then, the unknown scalars c1 and c2 can be unbiasedly estimated by

γ1 = τc[n3 tr(D3
S)− 3n tr(GDS) + 2 tr(R)], (62)

γ2 = τc[n3 tr(DSS2)− 2n tr(KS)− n tr(GDSE) + 2 tr(RE)]. (63)

By plugging the estimates of quantities in (27) into (28) and (29), the unbiased estimates
of v(T1) and v(T2) are given by

v̂(T1) =

 1
p α2 − α1

np+p−4
np β1 +

1
p2 β2 +

p2−2np+2
np2 β3

, (64)

v̂(T2) =

[
α3 − α1

n+1
n β1 +

1
n β3 +

n+2
n γ1 − 2n+4

n γ2

]
. (65)

By the Equations (16), (64), and (65), the unbiased estimates of the vectors b(Ti), i = 1, 2
are given by

b̂(Ti) = û(Ti) + v̂(Ti), i = 1, 2. (66)
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In addition, the constant c in (10) can be further calculated under Gaussian distribution,
which is

c =
1
n

a1 +
1
n

a2. (67)

Therefore, we can obtain that the unbiased estimate of c is given by

ĉ =
1
n

α1 +
1
n

α2 = τa

(
n− 2

n
tr(S2) + tr2(S)

)
. (68)

To sum up, by Equations (13), (66) and (68), we can obtain that the unbiased estimates
of the loss functionsMTi (w|Σ) are given by

M̂Ti (w) =
1
2

wTĤ(Ti)w− 2wTb̂(Ti) + ĉ. (69)

3.3. Optimal Second-Order Stein-Type Estimators

For the target matrices Ti, i = 1, 2, through replacing the objective function in (10)
with its unbiased estimate given by (69), we further formulate the second-order Stein-type
estimators as the following optimization problems:

min
1
2

wTĤ(Ti)w− 2wTb̂(Ti) + ĉ

s.t. 0 ≤ e1w ≤ 1,

e2w ≥ 0.

(70)

For i = 1, 2, the Hessian matrix of the objective function in (70) is Ĥ(Ti). By the
following inequality (

tr(S− Ti)
3
)2
≤ tr(S− Ti)

2 tr(S− Ti)
4, (71)

we can obtain that Ĥ(Ti) is positive definite. Therefore, the optimization problem (70) is a
convex quadratic program. Furthermore, we can obtain the globally optimal solution by an
efficient algorithm.

For the target matrices Ti, i = 1, 2, by denoting the corresponding optimal tuning
parameters as wi = (wi

1, wi
2)

T , the optimal second-order Stein-type estimators can be
expressed as

Σ̂i = S + wi
1(T− S) + wi

2(T− S)2. (72)

Remark 3. The proposed second-order Stein-type estimators are both well conditioned. Moreover,
by taking the spectral decomposition, the SCM can be expressed as

S = UT∆U, (73)

where ∆ = diag(δ1, . . . , δp) is a diagonal matrix consisting of the eigenvalues and U is the
corresponding unitary matrix. Then, the second-order Stein-type estimator Σ̂1 has the following
spectral decomposition:

Σ̂1 = UT∆̃U, (74)

where ∆̃ = diag(δ̃1, . . . , δ̃p) with

δ̃i = δi + w1
1(θ − δi) + w1

2(θ − δi)
2. (75)

where θ = tr(S)
p is the mean of sample eigenvalues. Therefore, the proposed estimator Σ̂1 shrinks the

sample eigenvalues by a nonlinear transformation whileretaining the sample eigenvectors.
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4. Numerical Simulations and Real Data Analysis

This section presents numerical simulations and two application examples to discover
the performance of the proposed second-order Stein-type estimators. The proposed covari-
ance matrix estimators for the target matrices T1 and T2 are denoted as QS-T1 and QS-T2,
respectively. The control estimators include the Stein-type estimator LS-T1 for T1 in [11],
and the Stein-type estimator LS-T2 for T2 in [12] and the nonlinear shrinkage estimator NS
developed in [18].

4.1. MSE Performance

We assume that the actual distribution isN (0, Σ), where the following models generate
the covariance matrix:

(1) Model 1: Σ = (σij)p×p with σii = 1 and σij = 0.1|i−j| for i 6= j,
(2) Model 2: Σ = (σij)p×p with σii = max{50− i, 0}+ 2 and σij = 0.6 for i 6= j.

Under Model 1, the diagonal elements are equal to 1, and the off-diagonal elements
are tiny. Therefore, the covariance matrix is close to a spherical matrix. Under Model 2,
the diagonal elements are dispersive, and the off-diagonal elements correspond to weak
correlations. Therefore, the covariance matrix is close to a diagonal matrix. We carry
out random sampling in each Monte Carlo run and compute the Frobenius loss of each
covariance matrix estimator. The MSE performance of each covariance matrix estimator is
evaluated by averaging the Frobenius losses of 5× 103 runs.

