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Abstract: In econophysics, the analysis of the return distribution of a financial asset using statistical
physics methods is a long-standing and important issue. This paper systematically conducts an
analysis of composite index 1 min datasets over a 17-year period (2005–2021) for both the Shanghai
and Shenzhen stock exchanges. To reveal the differences between Chinese and mature stock markets,
we precisely measure the property of the return distribution of the composite index over the time
scale ∆t, which ranges from 1 min to almost 4000 min. The main findings are as follows: (1) The
return distribution presents a leptokurtic, fat-tailed, and almost symmetrical shape that is similar to
that of mature markets. (2) The central part of the return distribution is described by the symmetrical
Lévy α-stable process, with a stability parameter comparable with a value of about 1.4, which was
extracted for the U.S. stock market. (3) The return distribution can be described well by Student’s
t-distribution within a wider return range than the Lévy α-stable distribution. (4) Distinctively, the
stability parameter shows a potential change when ∆t increases, and thus a crossover region at
15 < ∆t < 60 min is observed. This is different from the finding in the U.S. stock market that a single
value of about 1.4 holds over 1≤ ∆t ≤ 1000 min. (5) The tail distribution of returns at small ∆t decays
as an asymptotic power law with an exponent of about 3, which is a widely observed value in mature
markets. However, it decays exponentially when ∆t ≥ 240 min, which is not observed in mature
markets. (6) Return distributions gradually converge to a normal distribution as ∆t increases. This
observation is different from the finding of a critical ∆t = 4 days in the U.S. stock market.

Keywords: econophysics; sociophysics; return distribution; Chinese stock market index; power-law

1. Introduction

Econophysics is an emerging interdisciplinary field. It investigates economic and
financial problems through the models, methods, and concepts adopted in physics, es-
pecially statistical physics [1–5]. Among the most important and remarkably interesting
studies in the econophysics field, the price fluctuation of assets in the financial market has
been intensively investigated in both empirical and theoretical ways since 1900 [6–25].

The stock market is a complex financial system in which the traders, assets, and many
unforeseen external factors interact with each other non-linearly; thus, it is extremely
hard to write down a dynamical equation among these elements. Fortunately, the price
fluctuations of individual stocks and market indices provide us with a powerful tool to
understand its dynamics [2,6]. Fluctuations are often quantified by a logarithmic return
over a time scale of ∆t that can be mathematically defined as follows:

R∆t(t) = ln
S(t)

S(t− ∆t)
(1)
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where S(t) denotes the time series of a company stock price or market index. The return is
of a great key role in asset pricing and is at the core of financial risks through multifractal
analysis [6–8,16].

In the late 20th century, huge amounts of data from the stock market are available for
scholars due to the rapid development of computer technology [2,6]. This development
allows physicists to analyze precisely the properties of the return of a financial asset using
the methodology developed for statistical physics. In 1995, a paper published in Nature
analyzed the return distribution of the Standard & Poor’s 500 (S&P 500) index over the
6-year period (1984–1989) [26]. This work found that the central region of the return
distribution can be well described by a truncated Lévy stable symmetrical distribution [27]
with an index of α ≈ 1.4 (comparable with α ≈ 1.5 for the income distribution [3] and
α ≈ 1.7 for the distribution of the fluctuation of cotton price [13]). More importantly,
this study observed the scaling behavior of the probability density over three orders of
magnitude of ∆t. Four years later, the same team conducted more detailed studies on the
stock indices [28] and individual company stocks [29,30] in the U.S. market. These new
works found a universal asymptotic inverse cubic power-law in the return distribution
tails for both the S&P 500 index and individual company stocks (the power-law has been
observed in many natural and social complex systems [31]). They also observed a critical
point of ∆t below which the tail distributions retain a similar power-law, and gradually
converge to Gaussian distribution otherwise (∆t ≈ 4 days and ∆t ≈ 16 days for market
index and individual company stocks, respectively) [28,30,32]. Further studies illustrated
similar scaling behavior in other mature stock markets such as in England, France, Germany,
Mexico, and Japan [28,30,33–37].

Although mature stock markets seem to show a universality of power-law scaling
behavior, many exceptions exist in other stock markets. Studies on the stocks traded in the
Australian Stock Exchange and the daily WIG index of the Warsaw Stock Exchange showed
that tail distributions follow the power law, with the exponent being significantly different
from 3 [38–40]. As for the Indian stock market, a study on the daily returns of the 49 largest
stocks indicated [41] that the tail distributions decay exponentially as e−βr. However, new
studies in 2007 and 2008 [42,43] found that the distributions of fluctuations of the individual
stock prices, the Nifty index, and the Sensex index follow the asymptotic power law with
exponent α ≈ 3. For the Hong Kong stock market, research has also been conducted and
delivered different results from research based on the U.S. stock market [44,45]. These non-
unified results make it difficult to understand the dynamic property of the stock market. It
seems to be dependent on the degree of development of a specific financial market [46].

