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Abstract: The graph connectivity is a fundamental concept in graph theory. In particular, it plays
a vital role in applications related to the modern interconnection graphs, e.g., it can be used to
measure the vulnerability of the corresponding graph, and is an important metric for reliability and
fault tolerance of the graph. Here, firstly, we introduce two types of divided operations, named
vertex-divided operation and edge-divided operation, respectively, as well as their inverse operations vertex-
coincident operation and edge-coincident operation, to find some methods for splitting vertices of graphs.
Secondly, we define a new connectivity, which can be referred to as divided connectivity, which
differs from traditional connectivity, and present an equivalence relationship between traditional
connectivity and our divided connectivity. Afterwards, we explore the structures of graphs based on
the vertex-divided connectivity. Then, as an application of our divided operations, we show some
necessary and sufficient conditions for a graph to be an Euler’s graph. Finally, we propose some
valuable and meaningful problems for further research.

Keywords: divided operation; coincident operation; divided connectivity; Euler graph

1. Introduction and Researching Background

Graph connectivity is one of the most basic concepts used in the application of graph
theory, both in the combinatorial sense and in the algorithmic sense. Especially, it plays
an important role in applications related to graph embedding. The connectivity can serve
to assess the vulnerability of the corresponding graph and measure the capability of
connection for a set of vertices in the graph. To better understand the characteristics of
graph connectivity, a wide range of technical methods were developed and then used to
analyze various problems.

This classical issue has attracted attention to understanding and utilizing various
operations regarding graphs. By consulting the literature, we found that the splitting
operations on graphs can be divided two classes: one is the vertex-splitting operation and
another is the edge-splitting operation. Figure 1 explains the vertex-splitting process and
the edge-splitting process. The former operation can be defined as follows: “A vertex v
of degree i = deg(v) is splitted into two new vertices v′ and v′′ with degrees k = deg(v′)
and l = deg(v′′) = i + 2− k by adding a new edge to join v′ and v′′ together”. As several
examples, Cheah et al. obtained an O(n3) algorithm for recognizing a trapezoid graph [1].
Mertzios et al. presented a new method of augmenting a given graph and used vertex-
splitting in a trapezoid graph [2]. Hilton et al. studied graphs which are critical with
respect to the chromatic index [3], and so forth. The latter operation can be explained as
follows: “in an undirected graph, splitting off two edges incident to a vertex s, say (s, u)
and (s, v), means deleting them and adding a new edge (u, v)”, mainly applied to solve
connectivity problems. For example, Nagamochi presented several algorithms for splitting
all edges connect to a vertex s of even degree in a graph G with n vertices and m edges,
namely, O(nm log n+ n2 log2 n) = Õ(nm) for a graph [4], O(n3 log n) for planar graph [5,6],
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and O(mn + n2 log n) for edge-weighted graphs [7]. Fukunaga and Nagamochi presented
if and only if for a given graph/digraph to have an Eulerian detachment that satisfies
a given local edge-connectivity requirement [8]. Farooq et al. described experimental
implementations of graph splitting at vertices and edge cutting [9,10].
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u

v
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Figure 1. A scheme for illustrating vertex-splitting operation and edge-splitting operation: vertex-
splitting operation is from (a) to (b); edge-splitting operation is from (c) to (d).

Although the aforementioned two operations can be used to solve some problems,
these two operations cannot be applied to solve the issue that a vertex be divided into
multiple vertices, nor can they be used to solve problems where the splitting vertices
synthesize a vertex. Here, we introduce two types of divided operations, called v-divided
operation and e-divided operation, respectively, and their inverse operations, v-coincident
operation and e-coincident operation, as we will show shortly.

Since many graphs in the current real world are weighted, and they are composed
of small block (modular) graphs, graphs just organically combine them into a whole,
which is also the most natural and reasonable technique.By splitting and refining the
network, the minimal structural features are obtained. Similar to how matter is made up
of molecules, ions and atoms, the minimal structural features of networks can help us to
understand the structure and topological properties of graphs. Battaglia et al., in [11], points
out: “It is unclear the best ways to convert sensory data into more structured representations like
graphs”. Our divided operation preserves the “molecules, ions and atoms” of the original
weighted network, which is conductive to reconstructing the original weighted network in
polynomial time without the need of “requiring the ability to add or remove edges depending
on context”. Because our divided connectivity is equivalent to the traditional connectivity,
the reliability of our divided connectivity is proven.

