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Abstract: Regularization with priors is an effective approach to solve the ill-posed inverse problem of
electrical tomography. Entropy priors have been proven to be promising in radiation tomography but
have received less attention in the literature of electrical tomography. This work aims to investigate
the image reconstruction of capacitively coupled electrical resistance tomography (CCERT) with
entropy priors. Four types of entropy priors are introduced, including the image entropy, the projec-
tion entropy, the image-projection joint entropy, and the cross-entropy between the measurement
projection and the forward projection. Correspondingly, objective functions with the four entropy
priors are developed, where the first three are implemented under the maximum entropy strategy
and the last one is implemented under the minimum cross-entropy strategy. Linear back-projection is
adopted to obtain the initial image. The steepest descent method is utilized to optimize the objective
function and obtain the final image. Experimental results show that the four entropy priors are
effective in regularization of the ill-posed inverse problem of CCERT to obtain a reasonable solution.
Compared with the initial image obtained by linear back projection, all the four entropy priors
make sense in improving the image quality. Results also indicate that cross-entropy has the best
performance among the four entropy priors in the image reconstruction of CCERT.

Keywords: electrical tomography; capacitively coupled electrical resistance tomography (CCERT);
image reconstruction; regularization; entropy

1. Introduction

The gas–liquid two-phase flow widely exists in industries such as the petroleum in-
dustry, chemical engineering, and refrigeration systems [1–3]. The parameter measurement
of the gas–liquid two-phase flow is of critical significance for the system design, state
monitoring, and safety control of industrial processes.

Electrical resistance tomography (ERT) is a visualization technique to reconstruct
2D/3D cross-sectional conductivity distributions by a non-invasive electrode-sensing
array [4–6]. Due to the advantages of low cost, high speed, and good safety, it has drawn
much attention from researchers and has shown good application potential in the measure-
ment of gas–liquid two-phase flow. However, the requirement of contact measurement
leads to many adverse effects, such as the polarization, electrochemical corrosion, and
contamination of the electrodes. To overcome these problems, capacitively coupled electri-
cal resistance tomography (CCERT) was proposed as a contactless alternative of ERT [7].
It implements contactless measurement of the conductive medium by introducing the
capacitive coupling principle, where a coupling capacitance is introduced to bridge the
measurement path between the electrodes and the measured medium in the presence
of the insulation layer between them. Research work has verified that CCERT can be
applied to the field of multiphase flow [8,9]. However, as a relatively young technique, the
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research on CCERT is not mature enough, especially on image reconstruction algorithms.
The imaging performance of CCERT still cannot satisfy the increasing requirement of
practical application.

The image reconstruction of electrical tomography (ET) is a highly underdetermined
and ill-posed inverse problem, as is CCERT [10–12]. The number of unknown variables
(pixels) to be determined is much greater than the number of projections, which leads to a
class of possible solutions. Meanwhile, the noise in measurement also causes randomness
of the data. Previous researches have indicated that regularization is an effective way
to alleviate these problems [13–17]. By incorporating the measurement data and a priori
information, a reasonable solution consistent with both the data and the a priori knowledge
can be obtained. The a priori information can be the deterministic support limit, band
limit, positivity, or stochastic constraints, such as the probability density function [18,19].
However, the research on using regularization to improve the imaging performance of
CCERT is very limited. It is necessary to seek valuable a priori information and develop
effective regularization algorithms for CCERT.

Entropy priors have been proven to be promising in reconstructing positive images
from limited and noisy data [20–23]. Generally, entropy priors are expected to satisfy the
information theory, which can be used individually or combined with additional a priori
information of the solution. There are several entropy estimators, such as information
entropy, cross-entropy, conditional entropy, and joint entropy [24]. The entropy priors
have been used with success in radiation tomography [25–27], such as X-ray tomography,
γ-ray tomography [28,29], positron emission tomography [30,31], and optical diffraction
tomography [32]. However, research on the application of entropy priors in ET are still
limited [33–35], especially in CCERT. More research is needed to explore the potential of
entropy priors in the image reconstruction of CCERT.

