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Abstract: Cloud manufacturing systems (CMSs) are networked, distributed and loosely coupled,
so they face great uncertainty and risk. This paper combines the complex network model with
multi-agent simulation in a novel approach to the robustness analysis of CMSs. Different evaluation
metrics are chosen for the two models, and three different robustness attack strategies are proposed.
To verify the effectiveness of the proposed method, a case study is then conducted on a cloud
manufacturing project of a new energy vehicle. The results show that both the structural and process-
based robustness of the system are lowest under the betweenness-based failure mode, indicating that
resource nodes with large betweenness are most important to the robustness of the project. Therefore,
the cloud manufacturing platform should focus on monitoring and managing these resources so that
they can provide stable services. Under the individual server failure mode, system robustness varies
greatly depending on the failure behavior of the service provider: Among the five service providers
(S1–S5) given in the experimental group, the failure of Server 1 leads to a sharp decline in robustness,
while the failure of Server 2 has little impact. This indicates that the CMS can protect its robustness
by identifying key servers and strengthening its supervision of them to prevent them from exiting
the platform.

Keywords: cloud manufacturing; robustness; complex network; multi-agent simulation

1. Introduction

In the era of Industry 4.0, advanced information technology such as cloud computing
and the Internet of Things has brought profound changes to the manufacturing industry.
Li et al. [1] conceptualized a new service-oriented networked manufacturing model known
as “cloud manufacturing”, which aggregates manufacturing resources and capabilities
into the cloud platform, and fully realizes the sharing of manufacturing resources and
capabilities through service integration [2].

This concept has received much attention from academia and enterprises, and a great
amount of research has already been carried out on various aspects of cloud manufactur-
ing, including its hierarchical structure [3,4], typical features [5], key technologies [5–12],
operation modes [13–16] and service portfolio scheduling [17–20].

The cloud manufacturing system (CMS) is networked, distributed and loosely coupled;
this creates great uncertainty and interference [21], which is an important issue that the CMS
must face and solve. Zhang et al. [22] and Zhu et al. [23] argued that the development of
cloud manufacturing is restricted by a lack of trust and security, and blockchain technology
provides new ideas for overcoming such restrictions due to its reliability, tamper-proof
nature, traceability and high transparency. Further, Laili et al. [24] stated that orders of
different tasks affect the CMS. As such, the allocation and scheduling capability of the
CMS when facing multiple tasks [25–27] is an important component when considering the
robustness of the system. Wang et al. [28] studied the impact of service anomalies on the
CMS, proposing a dynamic service composition reconfiguration model when anomalies
occur. Liang et al. [29] stated that the complex demands of consumers and the changes in the
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dynamic environment pose challenges to common CMS-based scheduling algorithms. They
proposed deep reinforcement learning to enable the system to overcome these challenges
through continuous training and learning. In their study on the typical problems of
cloud manufacturing, Tao et al. [6] proposed that uncertain factors exist within the cloud
manufacturing life cycle, which can be classified into five categories: uncertainty of tasks,
uncertainty of resource services, uncertainty of quality of service (QoS), uncertainty of
the correlation between resource services and uncertainty of other factors. The CMS faces
complex and diverse types of uncertain interference. This includes not only common
interference found in the traditional manufacturing field, but also unique, uncertain factors
found in the cloud manufacturing field [30].

It is of great practical significance for the implementation and deployment of cloud
manufacturing projects to (a) accurately identify the impact of uncertain factors on cloud
manufacturing, (b) explore the robustness level of the cloud manufacturing process (CMP)
under different disturbances and attacks, and (c) further improve the stability and invulner-
ability of the system. However, existing research on the robustness of the CMS is currently
lacking. The complex network approach is commonly used in the study of network ro-
bustness, where the entities in the system are abstracted as “nodes”, the relationships
between entities are “connected edges”, and relevant topological parameters (e.g., degree,
betweenness, agglomeration coefficient) reflect the structural characteristics of the system
as a whole. Commonly used robustness measures include the relative size of connected sub-
graphs, average distance and network efficiency, among others. To explore the robustness
and vulnerability problems of traditional production processes, Li et al. [31] constructed a
complex multi-task directed weighted network using (a) nodes to represent equipment,
personnel and departments in the production plant, and (b) connected edges to represent lo-
gistical and process-based relationships. They took network connectivity and the maximum
connected subgraph as the robustness measurement indexes, comparing the robustness of
the workshop network under both random and selective interference. Shi et al. [32] and
Shi et al. [33] used sensitivity analysis to explore the effects of factors such as the number
of nodes, number of interconnected links, interconnection mode, scaling index and load
capacity on the interdependent supply network robustness under random and intentional
disruptions. The robustness index was selected with consideration given to the heterogene-
ity of different nodes, and the connected sub-network with the largest size including all
kinds of nodes (LACS) is proposed to replace the traditional connected sub-network with
the largest size (LCS). Fan et al. [34] proposed a two-layer maintenance support service
network composed of an undirected network layer and a directed entity layer, comparing
the changes in network robustness under three different partnership construction strategies.
Moghaddam and Deshmukh [35] studied the robustness of cyber-physical production
systems using a complex network method for the scenarios of cascading and non-cascading
disruptions. Based on the characteristics of these two disruption modes, different formulae
for measuring robustness metrics were given.