The remaining sections of our article are organized as follows. We present a prelim-
inary introductionin Section 2, in which some terminology and notations are given, our
divided operations are introduced, and two parameters of graphs regarding the divided
connectivity are defined. In Section 3, we discuss the connections on various graph connec-
tivities, present an equivalent relationship between traditional connectivity and our divided
connectivity, and show the topological structures of graphs by our divided technique. As an
application of our divided operations, we show some necessary and sufficient conditions
for a graph to be an Euler’s graph. An elaborate conclusion summarizes the above works
and proposes possible problems for further investigation of various connectivities in the
last section.

2. Divided Operations

The following operations on graphs are discussed in this article. For distinction, we
will use “divide” or “divided” in our definitions instead of “split” or “splitting”, since
our operations differ from “edge-splitting” and “vertex-splitting” used in the existing
published articles. A simple graph is one having no multiple-edge and self-edge. Let N(x)
be the set of all neighbors of a vertex x in a simple graph, and we call N(x) neighbor set,
so the cardinality |N(x)| is defined as the degree of the vertex x. We present two types
of divided operations [12]. The mathematical symbols apllied in our paper are shown in
Table 1.
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Table 1. The mathematical symbols

N(x) The set of all neighbors of a vertex x in a simple graph
|N(x)| The degree of the vertex x
δ(H) The minimum degree
κ(H) The vertex connectivity
κ′(H) The edge connectivity
κd(H) The v-divided k-connected

• Vertex-divided operation and vertex-coincident operation. For the neighbor set
N(x) = {ui : i ∈ [1, n]} of a vertex x of a simple graph G, where n is the degree
of x, we define a vertex-divided operation (v-divided operation) to x as follows: Divide
x into two vertices x1, x2, and then join x1 with vertices u1, u2, . . . , ui with respect to
n > i ≥ 1, and then join x2 with vertices ui+1, . . . , un for n− i ≥ 1; finally, the resul-
tant graph is denoted as G ∧ x. If two neighbor sets N(x) and N(y) of two vertices
x, y of a simple graph G hold N(x) ∩ N(y) = ∅ true, we coincide x with y into one
vertex w = x ◦ y such that N(w) = N(x) ∪ N(y), and refer to this procedure as a
vertex-coincident operation (v-coincident operation); the resultant graph is denoted as
G(x ◦ y).

• Edge-divided operation and edge-coincident operation. Let uv be an edge of a sim-
ple graph G with the neighbor sets N(u) = {xs : s ∈ [1, j]} and N(v) = {yt : t ∈ [1, n]}.
We divide the edge uv into two edges u′v′ and u′′v′′ such that N(u′) = {xs : s ∈ [1, i]}
and N(u′′) = {xs : s ∈ [i + 1, j]}, holding j− i ≥ 1 true, as well as N(v′) = {yt : t ∈
[1, k]} and N(v′′) = {yt : t ∈ [k + 1, n]}, holding n− k ≥ 1 true, and the resultant
graph is denoted as G ∧ uv; this procedure is called an edge-divided operation (e-divided
operation). Conversely, we coincide two edges u′v′ and u′′v′′ of the graph H = G ∧ uv
into one, and the resultant graph is written as H(u′v′ 	 u′′v′′) if N(u′) ∩ N(u′′) = ∅
and N(v′) ∩ N(v′′) = ∅; we name the procedure of obtaining H(u′v′ 	 u′′v′′) as
edge-coincident operation (e-coincident operation).

In Figure 2, a v-divided operation is from (c) to (b), and another v-divided operation
is from (b) to (a); a v-coincident operation is from (a) to (b), and another v-coincident
operation is from (b) to (c). An e-divided operation is just from (c) to (d); and an e-coincident
operation is from (d) to (c). In Figure 2, after a group of divided operations, then the
neighbor sets hold N(u′) ∩ N(u′′) = ∅ and N(v′) ∩ N(v′′) = ∅ in the resultant graph. We
perform a v-divided operation to a vertex u of a simple graph H, so the vertex set satisfies
|V(H ∧ u)| = 1 + |V(H)| and the edge set holds |E(H ∧ u)| = |E(H)| (see Figure 2b).
The resultant graph obtained by performing an e-divided operation to an edge uv of H
holds |V(H ∧ uv)| = 2 + |V(H)| and |E(H ∧ uv)| = 1 + |E(H)| true (see Figure 2d).
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Figure 2. A schemefor illustrating four graph operations: (a) v-divided operation; (b) v-coincident
operation; (c) e-divided operation; and (d) e-coincident operation, cited from [12].

