
Citation: Yu, D.; Zhou, X.; Pan, Y.;

Niu, Z.; Yuan, X.; Sun, H. University

Academic Performance Development

Prediction Based on TDA. Entropy

2023, 25, 24. https://doi.org/

10.3390/e25010024

Academic Editor: Christian H. Weiss

Received: 14 October 2022

Revised: 21 November 2022

Accepted: 16 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

University Academic Performance Development Prediction
Based on TDA
Daohua Yu 1, Xin Zhou 2, Yu Pan 2, Zhendong Niu 1,3,* , Xu Yuan 4 and Huafei Sun 2,4

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
3 School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260, USA
4 Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
* Correspondence: zniu@bit.edu.cn

Abstract: With the rapid development of higher education, the evaluation of the academic growth
potential of universities has received extensive attention from scholars and educational administra-
tors. Although the number of papers on university academic evaluation is increasing, few scholars
have conducted research on the changing trend of university academic performance. Because tra-
ditional statistical methods and deep learning techniques have proven to be incapable of handling
short time series data well, this paper proposes to adopt topological data analysis (TDA) to extract
specified features from short time series data and then construct the model for the prediction of
trend of university academic performance. The performance of the proposed method is evaluated by
experiments on a real-world university academic performance dataset. By comparing the prediction
results given by the Markov chain as well as SVM on the original data and TDA statistics, respectively,
we demonstrate that the data generated by TDA methods can help construct very discriminative
models and have a great advantage over the traditional models. In addition, this paper gives the
prediction results as a reference, which provides a new perspective for the development evaluation
of the academic performance of colleges and universities.

Keywords: topological data analysis; short time series analysis; Markov chain; university academic
performance

1. Introduction

Academic performance is crucial for evaluating the level of universities. In the main-
stream university leaderboards, the academic performance of a university is usually quan-
tified as various statistical indicators, e.g., the number of published papers, the amount of
research funding and so on. Our previous work [1] has researched the effects of different
academic indicators and proposed a new evaluation method of the university academic
level based on statistical manifolds. In addition, we have conducted studies on the academic
growing potential of individuals [2]. During our research, we noticed that although there
had been quite a lot of work on the design of evaluation criteria for academic level rating
in a period [3–6], not so much attention has been paid to the analysis of academic growth
potential. In other words, previous work only focused on the academic level comparison
among different universities but lacked the excavation of academic-level development with
time for the single school. As a matter of fact, the academic growing potential can serve as
the basis of policies as well as one more reference for university evaluation, just as what
trend analysis can do in the fields of finance, energy, and other industries. The academic
development can be represented by the variation trend of specified statistical indicators,
which is the main research object of this article.

As a matter of fact, the study of variation patterns of university academic indicators is
a typical problem of short time series data analysis. Time series data is a group of sampled
sequential data points from a continuous process over time. The analysis of time series
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data, especially the short one, has been considered one of the most challenging problems
in the area of data mining [7]. The first challenge is that it cannot be certain that a piece
of time series data consists of enough information to fully describe the real-world process.
That is why it is thought that financial markets cannot be predicted [8]. The second, time
series data, is often nonstationary, which indicates that the statistics of the time series data,
such as mean, variance, and so on, change over time. This requires extra techniques or
input data to solve the problem correctly. Moreover, as a sampling of real-world processes,
the time series data inevitably contains much noise and often has high dimensionality.
These all add up to the difficulties of time series analysis. University academic indicators
are usually recorded every year, but the work of recording does not have a long history,
and hence the available data is still limited. This may explain why there are hardly any
related researches.

Being challenging yet promising, research on approaches for time series data analysis
have been active for decades [9]. Traditional approaches mainly focus on fitting the
time series data on known models, such as the linear dynamical model [10], regressive
model [11], hidden Markov model [12] and ARIMA model [13]. With the development of
computing power and neural networks theory, nowadays methods based on deep learning
are popular and obtain state-of-the-art results in various tasks [14,15]. Our previous
work has also gained satisfying prediction models of deep learning [16]. Unluckily, both
traditional and modern methods cannot achieve satisfying results on short time series data.
Traditional methods cannot correctly give the results when data consists of much noise,
which is common for time series data. Furthermore, deep learning methods require data
with enough length to extract features; otherwise, it has even worse performance than
purely statistical methods [17].