Figures 1 and 2 report the logarithmic Frobenius loss of each estimator in large-
dimensional scenarios where the dimension is 180 and the sample size varies from 10 to 100.
Under Model 1, the Stein-type estimator LS-T1 and the second-order Stein-type estimator
QS-T1 outperform the nonlinear shrinkage estimator NS and the shrinkage estimators
LS-T2 and QS-T2, which employ the diagonal target matrix. Furthermore, the proposed
second-order Stein-type estimator QS-T1 shows a significant advantage over the Stein-type
estimator LS-T1, especially when the sample size is tiny. Similarly, under Model 2, the Stein-
type estimator LS-T2 and the second-order Stein-type estimator QS-T2 perform better
than the other three estimators. Moreover, the proposed estimator QS-T2 outperforms the
corresponding Stein-type estimator LS-T2. Therefore, when the correct target matrix is
employed, the second-order Stein-type estimators enjoy lower Frobenius losses than the
linear and nonlinear shrinkage estimators in large-dimensional scenarios.
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Figure 1. The logarithmic Frobenius losses of shrinkage estimators under Model 1 with p = 180.
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Figure 2. The logarithmic Frobenius losses of shrinkage estimators under Model 2 with p = 180.

Figures 3 and 4 report the logarithmic Frobenius loss of each estimator versus the
dimension. The sample size is 30. We can find that the logarithmic Frobenius losses
become more prominent as the dimension increases. In Figure 3, the actual covariance
matrix is close to being spherical. The proposed second-order Stein-type estimator QS-T1
significantly outperforms the other estimators. In Figure 4, the actual covariance matrix
is close to being diagonal. The proposed second-order Stein-type estimator QS-T2 enjoys
lower Frobenius loss when the dimension exceeds 120.
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Figure 3. The logarithmic Frobenius losses of shrinkage estimators under Model 1 with n = 30.



Entropy 2023, 25, 53 13 of 18

60 80 100 120 140 160 180 200

p

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

lo
g
a
ri
th

m
ic

 F
ro

b
e
n
iu

s
 l
o
s
s

LS-T1

LS-T2

NS

QS-T1

QS-T2

Figure 4. The logarithmic Frobenius losses of shrinkage estimators under Model 2 with n = 30.

The proposed second-order Stein-type estimators take significant advantage of the
MSE performance over the linear and nonlinear shrinkage estimators, especially when the
dimension is large compared to the sample size.

4.2. Portfolio Selection

In finance, assets with higher expected returns generally involve higher risks. There-
fore, investors must constantly balance the expected return and the risk tolerance. The port-
folio strategy is a popular way to reduce risk and enhance return. Therefore, portfolio
selection plays a vital role in asset investment.

In 1952, Markowitz introduced the famous mean-variance optimization to determine
the optimal portfolio weights [31]. Let m and Σ be the expectation and covariance matrix
of the daily returns. For portfolio weight k, the variance of the portfolio is defined as
σ2 = kTΣk in the Markowitz framework. As short selling is forbidden, the Markowitz
portfolio optimization is formulated as the following mean-variance problem:

min kTΣk

s.t. kTm = r, kT1 = 1, k ≥ 0,
(76)

where r is a given expected return. By, respectively, replacing m and Σ with their estimates
m̂ and Σ̂, the optimal weight kr can be solved by efficient quadratic programming algorithm.
It is obvious that the Markowitz optimization only depends on the estimates of the first and
second moments of the daily returns. The sample mean and the SCM in the classic portfolio
perform well in the portfolio risk measurement; however, the SCM becomes unstable as
the number of stocks is large, resulting in significant property loss [32]. Therefore, a well-
performed covariance matrix estimator is important in current portfolio selection [2,33].

In practice, we consider a portfolio consisting of p = 95 highly capitalized stocks
from the New York stock exchange with ticker symbols AA, ABT, AIG, AIR, ALL, AMD,
AP, APA, AXP, BA, BAC, BAX, BEN, BK, BMY, C, CAT, CCL, CHK, CL, COP, CPE, CVS,
CVX, D, DB, DD, DE, DNR, DVN, EAT, EME, EMR, EXC, FCX, FDX, FNMA, GD, GE,
GILD, GLW, HAL, HD, HIG, HON, HPQ, IBM, INTC, ITW, JNJ, JPM, KMB, KO, L, LLY,
LMT, LOW, M, MCD, MDT, MMM, MO, MRK, MRO, MS, NBR, NC, NE, NEE, NL, NNN,
ODC, OXM, OXY, PCG, PEP, PFE, PG, RIG, SLB, SO, T, TGT, TRV, TXN, UNH, UNP,



Entropy 2023, 25, 53 14 of 18

USB, VLO, VZ, WFC, WMT, WWW, X, XOM. The dataset X contains n = 536 daily close
prices from 11 November 2016 to 31 December 2018 collected via Yahoo! Finance at
https://au.finance.yahoo.com/lookup?s=DATA, accessed on 10 November 2022. For each
stock i, the daily close price is preprocessed as the daily return by

X̃(i, j) =
X(i, j + 1)

X(i, j)
− 1, j = 1, . . . , n− 1. (77)