Remark 1.

(1) Let f be an attribute of a network N(t) at time step t, the evaluation f (x, t) of each vertex x is
called vertex weight, and the evaluation f (uv, t) of each edge uv is called edge weight. Thus,
we say that N(t) is a weighted network. For example, we have f (u, t) = f (u′, t) + f (u′′, t)
and f (v, t) = f (v′, t) + f (v′′, t) in Figure 2a–c; and f (uv, t) = f (u′v′, t) + f (u′′v′′, t) in
Figure 2c,d, respectively. Thereby, the v-divided graph N(t) ∧ u and the e-divided graph
N(t) ∧ uv keep the complete weighted information of the original network N(t).
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(2) The resultant graph obtained by deleting a vertex x from a simple graph G is denoted as G− x
(v-deleted), and deleting an edge xy from the graph produces a simple graph denoted as G− xy
(e-deleted). Clearly, the v-deleted (respectively, e-deleted) graph G− x (respectively, G− xy)
is unique, but the v-divided (respectively, e-divided) graph G ∧ x (respectively, G ∧ xy) is
not unique, in general. However, it is difficult to reconstruct the original graph G from the
v-deleted (respectively, e-deleted) graph G − x (respectively, G − xy), although it is easy
for the v-divided (respectively, e-divided) graph G ∧ x (respectively, G ∧ xy), because G ∧ x
(respectively, G ∧ xy) maintains the complete structure information of the original graph G.

(3) The vertex deletion technique is applied to many issues in mathematics, such as the famous
Kelly–Ulam’s reconstruction conjecture proposed in 1942: Let both G and H be graphs with
n vertices. If there is a bijection f : V(G) → V(H) such that two vertices deleted graphs
G− u ∼= H− f (u) for each vertex u ∈ V(G), then these two graphs G and H are isomorphic
to each other, that is, G ∼= H [13]. However, we claim that G ∼= H if G ∧ u ∼= H ∧ f (u) for
each vertex u ∈ V(G).

We show two parameters of graphs based on the divided connectivity:
The v-divided connectivity. A v-divided k-connected graph H holds: H ∧ V∗ (or H ∧

{xi}k
1) is disconnected, where V∗ = {x1, x2, . . . , xk} is a subset of V(H), each component

Hj of H ∧ {xi}k
1 has at least a vertex wj 6∈ V∗, |V(H ∧ {xi}k

1)| = k + |V(H)| and |E(H ∧
{xi}k

1)| = |E(H)|. The smallest number of k for which H ∧ {xi}k
1 is disconnected is called

the v-divided connectivity of H, denoted as κd(H) (see example shown in Figure 3).
The e-divided connectivity. An e-divided k-connected graph H holds: H ∧ {ei}k

1 (or
H ∧ E∗) is disconnected, where E∗ = {e1, e2, . . . , ek} is a subset of E(H), each component Hj

of H ∧ {ei}k
1 has at least a vertex wj being not any end of any edge of E∗, |V(H ∧ {ei}k

1)| =
2k+ |V(H)| and |E(H∧{ei}k

1)| = k+ |E(H)|. The smallest number of k for which H∧{ei}k
1

is disconnected is called the e-divided connectivity of H, denoted as κ′d(H) (see example
shown in Figure 3).

Recall that the minimum degree δ(H), the vertex connectivity κ(H), and the edge
connectivity κ′(H) of a simple graph G hold the following inequalities [13] true:

κ(H) ≤ κ′(H) ≤ δ(H) (1)

However, we do not have the inequalities (1) about the minimum degree δ(H), the v-
divided connectivity κd(H), and the e-divided connectivity κ′d(H) for a simple graph H.

(a) (b) (c) (d) (e)
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Figure 3. (a) A graph H with minimum degree δ(H) = 4; (b) an e-divided graph H ∧ xw with
κ′d(H) = 1; (c) a v-divided graph H ∧ {x, w} with κd(H) = 2; (d) a v-deleted graph H − {x, w} with
κ(H) = 2; (e) an e-deleted graph H − {yx, yw, yu, yv} with κ′(H) = 4.

3. Some Connections between Graph Connectivities
3.1. Connection between Traditional Connectivity and Divided Connectivity

Lemma 1. A graph G is k-connected if and only if it is v-divided k-connected, namely, κd(H) =
κ(H).

