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Abstract: With the increasing digitalization and informatization of distribution network systems,
distribution networks have gradually developed into distribution network cyber physical systems
(CPS) which are deeply integrated with traditional power systems and cyber systems. However, at the
same time, the network risk problems that the cyber systems face have also increased. Considering
the possible cyber attack vulnerabilities in the distribution network CPS, a dynamic Bayesian network
approach is proposed in this paper to quantitatively assess the security risk of the distribution network
CPS. First, the Bayesian network model is constructed based on the structure of the distribution
network and common vulnerability scoring system (CVSS). Second, a combination of the fuzzy
analytic hierarchy process (FAHP) and entropy weight method is used to correct the selectivity of
the attacker to strike the target when cyber attack vulnerabilities occur, and then after considering
the defense resources of the system, the risk probability of the target nodes is obtained. Finally, the
node loads and node risk rates are used to quantitatively assess the risk values that are applied to
determine the risk level of the distribution network CPS, so that defense strategies can be given in
advance to counter the adverse effects of cyber attack vulnerabilities.

Keywords: security risk assessment; cyber physical systems; Bayesian network; common vulnerabil-
ity scoring system; fuzzy analytic hierarchy process; entropy weight method

1. Introduction

With the massive access of controllable distributed power sources and flexible loads,
the integration of Internet communication technology and automatic control technology,
the digitalization and informatization degree has been improving in distribution network
systems, which have become typical cyber physical systems (CPS) [1–4]. In the process
of distribution network intelligence, a large number of intelligent electronic devices (IED)
and complex communication links are used in large numbers in the distribution network
and play a central role in grid scheduling control and power production management.
As the network of these facilities is open, a few unscrupulous individuals make use of
their basic knowledge of electrical power systems and the means of cyber attack to launch
cyber vulnerabilities against them, thereby profiting from them. If the vulnerabilities of
the cyber system are attacked, it will threaten the safe and stable operation of the power
systems and cause serious consequences [5]. For example, the 2015 Ukraine blackout, a
typical case of cyber attack vulnerabilities, demonstrates that the impact of cyber attack
vulnerabilities would be severe; meanwhile, the wide range of strikes showed that the
attacker had a precise control of the power system. It has been shown that more precise
attacks can be implemented when the attacker possesses certain knowledge of the power
system [6]. Currently, information security issues regarding distribution network CPS have
received attention from the academic community.
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Passive defense is the traditional way to cope with cyber attack vulnerabilities, such as
firewall interception and intrusion detection, but the role played by these defense resources
is usually limited. To accurately eliminate the impact of cyber attacks, a large number
of scientific organizations and scholars have conducted research on CPS cybersecurity
issues [7]. Various security risk assessment methods are used to measure and prevent intru-
sions, typically these security risk assessment methods refer to identifying vulnerabilities,
threats and assets in an information facility, accurately and efficiently assessing system risk
following an attack, and implementing protection strategies to reduce the negative impact
of the threat [8,9]. The literature [10] assessed the most possible scenarios of cyber attack in
distribution network CPS using a Bayesian attack graph approach, measuring the risk by
the size of consumers disrupted and the duration of the disruption, but did not take into ac-
count the attack selectivity of the target node from the attacker’s perspective. Literature [11]
analyzes the indirect impact of cyber system failures on the distribution network physical
system, which focuses on the fault recovery process of the distribution network CPS and
therefore does not consider the impact of cyber attacks on cyber system failures. The
literature [12] proposed a multi-model framework for event prediction and risk assessment
based on Bayesian network (BN), fault trees, and event trees, but did not integrate the use
of the three methods. The literature [13] proposed a quantitative assessment framework
that combines the inference process of BN with traditional probabilistic risk analysis and
applied it to probabilistic risk assessment of nuclear waste disposal. The literature [14] has
developed a power supply restoration model to calculate the consequences of a fake data
injection attack on a distribution network CPS, taking into account the interdependence
of the cyber and physical system, but it fails to consider the role of the system’s defense
resources.

Risk analysis involves inherent uncertainties that incorporate aspects such as the
complexity of the system, parameters randomness, the risk model applied, and human
subjectivity [15]. The focus of this paper is on proposing a risk assessment method for distri-
bution network CPS that takes into account the attacker’s perspective and the allocation of
defense resources, therefore, this paper ignores the uncertainty and propagation problems
that exist when modelling Bayesian network. To evaluate the cyber risk problem in distri-
bution network CPS, a dynamic Bayesian network considering the attacker’s perspective
is proposed in this paper to quantify the risk of distribution network CPS transmitted
from the control layer to the physical layer. Using a one-to-one model of information
nodes and physical nodes, Bayesian network is used to straightforwardly portray the risk
transfer process from the cyber system to the physical system, taking into account the
attacker’s perspective, the attack selection based on the attacker’s knowledge level of the
power system, and the defense resources of the system itself. Finally, the risk value of the
distribution network CPS is calculated.

In summary, the main works of this paper are as follows:

• Based on the information transfer structure model of the distribution network CPS,
the probability of exploiting the vulnerabilities existing in the cyber layer of the
distribution network is calculated by using the common vulnerability scoring system
(CVSS), and then the Bayesian network model under cyber attack vulnerabilities can
be derived.

• Different evaluation metrics are given in this paper to consider attack selection from
the attacker’s perspective, not only considering the objective existence of indicator
weights, but also incorporating the subjective opinions of several experts who under-
take different professional works. Finally, a combination of subjective and objective
approaches is used to determine the selection tendency of the attacker, and the practi-
cality of expert experience and the informational variability of objective data are taken
into account.

• Multiple scenarios where vulnerabilities in a distribution network cyber system are
exploited by attackers are designed and simulated in a dynamic Bayesian network.
The dynamic Bayesian network simulation is able to reflect the risk value after an
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attack vulnerability or under normal conditions, which can reflect whether the system
is under attack vulnerability and thus effectively avoid the risk.

