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Abstract: In this manuscript, off-set strip fin structures are presented which are adapted to the
possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin
height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor
and the Fanning friction factor are numerically calculated in the Reynolds number range of 80–920.
The structures are classified with respect to their entropy production number according to Bejan.
This method is compared with the results from partial differential equations for the calculation of the
irreversible entropy production rate due to shear stresses and heat conduction. This study reveals
that the chosen temperature difference leads to deviation in terms of entropy production due to heat
conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It
is further shown that the variation in fin height and fin spacing has only a small influence on heat
transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows
a larger influence. With respect to the entropy production number, short and long fins, as well as large
fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of
a single structure shows that the entropy production rate due to heat conduction is dominated by the
entropy production rate in the wall, while the fluid has only a minor influence.

Keywords: off-set strip fin structures; numerical calculation; irreversible entropy production rate;
shear stresses; heat conduction; additive manufacturing

1. Introduction

With the possibilities of the additive manufacturing technology, new heat-transferring
structures can be developed, and existing structures can be optimized with regard to
heat transfer and pressure drop [1,2]. At the same time, these possibilities free up many
new geometric parameters that can be varied when optimizing heat transfer and pressure
drop [3–6]. A suitable evaluation method is important on this behalf with respect to the
effectiveness to check on the improvements made.

For this purpose, the calculation of the entropy production rate is suitable since this is
influenced by both the heat transfer and the pressure drop. Therefore, optimization with
respect to entropy production rate consistently leads to efficient heat transfer as well as low
pressure drops [7].

The idea behind this evaluation has already been taken up by various authors. Bejan
introduced the irreversible entropy production number (or entropy production number) [8],
which puts the irreversible entropy production rate in relation to the transferred entropy
flow. Furthermore, this approach allows the separation of the irreversible entropy produc-
tion rate due to heat transfer and pressure drop to evaluate different structures and, in turn,
to derive the optimal measures. Further developments of this kind have been proposed
by Bejan and Pfister [9] and Yujie et al. [10], among others, in order to compare optimized
geometries integrally with reference geometries.
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Further investigations based on an integral 2nd law analysis were carried out by
Aasi and Mishra [11] on heat exchangers with three-fluid flows, where different fin struc-
tures were investigated with respect to their entropy generation. Djetel-Gothe et al. [12]
studied the irreversible entropy generation of a cooler in a Stirling engine by varying the
parameters of mass flow, temperature, hydraulic diameter, and heat-transferring length.
Zainith et al. [13] investigated the influence of different nanofluids in a spiral heat ex-
changer on exergy losses, and Rashidi et al. [14] performed an exergy analysis on a shell-
and-tube heat exchanger. El Jery et al. [15] performed a study on the entropy generation
of Al2O3-water nanofluid in internal flows with different shapes. Moreover, the princi-
ple of irreversible entropy production rate can be transported to a local level, making it
possible to find the exact causes and positions of irreversible entropy production rate [16].
An extension of this principle to Reynolds-averaged flows was made by Kock et al. [17–19].
Thus, a separation can be made regardless of whether the entropy production rate occurs
as a result of temperature gradients, i.e., heat conduction, or of shear stresses, i.e., as
friction; furthermore, it can be determined whether the entropy production rate is caused
by turbulence-induced fluctuations or molecular effects [20–22]. This principle is taken
up by Ji et al. [23] to determine what causes an entropy production rate to occur in flows
with nanofluids and how the entropy production rate develops in the boundary layer.
Furthermore, Ji et al. [24] investigated the causes of entropy production rate during the
condensation of a subsonic vapor flow. These investigations allow local adaptations and
influences of the flow and of the geometry of a heat-transferring structure to reduce the
entropy production rate due to friction, temperature gradients or fluctuation and, thus, to
optimize the process or the component.

This principle of optimization is also taken up by Wenterodt [7] to numerically improve
the shape of tubes in a tube-bundle as well as the shape of plates for plate heat exchangers
by means of a genetic algorithm. Other approaches of this kind of optimization and
evaluation of structures based on entropy production rate are presented by Jiang et al. [25]
for an entropically graded heat exchanger.

As the additive manufacturing of structures allows for a huge variation in possible
geometries, a fast and reliable characterization and evaluation becomes inevitable.

In this manuscript, various additively manufacturable fin structures are presented
which are based on off-set strip fins for plate-fin heat exchangers. The geometric param-
eters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are
varied and their influence on the Colburn j-factor and the Fanning f-factor are investigated
numerically. Subsequently, an analysis of the efficiency in terms of the irreversible en-
tropy production rate is carried out, while the method from Bejan [8] is used due to its
ease application. Additionally, the method from Bejan [8] is compared with the results of
the irreversible entropy production rate calculated with the partial differential equations
according to Kock [17] for a reference structure. These partial differential equations allow
the calculation of the irreversible entropy production rate by heat conduction and shear
stresses independently of any wall temperature definition and are, therefore, well suited
for checking the method from Bejan [8].

2. Materials and Methods
2.1. Investigated Structures and Simulation Parameters

Figure 1 shows a section of the additive off-set fin structures. The variable geometric
parameters are the fin height h changed by the inclination angle φ, the fin spacing s, the fin
length l, and the fin longitudinal displacement l f s.
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A small section of a counterflow heat exchanger is numerically simulated, and the 
calculation area is shown with the corresponding boundary conditions in Figure 2. A tem-
perature of 473 K and 353 K is specified at the hot and the cold inlet, respectively. The inlet 
velocity of the hot and cold sides is given as a boundary condition; on the hot side, it is 
varied between 3.3 20.9 m/s, and on the cold side, it is between 2.0 12.6 m/s, while 
air is used as a fluid on both sides. This corresponds to a range of Reynolds numbers (for 
definition, see Equation (11)) between 80 < Re < 920, depending on the exact hydraulic 
diameter that varies with the geometric parameters. It is important to note that the Reyn-
olds number between the hot and cold sides only differs by 5% for all the calculations. 
This procedure allows the investigation of the influence of the mean fluid temperature on 
dissipation by shear stresses and heat conduction at the same Reynolds number. 

 

Figure 1. Left: schematic 3D model of the structures investigated with geometric parameters, and
right: schematic 3D model of the internal fin arrangement of the investigated section.

The fin thickness and the thickness of the separation plate between the hot and cold
channels remain unchanged for this investigation. The exact geometry values may not
be published for reasons of intellectual property. Therefore, the ranges of the geometric
parameters are given in relation to a reference structure in dimensionless form in Table 1.

Table 1. Geometric parameters of the investigated structures.

h*= h
href

s*= s
sref

l*= l
lref

l*
fs= lfs

lfs,ref+1

0.74÷ 1.53 0.916÷ 1.33 1÷ 2 −0.5÷ 3

A small section of a counterflow heat exchanger is numerically simulated, and the
calculation area is shown with the corresponding boundary conditions in Figure 2. A tem-
perature of 473 K and 353 K is specified at the hot and the cold inlet, respectively. The inlet
velocity of the hot and cold sides is given as a boundary condition; on the hot side, it is
varied between 3.3÷ 20.9 m/s, and on the cold side, it is between 2.0÷ 12.6 m/s, while air
is used as a fluid on both sides. This corresponds to a range of Reynolds numbers (for defi-
nition, see Equation (11)) between 80 < Re < 920, depending on the exact hydraulic diameter
that varies with the geometric parameters. It is important to note that the Reynolds number
between the hot and cold sides only differs by 5% for all the calculations. This procedure
allows the investigation of the influence of the mean fluid temperature on dissipation by
shear stresses and heat conduction at the same Reynolds number.

At the outlet, a “pressure outlet” is selected as the appropriate numerical boundary
condition, so that there is a free outflow against a backpressure of 101,325 Pa. Furthermore,
the outlet area is extended by approx. 5 times the length of the finned area to prevent
possible “reverse” flow (shortened version shown in Figure 2), which would falsify the cal-
culation result. The front and back sides of the duct walls are assumed to be adiabatic. The
material of the fins and the partition plate is a high-temperature stainless steel. Due to the
small changes in the property data of the solid part in the temperature range under consid-
eration, they are calculated at an average temperature of 413 K and stored accordingly in the
calculation program (λs,m = 16.3 W/(m K), cp,s,m = 502.5 J/(kg K), ρs,m = 8030 kg/m3.
Periodic boundary conditions are selected for the remaining surfaces to allow for a real-
istic formation of the temperature and velocity fields. The structures are modelled using
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SolidWorks 2021 [26] as well as the DesignModeler 2021 [27]. Meshing is then performed
within Ansys Workbench 2021 R1 [27] using Ansys Meshing 2021 R1 [27]. The meshing in the
volume as well as in the inflation layers is performed with tetrahedra cells. To verify the
quality of the meshing and thus the calculations, validation calculations are compared with
the literature data in Sections 2.4 and 3.1, mesh independence studies are performed in
Section 3.2. The calculations are performed in Ansys Fluent 2021 R1 [28].
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Figure 2. Three-dimensional model of the complete calculation domain with boundary conditions.
Periodic conditions are also applied on the top grey fin and side wall areas. Evaluation of the in- and
outlet temperatures and pressure drop is carried out at the coloured inlet and outlet locations.