This work aims to investigate the regularization-based image reconstruction perfor-
mance of CCERT with entropy priors. Under the maximum entropy (ME) strategy, three en-
tropy priors, including the image entropy, the projection entropy, and the image-projection
joint entropy, are introduced. Under the minimum cross-entropy (MCE) principle, the
cross-entropy between the measured projection and the forward projection is introduced.
The four entropy priors are used as the regularization terms to develop four corresponding
objective functions. To solve the optimization problems expressed by the objective func-
tions, linear back projection (LBP) is adopted to obtain the initial image and the steepest
descent method is used to obtain the final image. Image reconstruction experiments will be
carried out to verify the effectiveness of the four entropy priors in the image reconstruc-
tion of CCERT. The imaging performance of CCERT with the four entropy priors will be
compared and discussed.

The rest of this article is organized as follows. Section 2 presents the measurement
principle of CCERT, the image reconstruction with regularization, and the methods to re-
construct the image with entropy priors. The experimental results using practical collected
data are provided in Section 3. Section 4 concludes this article.

2. Methods
2.1. Measurement Principle of CCERT

As mentioned, CCERT is a contactless technique. Figure 1 shows the construction of a
12-electrode CCERT sensor for the typical application of gas–liquid two-phase flow, which
consists of 12 electrodes, the insulation pipe, and the conductive fluid in the pipe. As can be
seen from Figure 1, the electrodes of CCERT are attached to the outer wall of the insulation
pipe, not in direct contact with the fluid.

According to the capacitive coupling principle, for each electrode, a capacitance will
be formed by the electrode, the insulation pipe, and the conductive fluid. When a measure-
ment electrode pair, including an excitation electrode and a detection electrode, is selected,
a measurement path will be formed by two coupling capacitances and the equivalent resis-
tance of the fluid between the two electrodes. Figure 2 shows the simplified measurement
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path of an electrode pair, where C1 is formed by the excitation electrode, the insulation
pipe, and the fluid; C2 is formed by the detection electrode, the insulation pipe, and the
fluid; Rx is the equivalent resistance of the fluid. When an excitation voltage signal Vi is
applied to the excitation electrode, the equivalent resistance can be obtained by measuring
the output current signal Io on the detection electrode. In a complete measurement cycle,
a set of 66 equivalent resistances will be obtained for further image reconstruction. First,
electrode 1 is selected as the excitation electrode and the equivalent resistances between
electrode pairs 1–2, 1–3, . . . , 1–12 are obtained. Then, electrode 2 is selected as the excitation
electrode and the equivalent resistances between electrode pairs 2–3, 2–4, . . . , 2–12 are
obtained. This continues until electrode 11 is selected as the excitation electrode and the
equivalent resistance between electrode pair 11–12 is obtained. During the measurement,
the rest electrodes other than the measurement electrode pair are kept at the floating state.
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According to the Maxwell’s equations, the field of the sensor can be modeled as

∇·((σ(x, y) + jωε(x, y))∇ϕ(x, y)) = 0 (x, y) ⊆ Ω (1)

where the sensing area is defined as Ω. σ(x, y), ε(x, y) and ϕ(x, y) are the conductivity,
permittivity, and potential at the spatial point with coordinates (x, y) in Ω, respectively.

According to the typical measurement strategy of CCERT, two electrodes are selected
as the excitation electrode and the detection electrode respectively, and the rest electrodes
are at floating potential. The boundary conditions of Equation (1) are

ϕa(x, y) = Vi (x, y) ⊆ Γa
ϕb(x, y) = 0 (x, y) ⊆ Γb

∂ϕc(x, y)/∂
⇀
n = 0 (x, y) ⊆ Γc, (c 6= a, b)

(2)

where Vi is the amplitude of the excitation AC voltage source. a, b, and c represent the
excitation electrode, the detection electrode, and the floating electrode, respectively. Γa, Γb,
and Γc represent the spatial regions of the excitation electrode, the detection electrode, and
the floating electrodes.

⇀
n denotes the outward unit normal vector.

