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Abstract: Rotary kiln temperature forecasting plays a significant part of the automatic control of
the sintering process. However, accurate forecasts are difficult owing to the complex nonlinear
characteristics of rotary kiln temperature time series. With the development of chaos theory, the
prediction accuracy is improved by analyzing the essential characteristics of time series. However,
the existing prediction methods of chaotic time series cannot fully consider the local and global
characteristics of time series at the same time. Therefore, in this study, the global recurrence plot (GRP)-
based generative adversarial network (GAN) and the long short-term memory (LSTM) combination
method, named GRP-lstmGAN, are proposed, which can effectively display important information
about time scales. First, the data is subjected to a series of pre-processing operations, including data
smoothing. Then, transforming one-dimensional time series into two-dimensional images by GRP
makes full use of the global and local information of time series. Finally, the combination of LSTM
and improves GAN models for temperature time series prediction. The experimental results show
that our model is better than comparison models.

Keywords: chaotic time series; global recurrence plot; generative adversarial network; long
short-term memory

1. Introduction

Rotary kiln sintering temperature (ST) is one of the basic parameters in the system,
which is a key and global controlled parameter to the sintering technology and determines
the quality of the production and energy consumption. Therefore, research on ST is highly
valuable for industrial applications.

ST influenced by many uncertain factors, such as the composition of the raw material
and the structure of the rotary kiln. However, it also has complex nonlinear characteristics
caused by physical and chemical changes. Therefore, the high-precision prediction method
of the ST is a hot topic in academic circles. Early investigations used the conservations of
mass and energy or the physicochemical equation to simulate ST [1]. With the development
and application of soft sensor methods in the process industries, numerous cutting-edge
techniques have been used to anticipate and measure ST, such as data-driven methods [2]
and sintering image analysis [3,4].

Nevertheless, these techniques disregard the inherent nonlinear pattern in ST. The con-
cepts of chaos theory and nonlinear dynamic analysis can not only enhance the understand-
ing of the fundamental characteristic of time series but also help to extend the predictive
capability. Lv made the first mention of the sintering system of rotary kiln is a fifth-order
chaotic system [5,6]. The traditional prediction method of chaotic time series is based on
the assumption that real systems are recursive, that is, the future state is the same or similar
to a previous state. For example, in [7], two multivariate time series phase space recon-
struction methods are established; the authors implement wind power forecasting using
the least-square support vector machine algorithm. In [8], a weighted largest Lyapunov
exponent method was presented to enhance prediction accuracy.
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As opposed to the standard chaotic time series forecasting process, which involves
fitting a model to the historical data and simulating future data utilizing fitted model,
selecting the most appropriate forecasting model or averaging several models has been a
popular alternative approach. For example, in [9], researchers proposed a hybrid model of
a stacked autoencoder and modified particle swarm optimization for multivariate chaotic
time series forecasting. In [10], the author developed the recurrent predictor neural
network for predicting chaotic time series, which is more accurate than the universal
learning network. In [11], the authors presented a gate recurrent unit-based deep recurrent
neural network to forecast the time series of Lorenz, Rabinovich–Fabrikant, and the Rössler
chaotic system, which presented better performance than the long short-term memory
(LSTM) model.

Reviewing the literature on chaotic time series forecasting, we find that (i) most of
the present approaches depend on the manual choice of an appropriate set of features,
which determines the prediction accuracy that relies on the feature-extraction method and
characteristics of data. More significantly, (ii) the current literature focuses on the local
features of the time series, leaving global characteristics under-emphasized. For the ST
with a large time lag, the global dynamics of the time series contain important information
such as irregular physical and chemical changes changes of sintered materials. Inspired
by the recent work of [12–14], this paper aims to explore chaotic time series forecasting
based on the idea of GRP, from which the global and local features of the time series can be
automatically extracted using computer vision algorithms. The main contributions of this
paper are as follows:

• This paper proposes to use GRP to transform the series into a two-dimensional image,
which gives a priori knowledge about similarity and predictability by explaining the
global and local information of the time series.

