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Abstract: We establish a fluctuation theorem for an open quantum bipartite system that explicitly
manifests the role played by quantum correlation. Generally quantum correlations may substantially
modify the universality of classical thermodynamic relations in composite systems. Our fluctuation
theorem finds a non-equilibrium parameter of genuinely quantum nature that sheds light on the
emerging quantum information thermodynamics. Specifically we show that the statistics of quan-
tum correlation fluctuation obtained in a time-reversed process can provide a useful insight into
addressing work and heat in the resulting thermodynamic evolution. We illustrate these quantum
thermodynamic relations by two examples of quantum correlated systems.

Keywords: fluctuation theorem; quantum thermodynamics; quantum correlation; non-equilibrium;
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1. Introduction

With current quantum technologies to control a few particles or quanta at microscopic
level, much attention has been paid to understand how quantum principles play in the
thermodynamics of quantum systems [1–4]. The quantum thermodynamics particularly far
from equilibrium is an important field of study for open quantum systems under environ-
mental interactions. It brings novel thermodynamic results by using various tools from both
classical and quantum regimes. In the fluctuation dominant regime, thermodynamics may
be addressed by a wide range of strategies to explain how the thermal fluctuations affect the
evolution of system coupled to a thermal environment. One of the most remarkable achieve-
ments particularly in the non-equilibrium (NE) thermodynamics is the fluctuation theorem
(FT) [5–32], which provides a central tool to reveal an interplay between the probabilistic
behavior of entropy production and the second law of thermodynamics [33–50].

Motivated by Szilard’s seminal work that links information theory to thermodynam-
ics [51,52], the so-called information thermodynamics has become a crucial framework
to capture the role played by information in the emerging thermodynamics. One of
its directions is to elucidate how the presence of correlations in a composite system can
modify its thermodynamic evolution in and out of equilibrium in view of irreversibility
measured by entropy production (EP) in NE processes [53–62]. In particular, the second law
of thermodynamics as a universal principle may be derived from FT that is expressed as〈

e−σ+∆I
〉
= 1, (1)

where σ is the entropy production (EP) and ∆I the change in the correlation of the composite
system. This tells that the ensemble average of exponent incorporating EP for individual
systems and a thermal bath plus a change of total correlation between the systems becomes
unity independent of details that NE processes may have. The information FT was first
demonstrated based on classical trajectory scenarios [53,54] and later extended to different
scenarios in both classical and quantum domains [55–57,59–62].
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For the case of quantum systems [9,10,17,63], the statistics of the fluctuating EP and
the mutual information may be obtained by performing quantum measurements at the
initial time and at the final time [55–57,59]. However, such quantum measurements destroy
information on quantum correlation, thereby inappropriate to examine how quantum
principles play in the emerging thermodynamic behaviors. Of course, quantum correlation
may grow during the quantum dynamics after measurements, but it is a different correlation
from the one that has existed in the initial quantum state before the system-reservoir
interaction. Thus, one may instead use various quantum analyses to infer the effect of
quantum fluctuations in terms of a quasi-probability [21] or quantum channel [19,20,29,30]
to assess the quantum information-theoretic quantities.

In this paper, we aim at explicitly manifesting the contributions made by quantum
fluctuation of correlation to the quantum thermodynamics of an open quantum system.
Specifically we establish a detailed fluctuation theorem (DFT) in a form that enables us to
elucidate those quantum contributions distinctly by observing their changes in the time-
reversed process, while addressing classical contributions to EP in the usual time-forward
manner. For this purpose, quantum probabilities in both of the time directions are intro-
duced by reflecting on the quantum incompatibility, thereby obtaining a term representing
genuine quantum nature of correlation. We show that our approach provides a very useful
tool to understand quantum dissipative thermodynamics of correlation compared to the
previously-known approaches and thermodynamic inequalities. We illustrate our theorem
by applying our approach to some non-equilibrium scenarios in view of heat and work for
quantum correlated systems highlighting our advantages over the known results.

2. Fluctuation Theorem for Open Bipartite Quantum System

We intend to generalize the classical FT in Equation (1) to quantum domains by in-
corporating quantum correlations explicitly. We start by considering a non-equilibrium
process for a bipartite quantum system ρAB ∈ HA ⊗HB composed of two subsystems A
and B with ρA ∈ HA and ρB ∈ HB, each interacting with a thermal reservoir ρR ∈ HR.
An arbitrary quantum bipartite state ρi

AB initially decoupled from ρi
R evolves into a fi-

nal state ρ
f
ABR = Uρi

AB ⊗ ρi
RU†, where the process is described by a unitary operator

U. The density operators of the joint system and the subsystems are initially given by
ρi

AB = ∑m pm|m〉〈m| and ρi
A(B) = TrB(A)

(
ρi

AB
)

= ∑a(b) pa(b)|a(b)〉〈a(b)|, respectively,

in the eigen-state decomposition. The thermal reservoir is also described as ρi
R = ∑r pr|r〉〈r|.

After the nonequilibrium process, we denote the final states as ρ
f
AB = ∑m′ pm′ |m′〉〈m′| of

the bipartite system, ρ
f
A = ∑a′ pa′ |a′〉〈a′| of subsystem A, ρ

f
B = ∑b′ pb′ |b′〉〈b′| of subsystem

B, and ρ
f
R = ∑r′ pr′ |r′〉〈r′| of the thermal bath.

As mentioned before, using only classical joint probabilities to look into the information-
thermodynamic quantities is not adequate for quantum thermodynamics [21,22]. Thus,
in order to assess quantum fluctuations appropriately, we introduce a quantum joint
probability reflecting the incompatibility between the state of the joint system and the
subsystems [64–67]. To begin with, the probability for the system AB and the reservoir R to
be found in |m〉 and |r〉 at ti, and |m′〉 and |r′〉 at t f is given by

pm,m′ ;r,r′ = |〈m′, r′|U|m, r〉|2 pm pr. (2)

