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Abstract: Noise exists inherently in realistic quantum systems and affects the evolution of quantum
systems. We investigate the dynamics of quantum networks in noisy environments by using the
fidelity of the quantum evolved states and the classical percolation theory. We propose an analytical
framework that allows us to characterize the stability of quantum networks in terms of quantum
noises and network topologies. The calculation results of the framework determine the maximal time
that quantum networks with different network topologies can maintain the ability to communicate
under noise. We demonstrate the results of the framework through examples of specific graphs under
amplitude damping and phase damping noises. We further consider the capacity of the quantum
network in a noisy environment according to the proposed framework. The analytical framework
helps us better understand the evolution time of a quantum network and provides a reference for
designing large quantum networks.

Keywords: quantum networks; quantum noise; evolution time

1. Introduction

Quantum networks play significant roles in quantum computation and quantum com-
munication, such as quantum key distribution (QKD) [1–4], which has been experimentally
demonstrated based on the DARPA quantum network [5], the Tokyo QKD network [6] and
the Chinese satellite quantum network [7], and has become a research hotspot in secure
and efficient information transmission.

Due to the magic quantum properties [8], the dynamics of quantum networks is fun-
damentally different from that of traditional networks, which involves the effect that the
quantum network structures change with the evolution of the quantum states [9,10]. It is
well known that with only the use of maximally entangled quantum states, one can achieve
perfect quantum communication in point-to-point protocols, such as quantum teleporta-
tion [11]. Therefore, Acín et al. [12] proposed the concept of entanglement percolation,
aiming to establish a maximally entangled state between two arbitrary neighboring nodes
of a quantum network. More interestingly, they combined the problem of establishing
the maximally entangled states between nodes with the classical percolation in statistical
mechanics [13] and demonstrated that the phase transitions are very useful in optimizing
quantum networks. Later, the research on entanglement percolation in quantum networks
also attracted much attention [14–17].

In reality, a quantum system will unexpectedly interact with outside environments.
These unexpected interactions are always considered noise [8]. In previous works, the
effect of noisy environments on quantum teleportation [18–22], quantum key distribu-
tion [23–25] and remote state preparation [26,27] have been investigated. However, less
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is studied on the problem of how quantum networks evolve in noisy environments. As
the effect of noise on a quantum network is essential, in order to discuss this question,
we propose an analytical framework to study the duration of quantum networks in noisy
environments based on the classic percolation in statistical mechanics [13].

In the analytical framework, we use percolation theory to study the dynamics of noisy
quantum networks, which has not been applied to the study of noisy systems in similar
configurations. Our approach applies to different quantum network models; that is, if one
considers different quantum networks, the maximum times of the evolution of different
quantum networks can be calculated. The proposed framework is a useful analytical tool
for the design of a practical quantum network. Analyzing the dynamics of the quantum
networks allows us to determine the initial conditions for improving the performance
of quantum communication in noisy environments. Actually, our analytical framework
models the complex dynamics of a quantum network as bond percolation by using fidelity
as a bridge. We can characterize the dynamics of the quantum network adopting the
approach, which only needs to consider the evolution of a corresponding initial link under
noise. Quantum network structures can be optimized to maintain quantum communication
capabilities for a long time in a realistic physical context, based on the analysis results. The
proper time interval of entanglement distribution can be set to save quantum resources via
the calculating results from the analytical framework. Furthermore, quantum networks
and their optimization is of explicit importance to emerging technologies, such as edge
computing [28], and the presented percolation model can be useful when simulating an
edge-computing scenario.

We consider the evolution time t for an arbitrary edge according to a quantum state
in a quantum network and give an analytic expression for the fidelity of the evolved
state in noisy environments. Subsequently, we associate fidelity with the probability of
edge occupation. By combining the classical bond percolation threshold, we establish an
expression to calculate the critical value of the time for a quantum network. In a noisy
quantum network, there exists a critical value of evolution time, tc, such that a giant
connected component (GCC) appears if and only if t < tc. Namely, the probability that two
distant nodes can be connected by a path is distance-independent when t < tc. If t ≥ tc,
the probability decays exponentially with the length of the path between communication
parties. Here, tc could be regarded as the maximal time that a quantum network under a
noisy environment can maintain good communication between two arbitrary nodes.