The Chinese Mainland stock market, the largest emerging financial market in the
world, has different trading rules and government regulations compared with other devel-
oped financial markets, such as T + 1 trading, intraday price limits, and IPO policy [47].
These differences may result in different interactions among traders, assets, and external
factors in the Chinese stock market. Thus, it is of great importance to understand the
dynamic properties of the Chinese stock market via return distributions. However, the
previous analyses on the return distribution for the Chinese stock market were conducted
about 10 years ago and did not obtain conclusive results because of the limitation of data
statistics. In 2005, scholars analyzed the data of 104 individual stocks listed on the Shanghai
Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) and found the tail distributions
of daily stock price returns follow the power law, with the exponent being significantly
different from that in the U.S. stock market [48]. They also stated that the distributions of
returns are asymmetrical, but almost symmetrical distributions were observed in the U.S.
stock market [48]. A similar analysis of the SSE Composite Index (SSECI) and the SZSE
Component Index in 2007 observed asymmetrical return distribution with a power-law
exponent of less than 3 over 1 ≤ ∆t ≤ 60 min [49]. In contrast, a more detailed analysis
of the 1 min data and 1-day data of the SSECI in 2008 showed [50] that the power-law
exponent is systematically larger than 3. Subsequently, a study on the tick-by-tick data
from 23 individual stocks listed in SZSE argued that return distribution can be well fit-
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ted with the Student’s t-distribution [51,52], which is different from the truncated Lévy
stable process model [26,27]. In 2010, a study of the SSE 50 index and SZSE 100 index
revealed [53] that tail distributions obey the power-law when ∆t < 1 week and follow
exponential decay otherwise.

In the past 20 years, more high-frequency data on the Chinese stock market have been
accumulated for analysis. These data provide us with a good opportunity to precisely
measure the properties of return distributions. To shed light on the understanding of the
dynamical property of the Chinese stock market and help clarify the confusion stated above,
this paper analyzes 1 min datasets recorded for the SSECI and the SZSE Composite Index
(SZSECI) over the 17-year period (4 January 2005 to 31 December 2021), using the methods
and concepts adopted in statistical physics.

2. Datasets

This paper analyzes 1 min datasets over the 17-year period (4 January 2005 to 31
December 2021) for both the SSECI and the SZSECI, as shown in Figure 1. The SSE and
SZSE, the only two stock exchanges in Mainland China, were established in late 1990. The
SSECI comprises all stocks of A-shares and B-shares listed and traded on the SSE. Similarly,
the SZSECI consists of all stocks listed and traded on SZSE. Both indices aim to reflect
the overall Chinese stock market performance and are calculated by the capitalization-
weighted method. Both exchanges trade during 9:30–11:30 and 13:00–15:00 of a trading
day and are closed on the weekend and national holidays. When we construct a time series
S(t), we first skip the non-trading days and the period of 11:30–13:00 on trading days, and
then connect from 9:00 to 15:00 of the previous trading day. The time series of indices with
other time scales are constructed using the 1 min datasets (991,680 records for each index).

2006 2008 2010 2012 2014 2016 2018 2020
Date

0

2000

4000

6000

In
de

x

SSE Composite Index
SZSE Composite Index

Figure 1. The time series of the SSECI and the SZSECI. The 1 min datasets over the 17-year period (4
January 2005 to 31 December 2021) analyzed in this paper are shown. The higher one and lower one
represent the SSECI and the SZSECI, respectively.

3. Results and Discussion

To provide an overview of the statistical property of returns, Figure 2 shows the
probability density functions (PDFs) of returns of over 1 ≤ ∆t ≤ 3840 min for both the
SSECI and the SZSECI. It is evident from Figure 2 that the PDFs of both indices have a
similar shape. To study the shape quantitatively, we examine the skewness and kurtosis
and the corresponding statistical significance tests [54,55]. These examinations show that
our data present slightly negative skewness with statistical significance, but its most central
parts are symmetrical. These examinations also show that Fisher’s kurtosis is larger than
0, with very high statistical significance. Additionally, as can be seen in this figure, these
distributions are leptokurtic, fat-tailed, and almost symmetrical.
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Figure 2. Probability density of returns over time intervals ranging from 1 min to 3840 min. Return
R∆t is defined as ln[S(t)/S(t− ∆t)], where S(t) refers to the time series of the SSECI (panel a) or the
SZSECI (panel b). Different markers represent data of returns with different time intervals ∆t. These
two panels share a common legend. It is evident that these distributions expand as ∆t increases.