The above research shows that the complex network method can satisfactorily reflect
the structural characteristics of the CMS. It also has a wide range of applications (e.g., in
manufacturing networks and supply chain networks) because it can be used to obtain the
change of robustness index under different network attack strategies. However, because this
method abstracts the entities and inter-entity relationships structurally, it is then difficult to
reflect the logical judgments and dynamic temporal relationships between entities.

In contrast, simulation models can accurately describe the behavioral interactions and
temporal relationships of the entities of manufacturing systems. Simulation research on the
CMS is also a popular topic in current research. For example, Zhao et al. [2] designed and
implemented an agent-based cloud manufacturing simulation platform. They provided a
high-level encapsulation of services in the cloud platform, including a five-layer (i.e., data,
low tool, management, upper tool and application) architecture of the cloud platform. In
Zhang et al. [36], typical intelligent manufacturing simulation technologies were analyzed
from three aspects: manufacturing unit simulation, manufacturing integration simulation



Entropy 2023, 25, 45 3 of 18

and manufacturing intelligent simulation. Various other perspectives have also been
studied, such as cloud service entity packaging [37,38], selection and scheduling [39–41],
and trust and security issues [23]. However, despite its importance, simulation-based
research on the robustness of the CMS remains rare.

This study proposes a robustness analysis method that combines complex networks
with multi-agent simulation to analyze the robustness of the CMS from two perspectives: a
static structure and dynamic process. The remainder of the paper is organized as follows. In
Section 2, a multi-agent simulation model of the CMP is constructed. Here, the behavioral
characteristics and models of several key agents in the CMP are given, and QoS is proposed
as a robustness measure. Section 3 explores the robustness of the static topology of the cloud
manufacturing network (CMN). Here, the complex network model of cloud manufacturing
resources is established through both the order–task relationship and the task–resource
relationship, and network efficiency and the largest connected subgraph are proposed as
robustness measures. In Section 4, the robustness attack strategies are designed, where a
degree-based resource failure mode (ID), betweenness-based resource failure mode (IB)
and individual server-based resource failure mode are proposed. In Section 5, a case study
of a cloud manufacturing project is presented, and its robustness is studied under different
failure modes by combining the multi-agent simulation software Anylogic and Python 3.0
tools. Section 6 provides the conclusions and prospects of this paper.

2. CMP Model and Robustness Measurement Index Based on Multi-Agent Simulation
2.1. Multi-Agent Simulation Model Construction

The CMS includes the cloud platform, cloud task, cloud resource, cloud message, order
and other types of subjects, as well as two types of user role: cloud service providers and
cloud demanders [3]. As shown in Figure 1, the CMP [1] broadly includes the following:

(1) Cloud service providers unify various types of manufacturing equipment resources
and manufacturing capability resources into the cloud platform, depositing them
into the cloud resource pool through information transformation, resource sensing,
resource access, unified modeling of cloud services and other technology. This by-
passes the limitations of space and distance by enabling resources that are originally
distributed across the world to be centrally managed and shared.

(2) Cloud demanders submit service requirements (i.e., orders) to the cloud platform
through terminal devices. Orders from multiple cloud demanders are uniformly
stored in the cloud demand set, waiting to be processed.

(3) According to the service route of the order to be processed, the cloud platform inte-
grates and adapts different cloud tasks to form orderly and stable cloud task sequences.

(4) When the cloud demand set is not empty, the platform imports each order into the
corresponding cloud task sequence, in turn, to carry out cloud manufacturing services.
When the cloud tasks are being processed, the corresponding resources are requested
from the resource pool according to the task type. Resources in an idle state change to
a busy state after being requested. After the task is completed, the resource is released
and returned to an idle state.

The CMS contains multiple entity types, and various forms of information trans-
mission and behavior interaction occur between the same entities and different entities.
Therefore, the CMS model can be expressed as follows:

CMS = {PA, DA, SA, TA, RA, OA, MA, E} (1)

where PA is the cloud platform agent; DA is the cloud demander agent; SA is the cloud
service agent; TA is the cloud task agent; RA is the cloud resource agent; OA is the order
agent issued by the DA; MA is the message agent sent to the SA when the TA requests
or releases resources; and E is the external environment of information transmission and
behavior interaction among entities.
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2.1.1. Cloud Platform Modeling

The cloud platform is the center of the CMS. The cloud demander sends orders to
the cloud platform, and the platform assigns these orders to the corresponding tasks.
Throughout the CMP, the platform records any processing successes and failures, and at the
end of the service cycle, relevant performance indicators (e.g., service time, cost, reliability,
order completion rate) are calculated. Additionally, the platform carries out a variety of
roles, such as model parameter initialization and experimental parameter adjustment. The
cloud platform agent can be expressed as follows:

PA =< tobeProcessedOrderList, f inishedOrderList,

f ailedOrderList, attackNum, Funcini, FuncallocationOrders, FuncsettingFaultStatus,

FunccalcuQos, FuncoutputNetwork >

(2)

where tobeProcessedOrderList stores orders sent by each cloud demander that are to be pro-
cessed; f inishedOrderList records successfully completed orders; f ailedOrderList records
failed orders; attackNum is the number of failed resources; Funcini is used to initialize
model parameters; FuncallocationOrders assigns orders to their respective corresponding
cloud tasks for processing; FuncsettingFaultStatus sets the specified resource of the specified
server to the failure state according to the node failure mode; FunccalcuQos counts data re-
lated to service time, cost, reliability and the order completion rate at the end of simulation,
then integrates these to calculate the QoS index; and FuncoutputNetwork sorts the order–task
relationship and task–resource relationship of the processed orders into a node-list form
and outputs it, to be used to construct the complex network model.