As an emerging area for complicated data processing, topological data analysis (TDA)
is an overlap between mathematics and computer science and has been used in biol-
ogy [18,19], robotics [20,21], finance [22,23], etc. In recent years, TDA for time series data
analysis has been growing quickly, and one of the promising methods is persistent ho-
mology. By applying persistent homology on data clouds, persistence diagrams can be
produced and considerable features can be provided. Previous work has proved the po-
tential of persistent homology in extracting features for time series [24], yet no research on
short time series has been published.

To address the problem of university academic indicator prediction, this paper pro-
poses to use TDA, or persistent homology exactly, as the feature extractor to reveal the time
series variation patterns. Then, support vector machine (SVM) is used as a classifier to
judge the variation trend of indicators. The simulation results show advantage over the
classic method Markov chain. By comparing with the traditional model Markov chain, our
work proves the efficiency of persistent homology in processing short time series data and
capturing variation features. Moreover, by applying the model, we give the prediction of
academic indicators of the top universities in mainland China, which could be a reference
for other academic evaluation researches.

The paper is organized as follows. In Section 2, we introduce the mathematical basis
of TDA, including simplexes and the idea of persistent homology. We also describe our
data processing strategies and make necessary validation from the statistical perspective.
In Section 3, we first give an overview of the Markov chain, and then perform simulations
and give results as the baseline of prediction. In Section 4, we simply give an overview
of previous work applying TDA and then describe the simulation and results of using
persistent homology.

2. Preliminary

Topological data analysis (TDA) is an emerging and rapidly developing field that
provides a set of new topological and geometric tools to infer relevant features of potentially
complex data. In this section, we briefly introduce some mathematical foundations of TDA
and data preprocessing.
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2.1. Simplicial Homology

Now, we first introduce the related concept of simplicial homology, which is the basis
of persistent homology.

The natural domain of definition for simplicial homology is a class of spaces we call
∆-complexes, which are a mild generalization of the more classical notion of a simplicial
complex [25].

Definition 1. A ∆-complex structure on a space X is a collection of maps{
σα : ∆n(α) → X, n(α) ∈ Z ≥ 0

}
α∈J

(1)

where ∆n is a standard n-complex, such that

(i) the restriction σα | ∆̊n is injective, and each point of X is in the image of exactly one such
restriction σα | ∆̊n, where the open simplex ∆̊n is ∆n − ∂∆n, the interior of ∆n;

(ii) each restriction of σα to a face of ∆n is one of the maps σβ : ∆n−1 → X. Here, we are
identifying the face of ∆n with ∆n−1 by the canonical linear homeomorphism between them
that preserves the ordering of the vertices; and

(iii) a set A ⊂ X is open iff σ−1
α (A) is open in ∆n for each σα.

Definition 2. The simplicial chain group of X is defined as

∆n(X) = Z
α,n(α)=n

σα =

 ∑
α,n(α)=n

λασα | λα ∈ Z

 (2)

where λα are almost all zero.

Definition 3. Define the chain map (boundary homomorphism)

∂n : ∆n(X)→ ∆n−1(X) (3)

via α such that n(α) = n and ∂n(σα) = ∑i(−1)iσα | [v0, · · · , v̂i, · · · , vn], where the hat symbolˆ
over vi indicates that this vertex is deleted from the sequence v0, · · · , vn.

Remark 1. By direct calculation, we can see that ∂n ◦ ∂n+1 = 0.

With the above preparations, we can give the definition of the simplicial homology
group of X.

Definition 4. The n-th simplicial homology group of X is defined as

H∆
n (X) = Ker ∂n/ Im ∂n+1 (4)

The dimension of H∆
n (X) is called the n-th Betty number. Simplicial homology groups

and Betty numbers are topological invariants. A Betty number can represent some topo-
logical properties of topological spaces. For instance, the 0-th Betty number counts the
connected components, the 1-th Betty number represents the number of holes and the 2-th
Betty number computes the numbers of voids.

