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Abstract: Background: the ability to suppress/regulate impulsive reactions has been identified as
common factor underlying the performance in all executive function tasks. We analyzed the HRV
signals (power of high (HF) and low (LF) frequency, Sample Entropy (SampEn), and Complexity
Index (CI)) during the execution of cognitive tests to assess flexibility, inhibition abilities, and rule
learning. Methods: we enrolled thirty-six healthy subjects, recording five minutes of resting state
and two tasks of increasing complexity based on 220 visual stimuli with 12 × 12 cm red and white
squares on a black background. Results: at baseline, CI was negatively correlated with age, and LF
was negatively correlated with SampEn. In Task 1, the CI and LF/HF were negatively correlated
with errors. In Task 2, the reaction time positively correlated with the CI and the LF/HF ratio errors.
Using a binary logistic regression model, age, CI, and LF/HF ratio classified performance groups
with a sensitivity and specificity of 73 and 71%, respectively. Conclusions: this study performed an
important initial exploration in defining the complex relationship between CI, sympathovagal balance,
and age in regulating impulsive reactions during cognitive tests. Our approach could be applied in
assessing cognitive decline, providing additional information on the brain-heart interaction.

Keywords: heart rate variability; inhibitory control; complexity index; entropy

1. Introduction

Heart rate variability (HRV) is a well-known index of autonomic control of the
heart, but it is also linked to cognitive and emotional control [1,2] as well as autonomic
dysfunctions that may precede the cognitive impairment [3]. The heart rate is directly
controlled by the brain through the sympathetic and parasympathetic branches of the
autonomic nervous system (ANS), defining the well-known central nervous system-ANS
axis, also known as central autonomic network (CAN) [4–7]. The HRV then represents
the output of the complex brain-heart interaction [5,8,9]. Inhibition, also known as
inhibitory control, is the ability to suppress or regulate impulsive (or automatic) reactions,
producing responses via attention and reasoning. This mental ability is part of executive
functions and aids in goal-setting and anticipatory planning. Inhibitory control stops
inappropriate behaviors and spontaneous reactions and replaces them with a more
appropriate, well-thought-out response.

Response inhibition has been identified as common factor underlying the performance
in all executive function tasks [10]. They are generally divided into inhibition and inter-
ference control, working memory, and cognitive flexibility [11,12]. The last is also called
set-shifting, mental flexibility, or mental set-shifting.
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Alerting, orienting, and executive monitoring of actions involve salient autonomic
responses observable in pupillary reactivity [13], skin conductance [14], and heart rate
variability [15,16]. Response inhibition is one of the main cognitive tasks that require the
ability to suppress a pre-potent motor response by adjusting it rapidly as a function of
environmental changes.

The high-frequency band of the HRV spectrum correlates to parasympathetic heart
activity, which is crucial for the individual to have an efficient adaptability to changing
environmental demands. The vagal response is also correlated to respiration. Changes
in breathing patterns can impact heart rate (HR) and HRV, with a general decrease in
respiratory frequency associated with an increase in heart period (i.e., a decrease in heart
rate). The respiratory characteristic linked to HR is known as respiratory sinus arrhythmia
(RSA) [17,18]. A decrease in vagal control (i.e., reduced HF-HRV) may suggest a lack of
flexibility in responding to changing demands, limiting the spectrum of possible responses
and hence restricting the person’s capacity to create appropriate responses and inhibit
incorrect ones [5].

Forte and colleagues, in their review [3], refer that the most-reported HRV analy-
sis during cognitive tests regards the high frequency (HF), low frequency (LF), and its
LF/HF ratio. Moreover, studies showed that higher values in HRV entropy were related to
cognitive performances [19,20].

Since the heart rhythm is not regular, the entropy analysis better represents its com-
plexity and unpredictable variability [21,22]. Higher and lower entropy rates correlate
to a more complex heartbeat sequence and a more regular and predictable heartbeat, re-
spectively. Given the complexity of the brain-heart two-way interaction described by the
CAN [7], the HRV entropy may be used to assess the system’s health. In fact, a more
complex heartbeat sequence was found to indicate better reactivity to the external/internal
stimulus [19,23–25].