The covariance matrix estimators LS-T1, LS-T2, NS, QS-T1, and QS-T2 are generated
from the daily return X̃. For an expected return r, the realized risk is defined as σr =√

kT
r Σ̂kr. Next, we employ the realized risks, one key index to evaluate the portfolio,

to verify the performance of the covariance matrix estimators.
Figures 5 and 6 plot the realized risks of three kinds of shrinkage estimators for dif-

ferent investment horizons. For a short-term investment of 44 trading days (2 months),
the proposed QS-T2 has the lowest realized risk when the expected return is less than
0.5% and has the highest realized risk when the expected return exceeds 0.6%. The pro-
posed QS-T1 and the Stein-type estimator LS-T1 have the lowest realized risk when the
expected return exceeds 0.5%. For a long-term investment of 280 trading days (13 months),
the expected return of the five estimators becomes similar for the short-term investment.
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Figure 5. Realized risk of each covariance matrix estimator when the investment horizon contains
44 trading days.

https://au.finance.yahoo.com/lookup?s=DATA
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Figure 6. Realized risk of each covariance matrix estimator when the investment horizon contains
280 trading days.

Figures 7 and 8 plot the realized risks of shrinkage estimators for different expected
return levels. The proposed estimator QS-T2 enjoys the lowest realized risk for a low
expected return. The nonlinear shrinkage estimator NS has the highest realized risk.
However, the proposed estimator QS-T2 performs worst when the expected return becomes
high. The proposed estimator QS-T1, together with NS and LS-T1, performs best in
this scenario.
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Figure 7. Realized risk of each covariance matrix estimator when the expected return is 0.2%.
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Figure 8. Realized risk of each covariance matrix estimator when the expected return is 0.8%.

The proposed second-order Stein-type estimator QS-T2 enjoys good portfolio selection
for short-term investment and prudent return cases. The proposed second-order Stein-type
estimator QS-T1 is recommended in long-term investment and high-return scenarios.

4.3. Discriminant Analysis

We further discover the performance of the second-order regularized estimators in
small-sample-size situations. The Parkinson’s data are collected on the website https:
//archive-beta.ics.uci.edu/, accessed on 10 November 2022. p = 160 biomedical voice
attitudes are measured from n1 patients and n2 healthy individuals. Let Σ̂ be the pooling
estimator based on a certain estimation strategy. We use the following quadratic discrim-
inant rule M = (xi − x̄)TΣ̂−1(xi − x̄) to make a diagnosis for each xi. M denotes the
Mahalanobis distance between individual xi and the sample center x̄. The individual xi is
classified as Parkinson’s patient if xi is closer to the sample center of patients in the sense
of Mahalanobis distance.

Table 1 reports the classification accuracy rates of different estimators. We can see
that the Stein-type estimators LS-T1, LS-T2, QS-T1, and LS-T2 perform better than NS.
Moreover, the accuracy rate of the Stein-type estimators becomes larger as the sample
size increases. Moreover, the proposed second-order Stein-type estimator QS-T2 enjoys
the largest accuracy rate when n ≤ 40, and the Stein-type estimator LS-T2 has the best
performance when n ≥ 45. Therefore, we can see that the proposed second-order Stein-type
estimation performs better than the classic Stein-type estimation in this application.

Table 1. The classification accuracy rate of Parkinson’s data.

n2 15 20 25 30 35 40 45 50

LS-T1 0.5165 0.5530 0.5646 0.5826 0.5870 0.5956 0.5981 0.6054
LS-T2 0.6262 0.6459 0.6607 0.6714 0.6796 0.6892 0.6918 0.6971

NS 0.4931 0.4842 0.4701 0.4688 0.4544 0.4458 0.4285 0.4304
QS-T1 0.5124 0.5465 0.5600 0.5761 0.5833 0.5938 0.5953 0.6025
QS-T2 0.6336 0.6539 0.6678 0.6747 0.6840 0.6902 0.6916 0.6957

https://archive-beta.ics.uci.edu/
https://archive-beta.ics.uci.edu/


Entropy 2023, 25, 53 17 of 18

5. Conclusions and Discussion

This paper investigated the problem of estimating a large-dimensional covariance ma-
trix. Motivated by Stein’s strategy, we developed a novel strategy named the second-order
Stein-type estimation. The proposed estimator is expected to be positive definite in the
form of a quadratic binomial of the SCM and the target matrix. Firstly, we specified the
spherical and diagonal targets in the second-order Stein-type regularization. The mean
squared errors were, respectively, obtained for the two targets. Secondly, we unbiasedly
estimated the two mean squared errors under the Gaussian distribution. Thirdly, the opti-
mal parameters were obtained by solving the convex quadratic programming. The optimal
second-order Stein-type estimators were obtained for the two target matrices. Finally, we
verified the performance of the proposed estimators in numerical simulations and real
data applications.

It is worth mentioning that the second-order Stein-type estimators were proposed
under Gaussian distribution. In practical applications, the data may often deviate from the
Gaussian distribution. Therefore, the problem of investigating the second-order Stein-type
regularization under non-Gaussian distributions remains open and important.
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