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Abstract: Fully pairing all elements of a set while attempting to maximize the total benefit is a
combinatorically difficult problem. Such pairing problems naturally appear in various situations
in science, technology, economics, and other fields. In our previous study, we proposed an efficient
method to infer the underlying compatibilities among the entities, under the constraint that only
the total compatibility is observable. Furthermore, by transforming the pairing problem into a
traveling salesman problem with a multi-layer architecture, a pairing optimization algorithm was
successfully demonstrated to derive a high-total-compatibility pairing. However, there is substantial
room for further performance enhancement by further exploiting the underlying mathematical
properties. In this study, we prove the existence of algebraic structures in the pairing problem. We
transform the initially estimated compatibility information into an equivalent form where the variance
of the individual compatibilities is minimized. We then demonstrate that the total compatibility
obtained when using the heuristic pairing algorithm on the transformed problem is significantly
higher compared to the previous method. With this improved perspective on the pairing problem
using fundamental mathematical properties, we can contribute to practical applications such as
wireless communications beyond 5G, where efficient pairing is of critical importance. As the pairing
problem is a special case of the maximum weighted matching problem, our findings may also have
implications for other algorithms on fully connected graphs.

Keywords: pairing; optimization; matching; maximum weighted matching; heuristic algorithm

1. Introduction

The procedure of generating pairs of elements among all entries of a given system
often arises in various situations in science, technology, and economy [1–7]. Here, we call
such a process pairing, and the number of elements is considered to be an even number for
simplicity. One immediately obvious problem is that the number of pairing configurations
grows rapidly with the number of elements. The number of possible pairings is given
by (n− 1)!!, where n indicates the number of elements in the system and !! is the double
factorial operator. For example, when n is 100, the total number of possible pairings is on
the order of 1078. Hence, finding the pairing that maximizes the benefit of the total system
is difficult.

Notably, the pairing problem corresponds to the maximum weighted matching (MWM)
problem on the complete graph. Multiple algorithms exist for solving the MWM problem [8–15].
In contrast to these conventional methods, we propose a heuristic and fast algorithm at the
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cost of some performance. The advantage of a fast heuristic algorithm is that it can be useful
in environments where weights change dynamically or a quick pairing is required, such as
in communications technology. A heuristic algorithm for the MWM problem using deep
reinforcement learning was recently proposed by [16] with a similar goal. Furthermore, our
research proposes algorithms that work under the limited observation constraint, which is
explained later. In our previous study, we proposed an algorithm with a computational
complexity of O(n2) [17].

To the best of our knowledge, there is no exact algorithm that works on the order of
O(n2) for arbitrary weights. For example, Gabow [9] proposed a MWM algorithm with
a computation time of |E||V|+ |V|2 log |V|, where V is a set of vertices and E is a set of
edges. However, randomized or approximate algorithms can reduce computational time
for some cases. For example, Cygan et al. [12] developed a randomized algorithm with
a computation time of L|V|ω for graphs with integer weights (ω < 2.373 is the exponent
of n × n matrix multiplication [18] and L is the maximum integer edge weight). Duan
et al. [15] proposed an approximate algorithm achieving an approximation ratio of (1− ε)M
with a computation time of |E|ε−1 log ε−1 for arbitrary weights and |E|ε−1 log N for integer
weights (ε is a positive arbitrary value and M is the maximum possible weight matching
value). Here, |V| = n, |E| = n(n− 1)/2. Here, we aim to improve our previous pairing
problem result, i.e., to determine a higher-accuracy heuristic algorithm that works with
O(n2) computational complexity.

Note that the pairing problem should not be confused with the assignment problem,
which is another special case of the MWM setting. The assignment problem requires the
graph to be a weighted bipartite graph. Furthermore, in the assignment problem there are
two classes of objects, where it is the goal to always match an object from the first class
with an object from the second. However, in the pairing problem, there is only a single
class of objects, and we allow any of them to be potentially paired with any other. The
assignment problem is also related to the single-source shortest paths problem. Several
well-known assignment algorithms [19–21] or single-source shortest paths algorithms [22]
are known. For example, the Hungarian algorithm [19] solves the assignment problem
O(n3), the auction algorithm [20] works with parallelism and the Bellman–Ford algorithm
runs with O(|V||E|) [22]. However, in this study, we consider a fully connected graph with
an even number of elements, where the MWM problem cannot be solved by assignment
problem algorithms.