2.2. Image Reconstruction with Regularization

CCERT includes two major computational problems, the forward problem and the
inverse problem. The forward problem is to determine the inter-electrode resistances
from the conductivity distribution in the sensing area satisfying Equations (1) and (2).
The inverse problem is to determine the conductivity distribution from the resistance
measurements in the form of a visual image, i.e., the image reconstruction. Therefore, the
image reconstruction corresponds to solving the following inverse problem

λ = Sg (3)
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where λ = [λ1 λ2 . . . λm . . . λM]T is the projection vector calculated from the resistance
measurements. The number of resistance measurements is M = 66, and the sensitivity
matrix is S = [smn]M×N . The number of elements/pixels in the sensing area is N. In this
work, 32× 32 square elements are used to mesh the sensing area. The image vector is
g = [g1 g2 . . . gn . . . gN ]

T which reflects the conductivity distribution in the sensing area.
In detail, the mth projection λm is calculated from the mth resistance measurement as

λm =
Rm − R0

m

R0
m

(4)

where R0
m is the mth resistance measurement obtained when the pipe is full of the liquid

phase. Rm is the mth resistance measurement obtained under the unknown distribution to
be reconstructed. m = 1, 2, . . . , M.

The sensitivity matrix is also known as the Jacobian matrix, which is the sensitivity
of the resistance measurement to the conductivity change of the sensing area. Here, the
sensitivity matrix is calculated by simulation based on the finite element method (FEM). The
software ‘COMSOL Multiphysics’ and ‘MATLAB’ are used to implement the simulation.
The sensitivity of the mth resistance measurement to the conductivity change of the nth
element/pixel is defined as

smn =
Rmn − R0

m

R0
m∆σ

(5)

where R0
m is the mth resistance measurement when the pipe is full of the liquid phase

(σ = σ1, ε = ε1). Rmn is the mth resistance measurement when the nth element changes
from the liquid phase to the gas phase (σ = σ2, ε = ε2). ∆σ is the conductivity change, i.e.,
∆σ = σ1 − σ2. m = 1, 2, . . . , M and n = 1, 2, . . . , N.

As mentioned, the number of unknown variables N is much larger than the number
of resistance measurements M, which means that the inverse of S does not exist and
Equation (3) cannot be solved analytically. Moreover, in practical cases, the resistance
measurement data is mixed with noise. Equation (3) is then expressed as

λ = Sg + e (6)

where e = [e1 e2 . . . em . . . eM]T is the resistance measurement error vector.
A common method to solve Equation (3), i.e., Equation (6) in the real case, is to find the

g that minimizes the residual between Sg and λ, which can be described as the following
objective function

1
2
‖Sg− λ‖2 (7)

Regularization provides an approach to solve the ill-posed problem and determine
the solution from a constraint set of solutions using a priori information. By introducing
regularization, the objective function becomes

f (g) =
1
2
‖Sg− λ‖2 + µG(g) (8)

where µ is the regularization parameter and G(g) is the regularization term.

2.3. Image Reconstruction with Entropy Priors

Entropy is used to measure the uncertainty of information in Shannon’s theory, which
has many properties that agree with the intuitive principles of what a measure of informa-
tion should be. Generally, higher entropy means more information. Therefore, maximum
entropy (ME) is a potential strategy to improve the image quality. Cross-entropy is a
measure of the dissimilarity between two data sets. Smaller cross-entropy means higher
similarity between two datasets. In this way, minimum cross-entropy (MCE) provides
another approach to the search for a better image result. To study the application of entropy
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regularization in CCERT, the above ME and MCE strategies are introduced to develop the
regularization term G(g) in Equation (8).

2.3.1. Regularization with Maximum Entropy (ME) Strategy

According to Shannon’s theory, the entropy H of source τ is calculated by

H(τ) = −∑τ
p(τ)log (p(τ)) (9)

where p(τ) is the probability mass function of τ.
To maximize entropy H(τ) one has to minimize −H(τ). Let G(g) = −H(τ), then the

objective function to be minimized in Equation (8) can be rewritten as

f (g) =
1
2
‖Sg− λ‖2 − µH(τ) (10)

which is defined as the ME objective function in this work. With different entropy estima-
tors, the ME prior H(τ) to be measured is different. Correspondingly, different ME objective
functions are determined. By minimizing the ME objective functions, the estimated so-
lutions with ME priors can be obtained, respectively. Here, three entropy estimators are
introduced as the ME priors, including the image entropy, the projection entropy, and the
image-projection joint entropy.