In addition, we demonstrate the results of the framework through different quantum
network topologies, including networks whose nodes are spatially distributed in a reg-
ular way according to geometries and the complex quantum networks whose nodes are
randomly distributed. We further consider a decoherence model in a nuclear magnetic
resonance (NMR) system whose spin is affected by phase damping and amplitude damping
noises and calculate the value of time when the critical phenomenon occurs in this case.
The calculation results exhibit the maximal time of different quantum network topologies
staying stable. Finally, we investigate how the dynamics of quantum state affects the
capacity of quantum networks in noisy environments and give an upper bound on the
capacity of the quantum network.

2. Preliminaries
2.1. Quantum Network Model

A classical network consists of both nodes and edges that connect pairs of nodes.
A node may be connected with other nodes by many edges, and the number of edges
connected to a given node is called the degree of the node. A connected component or
cluster is a subgraph of a network in which two arbitrary nodes are connected by at least
one edge.

The quantum networks are also composed of nodes and edges, where the nodes can
send and receive quantum states while the edges are quantum entangled states shared by
the nodes. Mathematically, a quantum network is represented by a graph G(V , E) [12,14],
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where V = {1, 2, . . . , N} is the set of nodes, and E ⊂ V × V is the set of edges in the
graph. An edge existing between two nodes represents the two nodes share at least one
quantum state.

In the quantum network described above, any two nodes (communication parties)
achieve a round of quantum communication of four phases. Phase (1) is responsible
for generating initial links. Quantum nodes distributing quantum entanglement refer to
network topology. Every two adjacent nodes share at least one entangled state, which
can be used for quantum communication. In phase (2), paths between communication
parties are found through a routing algorithm running on all nodes. Phase (3) is the process
of establishing end-to-end links shared by communication parties. Intermediate nodes
in the path perform entanglement swapping to build a new entanglement connecting
communication parties [29–32]. In phase (4), communication parties use end-to-end links
to complete information transmission.

As shown in Figure 1, the goal of the two nodes (Alice and Bob) is to establish an
entangled state for quantum communication. According to the four phases, this can be
easily achieved in an ideal environment since a path between any two nodes always exists.
In contrast, a practical quantum network is always affected by the environment. The
evolution of quantum states under noise leads the dynamic of the quantum network to be
more complex. The path between any two nodes does not always exist in the quantum
network under noise. Therefore, we develop an analytical framework to quantify the
stability of the quantum network in a noisy environment by analyzing the evolution of the
initial link.

Figure 1. Entanglement swapping in the quantum network. Alice and Bob can establish a quantum
channel through two steps. Step (a) is selecting a path from a quantum network, such as A→ R→ B
or A → R1 → R2 → · · · → RN → B. Step (b) is that intermediate nodes perform Bell state
measurements to build a long-distance entanglement between the communication parties.

2.2. Percolation Model

Percolation theory is a cornerstone of the theory of disordered media [13], which has
been frequently employed to characterize the performance of network systems [33]. For
the classical network, there are two main types of percolation: the bond percolation model
and site percolation model (see Figure 2).

As shown in plot (a), the process of bond percolation considers that each edge is
occupied with probability p (solid line) and unoccupied with probability 1− p (dotted
line). If there is an edge between two arbitrary nodes, and the edge is connected (occupied)
successfully with the probability p, one can discuss the distribution of the connected
component size. For example, plot (a) contains two connected components with sizes of 2
and 6, respectively. In a large network, when the value of p is very small, a small number
of clusters will appear in the network. With the increase in the probability p, clusters begin
to grow and to be connected with each other. A GCC appears when p reaches a critical
value pc, which is the only component with the relative size finite (nonzero) in the large
network limit. The network, in this case, can give rise to better information transmission.
Here, pc is called the bond percolation threshold of the network.

The site percolation is defined by declaring each site is occupied with probability q
(filled circle) and unoccupied otherwise (empty circle). As shown in the schematic diagram
of site percolation, plot (b), there are three connected components with sizes 1, 2, and 2.
Similarly, there exists a critical value of q, where the infinite cluster appears.
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More general percolation problems can be formulated by the mixed percolation, whose
probability is calculated using random elimination of sites and bonds simultaneously. More
detailed introductions are available in Refs. [13,33–36].

(a) (b)

Figure 2. Schematic diagrams of bond percolation and site percolation. (a) Bond percolation; (b) Site
percolation.