2.2. Basic Partial Differential Equations for Mass, Momentum, Energy and Turbulence Modelling

The differential equations for mass, momentum, and energy conservation [29] are
solved in the Ansys Fluent module [28]. The conservation of mass in cartesian coordinates
is formulated as

∂ρ

∂t
+∇ ·

(
ρ
→
u
)
= 0 (1)

with
→
u as the velocity vector in the x-, y-, and z-directions. The density ρ is calculated as

an incompressible ideal gas [30], which only depends on the local temperature and not on
the local pressure as the pressure drop is small. For the conservation of momentum, the
following equation is applied:

∂
(

ρ
→
u
)

∂t
+∇ ·

(
ρ
→
u
→
u
)
= ∇ ·

→
→
τ −∇p + ρ

→
g (2)

in which
→
→
τ stands for the shear stress tensor, p for the pressure of the fluid, and

→
g for the

acceleration due to gravity. The last conservation law introduced is that of energy:

∂

∂t

(
ρ

(
e +

1
2
→
u

2
))

+∇ ·
(
→
u ρ

(
e +

1
2
→
u

2
))

= ρ
(→

u ·→g
)
−∇ ·

(→
u p
)
+∇ ·

(→
→
τ ·→u

)
+∇ · (λ∇T) , (3)

with e as the specific internal energy of the substance, λ as the thermal conductivity, and
T as the thermodynamic temperature. Since the flow state (laminar/turbulent) of the
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fluid is not always known in advance or may change locally as the fluid flows through
the structure, the flow is calculated using the Reynolds-averaged Navier–Stokes (RANS)
equations to account for the effects of turbulence on velocity, temperature, and pressure.
This possible local turbulence is important for the detailed calculation of the entropy
production. The Navier–Stokes equations are decomposed into a time-averaged component
and a fluctuation component. This results in further unknown quantities (including the
Reynolds stress tensor), which must be solved and are solved here via the k-ω SST model
(combination of the k-ε and k-ωmodels) implemented in the Ansys Fluent module. This
approach can represent both far and near wall flows well via a “blending” function [31,32].
This is confirmed by the investigations of Kim et al. [33] on off-set strip fins by comparing
their data to the experimentally obtained values, according to which the smallest deviations
occurred with the k-ω SST model. In the k-ω SST model, the turbulent kinetic energy kt is
calculated by the following equation:

∂(ρ kt)

∂t
+

∂(ρ kt ui)

∂xi
=

∂

∂xj

[(
µ +

µt

σk

)
∂kt

∂xj

]
+ Gk −Yk + Sk , (4)

and the specific dissipation rateω via the equation

∂(ρ ω)

∂t
+

∂(ρ ω ui)

∂xi
=

∂

∂xj

[(
µ +

µt

σω

)
∂ω

∂xj

]
+ Gω −Yω + Sω +

2(1− F1)ρ

ω σω,2

∂kt

∂xj

∂ω

∂xj
. (5)

The change between the k-ε model and the k-ω model takes place via the blending
function F as a function of the dimensionless wall distance. The exact equations for this as
well as for the turbulent viscosity and the model constants can be obtained from the Fluent
Theory Guide [30]. The results of the calculations are the velocity, temperature, and pressure
fields in the fluid, as well as the temperature field within the solid, i.e., the fin structures.
The coupled solver is used as the solution algorithm; for the discretization, a 2nd-order
upwind scheme is employed. The relaxation factors are not used for these calculations, and
the minimum residuals are set to 1 × 10−10 to ensure convergence.

2.3. Calculation of Heat Transfer and Pressure Drop

The heat transfer is calculated by defining the average heat transfer coefficient at
a constant heat flux. In this manuscript, an average heat transfer coefficient, consisting of
the heat transfer at the partition plate and around the fin structure, as well as a carefully
evaluated driving temperature difference, is used for ease of application (see Figure 3). i
indicates whether it is the hot (h) or the cold (c) fluid.

αm,i =

.
Qi

Aht,i ∆Tlog,i
, (6)

with
.

Qi as the transferred heat flow rate (while
.

Qc =
.

Qh, no heat flow can leave the domain
because of the adiabatic front and back walls and the periodic boundary conditions).

.
Qi =

.
mi cp,m,i (Tf,i,out − Tf,i,in) (7)

with cp,m,i as the specific isobaric heat capacity at the arithmetic mean temperature of the
fluid between the inlet and the outlet, and Aht,i as heat-transferring surface (the entire
internal heat-transferring area, including walls and fins). The logarithmic temperature
difference is used within the local basic element as the temperature difference between the
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fluid and the wall to account for the constantly changing wall temperature in the direction
of the flow [34], according to the following equation:

∆Tlog,i =

(
(TW,i − Tf,i)in − (TW,i − Tf,i)out

)
ln (TW,i−Tf,i)in

(TW,i−Tf,i)out

. (8)
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h. Schematic of the internal structures (hot or cold side) with locations for the wall and
fluid temperatures for the determination of the heat transfer coefficient.

In this equation, the wall and fluid temperatures right at the inlet and outlet of the heat
exchanger are used (see Figure 3). For the mean fluid temperature at the inlet and outlet,
the mass flow-weighted average temperature is used. For the wall temperature at the inlet
and the outlet, a length-averaged temperature around the fin structures and the wall area
is calculated; this applies to both the fins set at an angle and the later-introduced vertical
fins. This procedure allows us to omit the separate application of the surface–fin efficiency
during the evaluation, as the path-averaged fin temperature from the definition of the
surface efficiency [34], Ref. [35] is already applied in the definition of the wall temperature.

The definition of the Nusselt number is

Nui = αm,i dh,i/λf,i (9)

with the hydraulic diameter
dh,i = 4 Acf,i/(Aht,i/L) (10)

according to Manglik and Bergles [36], with L as the total length of the heat-exchanging do-
main. Acf,i is the cross-sectional area of the fluid at the narrowest point of the structure, i.e.,
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the maximum Re number within the flow channel, and Aht,i is the overall heat-transferring
area. The definition of the Colburn j-factor (j) is

ji =
Nui

Rei Pr1/3
i

, (11)

with the definition of the Reynolds number Rei =
.

mi
Acf,i

dh,i/µi. When inserting Equations (6)
and (9) in Equation (11) and applying the equation for the calculation of the heat flow (7)
and the hydraulic diameter (Equation (10)), the following equation for the calculation of
the Colburn j-factor is obtained:

ji =
(Tf,out − Tf,in)i

∆Tlog,i

Acf,i

Aht,i
Pr2/3

i =
(Tf,out − Tf,in)i

∆Tlog,i

dh,i

4 L
Pr2/3

i . (12)

The Prandtl number is calculated at the arithmetic mean temperature between the
inlet and the outlet of the fluid.

In addition to the calculation of the heat transfer, the pressure drop ∆pi is also of
decisive importance. For this purpose, the Fanning friction factor (f) is used for the
comparison of the different geometric parameters. The definition is

fi = ∆pi
1

2 ρi

dh,i

L
1
u2

i
(13)

with u as the mean velocity at the mean density. If the definition of the mass flow rate,
.

m = Acf ρ u, is used for the calculation of u, Equation (13) can be transformed into

fi = ∆pi ρi
dh,i

2 L

(
Acf,i

.
mi

)2
. (14)

2.4. Validation

Before the geometry of the basic element mentioned at the beginning is calculated,
the mesh settings (element size and number of inflation layers) are to be validated using
the literature data. There are no validation data for the angled structures yet, so a simple
rectangular off-set strip fin structure is modelled for this purpose. The geometric parameters
(see Table 2) are based on the range of values of the angled geometry mentioned at the
beginning in order to achieve the forming boundary layers in a comparable order of
magnitude. At the same time, care is taken to ensure that the dimensionless parameters,
β f , δ f , and γ f , lie in the respective range of validity in which the correlations used for
validation have been developed. If these can be correctly captured by the mesh of the
rectangular structure, this is also to be expected to hold true for the angled structures.