(1) Maximum Image Entropy (MIE)

Image entropy is a good choice of a priori information for image reconstruction,
which is a measure of the amount of information contained in an image. According to the
maximum entropy principle, the larger the image entropy is, the more information in the
image is predicted. The image entropy is defined as

H(g) = −∑N
n=1 gnlog gn (11)

Let H(τ) = H(g), then the ME objective function under image entropy is defined as

fMIE(g) =
1
2
‖Sg− λ‖2 + µ

(
∑N

n=1 gnlog gn

)
(12)

(2) Maximum Projection Entropy (MPE)

The quality of the reconstructed image also reflects on the quality of its forward
projection. Thus, maximizing the projection entropy is also reasonable. Considering
the forward process according to Equation (3), each predicted image g has a forward
projection Sg. Then the projection entropy under one predicted image can be defined as a
conditional entropy

H(Sg|g) = −∑M
m=1(Sg)mlog(Sg)m (13)

Let H(τ) = H(Sg|g), then the ME objective function under projection entropy is
defined as

fMPE(g) =
1
2
‖Sg− λ‖2 + µ ∑M

m=1(Sg)mlog(Sg)m (14)

(3) Maximum Joint Entropy (MJE)

The joint entropy H(I, J) of a pair of discrete random variables (i, j) with a joint
distribution p(i, j) is defined as

H(I, J) = ∑i ∑j p(i, j)log(p(i, j)) (15)

Referring to the chain principle in entropy, then

H(I, J) = H(I) + H(J|I) (16)
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Thus, the joint entropy of the predicted image and its forward projection can be
introduced as a combination of the image entropy and the projection entropy, which can be
calculated by

H(g, Sg) = H(g) + H(Sg|g) (17)

Let H(τ) = H(g, Sg), then the ME objective function under joint entropy is defined as

fMJE(g) =
1
2
‖Sg− λ‖2 + µ

(
∑N

n=1 gnlog gn + ∑M
m=1(Sg)mlog(Sg)m

)
(18)

2.3.2. Regularization with Minimum Cross-Entropy (MCE) Strategy

Cross-entropy evaluates the dissimilarity between two data sets. Larger cross-entropy
means a greater degree of dissimilarity between the two data sets. In radiation tomography
for biomedical applications, the minimization of the cross-entropy between the current
estimate of the reconstructed image and the anatomical a priori images are used to guide
the image reconstruction. In this work, for gas–liquid two-phase flow, the dissimilarity
between the practical projection set from the resistance measurements λ and the forward
projection from the current estimated image Sg is introduced as the entropy prior. The
cross-entropy between λ and Sg can be described as

L(g) = ∑M
m=1

[
λmlog

λm

(Sg)m
− λm + (Sg)m

]
(19)

Let G(g) = L(g), the objective function under minimum cross-entropy is then

fMCE(g) =
1
2
‖Sg− λ‖2 + µ

{
∑M

m=1

[
λmlog

λm

(Sg)m
− λm + (Sg)m

]}
(20)

Similarly, by minimizing the above equation, the estimated solution with minimum
cross-entropy constraint can be obtained.

2.3.3. Image Reconstruction Process

With the four objective functions in Equations (12), (14), (18) and (20), an estimated
image ĝ can be obtained by introducing optimization algorithms to minimize each objective
function f (g). The estimated image can be described as

ĝ = argmin
g

f (g) (21)

Optimization problems widely exist in engineering technologies, and finding the
optimal solution is always the goal for researchers and engineers. Research works have
been undertaken to seek effective optimization methods, and great achievements have been
obtained. Currently, there are many useful methods to solve the nonlinear optimization
problem [36,37], such as the steepest descent algorithm, the Newton’s algorithm, the
conjugate gradient method, the intelligent optimization algorithms, etc. Among them, the
steepest descent method has the best convergence characteristics and minimal single step
computation. The conjugate gradient method and the Newton’s algorithm are applicable to
the quadratic form optimization problem, such as the objective function in Equation (7). For
nonquadratic problem, the conjugate gradient method cannot keep the searching direction
conjugate as the number of iterations increase, and the Newton’s algorithm might not
guarantee the value of the objective function to decline steadily. Therefore, the steepest
descent method is adopted in this work to solve the optimization problem in Equation (21).
The steps of the steepest descent method are concluded as follows:

1. Let the number of iterations k := 0 and initialize the image vector g0.
2. Calculate the gradient ∇ f

(
g0) and set the initial iteration direction d0 = −∇ f

(
g0).