2. Background of the Study
2.1. Structure of Distribution Network CPS

The distribution network CPS is a large integrated system whose physical layer
devices and components are supervised and maintained by the network layer transmission
control [16].

According to the different functions of the system devices, a typical distribution
network CPS architecture can be divided into three layers as shown in Figure 1 [17]:

• The control layer is an important part of the CPS, whose function is to unify and
integrate the data transmitted from different communication networks and generate
control commands in response, which guarantees the safe and stable operation of the
power system;

• The control layer and the physical layer are connected through the network layer
which is responsible for information data transmission during system operation.

• The physical layer mainly consists of power devices and corresponding network
components, such as distributed generation units and their controllers, loads and
their measurement units, circuit breakers and their devices, and substations and their
communication systems.
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Figure 1. Distribution network CPS model.

2.2. Cyber Security of Distribution Network CPS

The current cyber layer of the distribution networks are mainly based on an open and
networked architecture. Therefore, with the increasing level of intelligence in distribution
networks, private networks in distribution systems are increasingly vulnerable to IP-based
intrusion attacks, and the security challenges they face are increasing in both physical and
cyberspace [18].

The National Institute of Standards and Technology (NIST) reported that the three
main factors of network security are confidentiality, integrity, and availability [19], which
are often referred to as CIA security objectives, and that cyber attack vulnerabilities on the
distribution network cyber layer are achieved through the unauthorized use of network
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infrastructure in vulnerabilities and security flaws [20], thus disrupting the three CIA
elements to achieve a cyber intrusion.

For this paper, the delivery of cyber attack vulnerabilities starts in the form of informa-
tion downlinked by the compromised vulnerability of the master server. The objective of
the attacker is to take control of the physical layer target facility by controlling different
levels of vulnerabilities during the attack.

In order to avoid or mitigate the impact of network attacks on the distribution network,
the role of security risk assessment is to update the risk value of the system in real time
to cut off or defend against network attacks as soon as there is a risk, thereby avoiding
the attacker’s strike on the target node and eliminating or minimizing the losses, while, to
achieve a more intuitive quantitative risk assessment in this paper, it is possible to avoid to
a greater extent the adverse effects caused by network attacks. Security risk assessment is
an indispensable part of the safe and stable operation of modern distribution network CPS
in summary.

2.3. Risk Assessment Process for Distribution Network CPS

The process of distribution network CPS risk assessment is shown in Figure 2 below.
First, this paper uses CVSS to determine the vulnerability information of the cyber layer of
the distribution network according to the architecture of the distribution network CPS to
construct a Bayesian network for the information transmission of the distribution network
CPS. When the network attack occurs, the corresponding Bayesian dynamic model is
constructed to derive the risk probability of the target node under the network attack and,
considering the selectivity of the attacker’s perspective on the attacking node, the risk
probability of the target node is corrected using subjective and objective assignment to
correct the risk probability of the target node. Then, considering the defense resources of
the system, the final corrected risk probability is obtained. Finally, the obtained probability
is multiplied by the load losses of the node to obtain the quantified dynamic risk value
R. For a certain distribution network CPS, the risk value when its vulnerabilities are not
exploited by an attacker is called the static risk value R0. The magnitude of R0 represents
the number of vulnerabilities and how easy these vulnerabilities are to be mastered in
the distribution network CPS. The dynamic risk value R (R > R0) indicates that some
vulnerabilities of the system have been exploited by an attacker, and the magnitude of this
value represents the maximum possible impact of these cyber attack vulnerabilities on the
system. A round of risk assessment is completed and compared with the static risk value
R0, and if it is judged that R > R0, the risk has occurred and emergency measures are taken
immediately to cope with the risk, and if there is no risk, the next risk assessment is carried
out at a certain interval.
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3. Risk Delivery Model

A risk assessment model needs to be built in order to quantify the risk of the distri-
bution network CPS. This paper uses a dynamic Bayesian network to quantify the risk
from its network to the physical layer. Based on the structure of each component of the
two systems, the cyber layer and the physical layer of the distribution network CPS, the
Bayesian network is used to portray the transmission process of the network risk from the
cyber layer to the physical layer.

3.1. Common Vulnerability Scoring Systems

In order to obtain the Bayesian network model, the first step is to obtain the probability
that the vulnerability of the distribution network cyber system is exploited by the attacker.
We used CVSS 3.0 [21] to obtain information about the vulnerability nodes of different
devices in the distribution network CPS cyber system through the US national vulnerability
database (NVD) [22]. The information on some of these vulnerabilities in the distribution
network CPS is shown in Table 1 below.

Table 1. Distribution network CPS vulnerability.

Vulnerability Number Vulnerability Location CVE Number Vulnerability Description

V1 Control Center CVE-2021-20106

The vulnerability could allow an
administrator user to upload specially

crafted files and thus gain administrator
privileges on the control center.

V2 Control Center CVE-2021-20135
The vulnerability could allow an

authenticated local administrator to run
specific executable files on the host.

V3 Control Center CVE-2021-41619
A malicious actor with unmanaged user

access on the host could exploit this
vulnerability to escalate privileges.

V4 Switch CVE-2022-20864
Enables an unauthenticated, local attacker to
recover the configuration or reset the enable

password.

V5 Sub-server CVE-2020-12142
Users with knowledge of the system can use

the material to decrypt ongoing
communications.

V6 Zone Controller CVE-2021-33523
Allows remote upload of a new driver that

can execute arbitrary commands on the
underlying host.

V7 Zone Controller CVE-2020-5237
Allow remote attackers to upload, copy and
modify files on the file system with certain

parameters.