3. The Evolution of Quantum Network
3.1. Analytical Framework

In the quantum domain, we propose a framework to study the resistance of quantum
networks to noisy environments based on classical percolation in statistical mechanics. To
make the analytical framework feasible, the following assumptions are made:

(1) Quantum nodes are spatially distributed according to network topology.
(2) Each node is able to send and receive an entangled quantum state at the same time.
(3) Initially, any two adjacent nodes share an entangled state (initial link) that is used

to achieve one round of quantum communication.
(4) The presence or absence of an entangled state between two nodes is independent

of the presence or absence of any other entangled state.
(5) Any two nodes in the quantum network can establish a new entangled state

(end-to-end link) for communication through entanglement swapping.
According to previous assumptions, we can find that the quantum network always

remains connected in an ideal environment. Namely, two arbitrary nodes can achieve a
round of communication tasks with perfect entanglement swapping, unitary transforma-
tion and other operations. A more practical situation of a quantum network in a noisy
environment is considered below.

Begin with randomly selecting an initial link (|ϕ〉) from the quantum network whose
density matrix formalism is ρ = |ϕ〉〈ϕ|. The evolution of a state ρ under noisy quantum
channels, where the Markovian approximation is valid, is governed by the Lindblad master
equation [8,37],

∂ρ

∂t
= −i[Hs, ρ] + ∑

i,α
(Li,αρL†

i,α −
1
2
{L†

i,αLi,α, ρ}), (1)

where the first term is the unitary evolution with Hamiltonian Hs, and the second term
is the nonunitary contribution. To derive the Lindblad master equation, the Born and
Markov approximations are used to determine the operator Li,α, where Li,α=

√
ki,ασ

(i)
α is

the Lindblad operator acting on the ith qubit used to describe the coupling of the system to
its environment. Each α corresponds to one type of quantum noise, and σα is a 2 × 2 matrix,
and the constant ki,α has the dimension of the inverse time. To solve the equation, one
can make a change in variables to eliminate the first term. In this article, Hs is considered
independent with time. Without a loss of generality, we assume that Hs = 0.

The evolved state ρ(t) can be obtained by solving Equation (1) with the condition that
the initial quantum state and quantum noises are known.

To characterize the variation in the initial state, we can calculate the fidelity that
indicates the degree of overlap between the initial and evolved states. It is

F = 〈ϕ|ρ(t)|ϕ〉. (2)
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Obviously, the value of F decreases as the evolution time increases. F represents the
probability of keeping consistent with the initial state in the evolution [38]. Hence, a perfect
quantum channel between the nodes can keep the nodes connected with probability F. F
can be regarded as the probability of edge occupation, which is equivalent to the probability
of an edge being connected successfully in a classical network.

According to the bond percolation model, one can declare each edge (evolved state) in
a noisy network to be in one of two states at time t: connected successfully with probability
F and unconnected with probability 1− F. Therefore, there also exists a bond percolation
threshold probability, Fc, such that a GCC can be established in quantum networks if and
only if F > Fc.

Furthermore, Fc determined a critical value of evolution time for the quantum network
such that keeping stable is possible, called maximum time tc. Considering a quantum
network with an arbitrary pure state as the initial edge, the maximum time for the quantum
network to remain stable under noise can be obtained by solving the following equation.

F = Fc. (3)

Equation (3) can be solved by setting the initial conditions (quantum state and quantum
network topology) to get the threshold value tc of the quantum network under noise
environments.

The analytical framework has applicability to different quantum network structures
under kinds of noise environments. Notably, it applies to quantum networks from the
initial state distribution to the beginning of quantum communication, which does not
involve entanglement swapping. Hence, the maximum duration of a quantum network
is affected by the initial state, the structure and the noise of a quantum network. The
following sections illustrate how to use our framework to analyze quantum networks by
specific examples.

3.2. Amplitude Damping and Phase Damping Noises

Amplitude damping and phase damping are two important examples of open quan-
tum system evolution. Amplitude damping is the description of energy dissipation, while
phase damping describes the loss of quantum information without a loss of energy [8].
Here, we assume a two-qubit entangled state shared by two nodes under amplitude damp-
ing noise and phase damping noise quantum channel, which are, respectively, described
by the Lindblad operator Li,− and Li,z. For simplicity, let ki,− = τi, ki,z = γi. That is, we
consider ((L1,α, L2,α), α = −, z) noisy channel to solve the master Equation (1). Accordingly,
the Lindblad master equation is of the form