Previous works have illustrated that the central parts of the return PDFs shown in
Figure 2 can be well described by the Lévy α-stable process [6,26,27,49,50]. The symmetrical
Lévy α-stable PDF is mathematically written as

Pα(R∆t, ∆t) =
1
π

∫ +∞

0
e−γ∆t|q|α cos(qR∆t)dq (2)

where Pα refers to PDF, R∆t is the return defined by Equation (1), ∆t denotes time scale
(in Equations (2)–(5), to make ∆t dimensionless, we let ∆t equal the time scale divided
by 1 min), α (0 < α ≤ 2, stability parameter, also known as index) is a key parameter for
Lévy α-stable distribution, and γ is the scale parameter. In Equation (2), e−γ∆t|q|α is the
characteristic function. According to Equation (2), the PDF of R∆t = 0 is

Pα(R∆t = 0, ∆t) =
Γ(1/α)

πα(γ∆t)1/α
(3)

where Γ denotes the Gamma function.
Next, we use the approach proposed by Ref. [26] to extract the stability parameter

α from the data shown in Figure 2. According to Equation (3), the parameter α equals
the negative of the reciprocal of the slope shown in Figure 3. The α values are as follows:
1.34 ± 0.03 (SSECI) and 1.13± 0.04 (SZSECI) over 1≤ ∆t ≤ 15 min, and 1.49± 0.03 (SSECI)
and 1.57 ± 0.02 (SZSECI) over 60 ≤ ∆t ≤ 3840 min. Such values of α extracted from our
data are consistent with 0 < α ≤ 2 and comparable with 1.40 ± 0.05 which is extracted
from the U.S. stock market [26]. A potential crossover region at 15 < ∆t < 60 min for these
two indices is observed. This potential crossover region is not observed in the U.S. stock
market in which a single fitting holds over 1 ≤ ∆t ≤ 1000 min [26], and also in the previous
similar studies regarding the Chinese Stock market [49,50]. We skip the first few minutes to
an hour for each trading day to see whether this crossover region disappears, but it exists.
The overnight return also cannot contribute to this phenomenon since the data points with
∆t ≤ 60 min do not include the overnight effect. By removing the data affected by extreme
events, such as the global financial crisis of 2007–2008, the 2015–2016 Chinese stock market
turbulence, and the COVID-19 global pandemic [56,57], we observe that those extreme
events have no contribution to this crossover region. Therefore, this potential crossover
region may indicate an underlying dynamical behavior of the Chinese stock market that
differs from the U.S. stock market.
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Figure 3. Probability density of the return R∆t = 0 as a function of the time interval ∆t. The black stars
are the data points. The red and blue lines are straight-line fits to the data points over 1 ≤ ∆t ≤ 15
and 60 ≤ ∆t ≤ 3840, respectively. The fit results of slopes for red and blue lines are also shown.
Similar scaling behavior is observed for both the SSECI (panel a) and the SZSECI (panel b). From this
figure, the key parameter α characterizing the Lévy α-stable process is extracted (see main text for
details). A potential crossover region at 15 < ∆t < 60 is observed here.

The symmetrical Lévy α-stable distribution shown in Equation (2) will collapse on the
∆t = 1 distribution under the transformations below.

Rs = R∆t(∆t)−
1
α (4)

Pα(Rs, 1) = Pα(R∆t, ∆t)(∆t)
1
α (5)

where Rs denotes rescaled return, and R∆t and Pα(R∆t, ∆t) are defined by Equations (1) and (2),
respectively.

Figure 4 shows the rescaled PDFs of returns Rs with the stability parameter α extracted
from Figure 3. An obvious collapse of distributions with a large ∆t is observed here.
However, only central parts of distributions with a larger ∆t overlap with the ∆t = 1 min
data. The red curves are the symmetrical Lévy α-stable distributions with the parameters
α obtained in Figure 3. Note that these red curves are not simple fits to data. Their scale
factors γ are obtained using Equation (3) and the experimental P(0) for ∆t ≤ 15 min or
the extrapolation of P(0) using the straight-line fits for ∆t ≥ 60 min in Figure 3. The
symmetrical Lévy α-stable distributions with the parameters extracted from Figure 3 show
good agreement with data in the central parts. From the two aspects discussed above, we
could conclude that the symmetrical Lévy α-stable process describes a part of the dynamical
properties of the Chinese stock market. In Figure 4, the tail distributions of data are larger
than the Gaussian distribution and smaller than the Lévy α-stable distribution. Thus, we
tried using the Student’s t-distribution to fit data, as demonstrated by the solid black curves
shown in panels a and b which have sufficient data. The fit results show that the Student’s
t-distribution can describe the data at a wider range than the Lévy α-stable distribution
well, which could be explained by the so-called non-extensive statistical framework [58,59].