Proof. The proof of “if”. Suppose that G is a k-connected graph, and G− S is disconnected
with S ⊂ V(G) and |S| = k. Let G1, G2, . . . , Gm be the components of the disconnected
graph G− S. Apparently,

(1) m ≥ 2, it is evident.
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(2) Each vertex x ∈ S must be adjacent with some vertex ux,i ∈ V(Gi) for each i = 1, 2,
. . . , m, otherwise, there is a proper subset S∗ ⊂ S with |S∗| < |S|, such that G− S∗ is
disconnected immediately: a contradiction.

(3) By the above (2), we have m subgraphs Hi of G induced by sets S ∪ V(Gi) with
i = 1, 2, . . . , m. We call Hi a block of G. Thereby, we have that V(Hi) ∩ V(Hj) = S
for i 6= j and

⋂m
i=1 V(Hi) = S, which shows that G is v-divided k-connected after

performing the v-divided operations to the vertices of S, and the v-divided graph
G ∧ S has subgraphs H1, H2, . . . , Hm.

(4) We have subgraphs L1, L2, . . . , Ln of the v-divided graph G ∧ S with n ≥ 2, where
Lj =

⋃mj
i=1 Hj,i for j = 1, 2, . . . , n and ∑n

j=1 mj = m, as well as V(Ls) ∩ V(Lt) = S for
s 6= t.

(5) If G is v-divided k∗-connected with k∗ < k, then there exists a subset X ⊂ V(G) with
k∗ = |X| such that the v-divided graph G ∧ X has subgraphs R1, R2, . . . , Ra after per-
forming a series of v-divided operations to the vertices of X, and V(Ri) ∩V(Rj) = X
for i 6= j. Thereby, G− X is disconnected, and this contradicts the hypothesis of the
proof of “if”.

The proof of “only if”. Suppose that G is a v-divided k-connected graph, that is, there
exists a subset Y ⊂ V(G) with |Y| = k, such that the v-divided graph G ∧Y has subgraphs
G′1, G′2, . . . , G′b holding |V(G′i) ∩V(G′j)| = Y for i 6= j. Thus, G−Y is a disconnected graph
with components G′j −Y for j = 1, 2, . . . , b, which means that G is k-connected. Conversely,
if G is k′-connected with k′ < k, then we can obtain that G is a v-divided k′-connected
graph by the proof of “if” above: it is an obvious conflict. We are finished.

Lemma 1 enables us to obtain the subsequent result:

Theorem 1. If a k-connected graph has a property related with its k-connectivity, so does a v-divided
k-connected graph.

For example, Menger’s theorem (Karl Menger, 1927) states the following: “Let G be a
graph of order greater than k + 1. Then G is k-connected if and only if any two distinct vertices of G
are connected by at least k mutually internally-disjoint paths”. Thus, each v-divided k-connected
graph has at least k internally-disjoint paths to join any pair of vertices.

Remark 2.

(1) A k-connected graph G induces that the disconnected graph G − S has mutually-disjoint
subgraphs G1, G2, . . . , Gm, where S is a subset of vertices of G and |S| = k. Evidently, these
mutually-disjoint subgraphs G1, G2, . . . , Gm are fixed. However, the v-divided graph G ∧ S
may have its subgraphs L1, L2, . . . , Ln with 2 ≤ n ≤ m.

(2) We point out that the reconstruction of G from the v-divided graph G ∧ S is easier than that
based on the vertex-deleting graph G − S. Recall Kelly–Ulam’s reconstruction conjecture
(1942); unfortunately, this reconstruction conjecture is still open now.

Theorem 2. Any connected graph G holds the inequalities κ′d(G) ≤ κd(G) ≤ 2κ′d(G) true,
and the boundaries are reachable.

Proof. First of all, κ′d(K3) = 0 and κ′d(P3) = 0. Let G be a connected graph being not K3
and having the longest path Pa with a ≥ 4. Since G is a v-divided k-connected graph with
k = κd(G), it is k-connected too, by Lemma 1. There exists a subset S ⊂ V(G) with |S| = k
such that G− S is a disconnected graph having components G1, G2, . . . , Gn. We construct
subgraphs Hi holding V(Hi) = V(Gi)∪ S and E(Hi) = E(Gi)∪ {xiyj : xi ∈ V(Gi), yj ∈ S}.
Notice that each vertex yj ∈ S is adjacent with some vertex of Gi for i = 1, 2, . . . , n.
Consequently, H1, H2, . . . , Hn is just the v-divided graph G ∧ S.