After obtaining the vulnerability information, the basic evaluation metric information
of the vulnerability can be obtained through NVD, and then we can use CVSS 3.0 to obtain
the values of each basic metric as shown in Table 2 below.

3.2. Bayesian Network Model of Distribution Network CPS

Bayesian network is an uncertainty processing model that simulates causality in
the inference process, and its network topology is a directed acyclic graph. In order to
use Bayesian networks for security risk assessment of distribution network CPS, the five
elements of the Bayesian network model for distribution network CPS are given in Figure 3
as follows [23].
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Table 2. Vulnerability metric information.

Metric Metric Value Numerical Value

Attack Vector

N 0.85

A 0.62

L 0.55

P 0.20

Attack Complexity L 0.77

H 0.44

Privilege Required

N 0.85

L 0.62

H 0.27

User Interaction
N 0.85

R 0.62Entropy 2023, 25, x FOR PEER REVIEW 7 of 24 
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• Attribute Nodes

To reflect the process of distribution network CPS attacks more clearly, the Bayesian net-
work attribute nodes are denoted as S =

{
SN

i

∣∣i = 1, 2, · · · , n, N = VUL, PRI, TAR, DER}
for risk assessment, where VUL denotes the vulnerability node that can be exploited by
the attacker in the network system, PRI denotes the permission node that the attacker
must obtain if he wants to perform the attack operation, TAR denotes the target node
such as the sensor or actuator that the attacker intends to attack, and DER represents the
passive defense system. Different attribute nodes indicate different responsibilities or roles
generated in particular cyber attack vulnerabilities.

• Directed Edges

The Bayesian network contains directed edges in the directed acyclic structure, where
D =

{
dij
∣∣i = 1, 2, · · · , n, j = 1, 2, · · · , n

}
represents the transfer process from the parent

node to the son node.

• Logical Structure

Bayesian networks contain two logical structures: logical ‘and’ and logical ‘or’. Logical
‘and’ means that the son node has the probability to be mastered by the attacker must
satisfy that all the parent nodes are captured at the same time, and logical ‘or’ means that
the son node has the probability to be mastered as long as either parent node is captured.

• Prior Probability P1

Using the basic probability formula, the calculation is obtained based on the logical
relationship between the nodes.
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• Posterior Probability P2

Represents the probability after the dynamic change of each node after a successful
attack on the network.

According to the information of the distribution network CPS and the basic Bayesian
network model, the five elements of the Bayesian network can be extracted in the process
of dispatching information from the main station of the distribution network service.
Using a Bayesian network can clearly determine the information transmission process
of distribution network CPS in the form of probability transmission, and the interaction
process between the cyber system and the physical system; therefore, this paper chooses to
use a Bayesian network to assess the risk of distribution network CPS.

In this paper, to show the passive defense function of the distribution network CPS
more accurately, we set up a firewall under the main server of the distribution network,
whose function is that all vulnerabilities of the main server must be mastered before the
main server can be exploited. The occurrence condition of its posterior probability must
satisfy that all vulnerabilities of the main server are exploited to weaken the impact of
vulnerabilities.

3.3. Calculation of Prior Probabilities
3.3.1. Calculate the Probability of Vulnerability Being Exploited

After obtaining the information about vulnerabilities, the formula for calculating the
probability of vulnerability being exploited based on the above metrics was derived in
conjunction with the literature [24] as follows.

Pe = 2.1× AV × AC× PR×UI (1)

where Pe is the probability of the vulnerability being successfully exploited. AV, AC, PR,
and UI respectively represent the value of the access vector metric, attack complexity metric,
privilege required metric, and user interaction metric corresponding to the vulnerability.

3.3.2. Calculation of the Prior Probability

In a non-root node of a Bayesian network, if each of its parents satisfies the ‘and’
relationship, the conditional probability of that node is calculated as follows [25,26].

P1(Xi|Pa(Xi)) = P( ∩
XS

j =1
ei) = ∏

XS
j =1

P(ei) (2)

where the above equation is 0 if there exists Xj ∈ Pa(Xi), XS
j = 0.

In a non-root node of a Bayesian network, if each of its parents satisfies the ‘or’
relationship, the conditional probability of the node is calculated as follows.

P1(Xi|Pa(Xi)) = P( ∪
XS

j =1
ei) = 1− ∏

XS
j =1

(1− P(ei)) (3)

where the above equation is 0 if for all Xj ∈ Pa(Xi), Xj = 0. In the above two equations,
P1(Xi|Pa(Xi)) denotes the conditional probability of node Xi, Pa(Xi) denotes the parent
nodes of node Xi, and ei denotes the event that the vulnerability of node Xi has been
successfully exploited, and conveys the risk from node Xj to Xi. XS

j indicates the status of

node Xj, whether it is successfully leaked or not. XS
j = 1 represents success, and XS

j = 0
represents failure.
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3.4. Calculation of the Posterior Probability

The above procedure describes only the static conditional probability of the distribu-
tion network CPS, and when the attack occurs, its posterior probability is calculated in the
following way [26].

P2(Xi) = P(Xi|O) =
P(O|Xi)P1(Xi)

P1(O)
(4)

where P(Xi|O) denotes the probability that node Xi is mastered by attackers in the set O
of security event scenarios; P(O|Xi) denotes the conditional probability that the security
event O occurs provided that node Xi is in the possession of the attackers; P1(Xi) denotes
the prior probability that node Xi is in the grasp; and P1(O) denotes the prior probability
that security event O occurs.