• Compared with WGAN-gp, our GAN model employs one generator and two discrim-
inators, which enhances the convergence speed of the GAN and generates a more
realistic GRP.

• A new chaotic time series forecasting model is put forward, which combines GAN
and LSTM to automatically extract the features of the time series by the convolutional
neural network (CNN). It achieved the highest prediction accuracy compared to the
other models.

• Most existing models do not consider the time delay between the model input and out-
put variables; however, when using multiple variables for prediction, it is important
to consider the correlation between time series. In this paper, we find that choosing
the appropriate time delay can improve the prediction accuracy through experiments.

• Images cannot be used as an input to LSTM. Therefore, a suitable image feature-
extraction method is needed to not only reduce the input vector dimension but also to
reserve as much information as possible. This paper analyzes the impact of different
feature-extraction methods on the prediction accuracy.

The structure of the rest of this paper is as follows: Section 2 formulates the temperature
of rotary kiln predicting problem and introduces the background of our model. Section 3
describes our forecasting model. Section 4 describes various evaluation experiments and
gives a qualitative discussion of the experimental results. Section 5 is conclusion. List of
abbreviationsacronyms used in this article.

2. Preliminary Knowledge
2.1. Formulation of Temperature of Rotary Kiln Predicting Problem

The goal of predicting the problem of the ST is to use previous data to predict the future
temperature. tn denotes the temperature data at moment n. Then, the control variable at
moment n is represented by xn. We document a group of consecutive observed data as
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t0, t1, t2, · · ·. The problem is to forecast the temperature value at a certain point in the future
with j previous temperature data and control variables by continuous observation:

t̂n+τ = arg max
tn+τ

p(tn+τ | f (t̂n−j+1, t̂n−j+2, .., t̂n), x̂n−j+1, x̂n−j+2). (1)

where p() denotes predictive model and f () stands for pre-processing of previous tem-
perature data. Before describing our approach in detail, a brief introduction to the basics
is needed.

2.2. Phase Space Reconstruction

In our model, the PSR is the fist step to the pre-processing of a rotary kiln temperature
time series, which can reflect the richer information of the chaotic time series. For the
one-dimensional scalar time series x(i) : 1 ≤ i ≤ N with infinite length, no noise, and a d
dimensional chaotic attractor, an m dimensional embedded phase space can be found in the
sense of topology invariance. Takens theoretically proved that the delay coordinate vector
space is the differential homeomorphism of the attractor of the original dynamical system
in the Euclidean space Rm if the dimension m of the delay coordinate vector is greater than
twice the attraction dimension d of the original dynamical system [15].

The delay-coordinate reconstruction of the high-dimension dynamic system from time
series by two important parameters, time delay τ and embedding dimension m. The State
y on phase space trajectory.

y1, y2, .., yl (2)

where l = N − (m− 1)τ and

yj = (xj, xj+τ , .., xj+(m−1)τ). (3)

There are two dominant views on finding the embedding dimension m and the delay
time τ. The first view is that d and m are mutually uncorrelated and that the appropriate
embedding dimension should be found after finding the delay time. Typical methods
for finding time delays are the autocorrelation method [16] and the mutual information
method [17]. The method for finding the optimal embedding dimension is the false nearest
neighbour (FNN) [18].

2.3. Recurrence Plot

Based on the PSR, RP can convert one-dimensional chaotic time series into two-
dimensional matrices to extract more enrichment information using convolutional neural
networks. The recurrence of the STates is a fundamental property for deterministic dynamic
systems with a certain degree of nonlinearity. Such a new graphical tool was first proposed
for time series analysis by [19]. The recurrence plot was used to visualize the recurring
patterns, which display important interpretable information about time scales. It interprets
the internal structure of time series, gives a priori knowledge of similarity and prediction,
and is an important method for analyzing the recurrence, chaos, and non-stationarity of
time series. With the help of CNN, we can extract local and global information of chaotic
time series from RP. The RP can be expressed by the following equation:

Rij = Θ(ε− ‖xi − xj‖). (4)

For time series x(i) : 1 ≤ i ≤ N. After the relevant theoretical calculations to determine
the appropriate embedding dimension and delay time and then reconstruct the time series,
the reconstructed dynamical system is:

ui = [xi, xi+τ , .., ui+(m−1)τ ]. (5)
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where i = 1, 2, .., N− (m− 1)τ. Calculate the distance between xi and xj in the reconstructed
phase space.