An example of a pairing problem is found in a recent communication technology
called non-orthogonal multiple access (NOMA) [23–29]. In NOMA, multiple terminals
simultaneously share a common frequency band to improve the efficiency of frequency
usage. The simultaneous use of the same frequency band causes interference in the signals
from the base station to each terminal. To overcome this problem, NOMA uses a signal
processing method called successive interference cancellation (SIC) [30] to distinguish
individual channel information in the power domain, allowing multiple terminals to rely
on the same frequency band. For simplicity, here we consider that the number of terminals
that can share a frequency is given by two. Herein, the usefulness of the whole system can
be measured by the total communication quality, such as high data throughput and low
error rate, which depends crucially on the method of pairing.

The most fundamental parameter of the pairing problem is the merit between any
two given elements, which we call individual compatibility, while the summation of
compatibilities for a given pairing is called its total compatibility. The detailed definition is
introduced below. Our goal is to derive pairings yielding high total compatibility.

In general, we do not need to assume that the individual compatibility of a pair is ob-
servable, i.e., only the total compatibility of a given pairing may be observed. Our previous
study [17] divided the pairing problem into two phases. The first is the observation phase,
where we observe total compatibilities for several pairings and estimate the individual
compatibilities. The second is the combining phase, in which a search is performed for
a pairing that provides high total compatibility. This procedure is referred to as pairing
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optimization. The search is based on the compatibility information obtained in the first
phase. In [17], we show that the pairing optimization problem can be transformed into a
travelling salesman problem (TSP) [31] with a three-layer structure, allowing us to benefit
from a variety of known heuristics.

However, we consider that there is substantial room for further performance opti-
mization. This study sheds new light on the pairing problem from two perspectives. The
first is to clarify the algebraic structure of the pairing optimization problem. Because
we care only about the total compatibility when all elements are paired, there are many
compatibility matrices (defined in Section 2) that share the same total compatibilities. In
other words, we can consider an equivalence class of compatibility matrices that yield the
same total compatibilities and that cannot be distinguished if individual compatibilities are
not measurable. We show that the compatibility matrices in each equivalence class have an
invariant value.

Second, although any compatibility matrices in the same equivalence class theoretically
provide the same total compatibility, the heuristic pairing optimization process can result
in different total compatibility values. These differences are not caused by incomplete
or noisy observations, but are due to the convergence properties of the heuristic pairing
algorithms, which yield better results on some distributions than others. We examine
how the statistics of the compatibility matrix affect the pairing optimization problem and
propose a compatibility matrix that yields higher total compatibility after optimization.
More specifically, we propose a transformation to the compatibility matrix that minimizes
the variance of the elements therein, which we call the variance optimization. We confirmed
numerically that enhanced total compatibility is achieved via the compatibility matrix
after variance optimization. Furthermore, the proposed variance optimization algorithm
may also be applicable when no observation phase is required, i.e., when the individual
compatibilities are directly observable. In other words, there are cases where a compatibility
matrix unsuitable for a heuristic combining algorithm can be converted to one that is
easily combinable.

The remainder of this paper is organized as follows. In Section 2, we define the pairing
optimization problem mathematically. Section 3 describes the mathematical properties of
the equivalence class. Section 4 explains the concept of variance optimization and presents
a solution by which it can be achieved. Section 5 presents results of numerical simulations
of the proposed variance optimization. Furthermore, there are two optimization problems
in this paper. The first is the pairing problem we aim to solve in Section 2.1. Second is the
variance optimization which enables us to enhance the performance of the PNN+p2-opt
algorithm in Section 4.2. Finally, Section 6 concludes the paper.

2. Problem Setting

In this section, we provide a mathematical definition of the pairing optimization
problem that we address in this study, and define some of the mathematical symbols used
in the following discussion. In addition, we explain the constraints applied to the pairing
optimization problem.

2.1. Pairing Optimization Problem

Here, we assume that the number of elements is an even natural integer n, while the
index of each element is a natural number between 1 and n. Parts of the pairing problem can
be described elegantly in set theory, while others benefit from using matrix representations.
We will use either, where appropriate. Here we use U(n) to denote the set of n elements:

U(n) ≡ {i | i ∈ Z, 1 ≤ i ≤ n}. (1)

Then, we define the set of all possible pairs for U(n) as P(n), which contains
N(N − 1)/2 pairs:

P(n) ≡ {{i, j} | i, j ∈ U(n), i < j}. (2)
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To describe the compatibilities of these pairs, we now define a “compatibility matrix” C
as follows:

C ∈ Rn×n,

∀{i, j} ∈ P(n), Ci,j = Cj,i,

1 ≤ i ≤ n, Ci,i = 0.