4. Quantitative Risk Assessment of Distribution Network CPS
4.1. Portfolio Empowerment Method

In historical cyber attack vulnerabilities on distribution network CPS, a large amount
of valid data can be stolen by the attacker and the maximum impact of the attack can be
obtained at minimal cost, therefore the selectivity of the strike target should also be taken
into account in the risk assessment when the attacker takes control of the zone controller
of the distribution network cyber layer. Therefore, assuming that there will be n nodes
among all attack targets, m metrics are used to determine the importance of these nodes.
The attack preference correction is performed using a combination of the fuzzy analytic
hierarchy process (FAHP) and entropy weight method.

4.1.1. Indicator Definition

The importance of nodes in the network is determined using degree centrality, which
is proportional to the importance of the nodes. In this paper, we define the degree centrality
a of target node i as shown in Equation (5) below.

Di =
ka + kb
N − 1

(5)

where N is the total number of nodes in the grid, while ka and kb are the degrees of the
two nodes adjacent to the target node i, which is the number of edges associated with each
node. The magnitude of this metric is used to determine the importance of the target node
in this paper.

4.1.2. Subjective Weight Based on FAHP

• Calculation Steps

The basic idea of FAHP is to decompose the problem into a hierarchical structure that
is composed of a bottom-up multi-level structure based on the characteristics and overall
objectives of the multi-objective evaluation problem. Therefore, FAHP decision can be
implemented in the following steps [27].

• Build Fuzzy Complementary Judgment Matrix

When comparing two factors in FAHP, the importance of one factor over another is
quantitatively expressed, and the fuzzy judgment matrix A = (aij)n×n is obtained if it has
the following properties: aii = 0.5, i = 1, 2, · · · , n; aij + aji = 1, i, j = 1, 2, · · · , n. Then, such
a judgment matrix is called the fuzzy complementary judgment matrix, and to make the
relative importance of any two programs about a criterion quantitatively described, the
quantitative scale is usually given by the 0.1–0.9 scaling method as shown in Table 3 below.
The ‘On the contrary’ in Table 3 means that if judgment rij is obtained when element Ai
and element Aj are compared with each other, then judgment rji = 1− rij is obtained when
element Aj and element Ai are compared with each other.
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Table 3. The 0.1–0.9 scaling method.

Scale Definition Description

0.5 Comparing two elements Equally important
0.6 Comparing two elements Slightly more important
0.7 Comparing two elements Obviously important
0.8 Comparing two elements Much more important
0.9 Comparing two elements Extremely important

0.1, 0.2, 0.3, 0.4 Inverse comparison of two elements On the contrary

• Weight Calculation

In practice, the experts of the distribution network will consider the impact de-
gree of each indicator on the target node in the actual operation of the system and use
the 0.1 to 0.9 scaling method to judge the importance of these indicators. k different
fuzzy judgment matrices A1~Ak are obtained according to the opinions of k different ex-
perts of the distribution network, where the elements of the fuzzy judgment matrix are
Ai = (aij)m×m, i = 0, 1, · · · , k. The weight of the ith metric given by any expert opinion is
calculated according to Equation (6) based on the opinions of k experts.

wi =
∑n

j=1 aij +
n
2 − 1

n(n− 1)
(6)

• Consistency Test

A consistency test is performed to verify that the obtained weights are reasonable.
Let w = (w1, w2, · · · , wm)

T be the weight matrix given by the experts and let wij =
wi/(wi + wj). Calculate the compatibility index using Equation (7), which is reasonable if
it is less than 0.1.

I(A, W) =
1
n2

n

∑
i=1

n

∑
j=1

∣∣aij + wji − 1
∣∣ (7)

• Subjective Empowerment

The weight matrix W = (w1, w2, · · · , wk) is obtained based on the opinions given by
the k experts, the maximum characteristic root method is adopted to find the average level,
and the steps are as follows [28]:

• Set the matrix F = WWT ;
• Calculate the characteristic root matrix λ and the eigenvector matrix T of the matrix F;
• Find the largest characteristic root λmax and its corresponding eigenvector

θ = (θ1, θ2, · · · , θm);
• Normalize the eigenvector θ to obtain the subjective weight vector W = (ω1, ω2, · · · , ωm),

ωj = θj/
m
∑

j=1
θj, given by the k experts.

4.1.3. Objective Weight Based on the Entropy Weight Method

The inconsistencies in the magnitudes of the evaluation metrics do not allow for
comparison, for which the data are standardized using Equation (8).

rij =
Sij −min

{
Sij
}

max
{

Sij
}
−min

{
Sij
} (8)

where Sij is the value of the ith metric at the jth node, min
{

Sij
}

is the minimum value of
the ith metric, and max

{
Sij
}

is the maximum value of the ith metric.
The entropy of the ith evaluation metric is shown in Equation (9).

ei = −k
n

∑
j=1

fij ln fij, i = 1, 2, · · · , m (9)
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where k = 1/ ln n, fij = rij/(
n
∑

j=1
rij), and assume that fij ln fij = 0 when fij = 0.

The entropy weights are calculated according to Equation (10) as the objective weights
of the ith metric in the objective weight matrix V.

vi =
1− ei

m−
m
∑

j=1
ej

(10)

4.1.4. Combined Weight

After obtaining the subjective weights W = (ω1, ω2, · · · , ωm) and objective weights
V = [v1, v2, · · · , vm], the combined weights are calculated according to the following
Equation (11).

zi =
ωivi

m
∑

j=1
ωjvj

(11)

where zi represents the combined weight of the ith indicator, and the magnitude of this
value represents the degree of tendency of the ith indicator in judging the selectivity of the
attacker in attacking the target node.

4.1.5. Attacker’s Selective Probability of Attacking Target Node

In considering the selectivity of the attacker, several different evaluation indicators
are selected, and to make the correction value for judging the selectivity of the attacker
conform to the objective reality and facilitate the calculation, the corresponding positive
ideal interval is set for each evaluation indicator in this paper. The maximum ideal value
Mi for the ith indicator is set, and the minimum ideal value for each indicator is set to
0, so as to obtain the weighted risk rate for correcting attacker selectivity, as shown in
Equation (12) below.