2.1.2. Cloud Resource Modeling

Cloud resources are the virtual resources formed by integrating the manufacturing
equipment resources and manufacturing capability resources of service providers into the
cloud resource pool through information transformation, resource access, cloud service
unified modeling and other technology. The main function of the cloud resource agent is to
cooperate with cloud tasks to complete the processing of cloud orders:

RA =< ID, produceLevel, busy, broken, owner, price > (3)
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where ID is the unique identifier number of the resource; produceLevel is the productivity
level of the resource, which is defined as an integer from 1–10; busy indicates whether the
resource is in a busy state; broken indicates whether the resource is faulty; owner specifies
which cloud server the resource belongs to; and price represents the cost of the resource,
which is randomly generated with normal distribution during model initialization.

2.1.3. Cloud Task Modeling

The construction of the cloud task agent is key to cloud manufacturing simulation
modeling. It covers not only the processing path of all order types (e.g., serial, parallel,
hybrid path) but also the behavior interaction and information transfer between the cloud
server agent and the cloud resource agent. In addition, the cloud task agent formulates
(a) the selection mechanism of the optimal service provider, (b) various statistical data,
such as service cycle and cost, and (c) cloud task and cloud resource node information. To
achieve this, existing process modeling library components are adapted accordingly. The
cloud task agent can be expressed as follows:

TA =< ID, ownerOrders, pretaskList, a f tertaskList, requeresourceList, basicWorkingTime,

currentOrder, FuncselectBestServer, FuncselectBestResource, FuncrecordRouteStamp, FuncrecordTaskTime,

FuncrecordTaskCost, FuncrecordTaskReliability >

(4)

where ID is the unique identification number of the task; ownerOrders specifies which
type of order processing path the task belongs to; pretaskList and a f tertaskList spec-
ify the pre-order task and post-order task, respectively; requeresourceList specifies the
type of resource requested by the task; basicWorkingTime specifies the standard time
for completing the task; currentOrder represents the order currently being processed;
FuncselectBestServer determines the optimal server based on resource price, logistics, distance
and other factors; FuncselectBestResource determines the optimal resource; FuncrecordRouteStamp
records the order–task relationship and task–resource relationship for completed orders;
and FuncrecordTaskTime, FuncrecordTaskCost and FuncrecordTaskReliability record the service time,
service cost and service reliability of the current task, respectively.

Figure 2 shows the detailed CMP simulation inside the cloud task agent, which is
realized by editing and adapting the existing component codes from Anylogic’s process
modeling library. The details of this process are as follows:

(1) The order is imported into the internal process of the cloud task through the enter
component. If the current task is first in the task sequence, the order is directly
assigned by the cloud platform; otherwise, the order is assigned by the preceding
task after its completion (e.g., task 2 orders are assigned from task 1 once task 1 has
been completed).

(2) The queue component temporarily stores the current order while the following judg-
ments are made: (a) if the current task is first in the task sequence or there is only one
task in the preceding task sequence, the hold and hold1 components are simultaneously
opened and the current order is entered into queue2 for subsequent processing; or (b) if
there is more than one task in the preceding task sequence, the current order must
wait until the orders of all preceding tasks have completed before entering queue2 for
subsequent processing

(3) The queue1 component merges the information of several branch orders, and the hold2
component ensures that only one order is entered for subsequent processing at a time.
When the current order is completed and exits through exit, hold2 opens again and
continues to serve the next order.

(4) The order enters queue3, where the task agent selects the optimal server and sends
“resource request” information to it. When the optimal service provider accepts the
request, the busy attribute corresponding to the optimal resource changes to “true”,
and the hold3 component opens. The order flows through the delay component to
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simulate the cloud manufacturing service. After a certain delay time, the service
is completed.

(5) The order enters queue4 and continues to send the “release resource” message to the
optimal server. When the optimal server accepts the message, the busy attribute
corresponding to the optimal resource changes to “false”, and the hold4 component
opens. The order flows through the delay1 component. After a certain delay time, the
release of the resource is completed.