In the above equation, pm pr is the joint probability for the system and the reservoir to be in
the states |m〉 and |r〉, respectively, at the initial time. On the other hand, |〈m′, r′|U|m, r〉|2
represents a conditional probability of finding the system and the reservoir in the states
|m′〉 and |r′〉, respectively, at the final time through the unitary dynamics U conditioned on
the initial states |m, r〉, which makes sense of pm,m′ ;r,r′ as required. We then multiply the
conditional probabilities pa,b|m and pa′ ,b′ |m′ referring to the case that the subsystem A and B
are found in the states |a〉 (|a′〉) and |b〉 (|b′〉) upon the condition that the composite system
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AB and the reservoir R are in the states |m〉 (|m′〉) and |r〉 (|r′〉) at ti (t f ). This makes it
possible to define a joint probability as

pm,a,b,m′ ,a′ ,b′ ;r,r′ = pm,m′ ;r,r′ |〈m|a, b〉|2|〈m′|a′, b′〉|2, (3)

which is a quantum analogue of classical joint probabilities. By defining the quantum
joint probability in this manner, quantum fluctuation of information on all of the joint
system and the subsystems is kept intact as we do not perform quantum measurements
that would otherwise destroy quantum correlations: Equation (3) is the representation of
information inferred from the density operator of the bipartite system, not by direct mea-
surements incurring disturbance onto the quantum system. To see its validity as probability,
we sum pm,a,b,m′ ,a′ ,b′ ;r,r′ over all local indices a, b, a′, b′. Then, we find the required relation
∑a,b,a′ ,b′ pm,a,b,m′ ,a′ ,b′ ;r,r′ = pm,m′ ;r,r′ . In the same way, we can verify the marginal probabilities
pm′ ,a′ ,b′ ;r′ , pm, etc. Note that, as in all other time-local approaches, we may also extend our
approach to multiple point measurements pm0,m1,··· ,r0,r1,··· = |〈m0|a0, b0〉|2|〈m1|a1, b1〉|2 . . . .

Our main interest is to identify the role of genuinely quantum fluctuations in the
emerging thermodynamics of quantum systems. To this aim, we first derive an information
FT that is generalized from the classical theorem adopting the quantum probability in
Equation (3). The resulting theorem turns out to be〈

e−σ+∆I
〉

q
= κ, (4)

where σ := ∆sA + ∆sB + ∆sR is the usual entropy production defined by a sum of the
entropies of all subsystems and a thermal reservoir, with ∆sX : = − ln px′ − (− ln px)
(X = A, B, R). On the other hand, ∆I := I f − Ii is the change in the classical mutual informa-
tion I(a, b) = ln[pa,b/pa pb] defined by the classical joint probability pa,b = 〈a, b|ρAB|a, b〉.
Note that the entropies sA, sB and sR defined above corresponds to the von Neumann
entropy S(ρ) ≡ −Tr[ρ ln ρ]. This is because that they use the probabilities pa(a′), pb(b′),

and pr(r′) of the states ρ
i( f )
A , ρ

i( f )
B , and ρ

i( f )
R in the eigen-state basis, respectively, as con-

structed before.
Most importantly, the factor κ represents the contribution by genuinely quantum

correlation as we show explicitly below. In a classical limit where quantum correlation
is not involved, this factor approaches κ = 1 recovering the result in Equation (1).
(See Equation (8) and around for the definition of κ that becomes unity if there does not
exist quantum correlation, i.e., the case of α = 0 and δ = 0.) The factor κ thus implies the
departure from the classical universality by reflecting pure quantum fluctuations.

2.1. Deriving the FT in Equation (4)

The NE factor κ is formulated through a time-reversed process Ũ, which starts
with an initial state that corresponds to the final state of the composite system in the
forward process and a reinstated thermal bath at the same temperature T. This pro-
cess Ũ evolves the initial time-reversed state ρ̃i

ABR = ρ̃i
AB ⊗ ρ̃i

R into ρ̃
f
ABR. Similar

to the time-forward process, we construct the relevant states in the time-reversed pro-
cess, i.e., the final state ρ̃

f
AB = TrR

(
ρ̃

f
ABR

)
= ∑m̃ pm̃|m̃〉〈m̃| with the marginal states

ρ̃
f
A(B) = ∑ã(b̃) pã(b̃)|ã(b̃)〉〈ã(b̃)|. The final state of the reservoir is similarly given by

ρ̃
f
R = TrAB

(
ρ̃

f
ABR

)
, with ρ̃

f
R = ∑r̃ pr̃|r̃〉〈r̃|.

Using a time-reversal operator Θ, the initial state ρ̃i
AB of the time-reversed pro-

cess can be expressed in terms of the final state of the time-forward process. That is,
ρ̃i

AB = ∑m̃′ p̃m′ |m̃′〉〈m̃′|, where |m̃′〉 = Θ|m′〉. The joint probability of the time-reversed
process is then given by

p̃m′ ,a′ ,b′ ,m,a,b;r′ ,r = p̃m′ ,m;r′ ,r|〈m′|a′, b′〉|2|〈m|a, b〉|2, (5)
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where p̃m′ ,m;r′ ,r = |〈m̃, r̃|Ũ|m̃′, r̃′〉|2 p̃m′ p̃r′ . Using the identity Ũ = ΘU†Θ† due to the
microscopic reversibility [14], we also have |〈m̃, r̃|Ũ|m̃′, r̃′〉|2 = |〈m, r|Θ†ŨΘ|m′, r′〉|2 =
|〈m, r|U†|m′, r′〉|2.

2.1.1. Detailed FT

As formulated in the Crooks theorem [8], the time-reversed probability can be linked to
the time-forward probability for a quantum bipartite system in a detailed microscopic descrip-
tion. That is, by defining αi( f ) = − ln |〈m(′)|a(′), b(′)〉|2 = ln pm(m′) − ln pm(m′),a(a′),b(b′),
we obtain

pm,a,b,m′ ,a′ ,b′ ;r,r′

= p̃m′ ,a′ ,b′ ,m,a,b;r′ ,re∆sA e∆sB e∆sR e−∆Ie−∆δ,
(6)

with technical details in Appendix A. Here ∆sA := ln pa
p̃a′

, ∆sB := ln pb
p̃b′

and ∆sR := ln pr
p̃r′

are used to represent each systems’ entropy change. In addition, ∆I := I f − Ii = ln
p̃a′ ,b′
p̃a′ p̃b′

−

ln pa,b
pa pb

, and ∆δ := δ f − δi = ln p̃m′
p̃a′ ,b′
− ln pm

pa,b
are used to represent the change of quan-

tum correlation.
The detailed fluctuation theorem is therefore given by

p̃m′ ,a′ ,b′ ,m,a,b;r′ ,r

pm,a,b,m′ ,a′ ,b′ ;r,r′
= e−σ+∆I+∆δ. (7)

Here ∆δ = δ f − δi is the change of a quantum fluctuation defined by δi( f ) = ln pm(m′) −
ln pa(a′),b(b′) representing the distinction between two probabilities: pm addresses the
probability of finding the quantum system in a global state m. In contrast, pa,b ad-
dresses the probability of finding the quantum system in local states a and b, e.g., af-
ter quantum measurements. These probabilities become identical, and then the fluctua-
tion disappears, when the quantum incompatibility does not hold, i.e., [Πm, Πa,b] = 0,
where Πm = |m〉〈m| and Πa,b = |a〉〈a| ⊗ |b〉〈b|. The condition is indeed related
to a type of the measure of quantum correlations [68] given by an amount of gap be-
tween total correlation IQ and classical correlation IC. The average of the fluctuation
becomes 〈δ〉 = IQ − IC = S(∑a,b Πa,bρABΠa,b)− S(ρAB), where the von Neumann en-
tropy of a bipartite system is S(ρAB) = − ∑m pm ln pm and of its post-measured state
S(∑a,b Πa,bρABΠa,b) = −∑a,b pa,b ln pa,b.