The compatibility between elements i and j is denoted by Ci,j ∈ R. The matrix C is always
symmetric and the major diagonal is zero, because pairing i and j does not depend on
the order of elements and an element cannot be paired with itself. The set of all possible
compatibility matrices is denoted as Ωn when the number of elements is n. In other words,
Ωn is the set of all n× n symmetric distance matrices, or symmetric hollow matrices. To
describe a pairing, i.e., which elements are paired together, we now define a pairing matrix
S ∈ Rn×n:

∀{i, j} ∈ P(n), Si,j = Sj,i and Si,j ∈ {0, 1},
1 ≤ i ≤ n, Si,i = 0,

∀i,
n

∑
j=1

Si,j = 1.

S is symmetric, because pairing element i with j is equivalent to pairing j with i. The
pairing matrix S is also hollow, because pairing i with itself is not allowed. Each row and
column contains only a single non-zero element, as each element i can only be paired once.
Therefore, a pairing matrix S is an n× n symmetric and hollow permutation matrix. We
define the set of all pairing matrices S(n) ≡ {S} when the number of elements is n:

S ∈ S(n). (3)

To derive the set representation of a pairing, we introduce the map fset as follows:

fset(S) ≡ {{i, j} | i < j and Si,j = 1}. (4)

A function denoted by 〈X, C〉 is then defined as follows, using the Frobenius inner
product 〈·〉F:

C ∈ Ωn,

X ∈ Rn×n,

〈X, C〉 = 1
2
〈X, C〉F.

For a given compatibility matrix C, we call 〈S, C〉 for S ∈ S(n) the “total compatibility” for
pairing S. This formulation is equivalent to the one used in our previous work [17], and
corresponds to summing the individual compatibilities Ci,j of the pairs defined by S:

〈S, C〉 = ∑
{i,j}∈ fset(S)

Ci,j.

For any given compatibility matrix C, the pairing optimization problem can then be
formulated as follows:

max: 〈S, C〉,
subject to: S ∈ S(n).



Entropy 2023, 25, 146 5 of 19

2.2. Limited Observation Constraint

As briefly mentioned in Section 1, in practice there may often exist one more constraint
on the pairing optimization problem. We will assume that initially we do not know each
compatibility value. Moreover, we assume that only the value of total compatibility 〈S, C〉
for any pairing S ∈ S(n) is observable. We call this condition the “limited observation
constraint”.

Under this constraint, we must execute two phases, the “observation phase” and
the “combining phase”, as introduced in our previous study [17]. First, we estimate the
ground-truth compatibility matrix Cg through observations of the total compatibilities of
several pairings in the observation phase. We denote the estimated compatibility matrix
by Ce. Our previous work [17] calculated the minimum number of observations that are
necessary for deducing Ce and presents a simple algorithm for doing so efficiently.

3. Mathematical Properties of the Pairing Problem

In this section, we consider algebraic structures in the pairing problem. An equivalence
relation is defined among compatibility matrices to construct equivalence classes. Then
we show a conserved quantity within the equivalence class and that all members of the
class yield the same total compatibility for any given pairing. Furthermore, the statistical
properties of compatibility matrices are examined, forming the mathematical foundation of
the variance optimization to be discussed in Section 4.

3.1. Adjacent Set

We define the adjacent set matrix Ri(1 ≤ i ≤ n) as follows:

Ri ∈ Rn×n,

(Ri)k,l =

{
1 if i ∈ {k, l} and k 6= l
0 otherwise .

(5)

We can also describe fset(Ri) as follows:

fset(Ri) = {{i, j} | 1 ≤ j ≤ n, j 6= i}. (6)

With these adjacent sets, the following theorem holds.

Theorem 1. C ∈ Ωn is fully determined by {〈S, C〉 | S ∈ S(n)} and {〈Ri, C〉 | 1 ≤ i ≤ n− 1}.

Note that 〈Rn, C〉 is not included, i.e., only n− 1 terms involving Ri are needed. Here,
we have chosen to exclude index n without loss of generality.