PZj =
m

∑
i=0

Sij

Mi
· zi (12)

where PZj is the strike rate of the jth node considering the selectivity of the attacker, Sij is
the value of the ith metric at the jth node, and zi is the combined weight of the ith metric.

4.2. Risk Quantification Model

To quantify the risk value, this paper replaces the assets size with the target node loads
Fi at a particular moment in time and calculates the target node Si to quantify the risk value
Ri according to the following Equation (13).

Ri = P(Si) · Fi (13)

where P(Si) is the risk probability of target node Si.

4.3. Risk Assessment Flow

The flowchart for the arithmetic analysis part of this paper is shown in Figure 4 below
based on the above distribution network CPS model, the Bayesian network modeling
approach and the risk quantification approach. The dynamic risk value R is compared with
the static risk value R0 to determine whether the vulnerability is successfully exploited by
the attacker in the distribution network CPS after a cyber attack vulnerability occurs.
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Figure 4. The risk assessment flow of the distribution network CPS.

5. Example Analysis
5.1. Bayesian Modeling of CPS in Distribution Networks

A distribution network CPS model is established as shown in the following figure
referring to the literature [29]. The distribution network CPS is divided into a cyber
layer and a physical layer, where the physical system mainly contains traditional primary
equipment such as busbars, lines, and switches; the cyber system mainly contains servers,
switches, communication lines, distribution-specific security access gateways, and various
types of intelligent electronic devices such as remote terminal units, feeder terminal units,
and relay protection devices, as shown in Figure 5 below. We use the modified IEEE 33-node
system as the physical layer of the distribution network in this paper, and its structure is
shown in Figure 6 below. The modified IEEE 33-node system is a benchmark system. In
this paper, seven target nodes are set up for the system, and these are presented in the form
of switches. The load carried by each target node is the asset model needed to quantify the
risk value.

The amount of static load carried by each target node of the IEEE 33-node distribution
network system obtained in the simulation is shown in Table 4 below.

Table 4. Target node load.

Target Node S1 S2 S3 S4 S5 S6 S7

Node Power
/MVA 4544.08 3904.53 3346.96 2403.10 1991.01 859.19 632.46
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Figure 6. The modified IEEE 33-node distribution network of distribution network CPS.

To obtain information on the vulnerability of the distribution network CPS, a sys-
tematic analysis was carried out. The analysis allows us to find information on some of
the most problematic vulnerabilities at the information level. These vulnerabilities are
easily exploited by attackers and are not easily fixed by the system. The basic metrics of
each vulnerability of the above distribution network CPS cyber system found in the NVD
database are shown in Table 5. The exploitable probability P of each vulnerability node is
calculated based on Table 1 and Equation (1), as shown in the table below.

Table 5. Probability of vulnerability nodes being exploited.

Vulnerability
Number CVE Number AV AC PR UI S Pe

V1 CVE-2021-20106 L L H R U 0.1489
V2 CVE-2021-20135 L L H N U 0.2041
V3 CVE-2021-41619 N L H N U 0.3154
V4 CVE-2022-20864 P L N N U 0.2337
V5 CVE-2020-12142 N L H N U 0.3154
V6 CVE-2021-33523 N L N N U 0.9930
V7 CVE-2020-5237 N L L N U 0.7243

The Bayesian network model of the distribution network CPS for the information
distribution process is established based on the above distribution network CPS model
and the vulnerability information in Table 5, and the defense resources of the system are
considered. The Bayesian model and the logical relationship between each node are shown
in Figure 7 below.
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In the above figure, node AH represents the main server, and the vulnerabilities
V1 ∼ V3 are weakened by considering the presence of the firewall in the process of
sending its messages. Nodes W and A represent the switch network, nodes V represent the
vulnerabilities that exist at each information station, SUB represents the subsite server, ZC
represents the zone controller, nodes I represent the IEDs, nodes S represent each switch
controlled by the IED, which are the target nodes, and its switch corresponds to each node
in the physical system of Figure 6, and nodes x represent the system self-contained intrusion
detection system, human resources, and other defense resources, indicating the processing
capability of the system when a network attack occurs. Each node in the network has its
own logical structure and each node comes with a conditional probability table, which is
calculated by Equations (2)–(4) in different scenarios and different logical relationships.

5.2. Simulation Test
5.2.1. Scenario Setting for Different Network Attacks

Based on the above vulnerability probabilities and the Bayesian network model of the
information sent down, a static model is built in GeNle as shown in Figure 8. This static
scene is set as scene 0.
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To verify the dynamic risk of the whole model, three different attack scenarios are set
separately.
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• The vulnerability V6 has been exploited by the attacker, and its dynamic probability is
shown in Figure 9, set as scene 1;

Entropy 2023, 25, x FOR PEER REVIEW 14 of 24 
 

 

5.2. Simulation Test 
5.2.1. Scenario Setting for Different Network Attacks 

Based on the above vulnerability probabilities and the Bayesian network model of 
the information sent down, a static model is built in GeNle as shown in Figure 8. This 
static scene is set as scene 0. 

 
Figure 8. Static Bayesian model. 

To verify the dynamic risk of the whole model, three different attack scenarios are 
set separately. 
1. The vulnerability 6V  has been exploited by the attacker, and its dynamic probability 

is shown in Figure 9, set as scene 1; 
2. The vulnerability 7V  has been exploited by the attacker, and its dynamic probability 

is shown in Figure 10, set as scene 2; 
3. The vulnerability 5V , 7V  has been exploited by the attacker, and its dynamic prob-

ability is shown in Figure 11, set as scene 3. 

 
Figure 9. Attack scenario 1. Figure 9. Attack scenario 1.