(6) The order flows through the exit component to complete all its service processes in
this task. It then imports the post-order task sequence of this task: (a) if there is only
one post-order task, it is directly imported into the enter component of the post-order
task; (b) if there are multiple post-order tasks, the information of the current order
is copied and imported into the enter component of the respective post-order tasks;
and (c) if there is no post-order task, this signifies that the task is already the final
task in the task sequence. As such, the order is added to the set of completed orders,
and information such as the service cycle, service cost and route record are counted
and output.
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2.1.4. Cloud Order Modeling

The orders are submitted to the cloud platform by the cloud demanders through
terminal devices. They are then imported to the corresponding cloud tasks according
to their respective task routes to complete service processing. The cloud order agent is
represented as follows:

OA =< ID, owner, taskList, routeStamp, cost1Accum, cost2Accum,

cost3Accum, reliabilityAccum, startTime, f inishTime >
(5)

where ID is the order’s unique identification number; owner specifies which demander
the order is issued by; taskList specifies the complete task path corresponding to the order;
routeStamp records the order–task relationship and task–resource relationship correspond-
ing to the order when the order is completed; cost1Accum, cost2Accum and cost3Accum
record the request resource cost, logistics cost and release resource cost of the order, re-
spectively; reliabilityAccum records the completion reliability of orders; and startTime
and f inishTime record the start processing time and completion processing time of the
order, respectively.

2.1.5. Cloud Message Modeling

When processing orders, cloud tasks need to send “request resource” information to
the cloud server. After the processing is complete, a “release resource” message is sent to
the cloud server. Since Anylogic’s built-in message agent cannot carry extra information,
this paper encapsulates a messages agent type, which can be expressed as follows:

MA = 〈msg, resourceList, owner〉 (6)
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where msg is the content of the message (i.e., when a resource is requested, the msg’s value
is “request”, and when a resource is released, the msg’s value is “release”); resourceList
specifies which resources are to be requested and released; and owner indicates which
cloud task sent the message.

2.1.6. Cloud Demander Modeling

The cloud demander issues demand orders to the cloud platform to drive the operation
of the model. The cloud demander agent can be represented as follows:

DA = 〈ID, location, orderList, FuncsendOrders〉 (7)

where ID is the cloud demander’s unique identification number; location is the latitude
and longitude coordinates of the demander, which is used to initialize the location of the
demander in the GIS map; orderList is used to initialize the orders issued by the demander;
and FuncsendOrders sends the orders of cloud demanders to the cloud platform, where the
cloud platform schedules and allocates the orders uniformly.

2.1.7. Cloud Server Modeling

Cloud servers mainly transfer information and interact with cloud tasks. All types
of cloud resources are stored in the resource pool of each cloud server. When receiving
the “request resource” message, the server finds the corresponding resource in its resource
pool and allocates it to the cloud task. When receiving the “release resource” message, the
server releases the corresponding cloud resource and puts it back into the cloud resource
pool. The cloud server agent can be represented as:

SA =< ID, location, resourcePool, dScore,

pScore, totalScore, Funccon f igureResource >
(8)

where ID is the unique identification number of the cloud service provider; location is the
latitude and longitude coordinates of the server, which is used to initialize the location of
the server in the GIS map; resourcePool is used to store the respective virtual resources of the
cloud server; dScore, pScore and totalScore are the respective distance score, price score and
total score when the cloud task selects the optimal cloud server; and Funccon f igureResource is
used to execute and allocate resources when receiving information about cloud tasks. If
the message’s content is “release resource”, the server finds the corresponding resource
and changes its busy attribute to “false”. If the message’s content is “request resource”, the
corresponding resource is judged as follows: (a) if its value is “true”, this indicates that the
resource is faulty and the cloud task cannot be completed; as such, the order requested for
processing is classified as failed; or (b) if the value is “false”, this indicates that the resource
is not faulty. Here, its busy attribute is judged as follows: (i) if the busy attribute is “false”,
the processing of the cloud order can be started, and (ii) if the busy attribute is “true”, this
indicates that the resource is being invoked by other tasks and it needs to wait until the
other task is completed.

2.2. Robustness Measurement Index Based on Multi-Agent Simulation

Based on the multi-agent model and order task sequence stated in Section 2.1, the
dynamic simulation of the CMP can be realized. At the end of the simulation, the order
completion time, logistics transportation distance, resource occupation and other data can
be output to evaluate the performance. QoS is commonly used to evaluate the CMP. As
such, based on the combination of relevant literature and the simulation output data, this
paper comprehensively evaluates the QoS value from four aspects: service time, service
cost, service reliability and order completion rate [20,42,43]. The calculation formulae of
these four indicators are as follows:
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(1) Service time

This is the sum of the completion times of all orders within the simulation cycle, which
can be expressed as

T =
m

∑
j=1

tj (9)

where m is the total number of orders; j = 1, 2, . . . , m is the jth order in the order se-
quence; and tj is the completion time of the jth order, which can be obtained by the
simulation results.

(2) Service cost

This total cloud service cost is calculated from three aspects: the cloud resource service
fee, logistics service fee and cloud resource release fee, which can be expressed as

C =
m

∑
j=1

nj

∑
i=1

tserving
i,j ∗ presource

i,j +
m

∑
j=1

nj

∑
i=1

di,j ∗ clogistic +
m

∑
j=1

nj

∑
i=1

treleasing
i,j ∗ prelease (10)

where m is the total number of orders; n is the number of tasks corresponding to each order;
j = 1, 2, . . . m represents the jth order in the order sequence; i = 1,2, . . . n represents the ith
task in the task sequence; tserving

i,j is the cloud service time of the ith task in the jth order;
presource

i,j is the service cost per unit time of the resource corresponding to the task; di,j is the

logistics distance corresponding to the task; clogistic is the logistics cost per unit distance;
treleasing
i,j is the release time of the cloud resources for the task; and prelease is the cost per unit

time of releasing resources.