Proof of Theorem 1. Our strategy to prove this involves calculating the dimension of the
involved subspaces. First, we prove the equation

span{S}S∈S(n) ∩ span{Ri}1≤i≤n−1 = {On} (7)

where On denotes the n× n zero matrix. Then, we focus on the following equation to check
linear independence. Here, we number all pairings such as S1, S2, · · · Su · · · S(N−1)!!. We
introduce the coefficients au and bv and calculate the overlap of the spans:

1 ≤ u ≤ (n− 1)!!, au ∈ R,

1 ≤ v ≤ n− 1, bv ∈ R,
(n−1)!!

∑
u=1

auSu =
n−1

∑
v=1

bvRv. (8)

We focus on the summation of the kth-column on both sides. Note that for every Su there
is exactly one non-zero element in column k, while for Rv there may be more than one if
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v = k and 1 ≤ k ≤ n− 1, or exactly one non-zero element otherwise. Then, the following
equations hold:
When 1 ≤ k ≤ n− 1

(n− 2)bk +
n−1

∑
l=1

bl −
(n−1)!!

∑
l=1

al = 0. (9)

When k = n (because of our choice in formulating Theorem 1)

n−1

∑
l=1

bl −
(n−1)!!

∑
l=1

al = 0. (10)

With Equations (9) and (10), bk = 0 (1 ≤ k ≤ n− 1) holds. This means that

span{S}S∈S(n) ∩ span{Ri}1≤i≤n−1 = {On}, (11)

dim span{Ri}1≤i≤n−1 = n− 1. (12)

By our previous study [17],

dim span{S}S∈S(n) = Lmin(n). (13)

Here, we denote Lmin(n) ≡ (n− 1)(n− 2)/2. By Equations (12) and (13), the following
equation holds:

dim span{S}S∈S(n) + dim span{Ri}1≤i≤n−1 = dim Ωn. (14)

Therefore, by Equations (11) and (14),

dim span{S}S∈S(n) ∪ span{Ri}1≤i≤n−1 = dim Ωn. (15)

The pairing matrices S are a subset of Ωn. In addition, the adjacent set matrices Ri are also
a subset of Ωn. Therefore, the following equation holds:

span{S}S∈S(n) ∪ span{Ri}1≤i≤n−1 ⊆ Ωn. (16)

With Equations (15) and (16),

span{S}S∈S(n) ∪ span{Ri}1≤i≤n−1 = Ωn. (17)

That is, {S}S∈S(n) plus {Ri}1≤i≤n−1 can construct Ωn. Finally, 〈S, C〉 is a linear trans-
formation of S which comes from the property of the Frobenius inner product. There-
fore, C ∈ Ωn can be constructed as a linear combination of {〈S, C〉 | S ∈ S(n)} and
{〈Ri, C〉 | 1 ≤ i ≤ n− 1}. Therefore, the theorem holds.

Corollary 1.

A, B ∈ Ωn,

A = B if and only if

∀S ∈ S(n),
〈S, A〉 = 〈S, B〉 and 1 ≤ i ≤ n, 〈Ri, A〉 = 〈Ri, B〉. (18)

This corollary is a special case of Theorem 1 because Equation (18) means that A and
B have the same total compatibilities for all pairings and all adjacent sets.
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Here, we present an example for Theorem 1 for the n = 4 case to illustrate the relationship
of the involved subspaces. We define the following Hi:

Hi =

{
span{S}S∈S(n) if i = 0,
span{Ri} if 1 ≤ i ≤ n− 1.

(19)

We represent Hi as follows, where Di,j ∈ Ωn is defined as the n× n matrix whose (i, j)th
element is 1 and all other elements are 0:

Hi =



if i = 0,
{k1(D1,2 + D3,4) + k2(D1,3 + D2,4) + k3(D1,4 + D2,3) | k1, k2, k3 ∈ R}

if i = 1,
{k4(D1,2 + D1,3 + D1,4) | k4 ∈ R}

if i = 2,
{k5(D2,1 + D2,3 + D2,4) | k5 ∈ R}

if i = 3,
{k6(D3,1 + D3,2 + D3,4) | k6 ∈ R},

(20)

H̄ = {li,jDi,j | 1 ≤ i < j ≤ n, li,j ∈ R}. (21)

The image of these spaces is represented in Figure 1. That is,

0 ≤ i < j ≤ n− 1, i 6= j, Hi ∩ Hj = {On}, (22)

H̄ = H0 ∪ H1 ∪ H2 ∪ H3. (23)

H₀

H₁

H₂ H₃

{0}

Figure 1. A schematic illustration of the relationship among H0, H1, H2 and H3.