2.2. Persistent Homology

Persistent homology is a method in TDA that can efficiently study the topological
features of simplicial complexes and topological spaces. It lets us leave our data in the
original high-dimensional space and tells us how many clusters are in the data, and how
many looplike structures there are in the data, all without being able to actually see it.
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The idea of persistent homology is to observe how the simplicial homology changes during
a given filteration [26,27].

Definition 5. Given dimension n, if there is an inclusion map i of one topological space X to
another Y, then it induces an inclusion map on the n-dimensional simplicial chain groups

i : ∆n(X)→ ∆n(Y) (5)

Furthermore, this extends to a homomorphism on simplicial homology group

i∗ : H∆
n (X)→ H∆

n (Y) (6)

where i∗ sends [c] ∈ H∆
n (X) to the class in H∆

n (Y).

Definition 6. A filtration of a simplicial complex K is a nested family of subcomplexes (Kr)r∈T ,
where T ⊆ R, such that for any r, r′ ∈ T, if r ≤ r′ then Kr ⊆ Kr′ , and K = ∪r∈TKr. The subset
T may be either finite or infinite. More generally, a filtration of a topological space M is a nested
family of subspaces (Mr)r∈T , where T ⊆ R, such that for any r, r′ ∈ T, if r ≤ r′, then Mr ⊆ Mr′

and M = ∪r∈T Mr.

For applying persistent homology in a point cloud P, there are the following steps.
Step 1: Convert point cloud P to a topological space.
Here, we use VR complex. For given r ≥ 0 and metric d in P, the VR complex VR(P, r)

is the topological space containing different dimensional simplex whose maximum distance
among vertices is less than or equal to 2r.

Step 2: Construct a filtration of topological spaces.
A filtration X1 ⊆ X2 ⊆ · · · ⊆ Xm induces a sequence of homomorphisms on the

simplicial homology groups

H∆
n (X1)→ H∆

n (X2)→ · · · → H∆
n (Xm) (7)

A class [c] ∈ H∆
n (Xi) is said to be born at i if it is not in i

(
H∆

n (Xi−1)
)
. The same class

dies at j if [c] 6= 0 ∈ H∆
n
(
Xj−1

)
, but [c] = 0 ∈ H∆

n
(
Xj
)
.

Step 3: Obtain the resulting information.
Given a filtration Filt = (Fr)r∈T of a topological space, the homology of Fr changes

as r increases. New connected components can appear, existing components can merge,
loops and cavities can appear or be filled, etc.. Persistent homology tracks these changes,
identifies the appearing features and associates a lifetime to them. We mark a point in R2

at (i, j) if one class is born at i and dies at j. Hence, we can obtain a persistence diagram by
its collection of off-diagonal points

D = {(b1, d1), · · · , (bk, dk)} (8)

Figure 1 is an example of a persistence diagram.
The lifetime or barcode of a point x = (b, d) in D is given by pers(x) = |b− d|. The

collection of all barcodes is called persistence. The persistence of a dataset contains impor-
tant topological information about its intrinsic space. In one persistence, long barcodes are
interpreted as true topological features of the intrinsic space, whereas short barcodes are
interpreted as topological noise. The quantitative discussion of length can be found in [28].

More details on persistent homology can be found in reference [29].
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(a) Raw Data (b) Persistence Diagram

Figure 1. Raw data and its persistence diagram in H0 and H1. The different colors correspond to
different distributions of data and they can be distinguished by the H1 persistence diagram.

2.3. Data Description and Preprocessing

The data used in this paper is provided by the CNKI analysis platform of Chinese
university academic achievements [30]. We select the top 50 Chinese mainland universi-
ties in terms of scientific research funding in 2021. The names and abbreviations of the
50 universities are listed in Table 1. For each university, we collect six types of its academic
indicators from 2010 to 2019, i.e., the number of published papers of SCI and SSCI, the num-
ber of state-level funds, the amount of National Natural Science funds, and the number
of applicated and authorized patents. We choose these indicators because they are strictly
produced and recorded once a year, and they can comprehensively represent the academic
level of universities.

An important issue for conventional time series data analysis is the validation of
stationarity. A stationary time series is one in which unconditional joint probability dis-
tribution does not change over time. Stationarity validation is necessary because many
statistical models assume that time series data is stationary, and analysis on nonstationary
time series data could result in spurious regression, which means the time series has no
relationship with the predicted trend.