Given the discussion above, it is essential to obtain a detailed study of the tail distribu-
tion. To compare tails with different ∆t, we introduce the normalized return r∆t

r∆t =
R∆t − 〈R∆t〉T

V
(6)

where 〈R∆t〉T is the average of returns R∆t over the entire time T, and V is the volatility of
the R∆t time series.
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Figure 4. The comparison of rescaled PDFs of returns Rs with theoretical models. (Panels a,c) reflect
the SSECI, and (panels b,d) represent the SZSECI. The colored markers are data points with different
time scales. The dashed black curves are Gaussian distributions with a mean of 0 and a standard
deviation of 1 min data. The solid black curves are Student’s t-distribution fits 1 min data. The solid
red curves are symmetrical Lévy α-stable distributions with the observed parameters, as shown by
the red text (see main text for details). The top two panels and the bottom two panels share a common
legend, respectively.

Figure 5 shows the PDF and the complementary cumulative distribution function
(CCDF) of the ∆t = 1 min tail of normalized returns r∆t in a log–log style. The PDF of the
tail follows a power-law decay in the form of r−(1+α)

∆t , as shown in panels a and b. Naturally,
the CCDF follows the form of r−α

∆t , as shown in panels c and d. Similar behavior for both
positive and negative tails is observed obviously. We use a straight-line fit to extract the
exponent α, as shown by the dashed black lines. The exponents extracted from PDF are
consistent with those from CCDF within acceptable errors. For the SSECI positive tail, the
average (weighted by the reciprocal of squared errors) of exponents α extracted from fits to
PDF and CCDF is 3.07 ± 0.05. For the SZSECI positive tail, that value is 3.14 ± 0.04. The
values of the SSECI and the SZSECI are in agreement with each other within errors, and
well as outside the Lévy α-stable process.

Figure 6 compares the CCDF of the normalized returns with 1 ≤ ∆t ≤ 3840 min for
positive and negative tails. Here, the theoretical values of standard normal distribution
and Student’s t-distribution are also drawn for comparison. It can be seen from Figure 6
that these tails with small time scales follow an asymptotic power-law decay, but the tails
gradually deviate from the power-law when ∆t becomes longer. For the case of short ∆t,
the tail distributions are fitted by the power law and the Student’s t-distribution; thus, the
exponents α are extracted. The exponents α extracted from these two functions are close to
the value of 3 which is frequently observed in mature stock markets. Such values ensure a
finite variance of returns. This is important for option pricing and risk management.
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Figure 5. PDF and CCDF of the normalized return tails with a time scale of 1 min. (Panels a,c) reflect
the SSECI, and (panels b,d) represent the SZSECI. The red full circles and blue empty circles represent
positive and negative tails, respectively. Dashed black straight lines are straight-line fits to data. Fit
results of power-law exponents α are shown. It is evident that the positive and negative tails show
very similar behavior and follow a similar asymptotic power-law decay.
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Figure 6. CCDF of the normalized return tails with different time scales ∆t in log–log plot. (Panels a,b) rep-
resent the SSECI and the SZSECI, respectively. These two panels share a common legend. The colored
solid markers denote positive tails, and the corresponding open markers represent negative tails.
The solid and dashed black curves represent the standard normal distribution and the Student’s
t-distribution (with a degree of freedom of 3.14 and a standard deviation of 1), respectively. Scaling
behavior in tail distributions is observed here, and the tails with small ∆t follow an asymptotic power
law decay.

From Figure 6, we find that the tail distributions with a large ∆t deviate from the
asymptotic power law. However, we cannot obtain more details on the tails with a large
∆t since they are suppressed to the central region by normalization. Here, we investigate
the return tails in a log-linear style, as shown in Figure 7. Both positive and negative tails
show exponential decay in the form of e−βR∆t when ∆t ≥ 240 min. The exponential decay
also ensures a finite variance of returns. From Figures 6 and 7, we can conclude that the
tails decay for the asymptotic power-law at a small value of ∆t, and exponentially decay at
large ∆t values, which is not observed in mature stock markets.
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Figure 7. CCDF of return tails with different time scales ∆t in log–linear plot. (Panels a,b) reflect the
SSECI and the SZSECI, respectively. Colored markers are for positive tails. Solid straight lines are
exponential fits to data, and the values of β with its fitting errors are also presented here. These two
panels share a common legend. To keep the figure from looking cluttered, the negative tails are not
shown here; they feature similar results to positive tails.