In the frame of the HRV entropy analysis, the Multiscale Entropy (MSE) [26] was
developed to investigate the information content in non-linear signals at different temporal
scales (coarse-graining), generally using the Sample Entropy [27]. The Complexity Index
(CI), a scalar score that permits gaining insights into the integrated complexity of the mea-
suring system, is the sum of the entropies calculated for several coarse-graining scales. [26].
It was found that the heart rate complexity correlates with brain activity [19,28,29], and
that the complexity in heartbeat dynamics grows with it and vanishes with stress.

This work aims to define, for the first time, the overall characteristics of HRV signals in
the frequency and non-linear domains during the execution of a Go/NoGo task. This task
is used to assess someone’s ability to regulate an inappropriate response among interfering
visual stop signal (NoGo) by pressing a button whenever a Go signal stimuli is made [30].
The presented test is based on an adaptation of the rule shift card test. This well-known
cognitive task assesses flexibility, inhibition abilities, and rule learning [31,32]. We want to
assess how the response inhibition in the rule shift card test [31,32] is linked to a higher
brain-heart interaction. In particular, we sought to determine the following: (1) if there are
significant differences within and between baseline and task phases, in terms of entropy
and spectral parameters, (2) the correlations between the errors in the two Go/noGo tasks
and physiological parameters, and (3) the accuracy to predict the poor or good performance
of the subjects using recorded HRV parameters in the baseline.

2. Materials and Methods
2.1. Subjects

Participants were recruited from Institute S.Anna, Crotone, Italy. The chosen par-
ticipants had never used any drugs before. Before the experiment, all participants were
instructed to refrain from smoking and consuming caffeine for four to six hours. The
following criteria were specifically required for inclusion: (1) no evidence of dementia
or depression symptoms according to DSM-V criteria; (2) no use of antidepressant, anxi-
olytic, or antipsychotic drugs that could affect cerebral blood flow; (3) right-handedness;
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and (4) absence of chronic medical conditions (heart disease, hypertension, or diabetes).
According to these criteria, 36 healthy graduate subjects were enrolled in this study with
median age 41 and interquartile range 16 (21 females age 36 ± 11 and 15 males age 43 ± 9).
No significant differences were between males and females for age (Mann-Whitney test:
Z = −1.912, p = 0.056). All participants had normal or corrected to normal vision and
normal color vision. All the participants gave written informed consent. In accordance with
the Helsinki Declaration, the study was approved by the Ethical Committee of Regione
Calabria (n.ro 172 17 July 2020).

2.2. Procedure

The experiment was conducted in a dimly lighted, soundproof room. Participants
completed a modified version of the traditional Go/NoGo activity based on the Rule Shift
Cards [31–33], designed using Biotrace+, while seated in a comfortable chair (https://www.
mindmedia.com/Herten/Nederland/ accessed on 5 November 2022).

In the last task, the subject must modify the strategy learned in the first task, memo-
rizing the element that previously appeared and inhibiting the response when the square
color is different from that of the previous square.

The protocol study consisted of a baseline (resting state condition) lasting 5 min and
two different tasks. The tasks consisted of 220 visual stimuli with 12 × 12 cm red, white,
and chess pattern squares on a black background. The first task included three distinct
visual stimuli: red squares (frequent stimulus n.154—70%), white squares (rare stimulus
n.44—20%), and a chess pattern with squares (distractor n.22—10%). It was based on
fundamental response inhibition. A working memory response inhibition task made up
the second. There were just red (common stimulus n.176—80%) and white (rare stimulus
n.44—20%) squares in this instance. Each stimulus had a 1500 ms gap in between them,
and each stimulus lasted 500 ms. The subject had to press the spacebar on the keyboard
during the first task when the white square appeared, and during the second task when
two successive visual stimuli of the same color were shown (Figure 1).
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to the previous square, while the NoGo is represented by a change in the appearance of the square 
color. The first square of the tasks appeared after 30 sec of a black image. The stimulus duration was 
500 ms and the interval of time between the stimuli was 1500 ms. 