Table 2. Geometric parameters for the validation case (in mm).

h
[mm]

tp
[mm]

tf
[mm]

s
[mm]

l
[mm]

dh
[mm] βf= s

h γf=
tf
s δf=

tf
l

8 0.5 0.2 1.2 4 1.994 0.15 0.1667 0.05

Figure 4 shows the structure for the validation and the corresponding locations for the
fluid and wall temperatures to calculate the Colburn j-factor, according to Equations (6)–(12).
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Equation (10) is used for the calculation of the hydraulic diameter. If the corresponding
areas are calculated, Equation (10) can be rewritten for the validation case as follows:

dh,val =
4 sf hf lf

2 (sf lf + hf lf + tf hf) + tf sf
. (15)

The experimentally (Manglik and Bergles [27], and Joshi and Webb [37]) and numeri-
cally based (Chennu [38,39]) equations for the j and f-factor are used for validation. Webb
and Joshi [37] proposed different correlations for the Colburn j-factor and the Fanning fric-
tion factor for the laminar and turbulent regions. In this manuscript, only the two equations
for the laminar region (Re < 1000) are used:

jlam,JW = 0.53 Re−0.5
(

lf
dh,val

)−0.15
α−0.14

f , (16)

flam,JW = 8.12 Re−0.74
(

lf
dh,val

)−0.41
α−0.02

f . (17)

Likewise, Manglik et al. [36] provided the correlations for the j and f-factor, considering
different geometric parameters and covering the laminar, transition, and turbulent regions.
For the Colburn j-factor, the following correlation for the laminar and turbulent flow
is given:

jMB = 0.6522 Re−0.5403 β−0.1541
f δ0.1499

f γ−0.0678
f ×

(
1 + 5.269× 10−5 Re1.34 β0.504

f δ0.456
f γ−1.055

f

)0.1
, (18)

and for the f-factor, it is based on the following equation for the laminar and turbulent flow:

fMB = 9.6243 Re−0.7422 β−0.1856
f δ0.3053

f γ−0.2659
f ×

(
1 + 7.669× 10−8 Re4.429 β0.92

f δ3.767
f γ0.236

f

)0.1
, (19)

where the accuracy of the correlations is given with ±20%.
The third comparative correlation used is that of Chennu [38,39], which was de-

termined based on numerical simulations. Here again, a subdivision into the laminar
(Re < 800) and turbulent regions (1000 < Re < 15, 000) takes place. For the Colburn
j-factor and the f-factor, the following applies in the laminar region:

jCh,lam = 0.661 Re−0.651 β−0.343
f δ0.305

f γ−0.538
f , (20)
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fCh,lam = 10.882 Re−0.79 β−0.359
f δ0.284

f γ−0.187
f . (21)

The results of the validation process are discussed in Section 3.1.

2.5. Entropic Evaluation of the Structures

In the development of heat-transferring structures or heat exchangers in general,
a question usually arises which is the dissipative energy flow (as a result of heat transfer
and pressure drop/shear stresses) associated with the achieved heat flow rate

.
Q. There are

a lot of different comparison options for this, which Bejan [8,40], Kim et al. [41], Webb [42],
and Kock [17] and Wenterodt [7], among others, have explained in detail. They also name
the respective advantages and disadvantages of the individual evaluation procedure.

In this manuscript, the calculation of the irreversible entropy production rate is realized
by two different methods. On the one hand, the locally resolved numerical method
according to Kock [17] is applied, using partial differential equations. On the other hand, the
method according to Bejan [8] is used. This method applies the same calculation parameters
as for the heat transfer from the standard NTU method and the pressure drop. The method
from Bejan [8] is, therefore, an approximate, but fast and easy applicable method.

2.5.1. Partial Differential Equations for the Irreversible Entropy Production Rate

For the method from Kock [17], the differential equations for the calculation of the
irreversible volumetric entropy production rate [7,16,17] are added in the Ansys Fluent
module. Here, the equations are divided into a part associated with the fluid friction (SS)
(caused by shear stresses in the fluid and on the wall) and a part related to heat conduction
(HC) (in the fluid and the solid part), so

.
S
′′′
irr,pde =

.
S
′′′
irr,pde,HC +

.
S
′′′
irr,pde,SS results. As with

the Navier–Stokes equations, the equations for entropy calculation must be decomposed
into time-averaged fractions (indicated by �) and fluctuation fractions (indicated by �′).
For the time-averaged volumetric irreversible entropy production rate due to shear stress
in all three spatial directions, the following applies, according to Kock [17]:

.
S
′′′
irr,pde,SS =

µ

T

(
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
]
+

(
∂u
∂y

+
∂v
∂x

)2
+

(
∂u
∂z

+
∂w
∂x

)2
+

(
∂v
∂z

+
∂w
∂y

)2
)

, (22)

and the following applies for the fluctuation component when using a turbulence mo-
del [7,17,23]:

.
S
′′′
irr,pde,SS′ =

ρ ε

T
=

ρ

T
Cµkt ω , (23)

where ε stands for the isotropic dissipation rate and Cµ = 0.09 for a model constant. The
calculation of the total volumetric irreversible entropy production rate by shear stresses is
given by

.
S
′′′
irr,pde,SS =

.
S
′′′
irr,pde,SS +

.
S
′′′
irr,pde,SS′ .

For the irreversible entropy production rate by heat conduction in the fluid
.
S
′′′
irr,pde,HC,f =

.
S
′′′
irr,pde,HC, f +

.
S
′′′
irr,pde,HC′ , f the following differential equation is used for

the time-averaged component:

.
S
′′′
irr,pde,HC, f =

λ

T2

((
∂T
∂x

)2

+

(
∂T
∂y

)2

+

(
∂T
∂z

)2)
(24)

and the following short expression [7,17,23] is used for the fluctuating part:

.
S
′′′
irr,pde,HC′ , f =

at

a

.
S
′′′
irr,pde,HC, f =

νt

Prt a

.
S
′′′
irr,pde,HC, f . (25)

The turbulent Prandtl number is set to Prt = 0.85 according to [43], and the turbulent
kinematic viscosity can be calculated from the effective kinematic viscosity νt = νeff –ν,
where a is the thermal diffusivity of the fluid or the solid.
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The calculation of the irreversible entropy production rate by heat conduction in the
solid

.
S
′′′
irr,pde,HC,w is carried out by using Equation (24), while the time-averaged values are

replaced by the actual temperature in each cell since no fluctuation occurs. The overall
entropy production rate by heat conduction is the sum of the part of the wall and the fluid
.
S
′′′
irr,pde,HC =

.
S
′′′
irr,pde,HC,w +

.
S
′′′
irr,pde,HC,f.

Finally, the total irreversible entropy production rate can be calculated via the follow-
ing volume integral, as proposed by Ji et al. [23]:

.
Sirr,pde =

∫
V

.
S
′′′
irr,pdedV . (26)

2.5.2. Method of Bejan [8] for Calculating the Irreversible Entropy Production Number

The method according to Bejan [8] is a lot easier to apply as it only uses the calculation
variables that are used for the determination of the heat transfer and pressure drop anyway.
In contrast to the method from Kock [17], Bejan [8] introduced a dimensionless entropy
production number, referring the irreversible entropy production rate to the transferred
entropy flow by heat. This allows a comparison of different structures and heat exchangers
in terms of entropic efficiency, since a higher irreversible entropy production rate does not
directly mean a more inefficient heat exchanger if the transferred heat flow is also increased.
Furthermore, this entropy production number can also be interpreted as the ratio of the
dissipated energy rate to the transferred heat flow rate.

For the calculation of the irreversible entropy production number, the one-dimensional
differential approach according to Bejan [8] is repeated. For the case of constant heat flux (or
constant length-related heat flux), the differential equation for calculating the irreversible
entropy production number within a differential element dx of a fluid is initially as follows
(see also Figure 5, left):

Ns =
Tf
.
q′

d
.
Sirr

dx
=

.
m

ρ
.
q′

(
−dp

dx

)
+

∆Tw

Tf

(
1 +

∆Tw

Tf

)−1
. (27)
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.
Q.