(3) Service reliability

Service reliability is a multiplicative index [42], which can be expressed as

rel =
∑m

j=1 ∏
nj
i=1 ri,j

m
(11)

where ri,j is the service reliability of the i-th task in the j-th order, which is given in the
reliabilityAccum attribute of the order agent.

(4) Order completion rate

The order completion rate is the ratio of the number of completed orders within the
simulation cycle to the total number of orders planned to be completed:

o f r =
N1

N1 + N2
(12)

where N1 is the number of orders completed within the simulation cycle and N2 is the
number of orders that failed to be completed.

In addition, the index values need to be standardized to consider the different index
dimensions. A series of robustness experiments will be carried out later in this paper, so
range standardization is carried out with the index values of each experiment as samples.
The calculation formulae are as follows:

nt =
Tk − Tmin

Tmax − Tmin
(13)

nc =
Ck − Cmin

Cmax − Cmin
(14)

where Tk and Ck are the respective service time and service cost of the k-th experiment;
Tmin and Tmax are the respective minimum and maximum values of service time; and Cmin
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and Cmax are the respective minimum and maximum values of service cost. The reliability
and order completion rate indicators are originally in the range of [0, 1], so there is no need
for standardization.

The QoS value can be evaluated by synthesizing the above four dimensions:

QoS = ω1 ∗ nt + ω2 ∗ nc + ω3 ∗ rel + ω4 ∗ o f r (15)

where ω1, ω2, ω3 and ω4 are the respective weight coefficients of the four indicators, and
4
∑

i=1
ωi = 1.

3. Cloud Manufacturing Network Model and Robustness Measurement Index-Based
on Complex Network
3.1. Construction of Cloud Manufacturing Complex Network Model

The cloud manufacturing network (CMN) is composed of cloud service resources and
the connections between resources. Due to the large number of resources and complex
connection relationships, the network can be analyzed using the complex network model.
Figure 3a shows the processing task paths of Order-A and Order-B, the resources used
by each task in these paths, and the corresponding relationships between resources and
servers. If two tasks are connected on a path, the respective resources used by the two tasks
are also considered to be connected. Figure 3b shows how the CMN is formed by taking all
the resources as network nodes and the connections between resources as connected edges.
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3.2. Robustness Measurement Index Based on Static Network Topology

It is generally considered that network robustness refers to the degree of network
performance retention after the failure of network nodes or edges [44], and the change
of the maximum connected subgraph after network node failure can reflect the degree of
retention of the network’s structural integrity. As such, the change rate of the maximum
connected subgraph’s node number is selected as one of the robustness evaluation indexes
in this study:

S =
N′

N
(16)

where N′ is the number of nodes in the maximum connected subgraph after the network is
attacked, and N is the total number of nodes in the original network. In particular, S = 0
indicates that the network is in an unconnected state; and S = 1 indicates that the network
is fully connected, and there is no isolated node.

Additionally, the connections between the nodes change when a network node fails.
This, in turn, affects the efficiency of information dissemination in the network. Therefore,
network efficiency is used to evaluate the robustness of the network transfer efficiency
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when nodes are lost. The shorter the distance between two nodes in a network, the faster
information can be transferred from one node to another. Based on this, the formula of
network efficiency can be defined as:

ΦG =
1

N(N − 1) ∑
i 6=j

1
dij

(17)

where N represents the total number of nodes in the network and dij represents the shortest
path between node i and node j. In particular, G = 0 indicates the efficiency of the network
is the worst, where the whole network contains isolated nodes, and G = 1 indicates that
the efficiency of the network is the best, where the information exchange between nodes
is smooth.

4. Failure Mode Design for Robustness Analysis

The design of failure modes is key to robustness analysis. Based on the characteristics
of cloud manufacturing, this paper proposes a topology-based resource failure mode and a
server-based resource failure mode.

Topology-based resource failures are further divided into degree-based and betweenness-
based resource failures, where (a) node degree (i.e., how closely a resource node is connected
to other resource nodes in the CMN) is commonly used to measure a node’s importance,
and (b) node betweenness reflects the structural importance of the node [44,45], with a node
with high betweenness having greater control over logistics and information flow in the
network. The specific topology-based resource failure mode designs are shown in Table 1.

Table 1. Design of topology-based resource failure modes.

Failure Mode
Description Failure Mode Calculation Process

Topology-based
resource failure

modes

Initial node degree
loss (ID)

Sort the resource nodes in the initial network by
degree, from largest to smallest. Remove one node at

a time, and repeat n times until all nodes in the
network are removed.

Initial node
betweenness loss (IB)

Sort the resource nodes in the initial network by
betweenness, from largest to smallest. Remove one
node at a time, and repeat n times until all nodes in

the network are removed.
Note: The removal of nodes is performed differently in the complex network model and the multi-agent model:
(a) the complex network model is performed by deleting the corresponding resource nodes and all connected
edges on the nodes, and (b) the multi-agent model is represented by setting the corresponding resource agent to a
“fault” state, that is, where the resource cannot provide services.