2.1.2. Integral FT

The detailed FT in Equation (7) can then be used to obtain the factor κ in the integral
FT in Equation (4). After rearranging the terms in Equation (7) as pm,a,b,m′ ,a′ ,b′ ;r,r′ e−σ+∆I =
p̃m′ ,a′ ,b′ ,m,a,b;r′ ,re−∆δ and summing both the sides of the relation over all possible indices,
we find 〈

e−σ+∆I
〉

q
=
〈
κm,m′

〉
R̃ = κ, (8)

where 〈...〉R̃ indicates an average by the time-reversed joint probability p̃m′ ,m. Here,
κm,m′ = ∑a,a′ ,b,b′ e−(α+∆δ) involves two genuinely quantum fluctuations, ∆δ and α = αi +

α f , with αi( f ) = − ln |〈m(′)|a(′), b(′)〉|2 = ln pm(m′) − ln pm(m′),a(a′),b(b′) in a similar
context to δ. The three indexed joint probability pm(m′),a(a′),b(b′) is related to a quantifica-
tion of correlation through quantum measurements [67], which outputs probabilities of
pm = TrρABΠm and pa,b = TrρABΠa,b. The non-classicality of the factor κ can be demon-
strated by showing that α = 0 and δ = 0 when [Πm, Πa,b] = 0 for all defined indices,
i.e., ρAB = ∑ Πa,bρABΠa,b.

One may find the physical implication of κ based on the fact that κ is evaluated by
assessing α and δ. These two terms are motivated from the observation that a composite
state |m〉 and the local state |a, b〉 are distinguished if there exists quantum correlation. For
the case of α, it is defined as − ln|〈m|a, b〉|2, which becomes zero if the global state |m〉 is
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a product state, i.e., |m〉 = |a, b〉, thereby quantifying quantum correlation between two
subsystems. A similar argument can also be given to δ defined as ln pm − ln pa.b.

2.2. Thermodynamic Inequalities for Heat Transfer and Work

It is worth noting that the time-reversed average of the informational component
is a statistical technique firstly introduced in Ref. [54] to show the role of information
in the Jarzynski’s equality using feedback controls. Our approach here elucidates the
role of quantum fluctuations by identifying the factor κ that involves statistical terms of
genuinely quantum nature. Our fluctuation theorem in Equation (8) can also lead to a novel
thermodynamic inequality that can be more useful than other known inequalities. Using
Jensen’s inequality we readily obtain a thermodynamic inequality from Equation (8) as

〈σ〉 ≥ 〈∆I〉 − ln κ. (9)

By exploiting the link between entropy and other thermodynamic quantities, one may find
thermodynamic applications of Equation (9) in various scenarios.

2.2.1. Heat Transfer

First, we derive a thermodynamic inequality about heat transfer. Suppose the bath
is initially in a thermal equilibrium state in both of the forward and the reversed pro-
cesses described as ρi

R = ∑r pr|r〉〈r| with pr = e−βER
r /Zβ and ρ̃i

R = ∑r′ pr′ |r′〉〈r′| with

pr′ = e−βER
r′/Zβ, respectively. The inequality in (9) then leads to a thermodynamic

inequality of heat transfer as

β〈Q〉 ≤ 〈∆s〉 − 〈∆I〉+ ln κ, (10)

where 〈∆s〉 = 〈∆sA〉 + 〈∆sB〉 is a change in entropy of the subsystems and βQ :=
ln p̃r′ − ln pr = β[ER

r − ER
r′ ] is a heat transferred from a thermal bath to system. Conven-

tionally, the saturation condition of heat transfer occurs for the case of reversible processes.
In contrast, our inequality in Equation (10) may be saturated during a dissipative process
of a bipartite state, as illustrated later with an example.

2.2.2. Work

Second, we derive a thermodynamic inequality about work. Suppose a quantum
bipartite system starts in an equilibrium state at a temperature T. The fluctuation of
work w is known to satisfy the Jarzynski equality (JE) for a non-equilibrium process
UAB [7]. Denoting the initial and the final total Hamiltonians as Hi = ∑m Ei

m|m〉〈m|
and H f = ∑m′ E f

m′ |m
′〉〈m′|, respectively, the JE is given by

〈
e−β(w−∆FAB)

〉
= 1, where

w = E f
m′ − Ei

m is thermodynamic work for an isolated system and ∆FAB = F f
AB − Fi

AB is

a change of free energy Fi( f )
AB = − kBT ln Zi( f )

AB with Zi( f )
AB = Tr

(
e−βHi( f )

)
.

On the other hand, in our approach of addressing quantum fluctuations in the time-
reversed protocol, we can establish a work FT as〈

e−β(w−∆ fqc)
〉

= κ, (11)

with ∆ fqc = f f
qc − f i

qc by introducing a quasi free-energy quantity as f i( f )
qc = Ei( f )

m(m′) +

β−1 ln pi( f )
a(a′),b(b′). Its proof is given in Appendix B, by first deriving

pm,a,b,m′ ,a′ ,b′ = p̃m′ ,a′ ,b′ ,m,a,beβ(w−∆ fqc)−∆δ, (12)
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with the quantum fluctuation δi( f ) = ln pm(m′) − ln pa(a′),b(b′). This leads to

pm,a,b,m′ ,a′ ,b′ ;r,r′ e
−β(w−∆ fqc) = p̃m′ ,a′ ,b′ ,m,a,b;r′ ,re−∆δ, (13)

and Equation (11) is derived in the same way as done with Equation (4), with
κ = ∑m,m′ p̃m′ ,m ∑a,a′ ,b,b′ e−[α+∆δ].

We may show a relationship between the usual free energy and the quasi free energy as

Fi( f )
AB − f i( f )

qc = β−1 ln
peq

m(m′)

pi( f )
a(a′),b(b′)

. We thus recover fqc = FAB when the quantum fluctuations

are nullified, e.g., peq
m = pa,b. While the total system in equlibrium is affected by thermal

fluctuations, there exist quantum fluctuations due to the incompatibility between the state
of the joint system and the subsystems, which are reflected through the quasi-free energy
quantity representing a quantum feature.