If k = 1, namely, S = {w}, the v-divided graph G ∧ S has only H1, H2 such that
V(H1) ∩ V(H2) = {w}. Without loss of generality, H1 contains a path Pb = wx1x2 · · · xb
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with b ≥ 2. Thus, we can divide the edge wx1 of G = H1 ∪ H2 into two edges ,w′x′1 and
w′′x′′1 , for obtaining two H′1, H′2 such that H′1 = H1 with w′x′1 = wx1, and H′2 = H2 + w′′x′′1 ,
where x′′1 is a leaf of H′2, w′′ = w. Clearly, |V(H′1) \ {w, x1}| ≥ 1, so G ∧wx1 is an e-divided
graph with κ′d(G) = 1 (see Figure 4).

Considering the case k ≥ 2, we can obtain two graphs G∗1 and G∗2 from H1, H2, . . . , Hn
of the v-divided graph G ∧ S by (4) of the proof of Lemma 1, such that V(G∗1 ) ∩V(G∗2 ) = S,
so there are edges xiyi of G∗1 holding xi ∈ V(G∗1 ) \ S and yi ∈ S = {y1, y2, . . . , yk}, such that
|V(G∗1 ) \ {xi, yi}| ≥ 1. Thereby, we divide each edge xiyi into two x′iy

′
i and x′′i y′′i to obtain

two graphs, H∗1 and H∗2 , such that H∗1 = G∗1 with x′iy
′
i = xiyi, H∗2 = G∗2 + {x′′i y′′i : i =

1, 2, . . . , k} with y′′i = yi, where each vertex x′′i of H∗2 is a leaf. We then obtain G ∧ {xiyi}k
1 to

be disconnected and to have two subgraphs H∗1 and H∗2 . We claim that κ′d(G) ≤ κd(G) by
the above deduction.

For showing κd(G) ≤ 2κ′d(G), we take an edge subset {e1, e2, . . . , ek} of E(G) with
k = κ′d(G). Notice that the e-divided graph G ∧ {ei}k

1 is obtained by dividing each edge
ei = uivi into two edges, e′i = u′iv

′
i and e′′i = u′′i v′′i . It means that dividing each vertex of

the vertex set X = {ui, vi : i = 1, 2, . . . , k} enables us to obtain a v-divided graph G ∧ X,
which is disconnected; immediately, we obtain the inequalities κd(G) ≤ 2κ′d(G), as desired.
The examples depicted in Figures 3 and 4 are to show the boundaries of this theorem.
The proof of the theorem is complete.

Remark 3. This theorem provides a method for computing graph connectivity.

x
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u v
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Figure 4. A scheme for illustrating the proof of Theorem 2.

3.2. Structures of Graphs Based on the v-Divided Connectivity

Let κ(G) = k for a connected graph G, so there are subsets Si(k) of V(G) for i = 1, 2, . . . ,
M(k) and |Si(k)| = k, such that each disconnected graph G− Si(k) has its own components
Gi,1, Gi,2, . . . , Gi,mi with mi ≥ 2, where M(k) is the number of subsets of G. We have two
new parameters:

m−(k) = min{mi : Si(k) ⊂ V(G), i = 1, 2, . . . , M(k)},

and
m+(k) = min{mi : Si(k) ⊂ V(G), i = 1, 2, . . . , M(k)}.

We generalize the above two parameters to other disconnected graphs G− Si(r) for
i = 1, 2, . . . , M(r) with possible r with respect to k ≤ r ≤ κM(G). Thereby, we have m−(r)
and m+(r) with k ≤ r ≤ κM(G) having no subset Y with κM(G)+ 1 elements making G−Y
disconnected. We have another concept regarding graph connectivity which is ndis(G)
defined by ndis(G) = max{m+(r) : k ≤ r ≤ κM(G)}.Thus, we have a subset X ⊂ V(G)
such that the disconnected graph G− X has the maximum number ndis(G) of components.
Hence, G− X can be characterized as follows:

Theorem 3. Suppose that a connected graph G has a subset X holding G− X to be not connected,
and n(G− X) = ndis(G) if and only if each component of G− X is a complete graph.