Sij = ‖ui − uj‖. (6)

where i = 1, 2, .., N− (m− 1)τ, j = 1, 2, .., N− (m− 1)τ. ‖ · ‖ stand for the norm. Calculate
recurrence values.

R(i, j) = Θ(εi − Sij). (7)

Select a suitable threshold. Θ(·) stand for the Heaviside function:

f (x) =
{

1, x > 0
0, x < 0

(8)

However, in practical applications, it is difficult to find a suitable threshold; the
unthreshold recursive graph is intrinsically a direct expression of the distance matrix,
which measures the similarity between two-phase space vectors.

GRPij = ‖ui − uj‖. (9)

2.4. Generative Adversarial Networks

In our method, GAN is used to generate the GRP (rp ∈ RN×N) of the temperature data
from a set of random noise. We use z ∼ pz, which follows a uniform distribution with a
maximum value of 1 and a minimum value of−1, as the hidden variable. Then generator is
defined as G(z; θg). It maps the random noise to data space (rp ∈ RN×N), where rp = G(z).
The discriminator is described as D(x; θd). The input of D is a real data x sample from
Pdata, a fake sample generated by G, or a fake sample generated by G. The output of D
represents the probability of its considering the picture to be real or unreal, expressed as a
scalar from 0 to 1. The basic structure of GANs is shown in Figure 1. GAN is essentially a
transformation or mapping from hidden space to sample space.

Figure 1. The basic structure of the GANs.

3. GRP-lstmGAN Model for Temperature Predict

We now present our GRP-LBP-lstmGAN model for ST forecast (see Figure 2). Firstly,
the GRP of the ST is used for prediction rather than the temperature itself or the state after
PSR. Since ST is a complex and chaotic time series, it is difficult to interpret and acquire
complex nonlinear information from the data itself. Using PSR, we can reconstruct an
equivalent system in state space by using the observed chaotic time series. The time delay
and dimension embedding can be used to reconstruct the influence of other variables on
the system, and GRP can show significant and easily explained local and global informa-
tion about the time scale [19–21]. In addition to when a one-dimensional time series is
transformed into an image, the noise is considered to be the illumination of the image
by light, thus eliminating the effect of noise on the signal [22]. Second, We use the local
binary pattern (LBP) to preprocess the GRP images before sending them into the network.
Microscopic patterns such as the lines parallel to the main diagonal, the lines perpendicular
to the main diagonal, the vertical (horizontal) lines, and the isolated points in the GRP
reflect the characteristics of the time series, e.g., when two neighboring orbits in phase
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space are continuously approaching one another during a period of evolutionary time,
the lines parallel to the main diagonal appear, and the length of the lines reflects the speed
of the separation of the neighboring orbits. LBP can extract these microscopic patterns
easily and rapidly.

Finally, the LBP of the GRP used as the input to lstmGAN, which combines the
image generation capability of the GAN and the time series memory capability of LSTM.
The LSTM model extracts the features of the GRP pattern moving along the main diagonal.
The generator of the GAN transforms the output of LSTM into the new RP, and the
discriminator of the GAN automatically extracts the features of the RP for predicting the
ST. The training procedure can be separated into two steps. At first, the real GRP of the
ST is use to train the GAN. Secondly, when the GAN is well trained. the LSTM and the
GAN are connected together. However, the parameters of the generator of the GAN will
be fixed. Because the number of parameters of the LSTM is smaller than the generator
network, if we train them at once, the generators will play a dominant role. During the
training process, the neural network will tend to discriminate whether the texture features
of the input image are real or not rather than predicting the future temperature [14].

Figure 2. The structure of our proposed model.

4. Data Source

The data comes from the thermocouple data of No.5 kiln of Zhong-Zhou Aluminum
Plant in Jiaozuo, Henan Province. Data length 205 h, sampling frequency 60 hz. Table 1
exhibits the statistical of the data set.