∂ρ

∂t
=τ1(σ

(1)
− ρσ

(1)
+ −

1
2

σ
(1)
+ σ

(1)
− ρ− 1

2
ρσ

(1)
+ σ

(1)
− )

+ τ2(σ
(2)
− ρσ

(2)
+ −

1
2

σ
(2)
+ σ

(2)
− ρ− 1

2
ρσ

(2)
+ σ

(2)
− )

γ1(σ
(1)
z ρσ

(1)
z − ρ) + γ2(σ

(2)
z ρσ

(2)
z − ρ),

(4)

where σ− =

(
0 1
0 0

)
, σ+ =

(
0 0
1 0

)
and σz =

(
1 0
0 −1

)
.
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The master equation reduces to four diagonal equations and six off-diagonal equations,
which are 

∂ρ00

∂t
= τ1ρ22 + τ2ρ11,

∂ρ11

∂t
= τ1ρ33 − τ2ρ11,

∂ρ22

∂t
= −τ1ρ22 + τ2ρ33,

∂ρ33

∂t
= −τ1ρ33 − τ2ρ33,

(5)

and 

∂ρ01

∂t
= τ1ρ23 −

1
2

τ2ρ01 − 2γ2ρ01,

∂ρ02

∂t
= −1

2
τ1ρ02 + τ2ρ13 − 2γ1ρ02,

∂ρ03

∂t
= −1

2
τ1ρ03 −

1
2

τ2ρ03 − 2γ1ρ03 − 2γ2ρ03,

∂ρ12

∂t
= −1

2
τ1ρ12 −

1
2

τ2ρ12 − 2γ1ρ12 − 2γ2ρ12,

∂ρ13

∂t
= −1

2
τ1ρ13 − τ2ρ13 − 2γ1ρ13,

∂ρ23

∂t
= −τ1ρ23 −

1
2

τ2ρ23 − 2γ2ρ23.

(6)

We consider an arbitrary two-partite pure state |ϕ〉 as the initial state (t = 0), which is
expressed as

|ϕ〉 = λ0|00〉+ λ1|01〉+ λ2|10〉+ λ3|11〉 (7)

where λ0, λ1, λ2 and λ3 are real and satisfy |λ0|2 + |λ1|2 + |λ2|2 + |λ3|2 = 1. Its density
matrix is

ρ(0) =


λ2

0 λ0λ1 λ0λ2 λ0λ3
λ1λ0 λ2

1 λ1λ2 λ1λ3
λ2λ0 λ2λ1 λ2

2 λ2λ3
λ3λ0 λ3λ1 λ3λ2 λ2

3

, (8)

that is, the boundary conditions for Equations (5) and (6) are, respectively, ρjj(0) = λ2
j and

ρjk(0) = λjλk, where j < k and j, k = 0, 1, 2, 3. Therefore, the analytical form of an arbitrary
two-partite pure state evolution under amplitude damping and phase damping noises is

ρ(t) =


ρ00(t) ρ01(t) ρ02(t) ρ03(t)
ρ10(t) ρ11(t) ρ12(t) ρ13(t)
ρ20(t) ρ21(t) ρ22(t) ρ23(t)
ρ30(t) ρ31(t) ρ32(t) ρ33(t)

, (9)

where 

ρ00(t) =1 + λ2
3e−t(τ1+τ2) − (λ2

1 + λ2
3)e
−tτ2 − (λ2

2 + λ2
3)e
−tτ1 ,

ρ11(t) =(λ2
1 + λ2

3)e
−tτ2 − λ2

3e−t(τ1+τ2),

ρ22(t) =(λ2
2 + λ2

3)e
−tτ1 − λ2

3e−t(τ1+τ2),

ρ33(t) =λ2
3e−t(τ1+τ2),

(10)
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and 

ρ01(t)(ρ10(t)) =(λ0λ1 + λ2λ3)e−
t
2 (τ2+4γ2) − λ2λ3e−

t
2 (2τ1+τ2+4γ2),

ρ02(t)(ρ20(t)) =(λ0λ2 + λ1λ3)e−
t
2 (τ1+4γ1) − λ1λ2e−

t
2 (τ1+2τ2+4γ1),

ρ03(t)(ρ30(t)) =λ0λ3e−
t
2 (τ1+τ2+4γ1+4γ2),

ρ12(t)(ρ21(t)) =λ1λ2e−
t
2 (τ1+τ2+4γ1+4γ2),

ρ13(t)(ρ31(t)) =λ1λ3e−
t
2 (τ1+2τ2+4γ1),

ρ23(t)(ρ32(t)) =λ2λ3e−
t
2 (2τ1+τ2+4γ2).