We also verified the convergence behavior of return distribution by comparing the
moments µk between the normalized return data and the standard normal distribution, as
shown in Figure 8. The result indicates that the data gradually converge to the standard
normal distribution starting from ∆t = 1 min. To quantify this convergence behavior, we
introduce a measure of the moment difference between the normalized return data and the
standard normal distribution, as shown in Equation (7).

D =

√
1
n

n

∑
i=1

[MD(i)−MG(i)]
2 (7)

where MD and MG denote the moments of the normalized return data with a ∆t and
the standard normal distribution, respectively; n is the number of data points shown in
Figure 8. The measure of D can also serve as the distance between two curves. Therefore,
we define speed using Equation (8) to measure the speed of this convergence between a
moment curve i and another moment curve i + 1, as shown in Figure 8.

v =
Di+1 − Di

∆ti+1 − ∆ti
(8)

Figure 9 shows the measured distance between the normalized return data and the standard
normal distribution and the speed of the convergence of data. This figure demonstrates
quantitatively that the convergence starts at ∆t = 1 min, and the speed at a small ∆t is
much faster than others. This convergence behavior is different from the early studies in
the U.S. [28] and the Chinese stock markets [50], in which convergence to the standard
normal distribution occurs only when ∆t ≥ 4 days [28,50].
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Figure 8. Comparison of moments µk between the normalized return data and the standard normal
distribution for the SSECI (panel a) and the SZSECI (panel b). The colored curves denote the data, and
the solid black curves refer to the moments of standard normal distribution. These two panels share
a common legend. It is evident that the data gradually converge to the standard normal distribution
as ∆t increases.
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Figure 9. The moment distance between the normalized return data and the standard normal
distribution (panel a) and the speed of convergence of data (panel b). ∆t is the time scale divided by
1 min. The circle and star points represent the data of SSECI and SZSECI, respectively.

4. Conclusions

Because the previous studies on the return distribution of the Chinese stock market are
dramatically limited by statistics, this paper systematically and precisely investigates the
property of the return distributions of both the SSECI and the SZSECI in the Chinese stock
market. We used 1 min high statistics datasets over a 17-year period (4 January 2005 to
31 December 2021) to construct return distributions with time intervals ∆t ranging from 1
min to almost 4000 min. The results illustrate that the properties of the return distributions
for both the SSECI and the SZSECI are similar. The main findings are as follows: (1) The
return distributions present a leptokurtic, fat-tailed, and almost symmetrical shape that
is similar to that of mature stock markets. (2) The central parts of the return distribu-
tions can be described by the symmetrical Lévy α-stable process. The key parameters
α characterizing this process are extracted from our data. They are 1.34 ± 0.03 (SSECI)
and 1.13 ± 0.04 (SZSECI) over 1 ≤ ∆t ≤ 15 min and 1.49 ± 0.03 (SSECI) and 1.57 ± 0.02
(SZSECI) over 60 ≤ ∆t ≤ 3840 min. Such values are comparable with the value of α ≈ 1.4
extracted from the U.S. stock market [26] and within the Lévy α-stable process range of
0 < α ≤ 2. (3) Return distributions can be described well by Student’s t-distribution within
a wider return range than the Lévy α-stable distribution. (4) A potential crossover region at
15 < ∆t < 60 min was discovered. Such a crossover region is not observed in the U.S. stock
market, where a single value of α ≈ 1.4 holds over 1 ≤ ∆t ≤ 1000 min [26]. (5) To obtain a
better understanding of tail distribution, this paper checks the PDF and CCDF of tails in
detail. For small ∆t, the tail shows scaling behavior and follows an asymptotic power-law
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decay with an exponent of about 3, which is a value widely observed in mature stock
markets. However, the tail decays exponentially when ∆t ≥ 240 min, which is not observed
in mature stock markets. (6) Finally, it is observed that return distributions gradually
converge to a normal distribution as ∆t increases. Such convergence behavior is different
from previous studies in the U.S [28] and Chinese stock markets [50], which state that
convergence only occurs when ∆t ≥ 4 days.

Stock markets are inhomogeneous and time-varying. A multifractal analysis via the
return distribution and analysis of volatility surfaces in stock markets across the world
should be conducted using the latest high-frequency datasets that have been collected over
the same time period. By comparing the empirical results from different stock markets
and constructing theoretical models, one can learn the underlying dynamics of stock
markets [60], such as the impacts of investor risk attitude, trading rules, and government
regulations in different countries.
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