Table 1. Descriptive statistical of the data set.

Mean Std Min Max
temperature data 610.93 42.86 479.99 739.51

Figure 3 shows an example of the datasets for the model. Firstly, every 60 pieces
of temperature data are averaged and smoothed (e.g., Data[0]). Secondly, one GRP is
calculated for each 157 data (e.g., GRP[0]). Finally, the input x to the neural network
consists of the texture features of the GRP (LBP for GRP, e.g., Xtrain[0]) and the control
variables (the fuel consumption of rotary kiln, e.g., Ytrain[0]).
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Figure 3. Making datasets for neural networks.

5. Experiments

In this section, we designed experiments to fulfill the following goals:

• To allow the WGAN-gp to generate a more realistic method than the original method.
• To compare the accuracy of our model with other prediction models for ST prediction.
• To improve the prediction accuracy by analyzing the time delay characteristics of the

input and output.
• To improve the prediction accuracy by analyzing the features of different feature-

extraction methods.

5.1. Compare of the GANs

The convergence problem of the GAN is still a pressing issue. The same model
performs differently on varied datasets. The WGAN-gp trains faster and generates sharper
images than the original GAN. However, the GRP is symmetrical strictly according to the
main diagonal. To solve this problem, we propose to improve the WGAN-gp for RP (see
Algorithm 1). The difference compared with the original one is that the loss function of the
generator is divided into two parts. In the first part, the discriminator is the same. In the
second part, the discriminator is to judge whether the output picture of the generator is
symmetrical along the main diagonal.

θG ← RMSprop(∇θG

1
m

m

∑
i=1
−DθD (GθG (z))−myloss, θG)

where myloss = 1− i
Iteration

∗ 1
n ∗ n

∗ (| GθG (z)− GθG (z)
T |)

(10)

where n ∗ n indicates the number of GRP pixel points and GθG (z)− GθG (z)
T represents the

difference between the image output by the generator and the image transposition.
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Algorithm 1 Improve WGAN-gp for RP Training Algorithm

Require: The batch size m = 32, the number of discriminator iterations per generator

iteration nD = 5, the gradient penalty coefficient λ = 10, the learning rate lr = 0.0001

Require: Initial generator parameters θG, initial discriminator parameters θD

while θG has not converged do

for t = 1, · · ·, nD do

for i = 1, · · ·, m do

Sample real data x ∼ Pdata, a random number.

Sample latent variable z ∼ Pz.

Sample ε ∼ U[0, 1].

x̃ ← GθG (z)

x̂ ← εx + (1− ε)x̃

L(i) ← DθD (x̃)− DθD (x) + λ(‖ ∇x̂DθD (x̃) ‖2 −1)2

end for

θD ← Adam(∇θD
1
m ∑m

i=1 L(i), θD)

end for

Sample a batch of latent variables {z(i)}m
i=1 ∼ P(z).

θG ← Adam(∇θG
1
m ∑m

i=1−DθD (GθG (z))−myloss, θG)

where myloss = 1− i
Iteration

1
n∗n ∗ (| GθG (z)− GθG (z)

T |)

end while

To quantitatively describe whether the GRP generated by generator is symmetric or
not, we define the symmetry degree:

SD =
1

n ∗ n
∗ (| GθG (z)− GθG (z)

T |) (11)

The smaller the SD, the better the symmetry of GRP.
According to the result shown in Figure 4, we can draw the following conclusions.
The Improved WGAN-gp for GRP has superior performance. Our proposed model

can generate more symmetric GRP graphics. Firstly, the SD of our model is less than
0.1 after 100 iterations, but the original WGAN-gp requires 700 iterations. Secondly, the
minimum value of SD for WGAN-gp is greater than our model. Finally, the training process
of our model is more stable, without significant large fluctuations in SD.

It is not enough for GAN to generate symmetric graphs; in our task a good GAN
should generate the most realistic GRP. Figure 5 shows the GRP generated by WGAN-gp
and our model in different iterations. First of all, our model can generate clear images
at 400 iterations; however, WGAN-gp needs 800 iterations. Moreover, in 5000 iterations,
the GRP generated by our model is more realistic.