The subject was comfortably seated at a distance of 70 cm from the 24-inch monitor 
where the sequence of stimuli was displayed. There was no transient noise, and the 
environment was always the same temperature and brightness. The participant received 
assignment instructions prior to each activity. 
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The ECG recording was performed by NEXUS-32, and the stimuli were presented by 
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signal was acquired at 256 Hz, and the 4 Hz cubic spline interpolation was applied for a 
correct extraction of the R-peaks. 
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ECG was analyzed by Kubios advanced software for HRV analysis (v 3.1/Kuopio, 

Finland). The interpolation approach was used to eliminate artifacts and ectopic beats 
from the data. The CI (i.e., summation of the MSE from 1 to 3) and the natural logarithm 
of the HRV power of HF (0.15–0.5 Hz) (LnHF), LF (0.04–0.15 Hz) (LnLF), and LF/HF ratio 
were calculated. Heartbeat, like most physiological signals, is non-stationary due to the 
complex nature of the biological systems. It frequently contains either slow trends or very 
slow frequency oscillations. Since the HRV parameters may be affected by the non-
stationarity of the signal, a quadratic polynomial model detrended the RR series to reduce 

Figure 1. Experimental detail: Subject comfortably sits in front of the screen at 70 cm of distance from
the monitor with the hand positioned near the spacebar of the computer keyboard. In the first task,
the GO is represented by the white square, and the subject must hit the spacebar when it appears, and
inhibit the response when the red square appears (the chess pattern with squares was the distractor).
In the second task, the GO is represented by the appearance of a square with color equal to the
previous square, while the NoGo is represented by a change in the appearance of the square color.
The first square of the tasks appeared after 30 s of a black image. The stimulus duration was 500 ms
and the interval of time between the stimuli was 1500 ms.

https://www.mindmedia.com/Herten/Nederland/
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The subject was comfortably seated at a distance of 70 cm from the 24-inch monitor
where the sequence of stimuli was displayed. There was no transient noise, and the
environment was always the same temperature and brightness. The participant received
assignment instructions prior to each activity.

2.3. Data Acquisition

The ECG recording was performed by NEXUS-32, and the stimuli were presented
by Biotrace+ software (https://www.mindmedia.com/Herten/Nederland accessed on
5 November 2022). Since the ECG sample frequency rate of the signal acquisition can affect
the HRV analysis, and a minimum sample of 250 Hz or higher are suggested [34,35], the
signal was acquired at 256 Hz, and the 4 Hz cubic spline interpolation was applied for a
correct extraction of the R-peaks.

2.4. Data Analysis

ECG was analyzed by Kubios advanced software for HRV analysis (v 3.1/Kuopio,
Finland). The interpolation approach was used to eliminate artifacts and ectopic beats from
the data. The CI (i.e., summation of the MSE from 1 to 3) and the natural logarithm of the
HRV power of HF (0.15–0.5 Hz) (LnHF), LF (0.04–0.15 Hz) (LnLF), and LF/HF ratio were
calculated. Heartbeat, like most physiological signals, is non-stationary due to the complex
nature of the biological systems. It frequently contains either slow trends or very slow
frequency oscillations. Since the HRV parameters may be affected by the non-stationarity
of the signal, a quadratic polynomial model detrended the RR series to reduce the influence
of lower frequencies in the power spectral density (PSD) results. The HF and LF PSD were
calculated using the Fast Fourier Transform method (Welch’s PSD; windows width: 150 s).
The transformation of the spectral power in their natural logarithm was applied because the
measures showed a skewed distribution (i.e., skewness 2.48 ± 0.39; kurtosis 7.07 ± 0.77).
The CI was based on the multiscale entropy (MSE) approach quantifying the degree of
irregularity over a range of coarse-grained scales (τ) from 1 to 3. The interval between two
consecutive R peaks of the QRS ECG complex represents the data points in the entropy
analysis (Figure 2). The original series represents the scale for τ = 1. The coarse-grained
scales 2 and 3 were constructed by averaging the IBI/tachogram’s data points within non-
overlapping windows of increasing length τ (Figure 2). The sample entropy (SampEn) was
calculated for each coarse-grained scale, and the CI was extracted by summing the sample
entropy for each coarse-grained scale. Given a sample of length N, the SampEn is defined
as the negative natural logarithm of the probability that if two sets of simultaneous data
points of length m have distance < r, then two sets of simultaneous data points of length
m + 1 also have distance < r [27]. Considering the length of our samples (i.e., original series:
baseline N = 423 ± 101, task 1 N = 509 ± 83, task 2 N = 525 ± 102), the parameters m (i.e.,
embedding dimension; length of the window of the different vector comparisons) and r
(i.e., level of tolerance: generally ranging from 0.1 to 0.25, corresponding to the 10–25% of
the standard deviation of the series of data onto analysis) of SampEn were set to 2 and 0.2,
respectively [27,36], for the original and the coarse-grained scale 2 and 3 (i.e., r was the 20%
of the standard deviation of the original and rescaled time series).