(11)

The fidelity is

F = 〈ϕ|ρ(t)|ϕ〉 =
3

∑
j,k=0

λjλkρjk(t). (12)

By setting the initial conditions that the quantum state is an arbitrary two-partite
pure state and the bond percolation threshold probabilities for the quantum network is Fc,
one can solve Equation (13) to obtain the maximum time that the quantum network can
be connected.

3

∑
j,k=0

λjλkρjk(t) = Fc. (13)

It is well-known that an arbitrary two-qubit state can be written as a superposition
of four Bell states. In another aspect, Bell states are always used to be the initial state of
a quantum communication network [7,24]. Therefore, we consider the fidelity of one of
these four Bell states |φ±〉 = 1√

2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉+ |10〉) under amplitude

damping and phase damping noises. Substituting the coefficients of |φ±〉 and |ψ±〉 into
Equation (12), the fidelity of the four states are, respectively,

F|φ±〉 =
1
4
(2 + 2e−t(τ1+τ2) + 2e−

t
2 (τ1+τ2+4γ1+4γ2) − e−tτ1 − e−tτ2) (14)

and
F|ψ±〉 =

1
4
(e−tτ1 + e−tτ2 + 2e−

t
2 (τ1+τ2+4γ1+4γ2)). (15)

Equations (14) and (15) indicate that the fidelity decreases with the increasing value of
evolution time for a given initial quantum state (see Figure 3). The figure shows the effect
of initial quantum state selection and evolution time on fidelity. It finds that states |φ±〉
show greater resistance to the two types of noise than states |ψ±〉.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
id

e
li
ty

|

|

Figure 3. The fidelities of Bell states under amplitude damping and phase damping noises. For simulation, we
consider the following parameters as identical: τ1 = τ2 = γ1 = γ2 = τ.
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We use one of the Bell states as the initial link to further explain our analytical frame-
work. By introducing examples of specific graphs, we illustrate how to calculate the critical
value of time.

3.3. Regular Quantum Networks

To demonstrate the effectiveness of the analytical framework, we focus on the particu-
lar quantum networks used in entanglement-based QKD protocols [24]. Without loss of
generality, we consider a quantum network whose neighboring nodes share a maximally
entangled state |ψ−〉 = 1√

2
(|01〉 − |10〉), and the quantum network under two common

noises, amplitude damping and phase damping noises.
First, we consider the situation of a one-dimensional chain that consists of two nodes

connected by intermediate nodes, as shown in Figure 4. Obviously, communication parties
(A and B) can choose the only path, A→ R1 → R2 → · · · → RN → B, to realize quantum
key distribution by entanglement swapping. In order to ensure communication between
the two sides, any two adjacent nodes in the path should be connected. Consistently
with the standard bond percolation, it can be deduced that the stability time of this net-
work is possible if and only if F = 1. This is a very demanding condition for quantum
communication in noisy environments, which is only satisfied when t = 0.

Figure 4. Quantum network in a one-dimensional chain.

The above analysis can be generalized to two-dimensional lattices, such as squares,
triangles and honeycombs (Figure 5). In quantum networks with a regular distribution of
nodes, the nodes can choose different paths for communication. It is difficult to find all the
paths and calculate the stability time. We give the critical condition of stability time based
on bond percolation.

For the case of square lattices, we may assume that each quantum state associated
with the edge is independently affected by the same noise described by Equation (4). Then,
the quantum state evolves into a mixed state, which is consistent with the initial state with
the probability of F. The fidelity of the initial state evolving to the final state is given by
Equation (15). More specifically, each edge is occupied with probability F in the process of
bond percolation.

(a) (b) (c)

Figure 5. Quantum networks in two-dimensional lattices. (a) Square; (b) Triangle; (c) Honeycomb

According to the bond percolation threshold probabilities of the two-dimensional
lattices listed in Table 1 [13], we can calculate the critical value of evolution time tc.
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Table 1. The bond percolation threshold probabilities for various lattices in various dimensions.