One of the popular approaches for stationarity validation is the unit root test (URT) [31].
The null hypothesis of URT is that the unit root exists, i.e., the time series is nonstationary.
We choose augmented Dickey–Fuller (ADF) test, which is one of the broadly used methods
for URT, to validate the stationarity of our data, i.e., the six categories of academic indicators
from 2010 to 2019 of the 50 universities. The implementation is provided by Python API
statsmodels.tsa.stattools.adfuller. The API reads the time series data and returns
the p-value, which is the confidence of accepting the null hypothesis of URT. The result of
ADF test on the original data is displayed in Figure 2. We can see that most of the samples
have a p-value that supports the null hypothesis; hence, we cannot directly use the raw
data for analysis.

Figure 2. p-values of ADF test on raw data. The results show that most of the data is nonstationary.
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Table 1. The names and abbreviations of the 50 universities.

No. 1 to No. 25 No. 26 to No. 50

Tsinghua University(THU) Hohai University(HHU)

Zhejiang University(ZJU) Hunan University(HNU)

Peking University(PKU) East China Normal University(ECNU)

Sun Yat-sen University(SYSU) South China University of Technology(SCUT)

Shanghai Jiao Tong University(SJTU) Lanzhou University(LZU)

Fudan University(FDU) Nanjing University(NJU)

Shandong University(SDU) Nanjing University of Aeronautics and Astronautics(NUAA)

Huazhong University of Science and Technology(HUST) Nanjing University of Science and Technology(NJUST)

Xi’an Jiaotong University(XJTU) Nankai University(NKU)

Southeast University(SEU) Shenzhen University(SZU)

Beihang University(BHU) Tianjin Universally(TJU)

Harbin Institute of Technology(HIT) Wuhan University of Technology(WUT)

Tongji University(TONGJI) Xidian University(XDU)

Wuhan University(WHU) Northwest A & F University(NWAFU)

Sichuan University(SCU) Southwest University(SWU)

Beijing Institute of Technology(BIT) Southwest Jiao Tong University(SWJTU)

Northwestern Polytechnical University(NPU) Xiamen University(XMU)

Jilin University(JLU) Ocean University of China(OUC)

Beijing Normal University(BNU) University of Science and Technology of China(USTC)

Central South University(CSU) China University of Mining and Technology(CUMT)

Beijing Jiao Tong University(BJTU) China Agricultural University(CAU)

University of Science and Technology Beijing(USTB) Renmin University of China(RUC)

Dalian University of Technology(DUT) China University of Petroleum-Beijing(CUP)

University of Electronic Science and Technology of China(UESTC) China University of Petroleum-East China(UPC)

Northeastern University(NEU) Chongqing University(CQU)

To address the problem of nonstationarity, we propose to convert time series into its
chain indexes, which is a technique usually used in economics [32]. The n-th chain index
Cn is defined as Cn = Dn

Dn−1
, in which Dn is the n-th raw data point. An example is given in

Table 2.

Table 2. Chain index example.

Index 0 1 2 3 4 5 6 7 8 9

Raw Data Dn 1018 1144 1364 1670 2055 2303 2654 2957 3567 4496

Chain Index Cn 1.12 1.19 1.22 1.23 1.12 1.15 1.11 1.21 1.26

For our data, every time series sequence contains 10 points. We calculate the chain
indexes for each sequence respectively and then perform ADF test on the chain index
sequence. The result is shown in Figure 3. We can see that the processed data mostly meets
the requirement of time series analysis, and only about 30 samples have p-value bigger
than 0.1, which are excluded to ensure the whole dataset is stationary.
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Figure 3. p-values of ADF test on chain indexes. Most of the data is stationary after the convertion of
chain indices.

3. Prediction Based On Markov Chain
3.1. Overview of Markov Chain

The Markov chain (MC) can be said to be the cornerstone of machine learning and
artificial intelligence, and has a wide range of applications in finance [32], weather fore-
casting [33], and many other fields. In fact, a Markov chain is a special kind of stochastic
process where the next state of the system depends only on the current state and not on the
previous ones.