2.5. Statistical Analysis

The non-parametric exact test was used for the statistical analysis. This approach
provides more accurate results when the sample size is small or in the case of tables sparse
or imbalanced. By the Wilcoxon exact test, the HRV parameters (LnLF, LnHF, LF/HF,
SampEn for the original and the CI were compared in the different tasks. The effect size r
was calculated as the absolute value of Z

√
(2N) (Wilcoxon’s test), where Z is the Z statistic

of the statistical test and N is the total number of subjects. The effect size results were
considered as follows: r < 0.1 not significant; 0.1≤ r < 0.3 low; 0.3≤ r < 0.5 medium; r ≥ 0.5
high. The level of significance was set at p ≤ 0.05.

https://www.mindmedia.com/Herten/Nederland
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Figure 2. Multiscale Entropy and Complexity Index Scheme. (A) For each subject the tachogram was
extracted in baseline, task 1, and task 2. N represents the length of each original detrended (trend
line in red) time series (baseline N = 422 ± 100; task 1 N = 509 ± 83; task 2 N = 524 ± 102). (B) The
sample entropy (SampEn) was calculated for the original and coarse-grained series A and B, setting
the parameters m and r at 2 and 0.2, respectively. The complexity index (CI) was calculated as the
sum of the SampEn of the scales 1 (original series), 2 (a), and 3 (b).

The Pearson correlation test analyzed the correlation between HRV parameters and
performance levels (errors and Reaction Time).

Because of outliers, the median of total errors was used to divide the subjects into Good
Performance (GP) and Poor Performance (PP) groups. Good or poor performance was
predicted by binary logistic regression. The backward approach in the logistic regression
was used to select the regressors in the model, inserting the performance (i.e., GP and PP
classification) as dichotomic variable, and age and HRV parameters (i.e., C.I., LnLF, LnHF,
and LF/HF) as independent variables. The backward approach uses the Wald tests’ results
for the regressor’s elimination, removing the variable with the least significant effect that
does not meet the level for staying in the model [37]. The removed effect is excluded from
the model, and the process is repeated until no other effect in the model meets the specified
level for removal. The model’s accuracy was also checked, controlling the variables for
collinearity by tolerance and its reciprocal variance inflation factor (VIF) [38].

3. Results
Behavioral Data

The inhibitory task was successfully completed by all subjects. Table 1 reports the
response time (RT) for GO trials and the percentage of errors for GO and NOGO trials. The
RT and numbers of errors in Go and NoGo conditions raised in Task 2, as aspected.

The number of errors were lower in task 1, with a decrease over time. Conversely, they
increased over time in task 2 (Figure 3).

In the group, significant differences between baseline and Task 2, with a decreasing
trend, were found for LnLF (Z = −3.189, p = 0.001, r = 0.38), LnHF (Z = −2.726, p = 0.005,
r = 0.32) and CI (Z = −2.317, p = 0.02, r = 0.27). The same parameters showed signifi-
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cant differences comparing task 1 and task 2 (−3.473 ≤ Z ≤ −2.789, 0.0001 ≤ p ≤ 0.004,
0.33 ≤ r ≤ 0.41) (Figure 4).

Table 1. Behavioral Variables.

Task 1 Task 2

Mean ± SD Mean ± SD

RT during GO trials (s) 0.37 ± 0.08 0.49 ± 0.11

% errors during GO trials 0.04% 1.38%

% errors during NoGo trials 1.81% 2.93%
RT: Reaction Time; SD: Standard Deviation.
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Figure 4. Boxplot of the HRV parameters: Boxplot of the natural logarithm of low-frequency power
(LnLF) and high-frequency power (LnHF), and Complexity Index (CI) in resting-state (baseline) and
during task 1 and task 2.