Lattice Bond Percolation

1d-Chain 1
2d-Honeycomb 1 − 2sin(π/18) ≈ 0.6527

2d-Square 0.5
2d-Triangle 2sin(π/18) ≈ 0.3473

To study the stability time of quantum networks further, we study the critical value of
time associated with different experimental network models. We consider the two-qubit
NMR system as in Ref. [39]. By solving the master equation in the Lindblad form, we can
analyze the influence of the noise channels acting on the two-qubit NMR entangled states,
as well as the critical value of the quantum network connection time when all the quantum
states are independently affected by the same noise.

We consider a decoherence model wherein a nuclear spin is subject to two noise
channels, namely, a phase-damping channel and an amplitude-damping channel. We solve
the master Equation (4) with the initial state |ψ−〉 state, together with the experimentally
measured values of the spin-lattice relaxation rates for the two-spin homonuclear systems of
BTC acid. According to the experimentally measured values of the system, τ1 = 0.264 s−1,
τ2 = 0.255 s−1, γ1 = 3.741 s−1, γ2 = 3.048 s−1 [39], we obtain

F =
1
4
(e−0.2640t + e−0.2550t + 2e−13.8375t), (16)

from which we can calculate the maximum value of time that the quantum network stays
connected according to the percolation threshold for a square. From Equations (3) and (16)
and Table 1, we have the critical value of evolution time as 0.2117 s.

We have performed simulations of square networks to verify the above result (as
shown in Figure 6). We use the Monte-Carlo simulation method to calculate the percolation
probability, and the simulation tool is Matlab. During the simulation, we set the probability
of a random occupied edge as F, which is determined by the evolution time t based on
Equation (16). For each given t, we repeat the percolation process 1000 times to estimate the
proportion of percolating times. Then, the distribution of the size of GCC can be obtained
by changing t from 0 s to 1 s. The three curves show the distribution of the size of GCC
in the network for N = M×M, M = 50, 100, 120. We calculate the value of critical time is
approximately 0.21 s, through this simulation. The calculated result and simulation result
is in good agreement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Evolution Time (s)

-0.2

0

0.2
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P
e
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o
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M=100

M=120

Figure 6. The distribution of the size of GCC for square quantum networks under amplitude damping
and phase damping noises. The simulations were performed with N = M×M, M = 50, 100, 120.

Similarly, one can calculate the critical times of 1.4044 s and 0.0810 s for the cases
of triangle and honeycomb lattices, respectively. In Figure 7, we show the relationship
between the critical time and the topology of quantum networks. Due to the evolution
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of the quantum states, the duration time of the quantum network varies with the initial
network structures. Obviously, when the quantum nodes are distributed in a triangle
lattice, the duration of this quantum network is longer than the other two cases. If the
nodes are distributed according to a honeycomb lattice, the quantum network lasts the
shortest time compared with the triangle and square lattices. Based on the above analysis,
we see that the duration of a quantum network is closely related to the quantum node
distribution in the quantum network. The analyses above suggest that it is possible to make
the quantum network more resistant to noise by modifying the structure of the quantum
networks through entanglement swapping or other means.
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Triangle

Figure 7. The critical times for triangle, square and honeycomb quantum networks. The three inter-
section points are (F1, T1) = (0.6527, 0.0810), (F2, T2) = (0.5, 0.2117) and (F3, T3) = (0.3473, 1.4044),
respectively.

3.4. Complex Quantum Networks

Now we study the threshold value of time in the scenario of general random graphs
of arbitrary distribution degree. At first, we introduce the generating functions [14] to
calculate the size of GCC of random graphs,

G0(x) = Σ∞
k=0P(k)xk (17)

and
G1(x) = Σ∞

k=1P1(k)xk−1, (18)

where P(k) is the probability that a randomly chosen node on the graph has degree k, and
P1(k) is the probability of the node reached by randomly selecting an edge. We use the
bond percolation model to analytically compute the critical value of time that the network
could keep for communication.

To start with, we randomly select an edge. Due to the evolution of the state correspond-
ing to the edge in a noisy environment, the edge will keep the connection with probability
F and be disconnected with probability 1− F. Simply, we suppose that the initial quantum
state |ψ−〉 is affected by amplitude damping and phase damping noises. The fidelity F is
consistent with Equation (15). Consider the generating function H1(x) for the distribution
of the sizes of components that are reached by choosing a random edge and following it
to one of its ends. The distribution of connected components generated by H1(x) can be
represented as in Figure 8.