3.2. Equivalence Class

We define the relation ∼ as follows:

A, B ∈ Ωn,

A ∼ B if and only if ∀S ∈ S(n), 〈S, A〉 = 〈S, B〉. (24)

This represents an equivalence relationship between A and B, leading to the construction
of an equivalence class.

Regarding this equivalence class, the following theorem holds:
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Theorem 2.

A, B ∈ Ωn,

A ∼ B if and only if

∀{i, j} ∈ P(n),

Ai,j −
1

n− 2
(
〈Ri, A〉+ 〈Rj, A〉

)
= Bi,j −

1
n− 2

(
〈Ri, B〉+ 〈Rj, B〉

)
. (25)

That is, for any matrix C in the equivalence class, the values given by the following are conserved.

∀{i, j} ∈ P(n), Ci,j −
1

n− 2
(
〈Ri, C〉+ 〈Rj, C〉

)
. (26)

The matrix form of the conserved values is described in Appendix A.

Proof of Theorem 2. First, we prove sufficiency. We assume that the following equation
holds:

∀{i, j} ∈ P(n), Ai,j −
1

n− 2
(
〈Ri, A〉+ 〈Rj, A〉

)
= Bi,j −

1
n− 2

(
〈Ri, B〉+ 〈Rj, B〉

)
. (27)

With Equation (27), the following equation holds:

∑
{i,j}∈P(n)

{
Ai,j −

1
n− 2

(
〈Ri, A〉+ 〈Rj, A〉

)}

= ∑
{i,j}∈P(n)

{
Bi,j −

1
n− 2

(
〈Ri, B〉+ 〈Rj, B〉

)}
. (28)

Here, the left side can be calculated as follows because the number of pairs including
element k in P(n) is n− 1:

∑
{i,j}∈P(n)

{
Ai,j −

1
n− 2

(
〈Ri, A〉+ 〈Rj, A〉

)}

= ∑
{i,j}∈P(n)

Ai,j −
n− 1
n− 2

n

∑
k=1
〈Rk, A〉

= ∑
{i,j}∈P(n)

Ai,j −
n− 1
n− 2

n

∑
k=1

∑
l 6=k

Ak,l

= ∑
{i,j}∈P(n)

Ai,j −
2(n− 1)

n− 2 ∑
{k,l}∈P(n)

Ak,l

= − n
n− 2 ∑

{i,j}∈P(n)
Ai,j. (29)

Using Equation (29), Equation (28) is transformed into the following:

− n
n− 2 ∑

{i,j}∈P(n)
Ai,j = −

n
n− 2 ∑

{i,j}∈P(n)
Bi,j. (30)

Therefore,

∑
{i,j}∈P(n)

Ai,j = ∑
{i,j}∈P(n)

Bi,j. (31)
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The following equation holds for any pairing S by Equation (27):

∑
{i,j}∈ fset(S)

{
Ai,j −

1
n− 2

(
〈Ri, A〉+ 〈Rj, A〉

)}

= ∑
{i,j}∈ fset(S)

{
Bi,j −

1
n− 2

(
〈Ri, B〉+ 〈Rj, B〉

)}
. (32)

Here, the following equation holds. Note that {i, j} belongs to fset(S); hence, 〈Rk, A〉
appears only once and all indexes k ranging from 1 to n appear over the summation:

∑
{i,j}∈ fset(S)

(
〈Ri, A〉+ 〈Rj, A〉

)
=

n

∑
k=1
〈Rk, A〉 (33)

=
n

∑
k=1

∑
l,l 6=k

Ak,l

= 2 ∑
{k,l}∈P(n)

Ak,l . (34)

For B, the following equation also holds:

∑
{i,j}∈ fset(S)

(
〈Ri, B〉+ 〈Rj, B〉

)
=

n

∑
k=1
〈Rk, B〉 (35)

= 2 ∑
{k,l}∈P(n)

Bk,l . (36)

Using these transformations, Equation (32) is transformed as follows:

〈S, A〉 − 2
n− 2 ∑

{k,l}∈P(n)
Ak,l = 〈S, B〉 − 2

n− 2 ∑
{k,l}∈P(n)

Bk,l . (37)

With Equation (31),

〈S, A〉 = 〈S, B〉. (38)

Then, A ∼ B holds.
Second, we prove the necessity. We assume that A ∼ B holds. We define A∗ ∈ Ωn as

follows:

A∗i,j ≡
1

n− 2
(〈Ri, A〉+ 〈Rj, A〉) + Bi,j −

1
n− 2

(〈Ri, B〉+ 〈Rj, B〉). (39)

By Equations (33), (35) and (39),

∀S ∈ S(n), 〈S, A∗〉 = ∑
{i,j}∈ fset(S)

A∗i,j

= 〈S, B〉+ 1
n− 2

n

∑
i=1
〈Ri, A〉 − 1

n− 2

n

∑
i=1
〈Ri, B〉. (40)

We derive the relationship between ∑n
i=1〈Ri, A〉 and ∑S∈S(n)〈S, A〉 here in order to trans-

form Equation (40). By Equation (34),

n

∑
i=1
〈Ri, A〉 = 2 ∑

{i,j}∈P(n)
Ai,j. (41)
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For ∑S∈S(n)〈S, A〉, we focus on the fact that the number of appearances of Ai,j is (n− 3)!!,

∑
S∈S(n)

〈S, A〉 = (n− 3)!! ∑
{i,j}∈P(n)

Ai,j. (42)

With Equations (41) and (42), the following relationship holds:

n

∑
i=1
〈Ri, A〉 = 2

(n− 3)!! ∑
S∈S(n)

〈S, A〉. (43)

Therefore, the following holds by A ∼ B and Equation (43):

n

∑
i=1
〈Ri, A〉 =

2
(n− 3)!! ∑

S∈S(n)
〈S, A〉

=
2

(n− 3)!! ∑
S∈S(n)

〈S, B〉

=
n

∑
i=1
〈Ri, B〉. (44)

By Equation (44), we can cancel the second and third terms of (40),

〈S, A∗〉 = 〈S, B〉. (45)

In addition, A ∼ B holds. Therefore,

∀S ∈ S(n), 〈S, A∗〉 = 〈S, B〉 = 〈S, A〉. (46)

Additionally, the following also holds by A ∼ B and Equation (44):

∑
j,j 6=i

A∗i,j =
n− 1
n− 2

〈Ri, A〉+ 1
n− 2 ∑

j,j 6=i
〈Rj, A〉+ ∑

j,j 6=i
Bi,j

−n− 1
n− 2

〈Ri, B〉 − 1
n− 2 ∑

j,j 6=i
〈Rj, B〉

=
1

n− 2

(
n

∑
j=1
〈Rj, A〉 −

n

∑
j=1
〈Rj, B〉

)
+ 〈Ri, A〉

= 〈Ri, A〉. (47)

By Equation (47),

1 ≤ i ≤ n, 〈Ri, A∗〉 = 〈Ri, A〉. (48)

Therefore, by Equations (46) and (48) and Corollary 1,

A = A∗ (49)

is valid. That is to say, the following equation holds:

{i, j} ∈ P(n), Ai,j −
1

n− 2
(
〈Ri, A〉+ 〈Rj, A〉

)
= Bi,j −

1
n− 2

(
〈Ri, B〉+ 〈Rj, B〉

)
. (50)
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3.3. Mean and Covariance

Here, we analyze statistical properties associated with the compatibility matrix and
the total compatibility.

We define the mean values of compatibilities and total compatibilities as

C ∈ Ωn,

µelement(C) ≡
2

n(n− 1) ∑
1≤i<j≤n

Ci,j,

µsum(C) ≡ 1
(n− 1)!! ∑

S∈S(n)
〈S, C〉.

By Equation (42), µsum(C) is transformed into

µsum(C) ≡ 1
(n− 1)!! ∑

S∈S(n)
〈S, C〉

=
1

n− 1 ∑
1≤i<j≤n

Ci,j

=
n
2

µelement(C) (51)

where µelement(C) indicates the mean value of the elements of the compatibility matrix C
and µsum(C) is the mean of the total compatibility across all possible pairing with respect
to the compatibility matrix C.

We define the square root of the covariance values for compatibilities and total com-
patibilities as follows:

σelement(A, B) ≡
√

∑
1≤i<j≤n

2
n(n− 1)

(
Ai,j − µelement(A)

)(
Bi,j − µelement(B)

)
,

σsum(A, B) ≡

√√√√ 1
(n− 1)!! ∑

S∈S(n)
(〈S, A〉 − µsum(A))(〈S, B〉 − µsum(B)). (52)

Clearly, σ2
element(C, C) and σ2

sum(C, C) are variance values for compatibilities and total
compatibilities when the compatibility matrix is C.