Using Jensen’s inequality, the work FT also leads to a thermodynamic inequality as

〈w〉 ≥
〈
∆ fqc

〉
− β−1 ln κ, (14)

where 〈w〉 is the work done on the joint system. It may be compared with the conventional
second law for bipartite systems expressed by 〈w〉 − ∆FAB ≥ 0. By using the relationship
between the quasi free energy and the conventional free energy, we recast Equation (14)

into 〈w〉 − ∆FAB ≥ β−1{γ− ln κ}, where γ =

〈
− ln

peq
m′

p f
a′ ,b′

〉
−
〈
− ln peq

m
pi

a,b

〉
, finding that

the inequality integrates extra elements provided from the quantum fluctuations and the
time-reversed statistics.

2.3. Determining κ in Experiment

We here discuss how one may determine the term κ = ∑m′ ,m p̃m′ ,m ∑a,ba′ ,b′ e−[α+∆δ]

to experimentally test our FT and the accompanying inequalities. The quantum correlation
term κ has two contributions, α and δ, both of which are intimately connected. That is,
α = − ln|〈m|a, b〉|2 and δ = ln pm − ln pa.b, in which the indices m, a and b refer to the
composite state ρAB = ∑m pm|m〉〈m|, and the local states ρA(B) = TrB(A)(ρAB) =

∑a(b) pa(b)|a(b)〉〈a(b)|, respectively, in the eigen-state decomposition, as previously defined.

2.3.1. Obtaining α and δ

At the initial time ti and the final time t f , we may perform a quantum state tomography to

obtain the initial and the final joint state, ρ
(i)
AB = ∑m pm|m〉〈m| and ρ

( f )
AB = ∑m′ pm′ |m′〉〈m′|,

respectively. Knowing the joint state suffices to determine the reduced local states ρ
(i, f )
A(B).

As this tomography then resolves the probabilities {pm, pm′} and all the component states
{|m〉, |m′〉, |a〉, |a′〉, |b〉, |b′〉}, one can calculate αi = − ln|〈m|a, b〉|2 and α f = − ln|〈m′|a′, b′〉|2
to give α = αi + α f . In addition, the δ term, ln pm − ln pa.b, can also be calculated using the
identified joint state ρAB as pa,b = Tr{ρAB|a〉〈a| ⊗ |b〉〈b|} for both of the initial and the
final state.

In the above approach, we have proposed that the two terms α and δ are determined
through only the joint-state reconstruction without requiring the local measurements at the
start and the end of the thermodynamic procedures.

For the initial state ρ
(i)
AB = ∑m pm|m〉〈m|, one may just prepare the system in a state

|m〉 each time with a net probability pm. In this alternative approach, one needs to perform
the tomography only for the final state ρ

( f )
AB, and the resolution of all the terms can go as

decribed before.
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2.3.2. Obtaining the Transition Probabilities p̃m′ ,m

To finally determine κ = ∑m′ ,m p̃m′ ,m ∑a,ba′ ,b′ e−[α+∆δ], we also need to measure the
transition probabilities p̃m′ ,m in the time-reversed process. With the time-reversal operator
Θ, the initial state ρ̃i

AB of the time-reversed process is prepared in terms of the final state of
the time-forward process, as ρ̃i

AB = ∑m̃′ p̃m′ |m̃′〉〈m̃′|, where |m̃′〉 = Θ|m′〉. That is, we
prepare the state |m̃′〉 with a probability p̃m′ and then let the system evolve to reach a final

state ρ̃
m′ , f
AB conditioned on the initial state |m̃′〉.

By performing measurement in the basis of |m̃〉 = Θ|m〉 on the final state, we

determine the transition probability p̃m′ ,m = p̃m′ p̃m|m′ = p̃m′Tr{ρ̃m′ , f
AB |m̃〉〈m̃|}. Alternatively,

we may just perform the tomography for the final state to find ρ̃
m′ , f
AB and then calculate the

conditional probability p̃m|m′ = Tr{ρ̃m′ , f
AB |m̃〉〈m̃|} using the basis of |m̃〉.

3. Example
3.1. Local Isothermal Process for Composite Quantum System

We illustrate our derived inequalities of heat transfer and work manifesting their
tightness with an example of an isothermal process on each subsystem in an initially
quantum correlated state. we first introduce an isothermal process for a single qubit system
and then apply it to each subsystem of a bipartite system both in a time-forward and in a
time-reversed manner.

The isothermal process is performed by varying an energy gap ∆ between a ground
state |0〉 and an excited state |1〉 from 0 to ∆ (>> β−1 = kBT) in the qubit as shown
in Figure 1. When we apply this isothermal process to each subsystem in a bipartite
system, a degenerate state of the subsystem initially in a thermal equilibrium evolves from
ρi

A(B) ⊗ ρR = ( 1
2 |a(b) = 0〉〈0|+ 1

2 |1〉〈1|)⊗∑r e−βER
r /Zβ|r〉〈r| to ρ

f
A(B) ⊗ ρR = |0′〉〈0′| ⊗

∑r e−βER
r /Zβ|r〉〈r|. The occupation probabilities in an equilibrium qubit state are given by

p0 = 1
1+e−β∆ and p1 = e−β∆

1+e−β∆ , which become p0 ≈ 1 and p1 ≈ 0 if the energy gap ∆ is
very large.

|0> |1> |0’> |1’>

∆

Figure 1. Two-level system undergoing an isothermal change of level splitting. The two states |0〉 and
|1〉 that are initially degenerate are split into |0′〉 and |1′〉 with distinct energy levels by an amount ∆.

3.1.1. Time-Forward Process

Let us now extend this isothermal process to each equilibrium subsystem of a maxi-
mally entangled bipartite system [69]. The joint system is initially in the state ρi

AB ⊗ ρA
R ⊗
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ρB
R = ∑3

m=0 pm|m〉〈m| ⊗ ∑r e−βER
r /Zβ|r〉〈r| ⊗ ∑r′ e

−βER
r′/Zβ|r′〉〈r′| in the Bell-state basis

given by

|0〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B),

|1〉 = 1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B),

|2〉 = 1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B),

|3〉 = 1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |1〉B). (15)

After applying the aforementioned isothermal process to the bipartite system, the initial
state |0〉 is changed to the final state ρ

f
AB = |0′〉〈0′| = |0′〉〈0′|A⊗ |0′〉〈0′|B in the eigenbases

|0′〉AB = |0′〉A ⊗ |0′〉B,

|1′〉AB = |0′〉A ⊗ |1′〉B,

|2′〉AB = |1′〉A ⊗ |0′〉B,

|3′〉AB = |1′〉A ⊗ |1′〉B. (16)

In this process, we evaluate the multi-indexed joint probabilities and the related contents in
Appendix C.