Initially, Bejan [8] introduced the entropy production number only for the fluid part,
so the following explanation first refers to the hot and cold fluids and is later extended to
the wall part.
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Equation (27) is integrated over the length L to obtain the entropy production number
for the entire calculated section (see Figure 5, right). This leads to the following expression
for the cold and hot fluids:

Ns,f,c = Tf,m,c

.
Sirr,c

.
Q

=

[
pf,c,in − pf,c,out

ρm,c cp,m,c (Tf,c,out − Tf,c,in)
+

∆Tlog,c

Tf,m,c

(
1 +

∆Tlog,c

Tf,m,c

)−1
]

, (28)

Ns,f,h = Tf,m,h

.
Sirr,h

.
Q

=

[
pf,h,in − pf,h,out

ρm,h cp,m,h (Tf,h,in − Tf,h,out)
−

∆Tlog,h

Tf,m,h

(
1 +

∆Tlog,h

Tf,m,h

)−1
]

, (29)

The first term of the equation represents the share of entropy production rate due to
shear stresses (pressure drop), and the second term represents the share of entropy produc-
tion rate due to heat transfer at a given temperature difference. Special attention must be
paid to the temperature difference between the wall and the fluid ∆Tlog,i on either the hot or
the cold side. In the present case, a counterflow heat exchanger configuration is investigated,
and, therefore, the same logarithmic temperature difference (Equation (8)) will be used for
the calculation of the heat transfer coefficient. In Section 3.2.1, the choice of this temperature
difference will be reviewed. For the temperature of the fluid, again the arithmetic mean
value between the inlet and the outlet is chosen as Tf,m,i = (Tf,i,in + Tf,i,out)/2.

For the calculation of the irreversible entropy production number within the wall, the
integral approach is used again, but the entropy production rate by shear stresses cannot
occur. The wall now contains the entropy flow which enters the wall on the hot side and
leaves the wall on the cold side, and possible axial heat flows leaving (or entering) the
domain are not considered. The equation for the calculation of the entropy production
number in the wall is then as follows:

Ns,W = TW,m

.
Sirr,W

.
Q

= TW,m

[(
1

Tf,m,c + ∆Tlog,c

)
−
(

1
Tf,m,h + ∆Tlog,h

)]
, (30)

with TW,m =
[(

Tf,m,c + ∆Tlog,c

)
+
(

Tf,m,h + ∆Tlog,h

)]
/2 as the mean temperature of the

wall and Equation (8) for the logarithmic wall temperature.
The total entropy production number Ns is calculated by summing up the individual

entropy production numbers to Ns = Ns,f,c + Ns,f,h + Ns,W.

2.5.3. Second Law Evaluation for Comparison of Both Methods

For the comparison of the calculation method from Bejan [8] and Kock [17], the irre-
versible entropy production rate from the second law of thermodynamics [44] is calculated
by balancing around the entire calculation domain (see also Figures 2 and 5, right). The only
entropy flows entering and leaving are the mass-bound ones (the frontal and backward
walls are taken as adiabatic), so that the following balance results:

.
Sirr,2nd =

.
mh

(
cp,m,h ln

Tf,h,out

Tf,h,in
− R ln

pf,h,out

pf,h,in

)
+

.
mc

(
cp,m,c ln

Tf,c,out

Tf,c,in
− R ln

pf,c,out

pf,c,in

)
. (31)

3. Results and Discussion
3.1. Validation

Table 3 shows the results of a mesh independence check for the validation case;
a 3.9 mil. element mesh independence is obtained and this element number will be used
for further validation calculations.
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Table 3. Mesh independence check for the validation case for Re = 300.

Number of Elements
(Mio. Elements)

∆phot
[Pa]

Tf,h,out
[K]

∆pcold
[Pa]

Tf,c,out
[K]

2.2 84.9 454.86 54.56 395.11

3.0 101.9 454.89 64.45 395.06

3.9 102.5 454.9 64.52 395.05

Figure 6 shows the Colburn j-factor and the Fanning f-factor. The Colburn j-factor
shows a very good agreement between the hot and cold sides. In comparison to the
data from Joshi and Webb [37], the validation calculation slightly overestimates the heat
transfers for small Reynolds numbers, but is still in the range of the given uncertainty of
the correlation (±20%). For increasing Reynolds numbers, the deviation decreases and then
shows a very good agreement.
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Comparison with values from correlations (Equations (16)–(21)) from Manglik and Bergles [36],
Chennu [39], and Joshi and Webb [37].

In comparison with Manglik and Bergles [36], higher values (+35–40%) are obtained,
but the mean deviation of the correlation is given as ±20% and some of the measured
values show deviations up to 40%. The values of Chennu [39] are overestimated by about
15–25%. Overall, there is a systematic overprediction of the j-factor, which could be related
to the chosen procedure to calculate the wall temperature, as this slightly varies from the
procedure the authors used. A comparison of the f-factors shows a larger scatter for all
three authors. The numerical calculations of this manuscript are rather in the upper range;
for the whole Reynolds number range, a very good agreement with the values of Chennu
is obtained, and for increasing Reynolds numbers, the deviation increases to approx. 15%.

In comparison with Manglik and Bergles [36], the deviation is <15% for smaller
Reynolds numbers and decreases to about 11% for high Reynolds numbers, which is also
within the specified correlation accuracy. The comparison with Joshi and Webb [37] shows
a significantly higher f-factor level overall, but their scattering is given within −50% to
+20%. A further comparison with the validation process in Chennu [39] shows a very similar
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scattering of the numerically obtained j-factor and f-factor data with a larger number of
different data sets. Finally, it must be considered that the off-set strip fins are comparatively
complex structures, so that a larger scattering of the data for heat transfer and pressure drop
must be expected, since the correlations developed may not be able to correctly represent all
the effects that occur, such as manufacturing inaccuracies in the experimentally determined
correlations, as also stated by Chennu [39]. Taking these aspects into account, a successful
validation has been shown, so that the mesh used here can now be used as a starting point
for meshing the inclined fin structures.

3.2. Results of the Inclined Off-Set Structures

In the following section, the results of the inclined fin structures are presented. The
two calculation methods according to Kock [17] and Bejan [8] are compared and a detailed
investigation of the irreversible entropy production rate for one structure is conducted.
Following this, the different geometric parameters are evaluated regarding their entropy
production number, divided in the dissipation by shear stress of the cold and hot fluids
and the dissipation by heat conduction as well as the overall entropy production number.
For completeness, the resulting Colburn j-factor and the Fanning f-factor for the different
geometric parameters are also presented. First, a mesh independence study for the inclined
structures is carried out. Table 4 shows the hot-side pressure drop, the outlet temperature
of the hot side, and the irreversible entropy production rate obtained by Equation (31) as
well as Equation (26) for different meshes. The results show that, starting from an element
number of 6.48× 106 elements (Mesh number 1), the change in the temperature is less than
0.02 K and the pressure drop changes by less than 0.2 Pa. The difference in the irreversible
entropy production rate between Equations (26) and (31) is less than 1%. For the subsequent
calculations, the mesh number 3 with 13.73× 106 elements is used. This ensures that the
gradients for the entropy production rate are calculated correctly to overcome possible
inaccuracies close to the walls, as stated by Kock [17].

Table 4. Mesh independence of the inclined structures for Re = 300.

Mesh Number ∆pf,h
[Pa]

Tf,h,out
[K]

.
Sirr,2nd·103

[W/K]

.
Sirr,pde·103

[W/K]

1 89.15 452.84 1.132 1.101

2 89.25 452.85 1.131 1.110

3 89.55 452.83 1.108 1.117

3.2.1. Comparison of the Calculation Methods of Bejan [8] and Kock [17]

The geometries mentioned initially are now evaluated with respect to their irreversible
entropy production rate. For this purpose, the evaluation procedure is checked in advance
by comparing the results for the entropy production rate according to Bejan [8] with the
second law (Equation (31)) as well as the volume integral of the local entropy production
rate (Equations (22)–(26)). For an easy comparison of the three different methods, the
entropy production number according to Bejan [8] (Equations (28)–(30)) is converted into
an irreversible entropy production rate

.
Sirr,i = Ns,i

.
Qi/Tm,i by multiplying the individual

components Ns,f,c, Ns,f,h, and Ns,W (cold fluid, hot fluid, and wall) with the corresponding
heat flow rate and individual mean temperatures Tf,m,c, Tf,m,h, and TW,m. Afterwards, the
components are summed up to

.
Sirr,Bejan =

.
Sirr,f,c +

.
Sirr,f,h +

.
Sirr,W.