Definition 7. Stochastic process in form of discrete sequence of random variables {Xn}, n =
1, 2, · · · is said to have the Markov property if Equation (9) holds for any finite n, where particular
realizations xn belong to discrete state space S = {si}, i = 1, 2, · · · , k. We have

P(Xn+1 = xn+1 | X1 = x1, X2 = x2, · · · , Xn = xn) = P(Xn+1 = xn+1 | Xn = xn) (9)

Generally, MC is described by vectors p(n) which give unconditional probability distri-
butions of states, and transition probability matrix P which gives conditional probabilities
pij = P

(
Xn+1 = sj | Xn = si

)
, i, j = 1, 2, · · · , k where pij may depend on n. Development

of p(n) is given by recurrence Equation (10), where T denotes transposition. We have

p(n + 1)T = p(n)TP, n = 1, 2, · · · (10)

3.2. Simulation and Results

As mentioned in Section 2.3, to ensure the stationarity of time series, the chain indices
are used for input data. Considering MC model is meant to predict a sequence of discrete
states and chain indices are continuous real numbers, we make projections that map chain
indices to some discrete states. We define state spaces S1, S2, and S3 as below. The intervals
are divided according to practical demands and the distribution of data. We have

S1 = {D, G}, D : Cn ≤ 1, G : Cn > 1 (11)

S2 = {D, G1, G2}, D : Cn ≤ 1, G1 : 1 < Cn ≤ 1.5, G2 > 1.5 (12)

S3 = {D, G1, G2, G3}, D : Cn ≤ 1, G1 : 1 < Cn ≤ 1.25,

G2 : 1.25 < Cn ≤ 1.5, G3 : Cn > 1.5 (13)

In the simulation, we truncate every 9-element sequence into an 8-element input
sequence and an element to predict. The transition probability matrix P is given as

pij = P(Cn+1 = sj|Cn = si), s ∈ S (14)

After the construction of the transition probability matrix, we can then use the recur-
rence equation to give predictions. We have

p(n + 1)T = p(n)TP (15)
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In this paper, we use some classic metrics to evaluate the performance of different
models and the related definitions are given briefly as follows.

In binary classification tasks, we can divide samples into positive samples and negative
samples. We refer TP to the number of true positive samples classified by the model,
and similarly, FN to false negative samples, FP to false positive samples, as well as TN to
true negative samples. Moreover, for multiclassification tasks, we can select one specified
class as the positive samples and the other as negative samples. On this basis, we can define
precision, recall and accuracy as follows:

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

accuracy =
TP

TP + TN + FP + FN
(18)

In case the model has high precision but low recall or the contrary, F1-score is also
introduced. The Fβ-score is defined as

Fβ−score = (1 + β2)× precision× recall
(β2 × precision) + recall

(19)

and the F1-score is most usually used. These four metrics will be used to evaluate the
performance of the models. It is worth mentioning that we select D-state as the positive
samples as there are fewer D-state samples and it has higher requirements for the models
to give the correct results.

In the simulations of MC, the starting state is directly given by p(1). We use Python to
implement the simulation, and the results are shown in Table 3.

Table 3. Results of Markov chain prediction on chain index data.

Metric State Space S1 State Space S2 State Space S3

Precision 0.600 0.469 0.391

Recall 0.246 0.268 0.321

Accuracy 0.813 0.643 0.497

F1-Score 0.349 0.341 0.353

The results show that the accuracy and the precision score keep going down with the
increase of states, but the recall score goes up. As there are many more growing states
(Cn > 1) than decreasing states (Cn ≤ 1), the model can achieve high accuracy as long
as it has a bias toward predicting increase. Noticing that the recall score is fairly low at
the beginning, we can conclude that the MC model is highly biased and actually cannot
make very good predictions. The sequence is too short for the MC model to learn enough
probability information.

4. Prediction Based On TDA
4.1. Overview of TDA

Although one can trace back geometric methods used for data analysis long ago,
TDA really started as a field with the pioneering works of Edelsbrunner et al. [34] and
Zomorodian and Carlsson [35] in persistent homology and was popularized in a landmark
paper by Carlsson [36].
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The general purpose of TDA is to extract effective information from high-dimensional
data, which belongs to unsupervised learning and representation learning from the per-
spective of machine learning. Over the past few years, researchers have provided TDA
with many efficient data structures and algorithms that are now implemented and available
and easy to use through the standard libraries.