3.1.2. Time-Reversed Process

Similarly, we assess the joint probabilities in a time-reversed protocol by isothermally
changing the energy gap from ∆ to 0 in a time-reversed manner. During this process,
the initial density operator ρ̃i

AB = |0′〉〈0′|AB is changed to the density operator at the

final time ρ̃
f
AB = 1

2 (|0〉〈0|+ |1〉〈1|)A ⊗ 1
2 (|0〉〈0|+ |1〉〈1|)B. We obtain the entropy and

the information content for the time-reversed protocol in Appendix C.

3.2. Heat Transfer

We here demonstrate the thermodynamic inequality (10) of heat transfer with the
above example of a dissipative, isothermal, process. Let us first compute the informational
content ln κ, heat 〈Q〉, the entropy change of the subsystems 〈∆s〉, the classical mutual
information 〈∆I〉, and then evaluate the validity and the saturation of the inequality.

Based on the definition of the time-reversed average, the quantum information κ is
given by

κ = ∑
m′ ,m

p̃m′ ,m ∑
a,ba′ ,b′

e−[α+∆δ]

= p̃0′ ,0[e
−[α(0,0,0,0′ ,0′ ,0′)+∆δ(0,0,0,0′ ,0′ ,0′)]

+ e−[α(0,1,1,0′ ,0′ ,0′)+∆δ(0,1,1,0′ ,0′ ,0′)]]

=
1
4
× [e0 + e0] =

1
2

, (17)

where the component of the quantum incompatibility fluctuation is α(0, 0, 0, 0′, 0′, 0′) =
αi(0, 0, 0) + α f (0′, 0′, 0′) = ln 2 + 0 and the quantum correlation fluctuation
∆δ(0, 0, 0, 0′, 0′, 0′) = δ f (0′, 0′, 0′)− δi(0, 0, 0) = 0− ln 2 in the configuration (0, 0, 0, 0′, 0′, 0′)
of (m, a, b, m′, a′, b′). Similarly, we have α(0, 1, 1, 0′, 0′, 0′) = αi(0, 1, 1) + α f (0′, 0′, 0′) =
ln 2 + 0, ∆δ(0, 1, 1, 0′, 0′, 0′) = δ f (0′, 0′, 0′) − δi(0, 1, 1) = 0− ln 2 in the configuration
(0, 1, 1, 0′, 0′, 0′).

The heat transferred from a heat bath to a two-level system is equal to −β−1 ln 2
during an isothermal process applied to each subsystem. This can be seen by the relation
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〈Q〉 = ∆E−W, where the energy change of the system is ∆E = 0 and the work W done
on the system W = β−1 ln 2, just like a particle becoming confined to only one half of two
compartments in the final state. The total amount of heat transfer is then given by

〈Q〉 = −2× β−1 ln 2. (18)

Moreover, the entropy change in the subsystem A(B) 〈∆sA(B)〉 is computed by using the
multi-indexed joint probability

〈∆sA(B)〉 = p0,0,0,0′ ,0′ ,0′(− ln pA(B)
0′ + ln pA(B)

0 )

+ p0,1,1,0′ ,0′ ,0′(− ln pA(B)
0′ + ln pA(B)

1 )

=
1
2
× (−0 + ln

1
2
) +

1
2
× (−0 + ln

1
2
)

= − ln 2, (19)

where we used ln pA(B)
0′ = 0, ln pA(B)

0 = ln 1
2 , and ln pA(B)

1 = ln 1
2 , since the initial and

the final state are given by ρi
A(B) = 1

2 (|0〉〈0|+ |1〉〈1|)A(B) and ρ
f
AB = |0′〉〈0′|A ⊗ |0′〉〈0′|B,

respectively.
We then compute the average of quantum mutual information content −〈∆I〉 in the

inequality. Based on the definition of time-forward average, the mutual information is
given by

−〈∆I〉 = ∑
m,m′

pm,0,0,m′ ,0′ ,0′(I0,0 − I0′ ,0′)

+ ∑
m,m′

pm,1,1,m′ ,0′ ,0′(I1,1 − I0′ ,0′)

= p0,0,0,0′ ,0′ ,0′(I0,0 − I0′ ,0′) + p0,1,1,0′ ,0′ ,0′(I1,1 − I0′ ,0′)

=
1
2
(ln 2− 0) +

1
2
(ln 2− 0)

= ln 2. (20)

As a result, each term of the heat inequality (10) reads as

−2 ln 2 = − 2 ln 2 + ln 2− ln 2, (21)

which confirms the saturation of the inequality. Note that the entire process is an irreversible
process with the number of the non-zero configuration in the time-reversed process larger
than that in the time forward process, which may be related to the absolute irreversibil-
ity [70]. In contrast, the usual second law of entropy production, without our term ln κ in
(10), gives 〈σtot〉 = −β〈Q〉+ 〈∆sA〉+ 〈∆sB〉 − 〈∆I〉 = 2 ln 2− ln 2− ln 2 + ln 2 > 0, where
〈σtot〉 represents the total entropy change of the system plus environment. Our inequality
thus provides a useful tool to analyze an irreversible process of quantum bipartite system
providing a tigheter bound with the quantum correlation factor κ.

3.3. Work Inequality

We now illustrate the merit of our derived inequality (14) in addressing work
statistics during an irreversible process of quantum bipartite system. Let us consider
a two qubit model where the time-dependent total Hamiltonian controlled by a param-
eter is given by H(λ(t)). The process is realized by slowly changing the parameter
in which adiabatic approximation holds so that there is no transition between states.
At the initial time, we assume that [ρi, Hi] = 0. Moreover, the state is in equilibrium

ρi
AB = ∑m

e−βEi
m

Zi
AB
|m〉〈m| and the eigenbasis of the Hamiltonian corresponds to the Bell

states |Ψ+〉, |Ψ−〉, |Φ+〉, |Φ−〉, indexed as |m = 0〉, |1〉, |2〉, |3〉 respectively. The Bell states
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here are |Ψ±〉 = 1/
√

2(|00〉 ± |11〉) and |Φ±〉 = 1/
√

2(|01〉 ± |01〉). On the other hand,
the final state ρ f is assumed to satisfy [Πm, Πa,b] = 0 so that the final states are product
states as |m′〉 = |a′, b′〉 = |a′〉|b′〉 for all the indices.

We may readily see that the observation of quantum fluctuations in a time-reversed
protocol makes it possible to improve predictions on the thermodynamic variables through our
example. To show it, we numerically show the relationship between

〈
∆ fqc

〉
− β−1 ln κ (blue

curve) and ∆FAB (usual bound for work, orange curve) in Figure 2. In a regime that
〈
∆ fqc

〉
−

β−1 ln κ ≥ ∆FAB, our inequality provides a tighter bound so that the work 〈w〉 (green curve)
is compared with other quantities as expected to be 〈w〉 ≥

〈
∆ fqc

〉
− β−1 ln κ ≥ ∆FAB.