In baseline, CI had a negative correlation with age (Rho = −0.373, p = 0.026) and the
SampEn with the LnLF (Rho = −0.351, p = 0.036). In Task 1, the SampEn had a positive
correlation with LnHF (Rho = 0.495, p = 0.002) and negative correlation with LF/HF
(Rho = −0.589, p = 0.0001), while CI and SampEn had a negative correlation with the errors
(Rho = −0.455, p = 0.005 and Rho = −0.419, p = 0.01, respectively) and positive correlation
with LF/HF (Rho = 0.448, p = 0.006). In Task 2, LF/HF had a negative correlation with
SampEn (Rho = −0.387, p = 0.02) and positive correlation with the errors (Rho = 0.350,
p = 0.036), while the Reaction Time had a negative correlation with the LnLF (Rho = −0.522,
p = 0.001) and positive correlation with the CI (Rho = 0.378, p = 0.02). Excluding the outlier
from the analysis overall patterns of significant findings did not change (Figure 5).
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Figure 5. Correlations among HRV parameters and performance: Correlation among HRV parameters
(SampEn (SE), Complexity Index (CI), HF power (LnHF), LF power (LnLF), LF/HF), performance
levels (errors and Reaction Time) and age of the group. In red and black are the negative and positive
correlations, respectively. (A) baseline; (B) task 1; (C) task 2.

Because of the presence of outliers by the median of the total errors (median of
errors = 5) the subjects were divided in two sample groups: Good Performance (GP)
(20 subjects; seven males aged 44 ± 7; 13 females age 35 ± 11; median of errors ≤ 5) and
Poor Performance (PP) (16 subjects; eights males aged 43 ± 10; eight female age 39 ± 11;
median of errors > 5).

The binary logistic regression was used to observe the probability of predicting the
performances (i.e., GP/PP) from the HRV recorded values in the baseline. By backward
stepwise binary logistic regression, age, CI, and LF/HF ratio were selected as regressors to
classify GP and PP. No collinearity was among the selected variables (i.e., tolerance ≥ 0.96,
VIF ≤ 1.8). The extracted model (GP/PP = −9,35 + 0.036 × age + 1.375 × CI + 0.597 ×
LF/HF; significance of the model (omnibus test) p = 0.032; Cox & Snell’s R2 = 0.22; Naghelk-
erte’s R2 = 0.29; Hosmer & Lemeshow’s test p = 0.32) classified correctly the GP (16/20; 80%)
and PP (10/16; 63%) with a sensitivity of 73%, specificity of 71%, and balanced accuracy
of 71%.

4. Discussion

We demonstrated that during response inhibition tasks, HRV metrics (LF, HF, SampEn,
CI, and LF/HF ratio) are characterized by significant changes as a function of performance.
In particular, we found that the following: (1) the CI and the logarithmic values of LF and
HF decreased from baseline to task 2; (2) in baseline, the CI correlated negatively with age;
(3) in task 2 the CI is positively correlated with the reaction time, and the LF/HF ratio is
positively correlated with the errors; finally, (4) in baseline age, CI and LF/HF ratio are
predictors of better performance (i.e., fewer numbers of errors) in the tests.

Several works report higher levels of HRV associated with better emotional responses [39],
attentional [2,40], and executive performances [1,32,41,42], while lower HRV was associ-
ated with dysfunctional attitudes [43]. Studies found that in healthy subjects, a greater
HRV in the resting state predicted better performance in tasks related to executive brain
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function [1,44,45], with similar results in psychopathological populations [1,45]. In resting-
state conditions, less efficient task performance and lower response accuracy in pleasant
and unpleasant Go trials were associated with lower HRV values [46]. Ottaviani and
colleagues [32] demonstrated that higher parasympathetic levels predicted performance
during the Rule Shift Cards and the Hayling Sentence Completion inhibitory tasks.

We found that LnLF and LnHF power and CI decreased from baseline to task 2.
The results are consistent with the reactivity or the possible state of stress during mental
fatigue [22,29,47–49].

Several studies reported the correlation between autonomic function and cognition, ob-
serving a higher parasympathetic modulation associated with better performance on tasks
involving executive function [1,50–52]. However, knight and colleagues suggest that both
sympathetic and parasympathetic should be considered together to observe changes in cog-
nitive functions [53]. Indeed, a better cognitive performance was associated with increased
sympathetic activity but not decreased vagal activity in older patients [54]. In our study, in
baseline LnLF was negatively correlated with the entropy, and in task 1 and 2 the LF/HF
ratio positively correlated with the errors (i.e., increases in the parasympathetic tone).