• The vulnerability V7 has been exploited by the attacker, and its dynamic probability is
shown in Figure 10, set as scene 2;
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• The vulnerability V5, V7 has been exploited by the attacker, and its dynamic probability
is shown in Figure 11, set as scene 3.
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5.2.2. Risk Rate Correction by Defense Resources

When an attack vulnerability occurs, the defense strategy for the probability of the
passive defense system to eliminate the impact of risk (risk state 1) is synthesized in this
paper based on historical data, expert experience, and the asset value of the system, as
shown in Table 6.

Table 6. Passive defense probability.

Risk Status P(X1) P(X2) P(X3) P(X4) P(X5) P(X6) P(X7)

0 0.7 0.6 0.6 0.5 0.4 0.3 0.2
1 0.3 0.4 0.4 0.5 0.6 0.7 0.8

5.2.3. Correction of the Selective Strike Target by the Attacker

The three metrics in Table 7 below were selected to assess the attacker’s target selectiv-
ity, where metric A is the amount of load carried by the target node, metric B is the number
of nodes carried by the target node, and metric C is the degree centrality of the target node,
obtained from Equation (5).

Table 7. The value of each metric.

Meric A1 A2 A3 A4 A5 A6 A7

A 4544.084 3904.529 3346.964 2403.096 1991.011 859.190 632.456
B 33 27 22 12 8 4 0
C 4/32 6/32 2/32 4/32 2/32 2/32 2/32

• Subjective Weight

For the importance of the above three metrics, six fuzzy judgment matrices were
obtained based on the opinions of six experts as shown below.

P1 =

0.5 0.6 0.7
0.4 0.5 0.6
0.3 0.4 0.5

P2 =

0.5 0.7 0.6
0.3 0.5 0.7
0.4 0.3 0.5

P3 =

0.5 0.7 0.7
0.3 0.5 0.6
0.3 0.4 0.5



P4 =

0.5 0.6 0.8
0.4 0.5 0.6
0.2 0.4 0.5

P5 =

0.5 0.6 0.6
0.4 0.5 0.6
0.4 0.4 0.5

P6 =

0.5 0.6 0.7
0.4 0.5 0.5
0.3 0.5 0.5
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The weights of each matrix are calculated using Equation (6) and are shown in
Table 8 below.

Table 8. Expert weight.

Indicator Node W1 W2 W3

a1 0.3834 0.3333 0.2833
a2 0.3834 0.3333 0.2833
a3 0.4000 0.3167 0.2833
a4 0.4000 0.3333 0.2667
a5 0.3667 0.3333 0.3000
a6 0.3833 0.3167 0.3000

Using the consistency test to determine whether the expert opinion is reasonable, the
results are calculated using Equation (7) as shown in Table 9 below. Here, 0.1 is selected as
the test value, once the test indicator I is less than 0.1 the opinion is reasonable. All six sets
of weights pass the consistency test.

Table 9. Consistency check.

Expert Number a1 a2 a3 a4 a5 a6

Compatibility Index I 0.0554 0.0666 0.0730 0.0664 0.0444 0.0455

The mean values of the subjective weights were calculated using the maximum char-
acteristic root method as shown in Table 10.

Table 10. Subjective weight.

Node Metric W1 W2 W3

Feature Algorithm Value 0.3862 0.3281 0.2857

• Objective Weight

The use of Equation (8) to normalize Table 4 is shown in Table 11 below.

Table 11. Normalized metric.

Indicator A1 A2 A3 A4 A5 A6 A7

A 1 0.8365 0.6940 0.4527 0.3473 0.0580 0
B 1 0.8182 0.6667 0.3636 0.2424 0.1212 0
C 0.5 1 0 0.5 0 0 0

The objective weights were calculated using Equations (9) and (10) and obtained as
shown in Table 12 below.

Table 12. Objective weight.

Indicator A B C

Entropy Value 0.8234 0.8239 0.5343
Objective Weight 0.2158 0.2151 0.5691

• Combined Weight

The combination weights were calculated according to Equation (11) as the importance
evaluation weights of the three indicators, which are shown in Table 13.
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Table 13. Combined weight.

Indicator A B C

Objective Weight 0.2158 0.2151 0.5691
Subjective Weight 0.3862 0.3281 0.2857
Combined Weight 0.2633 0.2230 0.5137

• Ideal intervals for indicators

To give more reasonable and satisfactory results, ideal intervals are set for three
metrics, load: [0, 4544.084], node: [0, 33], and degree centrality: [0, 6/32]. The attack
preference probability of the attacker is calculated according to Equation (12), as shown in
Table 14 below.

Table 14. Attack preference probability.

Node A1 A2 A3 A4 A5 A6 A7

A 1.0000 0.8593 0.7366 0.5288 0.4382 0.1891 0.1392
B 1.0000 0.8182 0.6667 0.3636 0.2424 0.1212 0.0000
C 1.0000 0.7500 0.5000 0.2500 0.2500 0.2500 0.2500

Objective Correction 1.0000 0.7883 0.5869 0.3346 0.2890 0.2092 0.1723
Subjective Correction 1.0000 0.8146 0.6461 0.3949 0.3202 0.1842 0.1252
Combined Correction 1.0000 0.7942 0.6000 0.3493 0.2981 0.2049 0.1645

5.2.4. Quantification of Risk

Based on the above study, the risk probabilities of each target node under the static
scenario and three attack scenarios are obtained, as shown in Table 15 below.

Table 15. Risk probability.

Scene P(I1) P(I2) P(I3) P(I4) P(I5) P(I6) P(I7)

0 0.1740 0.1842 0.1391 0.1012 0.1036 0.0833 0.0766
1 0.2040 0.2160 0.1631 0.1186 0.1215 0.0976 0.0898
2 0.2250 0.2382 0.1799 0.1308 0.1340 0.1077 0.0991
3 0.2310 0.2446 0.1846 0.1342 0.1375 0.1105 0.1017

Finally, the quantitative risk values of each node under different scenarios are calcu-
lated according to Equation (13) as shown in Table 16 below.