Regarding σ2
sum(C, C), the following theorem holds.

Theorem 3. Let In be the n× n identity matrix, Jn the n× n matrix where all elements are 1, and
C ∈ Ωn, Ĉ ≡ C− µelement(C)(Jn − In). Then, the following equation holds:

σ2
sum(C, C) =

n(n− 2)
2(n− 3)

σ2
element(C, C)− 1

(n− 1)(n− 3)

n

∑
k=1
〈Rk, Ĉ〉2. (53)

Proof of Theorem 3. By definition,

σ2
sum(C, C) =

1
(n− 1)!! ∑

S∈S(n)
{〈S, C〉 − µsum(C)}2

Using Equation (51),

σ2
sum(C, C) =

1
(n− 1)!! ∑

S∈S(n)

{
〈S, C〉 − n

2
µelement(C)

}2
(54)
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Here, the following equation holds:

〈S, Ĉ〉 =
1
2
〈S, Ĉ〉F

=
1
2
〈S, C〉F −

1
2

µelement(C)〈S, Jn − In〉

=
1
2
〈S, C〉F −

n
2

µelement(C)

= 〈S, C〉 − n
2

µelement(C) (55)

Therefore, by Equations (54) and (55),

σ2
sum(C, C) =

1
(n− 1)!! ∑

S∈S(n)

{
〈S, C〉 − n

2
µelement(C)

}2

=
1

(n− 1)!! ∑
S∈S(n)

〈S, Ĉ〉2

=
1

(n− 1)!!
· (n− 3)!! ∑

{i,j}∈P(n)
Ĉ2

i,j

+
1

(n− 1)!!
· (n− 5)!! ∑

{i,j}∈P(n)
∑

{k,l}∈P(n)
{k,l}∩{i,j}=∅

Ĉi,jĈk,l

=
1

n− 1 ∑
{i,j}∈P(n)

Ĉ2
i,j +

1
(n− 1)(n− 3) ∑

{i,j}∈P(n)
∑

{k,l}∈P(n)
{k,l}∩{i,j}=∅

Ĉi,jĈk,l

=
1

n− 1 ∑
{i,j}∈P(n)

Ĉ2
i,j +

1
(n− 1)(n− 3) ∑

{i,j}∈P(n)
Ĉi,j ∑

{k,l}∈P(n)
{k,l}∩{i,j}=∅

Ĉk,l . (56)

Here, we focus on ∑ {k,l}∈P(n)
{k,l}∩{i,j}=∅

Ĉk,l . This term is transformed as follows:

∑
{k,l}∈P(n)
{k,l}∩{i,j}=∅

Ĉk,l = Ĉi,j + ∑
{k,l}∈P(n)

Ĉk,l − ∑
k,k 6=i

Ĉi,k − ∑
k,k 6=j

Ĉj,k

= Ĉi,j − 〈Ri, Ĉ〉 − 〈Rj, Ĉ〉+ ∑
{k,l}∈P(n)

Ĉk,l

= Ĉi,j − 〈Ri, Ĉ〉 − 〈Rj, Ĉ〉+ ∑
{k,l}∈P(n)

(Ck,l − µelement(C))

= Ĉi,j − 〈Ri, Ĉ〉 − 〈Rj, Ĉ〉+

 ∑
{k,l}∈P(n)

Ck,l

− n(n− 1)
2

µelement(C)

= Ĉi,j − 〈Ri, Ĉ〉 − 〈Rj, Ĉ〉. (57)
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Then, using this formula,

∑
{i,j}∈P(n)

Ĉi,j ∑
{k,l}∈P(n)
{k,l}6={i,j}

Ĉk,l

= ∑
{i,j}∈P(n)

Ĉi,j
(
Ĉi,j − 〈Ri, Ĉ〉 − 〈Rj, Ĉ〉

)
= ∑
{i,j}∈P(n)

Ĉ2
i,j − ∑

{i,j}∈P(n)
Ĉi,j
(
〈Ri, Ĉ〉+ 〈Rj, Ĉ〉

)
= ∑
{i,j}∈P(n)

Ĉ2
i,j −

n

∑
i=1

∑
j 6=i

Ĉi,j〈Ri, Ĉ〉

= ∑
{i,j}∈P(n)

Ĉ2
i,j −

n

∑
i=1
〈Ri, Ĉ〉2. (58)

By Equations (56) and (58), the following equation holds:

σ2
sum(C, C) =

n− 2
(n− 1)(n− 3) ∑

{i,j}∈P(n)
Ĉ2

i,j −
1

(n− 1)(n− 3)

n

∑
k=1
〈Rk, Ĉ〉2

=
n(n− 2)
2(n− 3)

σ2
element(C, C)− 1

(n− 1)(n− 3)

n

∑
k=1
〈Rk, Ĉ〉2. (59)

Therefore, the theorem holds.