5.2. Accuracy of GRP-LSTMGAN Prediction

The objective in this part is to compare the accuracy of our proposed prediction model
with others. In order to adequately test the superiority of our model, three algorithms
are considered to compare the temperature-forecasting accuracy. These algorithms are
the PSR-LSTM, the RP-LSTM, and the RP-LSTM-autoencoder, respectively. Based on the
results shown in Table 2, the following conclusions can be drawn.
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Figure 4. SD for WGAN-gp and Improved WGAN-gp for GRP. (X-axis is iteration, Y-axis is SD).

Figure 5. Samples generated by WGAN-gp and Improved WGAN-gp for RP. The moments for
which the images are generated are the 0th, 200th, 400th, 600th, 800th, 1000th, 2000th, 3000th, 4000th,
and 5000th iteration.
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Table 2. Comparison of prediction performances of other models and proposed model.

Method Logcosh
Mean

Square
Error

Absolute
Temperature

Error (◦C)
PSR-LSTM 1.48× 10−2 3.02× 10−2 43.45
GRP-LSTM 1.78× 10−4 3.57× 10−4 4.73
GRP-LSTM

-Autoencoder 9.83× 10−5 1.96× 10−4 3.51

Proposed
model 8.03 × 10−5 1.61 × 10−4 3.16

1. By comparison with other methods, the proposed model has the highest prediction
accuracy, and all of the indicators are optimal.

2. The precision of all of the methods using GRP is significantly higher than that using
PSR. Further comparison of the precision of PSR-LSTM and GRP-LSTM shows that
GRP provides more local and global information about the time series to improve
the precision of the predictor compared to PSR (LSTM uses the same architecture,
hyperparameters, and optimizer).

3. The GRP-LSTM-Autoencoder and the proposed model use the same architecture.
For comparison, our proposed model is trained using Algorithm 2, and the GAN
of GRP-LSTM will not be pre-trained. The lower error shows that our proposed
training method can take advantage of the GAN image generation to strengthen the
model-prediction accuracy.

Algorithm 2 GRP-LSTMGAN Training Algorithm

Require: The batch size m = 16, the learning rate lr = 0.0005

Require: Initial LSTM parameters θlstm,

Train GAN with Algorithm 1.

Connecting GAN and LSTM, freeze θG parameters.

for number of training iterations do

SampleT(i)m
i=1 a batch from the pre-processing data.

T(i) = ti−k+1, ti−k+2, · · ·, ti

ti = f (t̂n−j+1, t̂n−j+2, .., t̂n),

x̂n−j+1, x̂n−j+2, .., x̂n

Dθlstm ← ∇θlstm [
1
m ∑m

i=1 logcosh(D(G( flstm(T(i)))), t̂n+τ)]

θlstm ← θlstm − lr · RMSprop(θlstm, Dθlstm)

end for

ρ =
Σi(xi − x̄)(yi − ȳ)√

Σi(xi − x̄)2Σi(yi − ȳ)2
(12)

By analyzing the data in Table 3, it can be concluded that our model has the highest
accuracy compared to other delay times. On the one hand, the input data do not contain
information about the high-delay-time temperature, which leads to a higher error in the
high-delay-time prediction. On the other hand, the input data with low time delay contains
redundant information, which will affect the prediction.
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Table 3. Comparing the effect of different time delays on prediction accuracy.

Time Delay 188 Our Model 168 158 98 38
Logcosh 1.94× 10−4 8.03 × 10−5 1.39× 10−4 9.88× 10−5 1.54× 10−4 1.26× 10−4

Mean
Square
Error

3.87× 10−4 1.61 × 10−4 2.78× 10−4 1.98× 10−4 3.07× 10−4 2.52× 10−4

Absolute
Temperature

Error (C◦)
4.92 3.17 4.16 3.51 4.38 3.97

5.3. The Effect of Time Delay

When using coal consumption as control variable to predict temperature, to obtain
better prediction results, the temperature time series should have an appropriate time delay,
which is important for the accuracy of the degree prediction and can improve the time
scale of the prediction. The temperature time series and the coal-consumption time series
generally have a strong correlation as it is demonstrated that the temperature time series
will be very similar to the present coal-use time series after a period of delay. The Spearman
correlation coefficient was used to quantitatively measure the correlation (see Figure 6). The
Spearman correlation coefficient is defined as the Pearson correlation coefficient ρ between
the rank variables.