In recent years, the number of publications on the application of topological data
analysis has increased greatly. Below we list only some of the results, 3D shape analy-
sis by Skraba [37], material science by Kramar [38], multivariate time series analysis by
Khasawneh and Munch [20], image analysis by Qaiser [39], and financial investment by
Goel [40]. These successful results have demonstrated the effectiveness of topological and
geometric approaches. In the next section, we will apply persistent homology to feature
generation on data from 50 universities.

4.2. Feature Generation with Persistent Homology

As opposed to conventional time series analysis methods, persistent homology takes
a data cloud sampled from time series as input; hence, there is no concern about stationar-
ity [41]. As persistent homology relies on a distance metric, we first normalize the raw data
to ensure the scales of different indicators are comparable. Then we apply Takens’s embed-
ding to convert time series into data clouds. According to the previous research [23,24,42],
we select the delay parameter τ as 1 and the dimension parameter d as 3. Hence, the nine-
element input sequence is converted into a group of seven points with three dimensions.
Then, we can apply persistent homology on the data clouds. As introduced in Section 2.2,
the output of persistent homology is a set of pairs of birth times and death times of com-
plexes, which can be presented as persistence diagrams or barcodes. Then, statistics can
be produced from the persistence diagrams. The pipeline of TDA can be summarized as
Figure 4. In this article, we use the Python package ripser [43] to compute the persistence
diagrams.

Time series Data Scaled Data Point Cloud

Persistence DiagramsCorrelated FeaturesDownstream Model

Normalization
Takens’s

Embedding

Persistent
HomologyStatistical

Methods

Figure 4. TDA flowchart.

To explicitly present the output of persistent homology, we select three samples with
growing trends and the other three with decreasing trends, and show their persistence
diagrams in Figure 5.

We can see that the lifetimes in dimension H0 show strong correlations with the trends.
The ones with growing trends have smaller maximum lifetimes, and their death times are
more dense. This inspires us to solve the statistics of the lifetimes of each diagram and
check if they are good features for predicting trends. In H0 dimension all points have birth
time tb = 0; hence, lifetime equals death time td. The statistics we used include:

• sum of lifetimes: ∑ td;
• mean of lifetimes: µ(td);
• standard deviation of lifetimes: σ(td);
• maximal lifetime: M(td);
• minimal lifetime: m(td);
• number of lifetimes bigger than 0.5M(td): N0.5M;
• number of lifetimes bigger than 0.5µ(td): N0.5µ.
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Figure 5. Persistence diagram samples.

After obtaining the statistics, we can solve their correlations and the results are pre-
sented as Table 4.

We can see that the statistics obtained from persistence diagrams are well correlated
with the trends; hence, they are good features used by the downstream algorithm to give
predictions. We use PCA to map the time series data into planes to visualize the data
distribution before and after persistent homology. The figures are as Figures 6 and 7. We
can see that the statistics produced by persistence diagrams actually have a more explicit
pattern and are easier for classification.

Table 4. Correlations between statistics and trend.

Statistics ∑ td µ(td) σ(td) M(td) m(td) N0.5M N0.5µ

∑ td 1.00 0.99 0.63 0.86 0.70 0.13 0.25
µ(td) 1.00 0.63 0.86 0.70 0.13 0.25
σ(td) 1.00 0.89 0.01 −0.52 −0.03
M(td) 1.00 0.42 −0.29 −0.02
m(td) 1.00 0.45 0.05
N0.5M 1.00 0.39
N0.5µ 1.00