Figure 7 shows the irreversible entropy production rate calculated using the integral
approach (Equation (31), Bejan’s approach [8] (converted Equations (28)–(30)), and the local
approach by Kock [17] (Equations (22)–(26)) depending on an arithmetic-mean Reynolds
number for the hot and cold sides. The deviation between the integral approach and
Bejan [8] is less than 1% over the entire flow range for the reference structure. The deviation
between the local approach by Kock [17] is less than 3% on average. For very small
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Reynolds numbers, a deviation of 8% is calculated, and for high flow velocities, it is about
2.5%, which indicates possible residual inaccuracies of the mesh, since the calculation of
the irreversible entropy production rate is performed via the square of the gradients and
possible errors become more obvious [17]. Since the deviations for both variants are to
be regarded as small over a wide range, both the method of Bejan [8] and the method
according to Kock/Wenterodt [11], Ref. [6] are suitable for the calculation of the irreversible
entropy production rate in complex structures. In the next comparison, a check of the
dissipation by heat conduction and by shear stresses using the method of Bejan [8] is
carried out. This comparison also reveals if the chosen logarithmic temperature difference
is a suitable way to calculate the irreversible entropy production rate by heat conduction.
For this purpose, the partial differential equations of Kock [17] are used, since these allow
a separate calculation of the irreversible entropy production rate by heat conduction in the
fluid and the wall.
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Figure 7. Comparison of the irreversible entropy production rate for the entire domain using the
calculation method of Bejan [8], the 2nd law of thermodynamics [44], and differential equation [7,17].

The entropy production number of the fluid (Ns,f,h and Ns,f,c) is, therefore, separated in
the part of dissipation by shear stresses Ns,SS (first term of Equations (28) and (29)) and by
heat conduction Ns,HC,f (second term of Equations (28) and (29)) for the hot and cold fluids.
These components are then converted into the irreversible entropy production rate (as in the
previous comparison) for an easy comparison with the results using Kock’s method [17].

Figure 8 shows the irreversible entropy production rate due to heat conduction and
shear stresses, according to Bejan’s method [8] as well as according to the differential
equations from Kock [17] for the hot and cold fluids. An increasing deviation can be seen,
in particular for the heat conduction. For small Reynolds numbers, a deviation of only
14% is shown on both the cold and the hot sides. This increases to 29% with increasing
Reynolds number. For the hot side, the picture is similar: for small Reynolds numbers, the
deviation is 16% and increases to 54% with increasing Reynolds number. In the same way,
the irreversible entropy production rate in the fluid differs between these two methods,
and the entropy production rate within the walls also shows deviations.



Entropy 2023, 25, 162 15 of 35

Entropy 2023, 25, x FOR PEER REVIEW 14 of 33 
 

 

(as in the previous comparison) for an easy comparison with the results using Kock’s 
method [17]. 

Figure 8 shows the irreversible entropy production rate due to heat conduction and 
shear stresses, according to Bejan’s method [8] as well as according to the differential 
equations from Kock [17] for the hot and cold fluids. An increasing deviation can be seen, 
in particular for the heat conduction. For small Reynolds numbers, a deviation of only 
14% is shown on both the cold and the hot sides. This increases to 29% with increasing 
Reynolds number. For the hot side, the picture is similar: for small Reynolds numbers, the 
deviation is 16% and increases to 54% with increasing Reynolds number. In the same way, 
the irreversible entropy production rate in the fluid differs between these two methods, 
and the entropy production rate within the walls also shows deviations. 

 
Figure 8. Comparison of the entropy production rate by heat conduction and shear stresses in the 
cold (left) and hot (right) fluids, using the method of Bejan [8] and the differential equations [17]. 

The discrepancies between the method of Kock [17] and the method of Bejan [8] are 
primarily related to the underlying choice of the temperature at which the heat flux is 
transported. In the local approach by Kock [17], the irreversible entropy production rate 
is calculated in each infinitesimal section and, thus, also underlies the temperature 
gradients prevailing there. In contrast, in the method proposed by Bejan [8] and also other 
integral methods, the entropy production rate due to heat conduction is related to a certain 
mean temperature definition, for example, the wall temperature [8] or the fluid mean 
temperature [17,44]. For complex structures, the definition of a simply defined wall 
temperature (such as the proposed logarithmic temperature difference in combination 
with the mean fluid temperature) is no longer accurate. This leads to the discrepancy 
between the calculated portions of entropy production rate due to heat conduction in the 
fluid or the wall and the true portions of entropy production rate. 

In summary, the method of Bejan [8] allows an exact calculation of the entropy 
production rate by heat conduction for the whole heat-exchanging section (containing the 
hot fluid, the wall, and the cold fluid), but there is no exact subdivision on the single 
components due to the choice of the logarithmic temperature difference for the calculation 
of the wall temperature. On the other hand, Bejan’s method [8] allows an accurate 
calculation of dissipation due to shear stresses (see Figure 8). The deviations are less than 
6% for the highest Reynolds numbers on the cold side. For smaller Re numbers, the 
deviations decrease to less than 1%. For the hot side, the agreement between both methods 
is better. For the complete Re number range, the deviations are less than 1%. If these facts 
are taken into account, the method of Bejan [8] allows a quick and easy classification of 

Figure 8. Comparison of the entropy production rate by heat conduction and shear stresses in the
cold (left) and hot (right) fluids, using the method of Bejan [8] and the differential equations [17].

The discrepancies between the method of Kock [17] and the method of Bejan [8]
are primarily related to the underlying choice of the temperature at which the heat flux
is transported. In the local approach by Kock [17], the irreversible entropy production
rate is calculated in each infinitesimal section and, thus, also underlies the temperature
gradients prevailing there. In contrast, in the method proposed by Bejan [8] and also
other integral methods, the entropy production rate due to heat conduction is related to
a certain mean temperature definition, for example, the wall temperature [8] or the fluid
mean temperature [17,44]. For complex structures, the definition of a simply defined wall
temperature (such as the proposed logarithmic temperature difference in combination with
the mean fluid temperature) is no longer accurate. This leads to the discrepancy between
the calculated portions of entropy production rate due to heat conduction in the fluid or
the wall and the true portions of entropy production rate.

In summary, the method of Bejan [8] allows an exact calculation of the entropy produc-
tion rate by heat conduction for the whole heat-exchanging section (containing the hot fluid,
the wall, and the cold fluid), but there is no exact subdivision on the single components
due to the choice of the logarithmic temperature difference for the calculation of the wall
temperature. On the other hand, Bejan’s method [8] allows an accurate calculation of dissi-
pation due to shear stresses (see Figure 8). The deviations are less than 6% for the highest
Reynolds numbers on the cold side. For smaller Re numbers, the deviations decrease to
less than 1%. For the hot side, the agreement between both methods is better. For the
complete Re number range, the deviations are less than 1%. If these facts are taken into
account, the method of Bejan [8] allows a quick and easy classification of heat-transferring
structures or complete heat exchangers with respect to the entropy production number
by heat conduction in the whole component as well as the one by friction in the hot and
cold fluids.

Kock’s method [17], on the other hand, allows a detailed analysis of irreversible
entropy production rate, which will now be carried out on the basis of the inclined refer-
ence structure.
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3.2.2. Detailed Consideration of the Irreversible Entropy Production Rate on the Basis of
the Inclined Reference Structure

In Figure 9, the entropy production rates for heat conduction in the fluid and the wall
and the sum of the three components

.
Sirr,HC,tot =

.
Sirr,HC,h +

.
Sirr,HC,w +

.
Sirr,HC,c for different

Reynolds numbers are shown. For the representation of the course of the wall and the sum
of the three partial quantities, an arithmetic average Reynolds number from the hot and cold
sides is used. The plot shows that the irreversible entropy production rate in the reference
structure due to heat conduction within the wall and the fin structures for the entire
Reynolds number range studied are more than 50%, while the hot and cold fluids account
for an average of 17.7% and 28.5%, respectively. Thus, heat conduction within the solid is
the main contributor to the entropy production rate due to the temperature gradients, while
the temperature gradients in the fluid due to convection and conduction have a smaller
influence. Furthermore, with increasing temperature, the irreversible entropy production
rate due to heat conduction in the fluid decreases as expected. However, a closer look at
the relative contributions to the total entropy production rate by heat conduction (Figure 9,
right) shows that the entropy production rate within the wall decreases with increasing
Reynolds number, while the contributions from the hot and cold fluids increase.
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Figure 9. Left: Entropy production rate by heat conduction in the hot/cold fluid, the wall/fins, and
overall entropy production rate by heat conduction, and right: relative proportions of the entropy
generation by heat conduction of the hot/cold fluid and the wall. For the total entropy production
rate and the entropy production rate in the wall and fins, the mean Reynolds number of the hot and
cold sides is used.