Figure 6. Spearman coefficients of temperature series with different time delays and levels of coal
consumption (when the time delay is taken as 178, the a factor obtains the maximum value 0.2924).

5.4. Comparing The Effects of Different GRP Feature-Extraction Methods on Forecast Precision

We dimensionalize the image before sending it into the LSTM. If the input vector is
too large, the convergence of the model will be very slow. In this section, we compare the
impact of several LBP models Table 4 on prediction accuracy.
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Table 4. Characteristics of different LBP models.

Default Original LBP, which is gray-scale but not rotation-invariant [23].
Ror Extension of default implementation, which is rotation-invariant and gray-scale.

Uniform
Improved rotation invariance with uniform patterns and finer quantization of
the angular space which, is gray-scale and rotation-invariant [23].

Nri-uniform
Non rotation-invariant uniform patterns variant which is only gray-scale invar-
iant [24,25].

Var
rotation-invariant variance measures of the contrast of local image texture
which is rotation but not gray scale invariant.

The comparison results are shown in Table 5, and the following conclusions can be
drawn. First of all, the uniform pattern is the most widely used; however, it has not obtained
the best prediction accuracy. In the second place, the prediction accuracy of patterns with
rotational invariance are low, probably because they cannot distinguish lines parallel to
the main diagonal and horizontal (vertical) lines in the GRP. In the end, the default pattern
achieves the highest accuracy, although the 256-dimensional feature vector may lead to
excessive differences in the values of different features and cause errors. However, such a
pattern can still extract more information from the GRP.

Table 5. Comparing the effects of different GRP feature-extraction methods on forecast precision.

Pattern Logcosh
Mean

Square
Error

Absolute
Temperature

Error (C◦)

Feature
Vector

Dimension
Ror 1.63× 10−4 3.25× 10−4 4.92 256

Default 8.03 × 10−5 1.61 × 10−4 3.17 256
Uniform 1.15× 10−4 2.31× 10−4 4.16 10

Nri-uniform 1.07× 10−4 2.14× 10−4 3.51 59
Var 1.84× 10−4 3.69× 10−4 4.38 59

6. Conclusions

In this paper, we have proposed to use GRP to transform the 1D chaotic time series into
2D images to obtain the global and local features and construct a GRP-lstmGAN prediction
model with higher prediction accuracy than the existing methods . To improve the forecast
accuracy, firstly, with respect to the traditional GAN with only one discriminator, the GAN
was improved by adding a non-trainable discriminator, which determined whether the
GRPs generated by generator are symmetric. The experiments showed that this method
improves the model convergence speed and generates more realistic GRPs. Secondly, the
correlation between the input variables coal consumption and temperature series was
investigated; the highest correlation with the current coal consumption was obtained when
the temperature series lagged 178 units, i.e., the model achieved the highest accuracy when
predicting the temperature after 178 units of time by using the coal consumption and
temperature data at the current moment. Finally, directly using the GRP image as an input
to LSTM, the large input dimension will prevent the model from easily converging. In this
paper, the experiments have compared different feature-extraction methods; LBP-default
reduced the input from 112× 112 of 2D image to 256 dimensions and had the highest
prediction accuracy compared with other methods.

In our model, the performance of the GAN will affect the prediction accuracy. Knowing
how to avoid the pattern collapse of the GAN is the future research direction.
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Abbreviations

RP Recurrence Plot
GRP Global Recurrence Plot
GAN Generative Adversarial Network
LSTM Long Short-Term Memory
ST Sintering Temperature
WGAN-gp Wasserstein Generative Adversarial Network-Gradient Penalty
CNN Convolutional Neural Network
LBP Local Binary Pattern
SD Symmetry Degree
PSR Phase Space Reconstruction
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