A decrease in the HRV complexity was correlated to major depressive disorders [20]
and during cognitive tasks in anxious subjects [55]. Cardiac complexity was found to be
particularly effective in differentiating between active, effortful emotion regulation and
less effortful control and dysregulation [56]. In the field of disorders of consciousness,
the CI was found to be a useful marker to discriminate unresponsive wakefulness syn-
drome/vegetative state patients from minimally conscious state patients [25], with higher
CI correlated with a higher level of consciousness. Again, HRV complexity diminishes
with age and disease [57,58], while MSE research in healthy persons over 40 revealed an
age-related fall in heart rate complexity [59,60].

We found the CI negatively correlated with the errors in task 1 and positively correlated
with the reaction time in task 2. Bakhchina and colleagues found that higher HRV entropy,
measured by the Sample Entropy, is associated with a more complex response in goal-
directed behavioral [61]. In particular, our results highlight that a higher CI is linked to
less impulsivity and fewer errors, indicating a more rich complexity in the brain-heart
interaction [62]. Moreover, we found that higher reaction time is associated with higher CI
and lower LF. These results suggest that a higher brain-heart interaction is related to higher
flexibility and adaptation at the rule shift. Moreover, we found that the CI is negatively
correlated with age.

These findings supported the relationship between sympathovagal control, CI, and
age, due to a reduction in the complexity of the physiologic dynamics associated with
aging [63,64] and their involvement in the test performance. Moreover, the negative
correlation between the SE with LF/HF ratio highlights the effect of the sympathetic
response on the heart rate complexity. Porta and colleagues correlated the increase in
sympathetic activity with decreased HRV entropy [65]. The sympathetic activity was found
to increase during mental stress induced by various methods in healthy subjects [66,67].
The effect induced by the increased sympathetic activity is an increase in the heart rate and
regularity of the heartbeats producing a decrease in the heart rate complexity [68,69].

Furthermore, CI, age, and LF/HF ratio were the regressors involved in the logis-
tic model, which allowed in baseline to predict the performances with sensitivity and
specificity of 73% and 72%, respectively.

To the best of our knowledge, in this study, a significant correlation between CI and
inhibitory performance has been described for the first time. In particular, we found that
the increased HRV entropy was linked to increased reaction time and decreased LF/HF
ratio. The HRV complexity better identifies considerable changes in autonomic regulation
providing new insight into changes under various physiological and pathological condi-
tions, complementing the analysis in the time and frequency domain [70–73]. It has been
demonstrated that the CI provided novel information on the brain-heart interaction in
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patients with disorders of consciousness [25,74,75]. Our data could provide new markers
to assess the performances in cognitive tests in healthy and pathological subjects.

However, the relatively small sample size represents the limitations of this study.
Moreover, the HRV decreases with the age [76,77], and as well as it was documented, the
menstrual cycle can influence the HRV in women and also its non-linear property [78].
Again, a recording of 300 s for the baseline and 366 s for the tasks could represent a limit in
calculating the multiscale entropy. However, the sample entropy has also been calculated
in short data points (i.e., N = 100; [36]). A bigger sample size could better explain the
outlier observed in Figure 2, where a male subject over 40 increased the LF/HF values
from 5.5 in baseline to 14.9 in task 2. The outlier does not change the significance of the
results. However, it is interesting to observe that the high error numbers are associated with
increased HR from baseline to task 2 and that while LF did not change, the HF decreased.
This highlights the importance of HF autonomic modulation during cognitive tests [79].

On the other hand, the strength of this study was the evaluation of the non-linear
proprieties of the HRV during all phases (baseline, tasks 1 and 2). In this way, it has been
possible to observe differences in the performance non-related to a significant difference in
the vagal modulation of the ANS but to a different modulation in the brain-heart two-way
interaction. Further studies should consider the ECG and EEG simultaneous recording to
understand the brain-heart two-way interaction better. Moreover, the use of novel methods
in the entropy analysis, such as Refined MSE, the Linear MSE, or the Modified MSE [80,81],
could better explain this complex interaction. Moreover, the analysis of the respiratory
sinus arrhythmia could provide further information about how vagal system mediates the
cognitive performance.

Our study performed an important initial exploration in defining the complex rela-
tionship between CI, sympathovagal balance, and age in inhibitory function.

Our approach could be applied in assessing cognitive decline and as a complement to
the EEG and fMRI analysis, providing additional information on the brain-heart interaction.
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