Figure 2. Top: schematic of a quantum adiabatic process for a quantum correlated bipartite system.
Bottom: thermodynamic quantities 〈w〉 (Green), ∆ fqc − β−1 ln κ (Blue) and ∆FAB (Orange).

4. Summary

We have obtained a fluctuation theorem in Equation (4) for an open bipartite quan-
tum system that explicitly incorporates genuinely quantum fluctuations due to non-
commutativity. In particular, the term κ represents quantum nature of thermodynamics
by using the quantities α and δ defined around Equation (6), which manifest quantum
correlation. Our FT specifically looks into the quantum correlation in time-reversed process
thereby providing not only a novel perspective but also useful thermodynamic inequalities.
We have illustrated our inequalities on heat transfer and work through two examples of
quantum correlated systems, one under an isothermal process and the other under an
adiabatic process. These demonstrate the merit of our approach yielding tighter bounds for
thermodynamically relevant quantities.
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One of the main problems in quantum thermodynamics is to understand how quan-
tum principles may modify the known results in classical thermodynamics. It is crucial to
identify the role played by quantum correlation in the emerging non-equilibrium thermo-
dynamics, which may shed light into the question, e.g., how the environmental interaction
may affect the performance of quantum systems in quantum information processing. Our
work has here focused on the inter-correlation between quantum systems of interest, but it
will be a meaningful extension to include the effect of system-reservoir correlation in under-
standing the emergent quantum dynamics. For instance, a recent work in [71] developed a
quantum master equation that overcomes the pathological problems, like non-positivity
of populations in case of the Redfield or the Lindblad equation. This approach can be
adopted to address the effect of system-reservoir correlation in the low-orders of envi-
ronmental coupling. We hope our work here could stimulate further useful works along
this line particularly in view of the merit by formulating thermodynamic statistics in
time-reversed process.
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Appendix A. Derivation of Equation (6)

Defining αi( f ) = − ln |〈m(′)|a(′), b(′)〉|2 = ln pm(m′) − ln pm(m′),a(a′),b(b′), we obtain

pm,a,b,m′ ,a′ ,b′ ;r,r′

= |〈m′, r′|U|m, r〉|2 pm pre−αi e−α f

= |〈m, r|U†|m′, r′〉|2 p̃m′ p̃r′
pm pr

p̃m′ p̃r′
e−αi e−α f

= |〈m, r|Θ†ΘU†Θ†Θ|m′, r′〉|2 p̃m′ p̃r′
pm pr

p̃m′ p̃r′
e−α̃i e−α̃ f

= |〈m̃, r̃|Ũ|m̃′, r̃′〉|2e−α̃ f e−α̃i p̃m′ p̃r′
pm pr

p̃m′ p̃r′

= p̃m′ ,a′ ,b′ ,m,a,b;r′ ,r
pa

p̃a′

pb
p̃b′

pr

p̃r′

[
pa,b

pa pb

p̃a′ p̃b′

p̃a′ ,b′

][
pm

pa,b

p̃a′ ,b′

p̃m′

]
= p̃m′ ,a′ ,b′ ,m,a,b;r′ ,re∆sA e∆sB e∆sR e−∆Ie−∆δ, (A1)

where ∆sA := ln pa
p̃a′

, ∆sB := ln pb
p̃b′

, ∆sR := ln pr
p̃r′

, ∆I := I f − Ii = ln
p̃a′ ,b′
p̃a′ p̃b′

− ln pa,b
pa pb

,

and ∆δ := δ f − δi = ln p̃m′
p̃a′ ,b′
− ln pm

pa,b
. We have also used the relation e−αi = e−α̃ f since

|〈m|a, b〉|2 = |〈m|Θ†Θ|a, b〉|2 = |〈m̃|ã, b̃〉|2, and similarly e−α f = e−α̃i .
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Appendix B. Proof of Equation (11)

We prove Equation (11) as follows.

pm,a,b,m′ ,a′ ,b′

= |〈m′|U|m〉|2|〈m|a, b〉|2|〈m′|a′, b′〉|2 pm

= |〈m|U†|m′〉|2|〈m|a, b〉|2|〈m′|a′, b′〉|2 p̃m′
pm

p̃m′

= p̃m′ ,a′ ,b′ ,m,a,b

[
pa,b

p̃a′ ,b′

][
pm

pa,b

p̃a′ ,b′

p̃m′

]
= p̃m′ ,a′ ,b′ ,m,a,be

βw−β[(E f
m′−Ei

m)−β−1 ln
pa.b

pa′ ,b′
]−∆δ

= p̃m′ ,a′ ,b′ ,m,a,beβ(w−∆ fqc)−∆δ, (A2)

with the quantum fluctuation δi( f ) = ln pm(m′) − ln pa(a′),b(b′). That is, we obtain

pm,a,b,m′ ,a′ ,b′ ;r,r′ e
−β(w−∆ fqc) = p̃m′ ,a′ ,b′ ,m,a,b;r′ ,re−∆δ, (A3)

and Equation (11) is derived in the same way as done with Equation (4), with κ =

∑m,m′ p̃m′ ,m ∑a,a′ ,b,b′ e−[α+∆δ].

Appendix C. Calculation of Relevant Quantities for the Example in Section 3.1

Appendix C.1. Time-Forward Process

Let us extend the isothermal process in Section 3.1 to each equilibrium subsystem
of a maximally entangled bipartite system [69]. The joint system is initially in the state

ρi
AB ⊗ ρA

R ⊗ ρB
R = ∑3

m=0 pm|m〉〈m| ⊗∑r e−βER
r /Zβ|r〉〈r| ⊗∑r′ e

−βER
r′/Zβ|r′〉〈r′| in the Bell-

state basis given by

|0〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B),

|1〉 = 1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B),

|2〉 = 1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B),

|3〉 = 1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |1〉B). (A4)

After applying the aforementioned isothermal process to the bipartite system, the initial
state |0〉 is changed to the final state ρ

f
AB = |0′〉〈0′| = |0′〉〈0′|A⊗ |0′〉〈0′|B in the eigenbases

|0′〉AB = |0′〉A ⊗ |0′〉B,

|1′〉AB = |0′〉A ⊗ |1′〉B,

|2′〉AB = |1′〉A ⊗ |0′〉B,

|3′〉AB = |1′〉A ⊗ |1′〉B. (A5)

In this process, we evaluate the multi-indexed joint probabilities and the related contents
as follows.