Figure 8. The graphical representation of the distribution of connected components generated by H1(x).
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H1(x) satisfies a self-consistency condition of the form

H1(x) = (1− F) + Fxq0 + Fxq1H1(x) + Fxq2(H1(x))2 + · · · , (19)

where qk is the probability that the quantum node has k edges besides the randomly selected
edge. Hence, the generating function H1(x) is given by

H1(x) = 1− F + FxG1(H1(x)), (20)

where F is the probability that the edge preserves the initial link.
Similarly, the size of the components of the node we chose is the generating function

H0(x),
H0(x) = xG0(H1(x)). (21)

For a given F, denote u = H1(1), which is the probability of randomly choosing an edge to
connect to a finite-connected component (FCC). We have

u = 1− F + FG1(u). (22)

Solving the above equation, one receives a critical value Fc. If F < Fc, there is a unique
solution u = 1, which implies that no GCC exists in the quantum networks. If F ≥ Fc, we
obtain a new solution u < 1, which indicates the presence of GCC.

There are both FCC and GCC in a network. By selecting a node in the network
randomly, the probability that the node can reach the GCC is regarded as part of the entire
network that excludes the FCC. Set

S = 1− H0(x). (23)

The mean component size of a node arriving to FCC is given by

< S >= H
′
0(x). (24)

More specifically,

< S >= H
′
0(1) = G0(H1(1)) + G

′
0(H1(1))H

′
1(1). (25)

On the other hand, from Equation (20) we obtain

H
′
1(1) = FG1(H1(1)) + FG

′
1(H1(1))H

′
1(1). (26)

Clearly,

H
′
1(1) =

FG1(H1(1))
1− FG′1(H1(1))

. (27)

Therefore, < S > becomes infinite at a critical value F = Fc satisfying the equation
1− FG

′
1(H1(1)) = 0, namely,

Fc =
1

G′1(H1(1))
=

1
G′1(1)

. (28)

Furthermore, we can calculate the maximal value of the time that the quantum network
holds GCC by solving the following equation,

1
4
(e−tτ1 + e−tτ2 + 2e−

t
2 (τ1+τ2+4γ1+4γ2)) =

1
G′1(1)

. (29)

Subsequently, we study the critical value of time that quantum networks stay con-
nected in particularly complex network models. In Erdős-Rényi (ER) graphs, the distribu-
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tion of degree follows a Poisson distribution in the large N limit. The probability p = z/N of
the existence of an edge between any two nodes is the same, and G0(x) = G1(x) = ez(x−1),
where z is the average degree of a node. Substituting the generating function of ER graphs
into Equation (29), one has

1
4
(e−tτ1 + e−tτ2 + 2e−

t
2 (τ1+τ2+4γ1+4γ2)) =

1
z

. (30)

We can calculate the critical time of the ER graphs with different average degrees by
solving the above equation. For example, let z = 2.5 and take τ1 = 0.264 s−1, τ2 = 0.255 s−1,
γ1 = 3.741 s−1, γ2 = 3.048 s−1 [39], the critical time is calculated to be 0.86 s. It is easy to
deduce that the larger the average degree z in the ER graphs, the longer time the quantum
networks stay connected, which is consistent with intuitive imagination. Additionally,
the numerical results show this conclusion as well. Let τ1 = 0.264 s−1, τ2 = 0.255 s−1,
γ1 = 3.741 s−1, γ2 = 3.048 s−1 and the size of the ER networks used here is N = 104.
Setting the average degree z to be 2.5, 4.0 or 5.0, we set the occupation probability of each
edge to be F, which is given by Equation (16). We vary the evolution time t from 0 s to 4 s
and the distribution of the size of GCC from 0 to 1. The results of the percolation probability
of quantum evolution time are shown in Figure 9, which is a verification of our calculation
results from the analytical framework. It is obvious that the quantum network remains
connected longer when z = 5.0.

Figure 9. The distribution of the size of GCC for ER quantum networks under amplitude damping
and phase damping noise.

4. The Capacity of Quantum Networks

We have previously discussed the evolution of the initial link in a quantum network
under noisy environments. In the remainder of this article, we discuss the capacity of the
quantum network through the generation rate of end-to-end links.