Table 16. Quantification of risk value.

Scene R(F1) R(F2) R(F3) R(F4) R(F5) R(F6) R(F7)

0 790.7 719.2 465.6 243.2 206.3 71.6 48.4
1 927.0 843.4 545.9 285.0 241.9 83.9 56.8
2 1022.4 930.1 602.1 314.3 266.8 92.5 62.7
3 1036.1 942.6 609.8 318.4 270.4 93.7 63.5

Due to the existence of vulnerabilities, the probability of risk still exists for the dis-
tribution network CPS in normal operation. To accurately assess whether a distribution
network CPS is under cyber attack vulnerability, the risk value of each target node in its
static scenario must be determined, denoted by Ri

0 as the risk value of the ith target node in
the static scenario. This value represents the magnitude of the impact of the vulnerabilities
on the system. Then, after the kth round of risk assessment, if the risk value of node i
satisfies Ri

k > Ri
0, the system must have been attacked by the network, and then resources

should be mobilized to take corresponding defensive measures to control the risk of node
i. Meanwhile, it can be seen in Table 15 that the risk values of 7 nodes from left to right
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increase in order, while in the case of limited resources, the higher the risk value of the
node is, the more it should be focused on protection and impose more defensive resources.

Then, we can calculate the risk value of each vulnerability that may be exploited in
accordance with this example to derive the degree of impact of different vulnerabilities,
with which we can first focus on repairing or regulating vulnerabilities that have a higher
degree of impact. For some vulnerabilities that cannot be repaired in a short period of time,
it is necessary to increase defense resources to address uncertain cyber attack vulnerability.

5.2.5. Classification of Risk Level

Defensive strategies for dealing with risk should also be differentiated when the size
of the risk varies, while there are trade-offs in terms of speed of response and accuracy of
elimination. This paper classifies the risk value R(Si) of each node in different scenarios
of a fully configured distribution network CPS into five different levels: very high (VH),
high (H), medium (M), low (L), and very low (VL), and its grading range is shown in
Figure 12 below.
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Then, the risk partition has been filled in Figure 12 by classifying the risk levels for
static scenario 0 and the risk values for the three attack scenarios. The 0 in the figure
represents the risk value of each target node under static scenario 0, 1 represents the risk
value of each target node under attack scenario 1, 2 represents the risk value of each target
node under attack scenario 2, and 3 represents the risk value of each target node under
attack scenario 3.

The static risk value of the above distribution network CPS is high according to the
above risk partition that can be seen in the medium risk, which requires the adoption of
appropriate strategies to optimize or eliminate some vulnerabilities of the system, thereby
reducing the impact caused by the system being attacked.

5.2.6. Comparative Analysis of Weight Methods and Defense Resources

To verify the advantages of the combination weighting method and the impact of
defense resources, two comparison experiments are made as shown below.

Comparison Experiment 1: Only FAHP is used in the computational process for static
scenario 0 to correct for the attacker’s selection preferences (recorded as scenario O); only
FAHP is used in the computational process of attack scenario 1 for the attacker selection
preference correction (recorded as scenario P). Only the entropy weight method is used
for the selection preference correction in the computational process of static scenario 0
(recorded as scenario Q); only the entropy weight method is used for the selection preference
correction in the computational process of attack scenario 1 (recorded as scenario R). The
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quantitative risk values in the four different scenarios are calculated and compared with
static scenario 0 and attack scenario 1, as shown in Figure 13 below.
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Comparison Experiment 2: Passive defense is disabled in the computational process
of static scenario 0 (noted as scenario S); passive defense fails in the computational process
of attack scenario 1 (noted as scenario T). The quantitative risk values in the two different
scenarios are calculated and compared with the static scenario 0 and attack scenario 1, as
shown in Figure 14 below.
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From Comparison Experiment 1, when the choice of subjective opinions of power
system experts is considered, the experts generally pay more attention to the risk and will
overestimate the actual risk, so that the resulting risk will be higher, which may cause a
waste of defense resources. This also shows that subjective weights carry a certain amount
of subjective uncertainty. While the value at risk is smaller under objective indicator evalu-
ation, this approach would allow certain potential risks to be ignored, and the subjective
selectivity of the attacker judged by the metric value would only consider the objective
variability of the metric data at a given moment and would not take into account the
uncertainty that may exist in the actual system. The combined use of the two methods
overcomes the shortcomings of each, while the weights obtained in this way are more
realistic in accordance with the objective variability of the data. The combined use of
the two methods will eliminate subjective uncertainty to a certain extent and allow for a
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more accurate description of the selectivity of the attacker. The rationality of using the
combinatorial assignment method to determine the attacker’s selection is verified.

From Comparison Experiment 2, when passive defense resources such as intrusion
detection systems failed due to malfunction, the risk value of the distribution network
system will be significantly higher after the attack occurred. This further demonstrates the
irreplaceable importance of these prevention systems in mitigating risk. Since the role of
defense resources is not considered in many risk assessment studies of distribution network
CPS, this paper reflects the importance of the defense system through this comparison
experiment, so the defense system should be maintained at all times to remain effective.
In an open network environment, considering the defense resources of the distribution
network system using the method of this paper is an essential part of the security risk
assessment, while the allocation of defense resources should also be considered in the case
of limited resources.