3. Determine the step length by linear searching as αk = argmin
α≥0

f
(

gk + αdk
)

.
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4. Calculate the new image vector gk+1 = gk + αkdk.

5. Calculate the new gradient ∇ f
(

gk+1
)

.

6. Update the iteration direction as dk+1 = −∇ f
(

gk+1
)

.

7. Set k := k + 1, if either of the termination conditions is satisfied, stop the iteration and
let the final image vector to be ĝ = gk+1. Otherwise, return to step 3.

Here, the termination conditions are:

(1) ∇ f
(

gk
)
= 0

(2)
∣∣∣ f(gk

)
− f

(
gk+1

)∣∣∣ < ξ1

(3) k := k + 1 > ξ2

where the termination coefficients are set as ξ1 = 1× 10−8 and ξ2 = 1000.
The initial value of the solution is important in optimization. Here, the initial image

g0 is obtained by LBP, which is widely used as the first stage algorithm due to its simplicity
and low computation cost. It reconstructs the image by back-projecting the boundary
projections to the sensitivity matrix, which can be expressed as

g0
n =

∑M
m=1 λmsmn

∑M
m=1 smn

(22)

With the initial image obtained by LBP, the final image is reconstructed by the iterations
of the steepest descent method.

3. Results and Discussion
3.1. Experimental Setup

Figure 3 shows the experimental setup in this work, which is composed of a 12-
electrode CCERT sensor, a signal processing unit, and a computer. The 12-electrode CCERT
sensor is made up with a PVC plastic pipe and an electrode array. The height of the pipe
is 400 cm and the outer diameter is 110 mm with the pipe wall thickness of 2 mm. The
length of the electrodes is 125 mm, and the electrode angle in Figure 1 is 25 degrees (the
width of the electrode is about 23 mm). The signal processing unit is for data acquisition,
including the control of the excitation and measurement process, the calculation of the
resistance measurements, and the communication with the computer. The computer is
used to reconstruct the images with the resistance measurements.
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To evaluate the quality of the reconstructed image, relative image error (RIE) and image
correlation coefficient (ICC) are introduced, which are commonly used in the literature
of ET [38–40]. The smaller RIE and larger ICC mean better image quality. They are
calculated by:

RIE =

√√√√∑N
n=1(ĝn − g∗n)

2

∑N
n=1(g∗n)

2 (23)

ICC =
∑N

n=1(ĝn − ĝa)(g∗n − g∗a )√
∑N

n=1(ĝn − ĝa)
2(g∗n − g∗a )

2
(24)

where ĝn is the gray value of the nth pixel in the reconstructed image ĝ, g∗n is the gray value
of the nth pixel in the ground truth g∗ (will be introduced in Section 3.2), ĝa and g∗a denote
the average value of the gray value of them, respectively.

Tikhonov regularization algorithm is a typical representative in the regularization-
based reconstruction family. Therefore, it is used for comparison in this work. Tikhonov
regularization includes a l2-norm smooth constraint, where the typical form of G(g) is
G(g) = ‖g‖2. With the standard Tikhonov procedure, the solution of Equation (8) is

ĝ =
(

STS + µE
)−1

STλ (25)

where E is an identity matrix. ĝ is the estimated solution constrained by the Tikhonov
regularization. Tikhonov is a one-step method that introduces a trade-off between fitting
the data exactly to determine a solution and limiting the value of the solution. The trade-off
is controlled by the regularization parameter µ, which is with positive value.