Proof. Let the disconnected graph G− X has its own components H1, H2, . . . , Hn, where
n = ndis(G). Clearly, all components Hj are complete graphs. If some Hj has two nonad-
jacent vertices u and v, then a subset X(u, v) = V(Hj)− {u, v} means that Hj − X(u, v)
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has two isolated vertices u and v, so ndis(G) ≥ n + 1, which contradicts n = n(G− X) =
ndis(G).

Remark 4. This theorem provides several perspectives for discussing graph connectivity, such as a
half-K-group of v-divided graphs, connected-perfect, and so on.

Since G − X has the maximum components H1, H2, . . . , Hn with n = n(G − X) =
ndis(G), we have a v-divided graph G ∧ X with its components Q1, Q2, . . . , Qn holding
V(Qj) = V(Hj) ∪Yj and E(Qj) = E(Hj) ∪ Ej ∪ E∗j , where Yj = X \ Xj and Ej = {xy : x ∈
V(Hj), y ∈ Yj} and E∗j = {uv : u, v ∈ Yj}, and each vertex of Xj is not adjacent with
any vertex of Hj for j = 1, 2, . . . , M(k). Thus, we can coincide these v-divided graphs
Q1, Q2, . . . , Qn to obtain the original graph G (or other graphs H with connectivity κ(H) =
k, where H differs from G). What structure does each Qj have? Here, Qj = Knj ∪ G[Ej] ∪
G[E∗j ], where nj = |V(Hj)| since Hj is a complete graph, and V(G[Ej]) ∩ V(G[E∗j ]) = Yj
such that

(a-1) V(Knj) ∩V(Kni ) = ∅; (a-2) Vj,s = V(G[E∗j ]) ∩V(G[E∗s ]) 6= ∅ for some j 6= s.

If (a-2) holds true, we can coincide Qj with Qs together by overlapping the same
vertices of Vj,s in Qj and Qs. We call Q1, Q2, . . . , Qn a half-K-group of v-divided graphs.

We consider a subset X ⊂ V(G) to be connected-perfect if n(G − X) = ndis(G),
and |X| ≤ |Y| for any subset Y holding G− Y to be disconnect and n(G− Y) = ndis(G).
It may be interesting to find such connected-perfect subsets for a connected graph, and,
moreover, whether a connected graph does have a unique connected-perfect subset, and so
on. In [14], The Sierpinski model S(t) has its own vertex number nS

v(t) and edge number
nS

e (t) as: nS
v(t) = 3·6t+12

5 and nS
e (t) = 9·6t+6

5 at time step t. For instance, the discon-
nected graph S(t)− Xt has n(S(t)− Xt) = 6t−1 components for t ≥ 2, and each Xt is a
connected-perfect set since n(S(t)− Xt) = ndis(S(t)), as well as |Xt| = 3 + 3

5 (6
t−1 − 1).

As t = 2, the Sierpinski model S(2) is v-divided 4-connected and e-divided 2-connected
(see Figure 5) [15].

c

b

a

a

b

c

c

b

a

a

b

c

(a) (b) (c)

a

a

(d)

Figure 5. (a) A Sierpinski model S(1) has ndis(S(1)) = 2 and three connected-perfect subsets.
(b) Another Sierpinski model S(2) has ndis(S(2)) = 8 and three connected-perfect subsets Xa =

{b, b′, c, c′}, Xb = {a, a′, c, c′} and Xc = {b, b′, a, a′}. (c) S(2) is 4-connected and also v-divided 4-
connected, but it is e-divided 2-connected (see Figure 6). (d) The disconnected graph S(2)− X2 has
n(S(2)− X2) = 6 components, which is the most, where X2 = {a, a′, b, b′, c, c′} is a connected-perfect
subset of S(2).



Entropy 2023, 25, 176 8 of 11

ca

a

b

b

c1

b

c2

(a) (b)

a

b

c

c1

b1

a

b

c

c2

b2

(c)

a

b

c

c2

b2

a

b

c

c1

b1

Figure 6. The Sierpinski model S(2) is e-divided 2-connected: (a) Dividing an edge bc′ of the
Sierpinski model S(2) into two edges b′′c1 and b′c2 for obtaining an e-divided graph S(2) ∧ bc′.
(b) Dividing an edge b′c of the e-divided graph S(2) ∧ bc′ into two edges b1c′′ and b2c′ for obtaining
another e-divided graph S(2) ∧ {bc′, b′c}. (c) Another e-divided graph different from the one shown
in (b).

Thus, we obtain the structure of a connected graph having the most components of a
disconnected graph G− X for some subset X of a connected graph G below.