(1) The marginal probabilities pm and pm′ at the initial and the final time are

p0 = 1, p1,2,3 = 0

p0′ = 1, p1′ ,2′ ,3′ = 0 (A6)
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(2) The conditional probabilities |〈m|a, b〉|2 at the initial time are given by

|〈0|0, 0〉|2 = |〈0|1, 1〉|2 =
1
2

, |〈0|0, 1〉|2 = |〈0|1, 0〉|2 = 0;

|〈1|0, 0〉|2 = |〈1|1, 1〉|2 =
1
2

, |〈1|0, 1〉|2 = |〈1|1, 0〉|2 = 0;

|〈2|0, 0〉|2 = |〈2|1, 1〉|2 = 0, |〈2|0, 1〉|2 = |〈2|1, 0〉|2 =
1
2

;

|〈3|0, 0〉|2 = |〈3|1, 1〉|2 = 0, |〈3|0, 1〉|2 = |〈3|1, 0〉|2 =
1
2

, (A7)

and those at the final time are

|〈0′|0′, 0′〉|2 = 1, |〈0′|0′, 1′〉|2 = |〈0′|1′, 0′〉|2 = |〈0′|1′, 1′〉|2 = 0;

|〈1′|0′, 1′〉|2 = 1, |〈1′|0′, 0′〉|2 = |〈1′|1′, 0′〉|2 = |〈1′|1′, 1′〉|2 = 0′;

|〈2′|1′, 0′〉|2 = 1, |〈2′|0′, 0′〉|2 = |〈2′|0′, 1′〉|2 = |〈2′|1′, 1′〉|2 = 0′;

|〈3′|1′, 1′〉|2 = 1, |〈3′|0′, 0′〉|2 = |〈3′|0′, 1′〉|2 = |〈3′|1′, 0′〉|2 = 0. (A8)

Note that these values determine the factor e−α which describes quantum fluctuations
arising from the incompatibility between the joint state and the local states. Constructing
the multi-indexed joint probabilities are given by using the factor e−α, as shown below.

(3) The time-forward multi-indexed joint probability given by

pm,m′ ;r,r′ = |〈m′, r′|U|m, r〉|2 pm pr

may be reduced to a joint probability for an open quantum bipartite system as

pm,m′ = ∑
r,r′

pm,m′ ;r,r′ = ∑
r,r′
|〈m′|Mr,r′ |m〉|2 pm,

where Mr,r′ = 〈r′|U|r〉√pr. In our example, the allowed transition between |m〉 and |m′〉
is a single transition between |0〉 and |0′〉 so that ∑r,r′ |〈m′|Mr,r′ |m〉|2 pm = 1 for m = 0
and m′ = 0′ and otherwise ∑r,r′ |〈m′|Mr,r′ |m〉|2 pm = 0. We then obtain

p0,0′ = 1, otherwise pm,m′ = 0.

Based on the above quantities, we are able to compute different types of joint prob-
abilities pm,a,b and pm,a,b,m′ ,a′ ,b′ by using the factor e−α. Since pm,a,b = e−α pm with
e−α = e−[− ln |〈m|a,b〉|2], the probabilities at ti and t f are respectively given by

p0,0,0 = p0,1,1 =
1
2

at ti and p0′ ,0′ ,0′ = 1 at t f . (A9)

Otherwise, all the others such as p1,0,0, p2,0,1 are zero. Then, the full multi-indexed joint
probability pm,a,b,m′ ,a′ ,b′ is readily obtained by pm,a,b,m′ ,a′ ,b′ = pm,m′ e−αi e−α f , with the non-
zero values given as

p0,0,0,0′ ,0′ ,0′ = p0,1,1,0′ ,0′ ,0′ =
1
2

. (A10)

Appendix C.2. Time-Reversed Process

Similarly, we assess the joint probabilities in a time-reversed protocol by isothermally
changing the energy gap from ∆ to 0 in a time-reversed manner. During this process,
the initial density operator ρ̃i

AB = |0′〉〈0′|AB is changed to the density operator at the

final time ρ̃
f
AB = 1

2 (|0〉〈0|+ |1〉〈1|)A ⊗ 1
2 (|0〉〈0|+ |1〉〈1|)B. We obtain the entropy and the

information content for the time-reversed protocol as
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(1′) The marginal probabilities p̃m and p̃m′ at the initial and the final time in the
reversed protocol is

p̃m = 1 for m = 0 and p̃m′ = 1/4 for m = 0, 1, 2, 3. (A11)

(2′) One may find the time-reversed joint probabilities for the transitions from the
initial state |0′〉 to the final states |0〉,|1〉,|2〉,|3〉 as

p̃0′ ,0 = p̃0′ ,1 = p̃0′ ,2 = p̃0′ ,3 =
1
4

,

and all the others are zero.
(3′) By taking the above contents, the reduced joint probability p̃m′ ,a′ ,b′ at t f and ti are

respectively given by

p̃0′ ,0′ ,0′ = 1 at t f ,

p̃0,0,0 = p̃1,0,1 = p̃2,1,0 = p̃3,1,1 = 1
4 at ti. (A12)

Otherwise, all the other probabilities of p̃m′ ,a′ ,b′ and p̃m,a,b are zero. In addition, the non-
zero configuration of the multi-indexed time-reversed joint probability p̃m′ ,a′ ,b′ ,m,a,b =

p̃m′ ,me−α f e−αi is given as p̃m′ ,a′ ,b′ ,m,a,b = 1
4 for the transitions (0′, 0′, 0′, 0, 0, 0),(0′, 0′, 0′, 1, 0, 1),

(0′, 0′, 0′, 2, 1, 0), and (0′, 0′, 0′, 3, 1, 1).
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46. Ptaszyński, K.; Esposito, M. Thermodynamics of Quantum Information Flows. Phys. Rev. Lett. 2019, 122, 150603. [CrossRef]
47. Horowitz, J.; Esposito, M. Thermodynamics with Continuous Information Flow. Phys. Rev. X 2014, 4, 031015. [CrossRef]
48. Esposito, M.; Broeck, C. Three Detailed Fluctuation Theorems. Phys. Rev. Lett. 2010, 104, 090601. [CrossRef]
49. Barato, A.; Seifert, U. Unifying Three Perspectives on Information Processing in Stochastic Thermodynamics. Phys. Rev. Lett.

2014, 112, 090601. [CrossRef]
50. Iyoda, E.; Kaneko, K.; Sagawa, T. Fluctuation Theorem for Many-Body Pure Quantum States. Phys. Rev. Lett. 2017, 119, 100601.

[CrossRef]
51. Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys.

1929, 53, 840–856. [CrossRef]
52. Leff, H.; Rex, A. Maxwell’s Demon 2 Entropy, Classical and Quantum Information, Computing; CRC Press: Boca Raton, FL, USA, 2002.
53. Sagawa, T.; Ueda, M. Fluctuation Theorem with Information Exchange: Role of Correlations in Stochastic Thermodynamics. Phys.