Trend −0.62 −0.62 −0.41 −0.60 −0.51 −0.07 −0.11

To further explore how persistent homology acts on the inputs, we apply sensitivity
analysis to this process. We choose to use Sobol method, which decomposes the variance
of output into fractions and attributes them to the input variants as the direct measures
of sensitivity. It is one of the most widely used sensitivity analysis methods, as it can
adapt to nonlinear responses and it is a global method, which means it gives sensitivity
measures based on the whole input space. The implementation is achieved by using the
Python package salib [44]. It provides tools to easily generate input samples according to
specified bounds and solve the sensitivity scores by using inputs and outputs of the model.
In our simulations, we use the scaled data (as their bounds are easily determined) as inputs
and the statistics of persistence diagrams as outputs, which is displayed in Figure 4, and we
set the number of samples to 1024. The results of the total sensitivity contributions for the
six statistics are displayed in Figure 8. Note that the sum and the mean of lifetimes have
the same sensitivity bar plot because the mean is just computed by dividing the sum into
the same constant.
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Figure 6. Samples in original space are disordered; hence, it can be hard to give predictions.

Figure 7. After feature extraction by TDA, samples are arranged by different variation trends, which
provides convenience for downstream models.

From Figure 8, we can discover that the “body” of the input variants has higher
sensitivities compared to its “head” and “tail” parts. We attribute this to the use of Takens’
embedding, and this distribution helps persistent homology focus more on the global
trends instead of being influenced by local disturbances. In addition, we can find that
the statistics with higher linear dependence on the trends overall have a lower sensitivity,
which indicates our method does have great robustness. In addition, as a matter of fact,
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all six statistics are statistically significant under an F-test relative to all the input variants,
which again validates that these statistics can reflect the trends and are good features for
prediction.

Figure 8. Bar plot of the total sensitivity contributions. The input variants x1 . . . x10 correspond to the
yearly scaled data and their bounds are determined by the quantile of the original data.

4.3. Trend Forecasting with SVM

Support vector machine (SVM) is a very famous supervised machine learning algo-
rithm. The vanilla SVM uses training samples to find a hyperplane that maximizes the
minimum distance of different classes in the feature space. Later, with the introduction
of kernel methods, people found that SVM performs well for both linear and nonlinear
analyses, and can be used for both classification (SVC) and regression (SVR) [45]. In our
simulations, we use the statistics solved in Section 4.2 as features to forecast the trends.
Three kernels, i.e., the linear kernel, the polynomial kernel and the Gaussian radial basis
function (RBF) kernel are respectively applied to better fit the data. Three-quarters of the
data is randomly selected as the training dataset to produce an SVM classifier with one
of the three kernels, and the rest of the data is used as a test dataset. For each kernel, we
conduct 10 simulations, and record the average results. The numerical implementation of
SVM is provided by Python package sklearn.svm [46] and we only change the specified
kernels, keeping the other parameters default. The results in different state spaces are as
Tables 5–7. Note that the SVM with polynomial kernel has reported zero values for preci-
sion and recall, which indicates that this kernel cannot correctly distinguish the positive
samples (D-state). In order to make head-to-head quantitative comparisons, we also test
the vanilla SVM classifier with the chain-indexed data (to ensure the stationarity) and the
corresponding results are also displayed in Tables 5–7. Interestingly, when simulating on
original data, the vanilla SVM with the linear kernel cannot converge instead of performing
well as it does on the TDA statistics.
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Table 5. Results of different prediction methods on state space S1.

Methods Precision Recall Accuracy F1-Score

Vanilla SVM With Linear Kernel × × × ×

Vanilla SVM With Polynomial Kernel 0.385 0.491 0.760 0.432

Vanilla SVM With RBF Kernel 0.373 0.5 0.747 0.427

PH + SVM With Linear Kernel 0.688 0.846 0.906 0.759

PH + SVM With Polynomial Kernel 0.571 0.677 0.802 0.615

PH + SVM With RBF Kernel 0 0 0.800 0

Table 6. Results of different prediction methods on state space S2.

Methods Precision Recall Accuracy F1-Score

Vanilla SVM With Linear Kernel × × × ×

Vanilla SVM With Polynomial Kernel 0.198 0.326 0.587 0.246

Vanilla SVM With RBF Kernel 0.187 0.333 0.560 0.239

PH + SVM With Linear Kernel 0.666 0.677 0.800 0.674

PH + SVM With Polynomial Kernel 0.643 0.529 0.722 0.581

PH + SVM With RBF Kernel 0 0 0.720 0

Table 7. Results of different prediction methods on state space S3.