3.2. Experimental Results and Discussion

Figure 4 shows the ground truth of the tested scenarios, which is the practical distribu-
tions to be reconstructed. There are three scenarios S1 to S3 to be evaluated, as shown in
Figure 4, where tap water (conductivity σ1 = 0.012 S/m and relative permittivity ε1 = 78)
and plastic rod(s) (conductivity σ2 = 0 S/m and relative permittivity ε2 = 3) with the
diameter of 30 mm are used to simulate the background and the target(s), respectively.
Scenarios S1 and S2 are for one target at different positions and scenario S3 is for two tar-
gets. Figure 5 presents the experimental results obtained by the investigated four entropy
priors, including the maximum image entropy (MIE), maximum projection entropy (MPE),
maximum joint entropy (MJE), and minimum cross-entropy (MCE), which are listed in a
sequence. As mentioned, LBP is utilized to get the initial image, while Tikhonov is a typical
conventional algorithm using the l2-norm regularization. Thus, the results obtained by LBP
and Tikhonov are also listed in Figure 5 for comparison to evaluate the performance of the
four-entropy regularization. Figure 6 shows the corresponding image quality indexes of the
reconstructed images. There are 856 square elements in the region of interest (the gas–liquid
two-phase flow in the circular pipe), so only 856 pixels are displayed in the images.
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As can be seen in Figure 5, the initial images obtained by LBP have a large artifact in
all three test cases, which blurs the positions and sizes of the targets. However, the artifact
in the images reconstructed by MIE, MPE, MJE, and MCE have been mostly eliminated.
The four entropy priors are capable to obtain a more reasonable and accurate prediction of
the targets than LBP, which is also illustrated quantitively in Figure 6. All the images recon-
structed by the four entropy priors are in accord with the ground truth. This verifies the
effectiveness of the entropy priors and indicates their potential in the image reconstruction
of CCERT.

Among the three ME priors, the two priors derived from projection entropy (MPE
and MJE) are good at obviating the artifact and keeping relative clear boundaries of the
targets. Figure 6 shows that MPE and MJE perform better than the other priors in S2,
including the Tikhonov regularization. However, MPE and MJE struggle with recovering
the size of the targets. It is observed that the targets in the images reconstructed by MPE
and MJE are somewhat shrunken in size, thus they have poorer quantitative performance
in S1 and S3, as shown in Figure 6. For MIE, the boundaries of the images are blurry,
probably because the artifact means more information to some extent, resulting in larger
image entropy. The comparison of the results of MPE and MJE also indicates that using the
image entropy as the regularization term has a smaller impact on the objective function.
The images reconstructed by the MJE and the MPE are comparable, which indicates that
the contribution of MPE is dominating and the contribution of MIE is much smaller. To
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sum up, for ME priors, MIE contributes less in the objective function, while MPE and MJE
eliminate the artifact well but out of balance in the target size.

Compared with the three ME priors, the MCE prior shows a better trade-off between
removing the artifact and recovering the size of targets. The MCE prior performs better
than the ME priors in the reconstruction of S1 and S3, as shown in Figure 6. The reason
might be that the ME priors have no reference to the real measurements, so they are
only responsible for the information. However, the cross-entropy provides a measure of
dissimilarity between the measured projection and the forward projection, which bridges
the information and the measurements. It is reasonable that a closer forward projection
to the measurement projection means closer reconstructed image to the ground truth.
However, compared with the classical Tikhonov regularization, the performance of MCE
prior has no advantage. The images reconstructed by the MCE prior are comparable to
those reconstructed by Tikhonov regularization.

4. Conclusions

This work investigates the image reconstruction of CCERT by introducing entropy
priors as the regularization terms. Four types of entropy priors (MIE, MPE, MJE, and
MCE) are introduced. By developing the objective function for each entropy prior, the
combination of LBP and the steepest descent method is adopted to optimize the objective
function. Experiments are carried out and the performances of the four entropy priors
are compared.

Results show that all the images reconstructed by the four entropy priors are in accord
with the ground truth. Compared with the initial image obtained by LBP, regularization
with the entropy priors is an effective way to improve the image quality. Among the four
entropy priors, the MCE prior has the overall best performance in the trade-off between
eliminating the artifact and recovering the size of the targets, while the MIE prior has the
poorest performance. MPE and MJE behave the best in eliminating artifacts, but struggle
with keeping the size of the reconstructed targets. It is found that these two priors have
good performance in reconstructing the target close to the low-sensitivity center of the
sensing area.

New knowledge and experience have been obtained in this investigation which can
provide useful references for further research work. Although the research results show the
potential of entropy priors in the image reconstruction of CCERT, the imaging performance
of the entropy priors have no advantage over that of the classical Tikhonov regularization.
There is still much space for progress in future research on seeking more effective a priori
information to take advantage of entropy. For industrial multi-phase flow, if other prior
information can be incorporated into the entropy prior, such as dynamic modelling data
obtained by simulation or good-quality multi-frequency images obtained by the CCERT
system, the informatic nature of entropy is thought to make more sense.
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