5.2.7. Base Risk Value Update after Fixing Vulnerability

In the above simulation, the value of Ri
0 in static scenario 0 is still large due to the

existence of V1 ∼ V7 multiple vulnerabilities. The degree of impact of vulnerability
V1 ∼ V3 is weakened due to the presence of firewalls, and the probability of vulnerability
V7 is the highest according to the above simulation, which has the greatest impact on
the assets of the system, so we focus on fixing the vulnerability first. In this section,
the vulnerability V6 is fixed (recorded as scenario V6), which satisfies Pe6 = 0, and the
vulnerability V7 is fixed (recorded as scenario V7), which satisfies Pe7 = 0. A comparison of
the risk values of each node in the three static scenarios is shown in Figure 15 below.
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Figure 15. Static risk value after vulnerability fix.

From the above figure, the size of the node static risk value represents the size of the
ontological risk of a distribution network CPS. The static risk value of the node and the
size of the impact on the whole system after being attacked are proportional to the number
of vulnerabilities, and the probability of the vulnerability being exploited. Conversely, the
smaller the static risk value is, the more stable the system is and the less impact it will have
after being attacked. Similarly, after the vulnerability is fixed, the evaluation model should
change accordingly and the risk level classification, which is shown in Figure 12 above,
should also change accordingly.

In further analysis, we want to verify how the quantitative risk value of each target
node of the distribution network CPS changes when the cyber attack vulnerability is fixed.
Figure 16 shows the change in risk value when vulnerability V7 is fixed and vulnerability V6
is exploited. It is compared with the change in risk value when vulnerability V6 is exploited
under static scenario 0, as shown in Figure 16 below.
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The X part of the above figure represents the growth part of the risk value after
vulnerability V6 is exploited under static scenario 0. The Y part represents the growth part
of the risk value after vulnerability V6 is exploited under static scenario V7. The comparison
shows that the X part is smaller than the Y part, which indicates that the system with a low
static risk value is more affected by the same attack. Therefore, it is important to be vigilant
to prevent any vulnerabilities from being exploited by attackers, regardless of whether the
static risk value of the distribution network CPS is large or small.

5.2.8. Selectivity of Target Nodes without Considering the Attacker’s Perspective

There is uncertainty in the acquisition of weights, and therefore, the selectivity of the
attacker for the target nodes can be disregarded. The probability of an attacker exploiting
the zone controller (ZC) node at this point is the same as the risk rate passed to each target
node. As shown in Figure 17 below, the horizontal axis indicates the probability of the
ZC node being controlled by the attacker for static scenarios 0, V6, and V7 and dynamic
scenarios 1, 2, and 3. The vertical axis indicates the risk rate of the ZC node in different
scenarios.
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Since the selectivity of the attacker is not considered, the risk rate of each target node
in different scenarios is equal to the risk rate of the ZC node. Instead, the risk value of each
target node is simply related to the risk rate of the ZC node and the load carried by the
target node. While it does appear to eliminate subjective uncertainty, such a quantified
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value of risk would be far higher than the value of risk given the attacker’s perspective.
This approach can only determine whether a system is under attack by whether the risk
rate of ZC node is rising and thus cannot determine which specific target node is being
attacked. This would result in a waste of defense resources and greatly increase the cost of
defense. As the combined assignment method used in this paper itself eliminates subjective
uncertainty to a certain extent, consideration of the attacker’s perspective is an essential
part of this paper.

6. Conclusions

The dynamic Bayesian network approach is used for risk assessment of distribution
network CPS in this paper, which dynamically portrays the impact of different vulnera-
bilities after they are exploited or fixed by setting a variety of different attack scenarios.
Various network attack scenarios can be considered using dynamic Bayesian networks
compared to traditional static Bayesian networks. Multiple scenarios are simulated and
verified so that the impact caused by different scenarios can be assessed in advance. In
addition, corresponding defense strategies are given to quickly and effectively respond to
the possible cyber attack vulnerabilities on the distribution network CPS. Based on the case
analyses, the following conclusions are drawn.

• Dynamic Bayesian networks that portray cyber attack vulnerabilities in the form
of probabilistic transmission are superior in distribution network CPS security risk
assessment. It can quantify the risk value of the system when different cyber attack
vulnerabilities occur according to different attack scenarios and dynamically calculate
the risk value. Based on the size of the risk value, the corresponding defense resources
are invested to reduce the impact of cyber attack vulnerabilities.

• From the perspective of the attacker, when it controls the corresponding equipment,
there is a certain bias in choosing different strike targets. Using the method of com-
bined assignment to correct this preference can combine the advantages of the subjec-
tive assignment method and the objective assignment method to obtain a relatively
accurate corrected risk value.

• Risk passive defense resources are an integral part of distribution network CPS. As
much as possible, more resources are allocated to nodes with higher risk values in the
case of limited resources. The comparison experiments were set up to reflect the role
of defense resources in this paper, which demonstrates the need for the defense role to
be taken into account in the assessment of security risks in distribution network CPS.

• The magnitude of the static risk value under stable operation of a distribution network
CPS depends on the vulnerability information in the system. A system with a high
static risk value indicates a greater degree of adverse impact from an attack; however,
a system with a low static risk may have a greater increase in risk value from the
same attack than the former. Therefore, whenever there is any risk of cyber attack
vulnerability in a distribution network CPS, a risk assessment should be carried out.

• As the focus of this paper is to propose a risk assessment method for distribution
network CPS that considers the attacker’s perspective and the allocation of defense
resources, the uncertainty introduced in Bayesian network modeling and its propa-
gation is not considered. The ways to eliminate uncertainty problems are mentioned
in the literature [30]. The physical model in this paper uses a simple distribution
network system. In fact, the physical system can be replaced with a more complex
distribution network system, such as a distributed generation distribution network,
and the method in this paper is equally applicable after replacing the node importance
evaluation metric and asset model. Meanwhile, the research can also be extended in
subsequent studies to study the optimal allocation of defense resources based on the
simulation results, and this series of issues should be considered in further studies.
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