In the classical domain, capacity is defined to analyze the ability to transport data in
a network [40]. For a randomly distributed network with N nodes, the capacity can be
defined as λ(n), in which each node transmits the total number of bits to its destination.
Similarly, the capacity in a quantum network is defined as [41]

Qth = λq(n), (31)

where λq(n) denotes the number of end-to-end links generated between each pair of source
and destination nodes. Due to the dynamics of a quantum network in a noisy environment,
it is hard to calculate the total number of end-to-end links that can be generated between
communication parties. We consider the important factors that affect the generation rate in
the procedure of establishing end-to-end links. There are three important factors:

(1) Quantum noise. Real quantum systems suffer from unwanted interactions with the
environment, i.e., each initial link (entangled state) evolved to be a mixed state independently.



Entropy 2023, 25, 157 13 of 16

(2) Routing algorithm. The choice of path determines the distance between two
communication parties. Finding the optimal path in a quantum network is crucial.

(3) Entanglement swapping. The success probability of one entanglement swapping
operation needs to be considered because the measurement procedure is inherently imper-
fect in practice.

Consider the simplest possible situation that (1), (2) and (3) are not considered; that
is, the communication parties can always find the optimal path, and each intermediate
node performs a perfect entanglement swapping to establish end-to-end links in an ideal
quantum network without noise. The maximum number of end-to-end links between the
source and the destination nodes is min{ns, nd}, where ns and nd is the number of edges in
the source node and destination node.

We turn now to the situation that the initial link is affected by quantum noise, which
is described by Equation (1). Moreover, we use the greedy algorithm to find the largest
number of paths between source and destination nodes (see Figure 10). In the beginning,
a greedy algorithm tries to find the shortest path between the source and destination
nodes. If no connected path between communication parties exists, no end-to-end link is
generated in this round of communication. If the shortest path is found, then remove all
the links of the above path from the subgraph. Repeat the process until all paths connecting
communication parties are found.

Figure 10. Flow chart of finding all the paths between the source and destination nodes by using a
greedy algorithm.

Let li, i = 1, 2, · · · , m is the length of the shortest path found at the i-th time, then
l1 ≤ · · · ≤ lm and m ≤ min{ns, nd}. If the success probability of one entanglement
swapping operation is PM, and it is identical among quantum nodes, we have the generation
rate of an end-to-end link as

Ri = Fli Pli−1
M , (32)

F is the fidelity that can be calculated by Equation (2). The establishing rate of end-to-end
links between communication parties is

R =
m

∑
i

Ri. (33)

Using l1 ≤ · · · ≤ lm to obtain the inequality of capacity of the quantum network under
noise. It is

R ≤ mFl1 Pl1−1
M . (34)

Obviously, the capacity of a quantum network is related to the quantum noise, the
topology of the quantum network and the successful probability of quantum measurement.
The generation rate of end-to-end links falls off exponentially with the distance between
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two communication parties. Specifically, if the measurement procedure is perfect at each
node, the generation rate is independent of the distance between the two communication
parties when t < tc. Compared to the former comparison results of specific examples under
amplitude damping and phase damping noises, it is not hard to find that the conclusions,
in this case, are consistent. For a regular quantum network, the capacity of the triangle is
bigger than those of the square and honeycomb. For the ER quantum network, the capacity
also increases as z increases.

5. Conclusions

We have studied the resistance of quantum networks to noisy environments via the
proposed framework. By linking the fidelity with the percolation threshold, the maximum
time for the quantum network to remain stable in noisy environments has been calculated
under different network structures. For regular quantum networks, we found that the
values of critical time can be exactly computed since the bond percolation threshold of a
square, triangle and honeycomb can be solved exactly in the classic network. The results
show that the quantum network of a triangle lattice maintains a longer communication
capacity than that of square and honeycomb lattices in noisy environments. Additionally,
we have given the general result for complex quantum networks and obtained the critical
value of time for ER quantum networks under the phase damping and amplitude damping
noises. We found that the duration time of ER quantum networks increases with the
average degree of a node increasing. The calculation results obtained from our framework
are in complete agreement with the numerical results as well. Moreover, we found that the
capacity of a quantum network is independent of the communication distance when the
measurement is perfect and the evolution time t < tc.

The proposed framework provides a different perspective on the dynamics of quan-
tum networks in noisy environments. It can help us calculate the maximum time for a
given quantum network to remain stable and remind us to complete one round of quantum
communication through noisy quantum networks in a limited time to ensure communica-
tion efficiency. The results of the analytical framework are also helpful in determining the
design of quantum networks. Furthermore, based on the value of critical time, the time
interval of each round of entanglement distribution can be controlled to maximize the use
of quantum resources. Therefore, our framework may highlight the analysis and design of
large-scale quantum communication networks.
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