Methods Precision Recall Accuracy F1-Score

Vanilla SVM With Linear Kernel × × × ×

Vanilla SVM With Polynomial Kernel 0.087 0.250 0.347 0.129

Vanilla SVM With RBF Kernel 0.081 0.250 0.320 0.122

PH + SVM With Linear Kernel 0.652 0.747 0.614 0.714

PH + SVM With Polynomial Kernel 0.583 0.636 0.542 0.606

PH + SVM With RBF Kernel 0 0 0.515 0

From the simulation results, we can conclude that statistics from persistent homology
prove to be good features for the prediction of variation trends of short time series data.
In the three kernels used, the linear kernel performs the best on the TDA statistics, whereas
the RBF kernel cannot work properly. This indicates that the statistics have linear rela-
tionships with the trend, as the RBF kernel should perform well on nonlinear datasets. In
contrast, the nonlinear kernels perform well relatively on the original data, but do not rival
the performance on the TDA statistics. This proves that persistent homology is a powerful
tool with which to dig the underlying relationships and convert the nonlinear relationships
into linear in our simulations. Moreover, the recall and the F1-score keep a high level even
with the increase of states when using TDA statistics, which supports the idea that data
produced by persistent homology together with SVM can achieve very good predictions.

To bring the university development forecast into full play, we further apply SVC with
linear kernel on the top 20 universities to obtain an instructive result. We collected the
corresponding data from 2010 to 2021 and use the same simulation strategies as above. We
train the model with leave-one-out cross-validation. The prediction results are displayed
in Table 8. We can see that the funding indicators show a general decline among more
than half of the universities, whereas the publication- and patent-related indicators keep
increasing mostly. In addition, we can conclude that, though the overall variation trend
of the academic indicators of the top 20 universities appears to be rising, the universities
likely to have decreasing indicators mainly are the provincial colleges, and their academic
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backgrounds are mainly natural science or social science, rather than engineering. This
phenomenon can also be validated by our previous work [1], as the universities with the
same (decreasing) trends are more likely to be clustered together.

Table 8. Results of indicators variation for top 20 China mainland universities in 2022. “G” represents
grow and “D” represents decrease.

University Abbr. SCI SSCI Funds Fund Amount Patent App. Patent Auth.

PKU D G D D G G

BHU G G D G G G

BIT G G D G G G

BNU G D D D D G

SEU G G G D D G

FDU D D G D G G

HIT G G G G G D

HUST G G G D G G

JLU D G D D G G

THU D G G G G G

SDU G G D D G G

SJTU G G G G G G

SCU D G D D G G

TONGJI G G D D G G

WHU G G D G G G

XJTU G G G G D G

NPU G D G D G G

ZJU G G G G G G

CSU G G D D G G

SYSU G G D D G G

5. Conclusions and Future Work

Based on the fact that the prediction of university academic indicator variation trends
is hardly studied, this paper proposes to obtain time series patterns by using persistent
homology. We use classic TDA pipeline methods to extract features from raw data and
SVM to make predictions. The results show that TDA methods have an obvious advantage
over the conventional statistical Markov chain method in terms of accuracy and F1-score,
which indicates that TDA methods can fully capture the variation patterns. Our work
proves the great potential of persistent homology in the field of short time series data
analysis. The prediction results also provide a new perspective for evaluating the academic
performance development of universities. Compared to the previous work based on
conventional statistical and bibliometrics methods [47], our work has a solid foundation
of mathematical methodology, and thus can avoid the subjective influence introduced by
researchers and can be applied in a wider range of related indicator evaluation.

In the future, we would like to conduct further research on the combination of TDA
methods and deep learning. It is also important to address the problem of fitting nonequal-
length data to persistent homology methods, as in practice time series data at a specific
point can be missing, and the existing TDA methods require sequences of equal length on
which to perform transitions. Future work would play a significant role in the practical
application of TDA methods. In addition, more studies can be carried on to reveal the
relationships between university development and its subject background as well as many
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other factors. The designing of evaluation methods for combining existing rating system
with the growing potential of university level is also a big challenge. In brief, the research
of quantitative university evaluation still has a long way to go.
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