Theorem 4. A connected graph G holds ndis(G) = n(G − X) = n true for some subset X ⊂
V(G) if and only if there are its subgraphs Q1, Q2, . . . , Qn such that each Qj − Yj with Yj =
V(Qj) ∩ X is a complete graph for j = 1, 2, . . . , n. In other words, the v-divided graph G ∧ X has
its own components just to be Q1, Q2, . . . , Qn.

We show an example in Figure 7 for understanding Theorem 4. Moreover, we can
see that G− {x1, x2, x3, x4} has five components in Figure 7, namely, ndis(G) = 5, and G is
2-connected. In fact, H can produce two or more graphs Q such that Q− {x1, x2, x3, x4}
has five components, and Q is 2-connected. The inverse of Theorem 4 is shown below.

Theorem 5. Let each connected graph Li be ki-connected with ki ≥ k ≥ 1 and i = 1, 2, . . . , m.
If there exists a nonempty set X holding V(Li) ∩ V(Lj) = X true for i 6= j and |X| = k, then
the connected graph G obtained by coinciding each vertex of X of Li with its same vertex of X
of Lj (i 6= j) is k-connected. Conversely, the v-divided graph G ∧ X has its own components
L1, L2, . . . , Lm.

(a)

(b)

(c)

(d)

(e)

G   {x1, x2, x3, x4}

<

(a)

(b)

(c)

G

(e)

(d)

x1 x2
x3 x4

Figure 7. (a–e) is a connected graph G in the left, and (a–e) is a v-divided graph H = G ∧
{x1, x2, x3, x4} in the right.

3.3. An Application of the v-Divided and v-Coincident Operations

Coinciding two nonadjacent vertices x, y of a connected graph G, if N(x) ∩ N(y) = ∅
until the resultant graph H has no two nonadjacent vertices u, v holding N(u) ∩ N(v) = ∅
true, we call H an overlapping kernel graph of G. Evidently, there are two or more such
overlapping kernel graphs of G. What characteristics does H have? First of all, H is
connected obviously. An Euler’s graph is one without odd-degree vertex, and such graphs
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were obtained first by the famous mathematician Euler. We present new characters for
Euler’s graphs here.

Theorem 6. A simple graph G of n edges is a connected Euler’s graph if and only if

(E-1) It can be divided into a cycle Cn by a series of vertex divided operations;
(E-2) Its overlapping kernel graph H holds diameter D(H) ≤ 2 and no vertex of H is adjacent

to two vertices of odd-degrees in H, simultaneously.

Proof. We prove (E-1) first.
Necessary. Let G be a connected Euler’s graph, not being a cycle. A 2-degree 2-

connected v-divided operation is defined as follows: Take a vertex x1 with its neighbor set
N(x1) = {y1, y2, . . . , yd}, where d ≥ 4 is the degree of the vertex x. We divide the vertex x1
into two vertices, x′1 and x′′1 , such that N(x′1) = {y1, y2} and N(x′′1 ) = N(x1) \ N(x′1); the
resultant graph is an Euler’s graph still, and is denoted as G ∧ x1. If G ∧ x1 is disconnected,
so G∧ x1 has only two components, G1 and G2, where x′1 ∈ V(G1) and x′′1 ∈ V(G2), then we
modify N(x′1) = {y1, y3} and N(x′′1 ) = N(x) \N(x′), since y3 is connected with each vertex
of G2, and y2 is connected with each vertex of G1. The new graph is connected and denoted
by H1 = G ∧ x1 again. Clearly, |V(G)|+ 1 = |V(H1)| and |E(G)| = E(H1). We refer to
this procedure of dividing the vertex x1 by 2-degree 2-connected v-divided operation. Thereby,
we can perform such operation on H1 to obtain a connected Euler’s graph H2 = H1 ∧ x2
holding |V(H1)|+ 1 = |V(H2)| and |E(H1)| = E(H2) true, if x2 has degree ≥ 4 in H1. We
continue in this way until we obtain a connected Euler’s graph Hm = Hm−1 ∧ xm, in which
there is no vertex having degree more than 4. In other words, Hm is a cycle.