For small Reynolds numbers below 400, this increase in the fluid proportion is mainly
determined by the increasing molecular heat conduction (Equation (24)). In turn, the
fractions of fluctuation (Equation (25)) increase significantly and rise in the hot and cold
fluids from below 0.05% at Re = 400 to 5.7% and 4.3% at Re = 713, respectively (see
also Figure 10, left). With increasing Reynolds number, the degressive trend of the heat
conduction of the fluid in Figure 9 is likely to turn into a progressive one, similar to the



Entropy 2023, 25, 162 17 of 35

entropy production by shear stresses in Figure 8. This is also supported by the trend of the
fluctuating proportions of the shear stresses in Figure 10, right. The fluctuating parts of
the shear stresses are gaining significant importance for the entropy production rate and
are exceeding the ones by heat conduction by a factor of 2.3 for the hot side and 2.6 for
the cold side. Nevertheless, the wall remains the decisive driver for entropy production
rate by heat conduction, which is why the focus should be placed on the fins, in particular
when optimizing structures in order to reduce the temperature gradients. The separation
of the entropy production rate by heat conduction in the wall and the fluid now also allows
a separation to be made on the total entropy production rate caused by the fluid and the
wall. For this purpose, Figure 11 shows the entropy production rate in the fluid and in
the wall as well as their shares in the total entropy production rate (Equation (26)). With
increasing Reynolds number, the influence of shear stresses on the entropy production rate
in the fluid increases strongly, as shown in Figure 8, which is additionally favoured by
a higher mean temperature. This finally leads to the fact that from Re = 582 onwards, the
entropy production rate in the hot fluid exceeds that of the cold fluid, and for Re = 713, it
almost reaches the level of the wall. It follows that, for high Reynolds numbers, the fraction
of entropy production rate in the hot fluid also occupies a large fraction, while the fraction
of the cold fluid increases only slightly. The entropy production rate by shear stresses
dominates, despite the same Reynolds number and the total entropy production rate for
increasing temperatures. It follows that, especially in high-temperature applications, very
good attention must be paid to the adaptations and optimizations of the structures in terms
of flow guidance and structural shaping.
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The preceding analysis now allows the calculation of the Bejan number as a character-
istic number of whether the losses in the fluid are dominated by heat conduction or shear
stresses. The definition of the Bejan number [17] is as follows:

Be =

.
Sirr,HC

.
Sirr,HC +

.
Sirr,SS

, (32)

where Be→ 0 means the entropy production is dominated by shear stress and Be→ 1
means the entropy production is dominated by heat conduction. The curve for the hot and
cold fluids based on the reference structure is shown in Figure 12. The diagram shows that
the hot side, in particular, is strongly dominated by entropy generation due to shear stress
as the Reynolds number increases.

The entropy production on the cold side is dominated by temperature gradients, or
heat conduction, due to the lower temperature level.

To illustrate the positions within the fluid at which the entropy production rate occurs,
Figure 13 shows the volumetric irreversible entropy production rate due to shear stresses
(i.e., pressure drop) for two different Reynolds numbers (110 and 713) that are exemplary for
the reference structure and the cold fluid. It is seen that the highest irreversible entropy pro-
duction rate occurs, in particular, at the edges of the stagnation points of the structure and
extends far into the wake region further downstream. The irreversible entropy production
rate occurring there is 1–2 orders of magnitude higher than the general irreversible entropy
production rate in the boundary layer. Furthermore, increased velocities lead to a stronger
influence of the gradients and the losses due to shear stresses extend through the entire
structure in a string-like manner. A comparison of the irreversible entropy production rate
within the boundary layer shows an increase of about a factor of two for the increased
velocity, and the entropy production rate due to shear stresses, therefore, increases strongly,
as already confirmed in Figure 8.
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Figure 13. Local volumetric entropy production rate by shear stress (mean values and fluctuation) at
Re = 110 (left) and at Re = 713 (right) for the cold fluid side (flow direction: bottom to top). Slicing
plane for the contour plot.

An analysis of the thermally induced irreversible entropy production rate (Figure 14),
on the other hand, shows a different picture. The dissipation due to the temperature
gradients occurs on the entire front side of the fin stagnation point. After flowing around
the stagnation point, the irreversible entropy production rate initially subsides somewhat as
the thermal boundary layer forms, maintaining an approximately constant loss level within
the thermal boundary layer, which is due to constant temperature gradients. In contrast
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to the fluid, the losses within the fin are homogeneously distributed, with an overall high
level of losses being noticeable, confirming the findings in Figure 9.
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Figure 14. Local volumetric entropy production rate by heat conduction (mean values and fluctuating
values) at Re = 110 (left) and at Re = 713 (right) for the cold fluid side.

An increase in velocity shows a corresponding increase in irreversible entropy produc-
tion rate in the areas of high gradients, i.e., particularly in the stagnation points as well as
in the subsequent redirection, but this increase turns out to be much smaller than in the
case with dissipation by shear stress. The irreversible entropy production rate within the
fins increases only moderately, which becomes clear from the colour scaling, and this is
further confirmed by Figure 9. Figures 15 and 16 show the volumetric entropy production
rate by shear stress and heat conduction in the cross section of the fin structures normal
to the flow direction. In the case of dissipation by shear stresses, the areas of large losses
with increasing flow velocity no longer occur directly at the wall, but at a short distance
in front of the wall, where the turbulent fluctuation has the highest values. The smallest
irreversible entropy production rate reaches the centre of the structure, where the smallest
gradients are found. For the dissipation due to heat conduction, the losses within the
fins vary to a considerable extent with the flow velocity, since due to the increased heat
transfer, a higher heat flow has to be conducted across the fin, increasing the temperature
gradients and consequently the entropy production. Furthermore, the fin structures show
a significantly higher entropy production rate compared to the fluid, confirming once again
that an optimization of the fin shape is considered beneficial to reduce the irreversible
entropy production rate within the structure.
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The local analysis, thus, allows conclusions to be drawn as to where optimization can
be beneficial from an entropic point of view. To reduce the irreversible entropy production
rate by shear stresses, the narrowed cross sections between two rows of fins should be
mentioned. This would reduce the acceleration of the flow and, thus, reduce the shear
stresses. Furthermore, optimization of the wake region could be advantageous in order to
reduce the detachment area.

Optimization with regard to entropy production rate due to heat conduction should
aim at limiting the loss areas to a narrower range, i.e., reducing the boundary layer thick-
ness and thus increasing heat transfer, for example, by thickening the downstream fin
structure to match the entropy production rate, which would also increase the cross sec-
tion available for heat conduction and, thus, reduce the temperature gradient along the
fin height. Furthermore, an adapted fin shape, such as trapezoidal fins, can increase the
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cross section with decreasing distance to the wall and, thus, further lower the temperature
gradient at the fin base.

On the basis of the analysis carried out, it can be stated that a detailed analysis of
the occurring irreversible entropy production rate as a result of shear stresses or heat
conduction is possible with the method proposed by Kock [17]. However, the calculations
rely on a very fine mesh to sufficiently resolve the velocity and temperature gradients and
are, thus, very computationally intensive. This mesh fineness is not absolutely necessary
for the determination of heat transfer and pressure drop, as already shown by Ji et al. [23].
As a result, the method of Bejan [8] may be a simple and fast possibility to calculate the
dissipation due to shear stresses and overall heat conduction.

3.2.3. Irreversible Entropy Production Number and Heat-Transferring Parameters for
Different Geometric Parameters

In this subsection, the different geometric parameters are now evaluated in terms
of their entropy production number using the method from Bejan [8] due to its quick
application. The Colburn j-factor as well as the Fanning f-factor for the different geometric
parameters are also presented.