Rev. Lett. 2012, 109, 180602. [CrossRef] [PubMed]
54. Sagawa, T.; Ueda, M. Generalized Jarzynski Equality under Nonequilibrium Feedback Control. Phys. Rev. Lett. 2010, 104, 090602.

[CrossRef] [PubMed]
55. Funo, K.; Watanabe, Y.; Ueda, M. Integral quantum fluctuation theorems under measurement and feedback control. Phys. Rev. E

2013, 88, 052121. [CrossRef] [PubMed]
56. Jevtic, S.; Rudolph, T.; Jennings, D.; Hirono, Y.; Nakayama, S.; Murao, M. Exchange fluctuation theorem for correlated quantum

systems. Phys. Rev. E 2015, 92, 042113. [CrossRef] [PubMed]

http://dx.doi.org/10.1088/1367-2630/aa62ba
http://dx.doi.org/10.1103/PhysRevE.92.012131
http://dx.doi.org/10.1007/s10955-012-0557-z
http://dx.doi.org/10.1103/PhysRevA.77.034101
http://dx.doi.org/10.1103/PhysRevX.9.031029
http://dx.doi.org/10.22331/q-2019-02-25-124
http://dx.doi.org/10.1038/ncomms7383
http://dx.doi.org/10.1088/1751-8121/aac115
http://dx.doi.org/10.1103/PhysRevE.92.032129
http://dx.doi.org/10.1088/1367-2630/12/1/013013
http://dx.doi.org/10.1103/PhysRevLett.113.030601
http://dx.doi.org/10.1103/PhysRevE.92.062125
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1088/1742-5468/2015/03/P03006
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevX.7.021003
http://dx.doi.org/10.1103/PhysRevE.90.062107
http://dx.doi.org/10.1088/1367-2630/16/12/125007
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/1742-5468/2014/02/P02016
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1103/PhysRevLett.122.150603
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://dx.doi.org/10.1103/PhysRevLett.112.090601
http://dx.doi.org/10.1103/PhysRevLett.119.100601
http://dx.doi.org/10.1007/BF01341281
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://www.ncbi.nlm.nih.gov/pubmed/23215264
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://www.ncbi.nlm.nih.gov/pubmed/20366975
http://dx.doi.org/10.1103/PhysRevE.88.052121
http://www.ncbi.nlm.nih.gov/pubmed/24329228
http://dx.doi.org/10.1103/PhysRevE.92.042113
http://www.ncbi.nlm.nih.gov/pubmed/26565174


Entropy 2023, 25, 165 16 of 16

57. Manzano, G.; Horowitz, J.; Parrondo, J. Quantum Fluctuation Theorems for Arbitrary Environments: Adiabatic and Nonadiabatic
Entropy Production. Phys. Rev. X 2018, 8, 031037. [CrossRef]

58. Park, J.J.; Nha, H.; Kim, S.W.; Vedral, V. Information fluctuation theorem for an open quantum bipartite system. Phys. Rev. E 2020,
101, 052128. [CrossRef]

59. Morikuni, Y.; Tasaki, H. Quantum Jarzynski-Sagawa-Ueda Relations. J. Stat. Phys. 2011, 143, 1–10. [CrossRef]
60. Sagawa, T.; Ueda, M. Role of mutual information in entropy production under information exchanges. New J. Phys. 2013, 15, 125012.

[CrossRef]
61. Kwon, C.; Um, J.; Park, H. Information thermodynamics for a multi-feedback process with time delay. EPL Europhys. Lett. 2017,

117, 10011. [CrossRef]
62. Ponmurugan, M. Generalized detailed fluctuation theorem under nonequilibrium feedback control. Phys. Rev. E 2010, 82, 031129.

[CrossRef]
63. Talkner, P.; Lutz, E.; Hänggi, P. Fluctuation theorems: Work is not an observable. Phys. Rev. E 2007, 75, 050102. [CrossRef]

[PubMed]
64. Kirkwood, J. Quantum Statistics of Almost Classical Assemblies. Phys. Rev. 1933, 44, 31–37. [CrossRef]
65. Dirac, P. On the Analogy Between Classical and Quantum Mechanics. Rev. Mod. Phys. 1945, 17, 195–199. [CrossRef]
66. Barut, A. Distribution Functions for Noncommuting Operators. Phys. Rev. 1957, 108, 565–569. [CrossRef]
67. Margenau, H.; Hill, R. Correlation between Measurements in Quantum Theory. Prog. Theor. Phys. 1961, 26, 722–738. [CrossRef]
68. Modi, K.; Paterek, T.; Son, W.; Vedral, V.; Williamson, M. Unified View of Quantum and Classical Correlations. Phys. Rev. Lett.

2010, 104, 080501. [CrossRef]
69. Nation, P.; Johansson, J.; Blencowe, M.; Nori, F. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with

superconducting circuits. Rev. Mod. Phys. 2012, 84, 1–24. [CrossRef]
70. Funo, K.; Murashita, Y.; Ueda, M. Quantum nonequilibrium equalities with absolute irreversibility. New J. Phys. 2015, 17, 075005.

[CrossRef]
71. Becker, T.; Schnell, A.; Thingna, J. Canonically Consistent Quantum Master Equation. Phys. Rev. Lett. 2022, 129, 200403. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevX.8.031037
http://dx.doi.org/10.1103/PhysRevE.101.052128
http://dx.doi.org/10.1007/s10955-011-0153-7
http://dx.doi.org/10.1088/1367-2630/15/12/125012
http://dx.doi.org/10.1209/0295-5075/117/10011
http://dx.doi.org/10.1103/PhysRevE.82.031129
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://www.ncbi.nlm.nih.gov/pubmed/17677006
http://dx.doi.org/10.1103/PhysRev.44.31
http://dx.doi.org/10.1103/RevModPhys.17.195
http://dx.doi.org/10.1103/PhysRev.108.565
http://dx.doi.org/10.1143/PTP.26.722
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1088/1367-2630/17/7/075005
http://dx.doi.org/10.1103/PhysRevLett.129.200403

	Introduction
	Fluctuation Theorem for Open Bipartite Quantum System
	Deriving the FT in Equation (4)
	Detailed FT
	Integral FT

	Thermodynamic Inequalities for Heat Transfer and Work
	Heat Transfer
	Work

	Determining  in Experiment
	Obtaining  and 
	Obtaining the Transition Probabilities m',m


	Example
	Local Isothermal Process for Composite Quantum System
	Time-Forward Process
	Time-Reversed Process

	Heat Transfer
	Work Inequality

	Summary
	Derivation of Equation (6) 
	Proof of Equation (11) 
	Calculation of Relevant Quantities for the Example in Section 3.1
	Time-Forward Process
	Time-Reversed Process

	References