Sufficiency. We can coincide a pair of vertices, x′m and x′′m, of the cycle Hm for obtaining
a connected Euler’s graph Hm−1 if N(x′m) ∩ N(x′′m) = ∅, and then coinciding two vertices
x′m−1 and x′′m−1 of the connected Euler’s graph Hm−1 produces another connected Euler’s
graph Hm−2 when N(x′m−1) ∩ N(x′′m−1) = ∅. Thus, we obtain the original Euler’s graph G
by performing a series of v-coinciding operations, because each Hk is a connected Euler’s
graph for i = 1, 2, . . . , m.

We come to show (E-2) in the following.
The proof of “if”. We perform a so-called non-neighbor coincident operation on a connected

graph G∗1 = G, and this operation is defined as follows: Coinciding two nonadjacent
vertices u, v of G∗1 if N(u) ∩ N(v) = ∅, here, “nonadjacent vertices u, v” means that the
graph G∗1 contains no edge uv. Thus, we perform such operation on the graph until the
last graph G∗k has no two nonadjacent vertices x, y, holding N(x) ∩ N(y) = ∅ for some
k ≥ 1. G∗k is just an overlapping kernel graph of the original graph G∗1 . Obviously, G∗k has its
own diameter D(G∗k ) ≤ 2, and no vertex of G∗k is adjacent to two vertices of odd degrees
simultaneously, as if G∗1 is a connected Euler’s graph.

The proof of “only if”. Suppose that the overlapping kernel graph H of the connected
graph G has its own diameter D(H) ≤ 2 and no vertex has two neighbors of odd degrees
in H. If D(H) = 1, H is a complete graph, and has no vertex having two neighbors of
odd degrees. Thereby, H is a connected Euler’s graph. Performing a series of 2-degree
2-connected v-divided operations on H produces the original graph G. Clearly, G is a
connected Euler’s graph. If D(H) = 2, any pair of nonadjacent vertices u, v of H holds
N(u) ∩ N(v) 6= ∅ true, and H is a connected Euler’s graph since H has no odd-degree
vertex. Obviously, the original graph G is the result of v-dividing H after performing a
series of 2-degree 2-connected v-divided operations.

The proof of the theorem is complete.

Notice that each Sierpinski model S(t) is a connected Euler’s graph, and it can be
v-divided into a cycle Cne(t) at each time step t, where ne(t) = |E(S(t))| = 1

2 (9 · 6t + 6) is
the edge number of the Sierpinski model S(t) at time step t.
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4. Conclusions

To investigate an open question proposed by Battaglia et al. in [11], we defined
two types of divided operations, called the v-divided operation and e-divided operation,
respectively, as well as their inverse operations: the v-coincident operation and e-coincident
operation. Thereby, we defined the v-divided connectivity κd and the e-divided connectivity
κ′d, and showed κ′d ≤ κd ≤ 2κ′d for all simple graphs (respectivenetworks), and κd is
equivalent to the traditional vertex connectivity κ [13]. However, finding the v-divided
k-connectivity for each maximal planar graph of order n ≥ 5 and determining the v-divided
k-connectivity of an Euler’s graph are not easy.

We consider that finding connected-perfect subsets of a connected graph (respective
networks) may be interesting and important for investigating topological structures of GNs.
As known, the Sierpinski model S(t) is scale-free, and we discover that each vertex of a
connected-perfect subset X of S(t) is a scale-free vertex; in other words, X controls the
topological structure of S(t). Does each connected-perfect subset of a scale-free deterministic
network control the topological structure of the network?

For a connected simple graph (respective networks) G with its k-connectivity, our v-
divided graph (respective networks) G∧{xi}k

1 can reconstruct the original graph (respective
networks) G easily, but it is very difficult to rebuild G from the disconnected vertex-
deleting graph (respective networks) G− {xi}k

1, in general. Nevertheless, the structure of
the disconnected graph (respective networks) G− {xi}k

1 is unique, rather than G ∧ {xi}k
1

containing components L1, L2, . . . , Lm with 2 ≤ m ≤ n(G − {xi}k
1), where n(G − {xi}k

1)
is the number of components of the disconnected graph (respective networks) G− {xi}k

1.
We characterized the disconnected graph G− X obtained by deleting a nonempty subset
X of the vertex set V(G) from a connected graph G, in which n(G− X) is the maximum,
and proposed that each component of G− X is a complete graph.

We emphasize that our v-divided operation can dilute a connected Euler’s graph into
a cycle; conversely, our e-coincident operation can concentrate a cycle to an Euler’s graph.
Moreover, each connected simple graph can be obtained by deleting some edges from some
Euler’s graph. We ask the following: How many different Euler’s graphs made by a given
cycle are there?
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