Based on the results from “Section 3.2.1”, i.e., that the choice of the logarithmic
temperature difference is not a suitable solution, we suggest a slightly different procedure
compared to Bejan [8]. The entropy production number for the dissipation by shear
stresses of the hot and cold fluids and the dissipation by overall heat conduction should be
calculated by the following equations:

Ns,SS,c =

[
pf,c,in − pf,c,out

ρc,m cp,m,c (Tf,c,out − Tf,c,in)

]
, (33)

Ns,SS,h =

[
pf,h,in − pf,h,out

ρh,m cp,m,h (Tf,h,in − Tf,h,out)

]
, (34)

Ns,HC = TW,m

[(
1

Tf,m,c+∆Tlog,c

)
−
(

1
Tf,m,h+∆Tlog,h

)]
+

[
∆Tlog,c
Tf,m,c

(
1 +

∆Tlog,c
Tf,m,c

)−1
]

−
[

∆Tlog,h
Tf,m,h

(
1 +

∆Tlog,h
Tf,m,h

)−1
]

.
(35)

One advantage of this separate consideration is that the share of dissipated power
due to pressure loss as well as due to the total heat conduction is directly related to the
transferred heat flow and, thus, allows a classification of the structure (or even a complete
heat exchanger) with respect to energetic efficiency. The total entropy production number
is then again obtained by summing up the individual entropy production numbers to give
Ns = Ns,SS,c + Ns,SS,h + Ns,HC.

Fin height h*
Figure 17 show the entropy production number for different fin heights, splitting

it between hot and cold fluid dissipation by shear stresses and entropy production due
to heat conduction. An average Reynolds number of the hot and cold sides is chosen
for the irreversible entropy production rate due to heat conduction and the total entropy
production number. In general, the entropy production rate increases with increasing
Reynolds number. This is due to the strongly increasing dissipation due to shear stresses,
which increases by a factor of up to 62 for the cold fluid. The entropy production rate due
to shear stresses can be reduced by almost 50% as a result of a reduction in the fin height
from h* = 1.53 to 0.74. For the hot side, a similar picture is shown: the entropy production
number by shear stresses increases by a factor of 70 between Re = 120 and Re = 730, and
a reduction in the fin height leads here to 50% lower entropy production rate due to shear
stresses. The hot side shows an increased entropy production rate by a factor of about
three compared to the cold side due to the increased mean temperature and the resulting
increased velocity. Furthermore, it must be noted that the numerical values given in the



Entropy 2023, 25, 162 23 of 35

diagrams are proportions to the losses in the entropy flux transferred, which means that for
the hot side and the largest fin height investigated, almost 18% of the irreversible entropy
production is due to shear stresses, while the cold side accounts for about 5.5%. An analysis
of the entropy production rate due to heat conduction (which includes the hot fluid, the
wall, and the cold fluid) shows a degressively increasing behavior in the Reynolds number
range studied for all fin heights. For the largest fin height, the largest entropy production
numbers are obtained, although the difference between the fin heights is less strongly flow
dependent than is the case for shear stresses.
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Figure 17. (a) Entropy production number due to shear stresses for the cold side, (b) entropy produc-
tion number due to shear stresses for the hot side for different fin heights, (c) entropy production
number due to heat conduction in the hot/cold fluid and the walls/fins, (d) overall entropy produc-
tion number for different fin heights, and (e,f) j-factor, f-factor, and Nusselt number of the hot/cold
side for different fin heights.

Based on the total entropy production number, choosing the smallest fin height at the
maximum Reynolds number allows for 27.5% lower losses, while the j-factor is reduced
only to a small extent. If the Reynolds number is reduced, the differences between the
various fin heights are getting smaller.

Figure 17e,f show the plots of the Colburn j-factor, the f-factor, and the Nusselt num-
ber for the different fin heights, while keeping the other geometric parameters constant;
Equation (10) is again applied for the definition of the hydraulic diameter.

The behaviour shown is also in agreement with the findings of Manglik and Bergles [36],
Chennu, [39], and Joshi and Webb [37], according to which both j-factor and f-factor increase
with increasing fin height. A comparison with Manglik’s [36] data also shows that the
relative increase in the j- and f-factor for the inclined fins is very similar to the behaviour for
straight fins. The Nusselt number only varies by a small extent with different fin heights,
but indicates an increasing turbulence, since the slope of the Nusselt number increases
again for Re > 500.

Fin spacing s*
Figure 18 shows the entropy production numbers for different fin spacings and sepa-

rate them into dissipation due to shear stresses for the hot and cold sides, heat conduction
in both fluids and in the wall, and the total entropy production number. The evaluation
shows that for increasing fin spacing, the entropy production number due to shear stresses
decreases sharply, with the hot side having higher entropy production numbers due to
shear stresses, as expected, because of the higher temperature level. Using the hot and
cold sides as an example, increasing the dimensionless fin spacing from 0.92 to 1.33 for
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a Reynolds number of 645 can reduce the entropy production rate due to shear stresses
by 77% and 75%, respectively, as the velocity gradients are smaller due to the increased
spacing. An analysis of the heat conduction shows that the different fin spacings have
a smaller effect on the entropy production number, with the trend again being degressive
as the Reynolds number increases.

This is important because the j-factors vary more with variation in fin spacing than it
is the case with fin height, but the latter shows a greater variation in entropy production
number due to heat conduction. This suggests that the fraction of entropy production rate
within the fluid is much smaller than within the wall. This is also plausible that varying
the fin spacing does not affect the fin efficiency but varying the fin height does. A look
at the total entropy production number of the heat-exchanging section shows that the
increases in the entropy production number are almost entirely due to shear stresses. For an
entropically favorable parameter selection, larger fin spacings should therefore be chosen,
especially in areas of higher temperatures.

Figure 18e,f show the j- and f-factor and the Nusselt number for different fin spacings
as a function of the Reynolds number. In contrast to the fin height, there is a stronger
dependence on the fin spacing for both the j-factor and the f-factor. The j-factor increases
by up to 16% with increasing fin spacing. The f-factor shows a much stronger dependence
and decreases from 0.32 to 0.2 at a Reynolds number of about 700. A comparison with the
correlations of Chennu [39] shows an identical qualitative behaviour: with increasing fin
spacing, the j-factor increases and the f-factor decreases. The relative change in the j-factor
is of the same order of magnitude as that of Chennu’s calculation [39], but the change in
the f-factor is much more pronounced.
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Figure 18. (a) Entropy production number due to shear stresses for the cold side. (b) Entropy
production number due to shear stresses for the hot side for different fin spacings. (c) Entropy
production number due to heat conduction in the hot/cold fluid and the walls/fins. (d) Overall
entropy production number for different fin spacings. (e,f) j-factor, f-factor, and Nusselt number of
the hot/cold side for different fin spacings.



Entropy 2023, 25, 162 27 of 35

The strong decrease in the f-factor and the simultaneous increase in the j-factor can be
explained by the inclination angle of the fins. This angle creates a “gusset” in the lower
region of the base of the fins, where there is a higher flow resistance due to the surrounding
walls. This leads to a deflection of the flow further down into the center of the channel, with
the consequence that the thermal boundary layer in the fin root area increases and, thus, the
j-factor decreases, while, at the same time, the increased flow velocity in the center causes
an increase in the pressure drop and consequently a higher f-factor. If the fin spacing is now
increased, the flow cross section increases and reduces the f-factor. Furthermore, this also
leads to a reduction in the flow resistance in the lower region of the fin root, which reduces
the velocity peaks in the center and further lowers the f-factor, as well as an increase in
the average flow velocity at the fin root, which reduces the thermal boundary layer, which
consequently increases the j-factor. A closer look at the Nusselt number shows that, for
small fin spacings, there is an increasing slope of the Nu number from Re > 500 onwards,
which indicates increasing turbulence, similar to the different fin heights.

Fin length l*
Figure 19 shows the entropy production number as a result of different fin lengths.

Basically, the entropy production decreases with increasing fin length, and this applies to
shear stresses in the hot and cold fluids as well as to heat conduction. This can be explained
by the decreasing temperature and velocity gradients in the fluid as well as in the wall, see
also Equations (22) and (24). As the fin length increases, the fin cross section is increased,
which increases the fin efficiency and, thus, reduces the entropy production rate within
the fin structures. The total entropy production number shows the lowest scatter to date
for varying fin lengths. Therefore, for minimum entropy production rate, a longer fin
is recommended.
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Figure 19. (a) Entropy production number due to shear stresses for the cold side. (b) Entropy
production number due to shear stresses for the hot side for different fin lengths. (c) Entropy
production number due to heat conduction in the hot/cold fluid and the walls/fins. (d) Overall
entropy production number for different fin lengths. (e,f) j-factor, f-factor, and Nu number of the
hot/cold side for different fin lengths.
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The j-factor, the f-factor, and the Nusselt number for different fin lengths are shown
in Figure 19e,f. As expected, the Colburn j-factor and f-factor decrease with increasing fin
length. This is consistent with the results of both Chennu [39], Manglik and Bergles [36],
and Joshi and Webb [37], as the same effects occur. As the fin length increases, the thermal
boundary layer increases and reduces the heat transfer, causing the j-factor to decrease. This
is also shown by the Nusselt number, whereby doubling the fin length by 50% decreases
the Nusselt number by 19%. At the same time, the hydrodynamic boundary layer also
grows with increasing fin length, so that the velocity gradients are reduced, which is shown
by a reduced f-factor.