Server-based resource failures fully consider the realistic scenario of cloud manufac-
turing, where resource nodes involved in cloud manufacturing belong to different cloud
servers. The successive failure of resource nodes of the same cloud server can simulate
the scenario where the cloud server gradually exits the platform and no longer provides
resources. Key cloud servers can be identified by comparing the robustness indexes of
different cloud servers after the loss of resources, and focused monitoring and manage-
ment of these key servers can effectively ensure the robustness of the CMN. The specific
server-based resource failure mode designs are shown in Table 2.
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Table 2. Design of server-based resource failure modes.

Failure Mode
Description Failure Mode Calculation Process

Server-based
resource failure

modes

Successive failure of
Server-1′s node

(group S1)

Select the resource nodes belonging to server S1 in
the CMN. Remove one node at a time, and repeat n
times until all resource nodes belonging to server S1

in the network are removed.

Successive failure of
Server-2′s node

(group S2)

Select the resource nodes belonging to server S2 in
the CMN. Remove one node at a time, and repeat n
times until all resource nodes belonging to server S2

are removed.
· · · · · · · · · · · ·

Successive failure of
Server-n’s node

(group Sn)

Select the resource nodes belonging to server Sn in
the CMN. Remove one node at a time, and repeat n
times until all resource nodes belonging to server Sn

are removed.

5. Case Study
5.1. Description of Model Parameters

A case study is carried out using the cloud manufacturing project of a new energy
vehicle. This project provides life-cycle cloud manufacturing services for new energy
vehicles, where the vehicles served are equipped with technology such as electrification
and autonomous driving.

The cloud manufacturing project includes 24 order types, 95 cloud tasks (t1–t95) and
72 resource types (r1–r72). The corresponding resource types for each cloud task are shown
in Table 3, and the cloud task routes of each order type are shown in Table 4.

Table 3. Correspondence between tasks and resources.

Task Resource Task Resource Task Resource Task Resource

t1 (r1) t2 (r3) t3 (r2) t4 (r4)
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6)
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67)

t13 (r32) t14 (r1) t15 (r7) t16 (r1)
t17 (r2) t18 (r8) t19 (r2) t20 (r5)
t21 (r5) t22 (r41) t23 (r6) t24 (r6)
t25 (r71) t26 (r42) t27 (r33) t28 (r9)
t29 (r9) t30 (r34) t31 (r10) t32 (r10)
t33 (r9) t34 (r7) t35 (r9) t36 (r7)
t37 (r10) t38 (r8) t39 (r10) t40 (r8)
t41 (r13, r14) t42 (r61) t43 (r21, r23) t44 (r51, r52)
t45 (r15, r16) t46 (r62) t47 (r22, r24) t48 (r53, r54)
t49 (r21, r23) t50 (r47, r48) t51 (r47, r48) t52 (r33)
t53 (r35, r37) t54 (r63) t55 (r43, r45) t56 (r22, r24)
t57 (r49, r50) t58 (r49, r50) t59 (r34) t60 (r36, r38)
t61 (r64) t62 (r44, r46) t63 (r35, r37) t64 (r41)
t65 (r41) t66 (r39) t67 (r25, r27) t68 (r65)
t69 (r13, r14) t70 (r36, r38) t71 (r42) t72 (r42)
t73 (r40) t74 (r26, r28) t75 (r66) t76 (r15, r16)
t77 (r47, r48) t78 (r51, r52) t79 (r57, r58) t80 (r47, r48)
t81 (r49, r50) t82 (r53, r54) t83 (r68) t84 (r59, r60)
t85 (r49, r50) t86 (r57, r58) t87 (r17, r19) t88 (r63)
t89 (r55) t90 (r59, r60) t91 (r18, r20) t92 (r69)
t93 (r64) t94 (r70) t95 (r56)
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Table 4. Correspondence between orders and cloud service routes.

Orde Type Cloud Service Route Order Type Cloud Service Route

Order 11 t1→ t2 Order 12 t3→ t4
Order 13 t5→ t6 Order 14 t7→ t8
Order 15 t9→ t10 Order 16 t11→ t12→ t13
Order 21 t14→ t15→ t16 Order 22 t17→ t18→ t19
Order 23 t20→ t21→ t22 Order 24 t23→ t24→ t25→ t26
Order 25 t27→ t28→ t29 Order 26 t30→ t31→ t32
Order 31 t33→ t34→ t35→ t36 Order 32 t37→ t38→ t39→ t40

Order 33
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A total of 5 cloud servers (S1–S5) participate in the project, with each server provid-
ing 72 types of cloud resources. The cloud servers have different pricing of resources, and 
they are at different distances from the cloud demanders, so they compete for different 
orders. To distinguish between them, resource r1 of servers S1–S5 are labeled r1-S1, r1-S2, 
r1-S3, r1-S4 and r1-S5, and so on. 

In addition, there are 14 cloud demanders (d1–d14). Each cloud demander submits 
24 orders, and the number of orders of each type is 1 (i.e., 1 of each of the 24 order types). 
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In addition, there are 14 cloud demanders (d1–d14). Each cloud demander submits 
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Order 51

Entropy 2023, 25, x FOR PEER REVIEW 13 of 19 
 

 

t45 (r15, r16) t46 (r62) t47 (r22, r24) t48 (r53, r54) 
t49 (r21, r23) t50 (r47, r48) t51 (r47, r48) t52 (r33) 
t53 (r35, r37) t54 (r63) t55 (r43, r45) t56 (r22, r24) 
t57 (r49, r50) t58 (r49, r50) t59 (r34) t60 (r36, r38) 
t61 (r64) t62 (r44, r46) t63 (r35, r37) t64 (r41) 
t65 (r41) t66 (r39) t67 (r25, r27) t68 (r65) 
t69 (r13, r14) t70 (r36, r38) t71 (r42) t72 (r42) 
t73 (r40) t74 (r26, r28) t75 (r66) t76 (r15, r16) 
t77 (r47, r48) t78 (r51, r52) t79 (r57, r58) t80 (r47, r48) 
t81 (r49, r50) t82 (r53, r54) t83 (r68) t84 (r59, r60) 
t85 (r49, r50) t86 (r57, r58) t87 (r17, r19) t88 (r63) 
t89 (r55) t90 (r59, r60) t91 (r18, r20) t92 (r69) 
t93 (r64) t94 (r70) t95 (r56)   

Table 4. Correspondence between orders and cloud service routes. 

Orde Type Cloud Service Route Order Type Cloud Service Route 
Order 11 t1 → t2 Order 12 t3 → t4 
Order 13 t5 → t6 Order 14 t7 → t8 
Order 15 t9 → t10 Order 16 t11 → t12 → t13 
Order 21 t14 → t15 → t16 Order 22 t17 → t18 → t19 
Order 23 t20 → t21 → t22 Order 24 t23 → t24 → t25 → t26 
Order 25 t27 → t28 → t29 Order 26 t30 → t31 → t32 
Order 31 t33 → t34 → t35 → t36 Order 32 t37 → t38 → t39 → t40 

Order 33 

 

Order 34 

 

Order 41 

 

Order 42 

 

Order 43 

 

Order 44 

 

Order 51 

 

Order 52 

 

Order 53 

 

Order 54 

 

A total of 5 cloud servers (S1–S5) participate in the project, with each server provid-
ing 72 types of cloud resources. The cloud servers have different pricing of resources, and 
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24 orders, and the number of orders of each type is 1 (i.e., 1 of each of the 24 order types). 

A total of 5 cloud servers (S1–S5) participate in the project, with each server providing
72 types of cloud resources. The cloud servers have different pricing of resources, and they
are at different distances from the cloud demanders, so they compete for different orders.
To distinguish between them, resource r1 of servers S1–S5 are labeled r1-S1, r1-S2, r1-S3,
r1-S4 and r1-S5, and so on.

In addition, there are 14 cloud demanders (d1–d14). Each cloud demander submits
24 orders, and the number of orders of each type is 1 (i.e., 1 of each of the 24 order types).
The basic information of each cloud service provider and cloud demander is externally
imported from Excel, as shown in Table 5.

Table 5. Attributes of cloud servers and cloud demanders.

ID City
Location
(Latitude,

Longitude)
ID City

Location
(Latitude,

Longitude)

S1 Beijing (39.91, 116.41) d5 Jinan (36.4, 117)
S2 Shanghai (31.21, 121.43) d6 Lanzhou (36.03, 103.73)
S3 Chengdu (30.66, 104.06) d7 Wulumuqi (43.76, 87.68)
S4 Hangzhou (30.26, 120.2) d8 Changsha (28.21, 113)
S5 Shenzhen (22.61, 114.06) d9 Nanchang (28.68, 115.9)

d10 Fuzhou (26.08, 119.3)
d1 HaErbin (45.75, 126.63) d11 Nanning (22.48, 108.19)
d2 ShenYang (41.8, 123.38) d12 Lasa (29.6, 91)
d3 Baotou (40.39, 109.49) d13 Lianyungang (34.36, 119.1)
d4 Tianjin (39.13, 117.2) d14 Hefei (31.52, 117.17)
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In this paper, the weight coefficient of QoS is set as ω1 = 0.35, ω2 = 0.35, ω3 = 0.1,
ω4 = 0.2.

5.2. Structural Robustness Analysis

The cloud resource network is obtained according to the network model construction
method stated in Section 3.1, as shown in Figure 4. Matlab-2020a software is used to
perform data statistics on the network, and both the relevant network topology parameters
and the degree distribution are obtained, as shown in Table 6 and Figure 5, respectively.
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Figure 4. Spatial layout of cloud resource network.

Table 6. Topological parameters of cloud resource network.

Topological
Parameter

Number of
Nodes Average Degree Density Average Path

Length

Cloud resource
network 231 21.208 0.087 4.231

Notes: (1) The average degree is the average of the degree of all nodes in the network. (2) The density of a network
can be expressed as the ratio of the actual number of edges to the maximum possible number of edges in the
network. (3) The average path length is the average of the distance between any two nodes in the network.
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There are 231 resource nodes in the network, and the distribution of node degrees is
seriously uneven. A few nodes occupy the majority of connected edges, indicating that
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the network has the typical characteristics of a scale-free network. The small density of the
network indicates that it is a sparse network, with the nodes with higher degree values
tending to connect the nodes with lower degree values.