Longitudinal fin displacement lfs*
At last, the longitudinal fin displacement is considered. The variation in this parameter

is seldom studied as this is generally associated with increased manufacturing effort using
conventional methods. Additive manufacturing allows this parameter to be considered
easily, which is why it is included in this investigation. In Figure 20a–d, the entropy
production numbers are shown and, in general, a negative longitudinal displacement leads
to a strong increase in the overall entropy production number. In the fluid, this can be
explained by the strong increase in the pressure drop, or by the constantly high velocity
gradient due to the thin boundary layers, which is shown by high irreversible entropy
production rates due to shear stresses. It is interesting to note that a positive longitudinal
fin displacement between l∗f s = 1÷ 3 shows almost no change in the entropy production
number due to shear stresses.

This means that dissipated energy due to shear stresses is reduced at the same amount
as the heat flow rate, so an increase in longitudinal fin displacement does not lead to a more
efficient heat exchange in terms of shear stresses. The entropy production number due to
heat conduction shows, as seen already with the variation in the fin spacing, only a small
dependence on the fin longitudinal displacement. This picture is also seen for the total
entropy production rate: a positive longitudinal fin displacement of more than one shows
almost no further reduction in the entropy production number, which, in connection with
the development of the j-factor, is thus of no benefit.

Figure 20e,f show that the j-factor and the f-factor are influenced strongly by the fin
displacement. This parameter offers the greatest adaptability to heat transfer and pressure
drop to reach the desired conditions to date. This can be explained by the fact that the
boundary layers forming are constantly broken up and reformed, which leads to thin
thermal boundary layers and high velocity gradients, resulting in high j-factors and f-
factors. Further positive longitudinal displacement then shows a further reduction in the
j-factor due to the increasing regions of thick boundary layers between the fins, while the
relative reduction in the f-factor becomes progressively smaller. The Nusselt number can
be increased by almost a factor of four when decreasing the longitudinal gap between two
fin rows from 3 to −0.5.

3.2.4. Interim Conclusion of the Structural Evaluation

The detailed investigation reveals that, in the laminar region, the walls and the fins
are the main contributors to the entropy production rate within, while the fluid only
accounts for a small amount. This might change in the turbulent region, when fluctuating
components become more important. The entropy production rate due to shear stresses is
highly depending on the Reynolds number and on the temperature level. Especially for
higher Reynolds numbers and temperatures, the shear stresses are the main cause for the
dissipation of energy and dominate the overall entropy production rate.
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Based on the evaluations performed on the entropy production number, it can be
conducted that, for an entropically and, thus, overall efficient heat exchanger, small fin
heights, large fin spacings, long fins, and a positive longitudinal fin displacement should be
selected. Furthermore, the heat exchanger should be operated at lower Reynolds numbers
to keep the entropy production low.
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4. Conclusions

In this paper, additively manufacturable fin structures of the off-set strip type were
developed and a parameter study on their performance was conducted. The fin height,
fin spacing, fin length, and fin longitudinal displacement were varied, and the Reynolds
number were varied between 80 and 920. From these numerical calculations, the Col-
burn j-factors, the Fanning friction factors, and the Nusselt numbers were determined.
An evaluation of the structures with respect to their irreversible entropy production rate
was performed, modifying the method of Bejan [8] and comparing this method with the
local entropy production rate according to Kock [17].

Comparisons of the Nusselt number and the f-factor of different fin parameters showed
that variation in fin longitudinal displacement has by far the largest effect. When increasing
the longitudinal displacement from −0.5 to 3, the Nu number decreases from 20 to 5 at
Re = 600 and the f-factor reduces from 0.4 to 0.05. Variations in the fin length and fin
spacing have less impact on the Nusselt number. Variation in the fin height has the smallest
impact on the heat transfer and pressure drop, and the Nusselt number only changes by
around one for the complete Re range. The f-factor changes less than 10% when varying
the fin height.

The integral method of Bejan shows deviations of less than 6% in the calculation of the
irreversible entropy production rate due to pressure loss, or shear stresses, in the hot and
cold fluids compared to the local method of Kock. By means of this simple method, the en-
tropy production due to shear stresses can, thus, be calculated in a straightforward manner.

The calculation of the irreversible entropy production by heat conduction within the
fluid showed deviations between the two methods between 14 and 50%, depending on the
Reynolds number, whereby for small Reynolds numbers, a better agreement is achieved.
The comparison of the total irreversible entropy production caused by heat conduction
shows deviations of less than 2%. The method of Bejan, thus, allows a fast classification of
different structures with respect to losses due to heat conduction and pressure drop.
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The detailed analysis of the irreversible entropy production shows that, for small
Reynolds numbers, more than 50% of the losses are caused by heat conduction within the
wall. With increasing Reynolds numbers, this share decreases to 35%, while losses due to
turbulence-induced entropy production increase, especially due to shear stresses, which
share rises up to 14% at high Reynolds numbers. Based on these data, entropically optimal
geometric parameters can be selected with respect to heat transfer and pressure drop. Low
fin height, larger fin spacing, and long fins have been shown to be advantageous with
respect to the entropy production number. Furthermore, for small positive longitudinal
fin displacements, a considerable reduction in the irreversible entropy production rate is
shown, whereas a further increase in this distance no longer has a significant positive effect.

In the future, the loss mechanisms in the different structures should be investigated in
more detail with the aid of local entropy production rate, in order to be able to make a more
precise classification for the different geometric parameters with regard to the losses due to
heat conduction. In addition, the tests will also be carried out at different temperature levels
in order to assess this influence more precisely. An experimental investigation of some of
the structures presented in this manuscript is in preparation to validate the calculations.
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Nomenclature

Aht heat transfer area, m2

a thermal diffusivity, m2/s
A f c flow cross section, m2

cp specific isobaric heat capacity, J/kg K
dh hydraulic diameter, m
e specific internal energy, J/kg
F1 blending function in k-w SST model
f Fanning friction factor,
g gravitational acceleration, m/s2

GK , Gw constant in k-w SST model
h fin height, m
j Colburn j-factor
kt turbulent kinetic energy, m2/s3

L, l length (overall or fin length), m
.

m mass flow rate, kg/s
Ns entropy production number
Nu Nusselt number
p pressure, Pa
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Pr Prandtl number
.
q′ heat flow per unit length, W/m
.

Q heat flow, W
R individual gas constant, J/kg K
Re Reynolds number
s (fin) spacing, m
.
S entropy flow, W/K
Sk, Sw constant in k-w SST model
t fin thickness or time, m, s
T Temperature, K
u, v, w velocity in x-, y-, and z-directions, m/s
V volume of domain (fluid, wall), m3

x, y, z coordinate, m
YK , Yw constant in k-w SST model
Greek Letters
α heat transfer coefficient, W/m2K
β f , γ, δ dimensionless fin parameter
∆p pressure drop, Pa
ε isotropic dissipation rate, m2/s3

λ thermal conductivity, W/mK
µ dyn. viscosity, Pa s
µt turbulent dyn. viscosity, Pa s
ν kinematic viscosity, m2/s
νt turbulent kinematic viscosity, m2/s
ρ density, kg/m3

τ shear stress tensor, kg/m s2

σw constant in k-w SST model
φ inclination angle, rad
ω specific dissipation rate, 1/s
Subscripts and Superscripts
a heat transfer
c cold
C conduction
D dissipation
eff effective
f fin, fluid
h hot
HC heat conduction
i index (hot:h, cold:c, and wall: w)
in inlet
irr irreversible
lam laminar
log logarithmic
fs (longitudinal) fin displacement
m mean
out outlet
p plate
pde partial differential equations
ref reference structure
s solid
SS Shear Stress
t turbulent
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val validation
w wall
∗ dimensionless fin parameter
‘” volumetric
� RANS mean values
�′ RANS fluctuating values
JW, MB, Ch Joshi and Webb, Manglik and Bergles, and Chennu
2nd 2nd law analysis

Abbreviations

RANS Reynolds-averaged Navier–Stokes equations
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