Next, based on the failure modes designed in Section 4, Python 3.0 is used to simulate
and calculate the changes of structural robustness indexes under the different failure modes.

The calculation results based on the topology-based failure mode are shown in Figure 6.
This shows that (a) both network efficiency and the largest connected subgraph gradually
decrease with the increase of the node failure ratio, and (b) the index value in the IB mode
is always lower than that in the ID mode, which indicates that the robustness of the CMN
is more fragile in the IB mode. Further, in the IB mode, when the failure ratio is around
0.05, there is a precipitous decline in robustness. In contrast, the overall decline trend
of robustness in the ID mode is relatively stable. When the failure ratio reaches 0.4, the
maximum connected subgraph in the IB mode drops below 50, and the network efficiency
drops below 0.05, which indicates that the network is in a state of collapse. This shows
that from the perspective of complex networks, resource nodes with large betweenness are
more important to the maintenance of the structural robustness of CMNs. As such, the
focus should first be on protecting those nodes with larger betweenness, followed by those
nodes with a larger degree.
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The robustness analysis results under the cloud server failure mode are shown in
Figure 7. This shows that (a) the network efficiency value shows a fluctuating trend during
the failure of cloud server nodes, and there is no significant decline; however, the maximum
connected subgraph decreases rapidly with the increase of the node failure ratio, which
indicates that the maximum connected subgraph is more sensitive to the failure of the
cloud server; and (b) the maximum connected subgraph of S1 not only decreases the most
out of the 5 servers (from 231 to 161), but it also shows a significant decline when the node
failure ratio is in the [0.05, 0.1] interval. Further, the maximum connected subgraph of S3
decreases from 231 to 175, and the respective maximum connected subgraphs of S2, S4 and
S5 are all above 195 after being attacked. From the perspective of the complex network, the
key cloud servers are selected as S1 followed by S3. These servers should be monitored
and managed to protect the structural robustness of the CMN.
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5.3. Process Robustness Analysis

In addition to the process robustness measures and failure modes, this paper uses
multi-agent simulation software Anylogic and Python 3.0 to explore the variations of QoS
under the different failure modes, as shown in Figure 8.
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As shown in Figure 8a, QoS rapidly decreases with the increase of the node failure
ratio in both the IB and ID modes. For both modes, the QoS values drop below 0.25 when
the node failure ratio is about 0.4. However, in the IB mode, all cloud orders fail to be
processed when the node failure ratio is about 0.65, whereas in the ID mode, this occurs
only when the node failure ratio is about 0.95. This shows that the robustness of the CMP
is more fragile in the IB mode. From the perspective of multi-agent simulation, nodes
with large betweenness are more important for maintaining the robustness of the dynamic
processes of cloud manufacturing.

As shown in Figure 8b, the QoS index of S1 decreases the most (from 1 to less than
0.3), followed by S3 (from 1 to 0.44). Further, the QoS indexes of S2, S4 and S5 are all above
0.5 after being attacked, which indicates that the resource failure of these servers has little
impact on the robustness of the CMP. From the perspective of multi-agent simulation, S1
and S3 are the key cloud servers, which is consistent with the evaluation results from the
complex network perspective stated in Section 5.2.

6. Conclusions

This paper proposes a novel approach for the robustness analysis of the CMS, combin-
ing complex network analysis with multi-agent simulation, which extends the robustness
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analysis object from the CMN to the CMP. First, a multi-agent simulation model is con-
structed. The behavioral characteristics and models of several key agents in the CMP are
detailed, and QoS is proposed as a robustness measure. Second, a complex network model
of cloud manufacturing resources is established through both the order–task relationship
and the task–resource relationship to investigate the robustness of the static topology of the
CMN. For this, network efficiency and the maximum connected subgraph are proposed
as robustness measures. Three attack strategies are designed, which are resource failure
modes based on the degree, betweenness and individual server. To verify the feasibility and
effectiveness of the proposed method, a case study is then conducted on a cloud manufac-
turing project of a new energy vehicle. The results show that the robustness of the system
(both for the CMN and the CMP) is lowest under the betweenness-based resource failure
mode. This indicates that resource nodes with large betweenness are most important to the
structural robustness and process robustness of the project. As such, the CMP should focus
on monitoring and managing these cloud manufacturing resources so that they can provide
stable services. Under the server-based failure mode, the robustness of the system varies
greatly depending on the failure behavior of the service provider (e.g., the failure of S1
leads to a sharp decline in robustness, but the failure of S2 has little impact). This indicates
that the CMS can protect its robustness by identifying key servers and strengthening its
supervision of them to prevent them from exiting the platform.

This paper primarily focuses on how various failure modes affect the performance of
the CMS, and it proposes related robustness analysis methods and protection measures. Fu-
ture research based on this established complex network and multi-agent simulation model
will involve the design of corresponding recovery strategies and elasticity measures of the
CMS. Simulation research will also be carried out to provide a quantitative and dynamic
decision basis for the improvement of the robustness of the cloud manufacturing platform.
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