4. Variance Optimization

This section examines the performance enhancement from deriving a pairing that
yields higher total compatibility by exploiting the algebraic structures identified in the
previous section. We first show that the variance of the elements in a compatibility matrix
affects the performance of the heuristic algorithm proposed in our previous study. Then
we propose the transformation of a compatibility matrix to another one that minimizes the
variance while ensuring that the total compatibility is maintained.

4.1. Performance Degradation through the Observation Phase

In our previous study [17], we proposed an algorithm for recognizing the compatibili-
ties among elements through multiple measurements of total compatibility. To summarize,
we estimate the compatibility matrix denoted by C̃ ∈ Ωn, which is given by

C ∈ Ωn,

C̃i,j =

{
0 if 1 ∈ {i, j}
Ci,j − C1,i − C1,j +

2
n−2 ∑n

k=2 C1,k otherwise.
(60)

This C̃ ∈ Ωn is one of the elements in the equivalence class. That is, C ∼ C̃ holds. By
this property and Equation (60), the dimension of {S}S∈S(n) is given by (n− 1)(n− 2)/2,
which we refer to as Lmin(n). This means that the number of observations required to grasp
the compatibilities through an observation phase is Lmin(n).

Indeed, our previous study proposed an observation algorithm which needs O(n2)
measurements. We have also confirmed numerically that the observation strategy provides
a compatibility matrix, which is in the equivalence class of the ground-truth compatibility
matrix Cg. In the numerical studies, the elements of the ground-truth compatibility matrix,
Cg

i,j, were specified by uniformly distributed random numbers in the range of [0, 1].
However, finding a pairing yielding a greater total compatibility becomes difficult

based on Ce, including the above-mentioned C̃, even though Ce is in the equivalence class
where the ground-truth compatibility Cg is included. In searching for a better pairing,
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we use a heuristic algorithm, which is named Pairing-2-opt [17]. We consider the diffi-
culty comes from the fact that the variance of the elements of the compatibility matrix
σ2

element(C
e, Ce) would be larger than those of σ2

element(C
g, Cg), which is highly likely to

cause the combining algorithm to become stuck in a local minimum.
Hence, our idea is to find a compatibility matrix X which is in the same equivalence

class of matrix C

∀S ∈ S(n), 〈S, X〉 = 〈S, C〉 (61)

while simultaneously minimizing the variance of the elements of σ2
element(X, X).

4.2. Transforming the Compatibility Matrix with Minimized Variance

We solve the following optimization problem:

min : σ2
element(X, X),

subject to : X, C ∈ Ωn, C is fixed,

X ∼ C. (62)

By Theorem 3 and σ2
sum(X, X) = σ2

sum(C, C), we transform this problem into the follow-
ing form:

min :
n

∑
k=1
〈Rk, X̂〉2,

subject to : X, C ∈ Ωn, C is fixed,

X ∼ C,

X̂ ≡ X− µelement(X)(Jn − In). (63)

The optimal solution for this problem holds because the sum of squares is minimized when
all values are 0:

1 ≤ k ≤ n, 〈Rk, X̂〉 = 0. (64)

Hence, the following equation is derived:

1 ≤ k ≤ n, 〈Rk, X〉 = (n− 1)µelement(C). (65)

By Equation (65) and Theorem 2, the optimal solution is represented as follows:

Xi,j =
2(n− 1)

n− 2
µelement(C) + Ci,j −

1
n− 2

(
〈Ri, C〉+ 〈Rj, C〉

)
. (66)

Thus, the compatibility matrix with minimal variance is derived. In addition, this discus-
sion and solution mean that the optimal-variance solution is unique with respect to the
equivalence class.

5. Simulation

In this section, we evaluate the performance of the proposed method on the pairing
optimization problem. There are two important points that should be clarified through the
simulations. One is to quantitatively evaluate the performance reduction of the combining
algorithm proposed in the previous study, based on the observation phase. The other is to
demonstrate the performance enhancement due to the variance optimization discussed in
Section 4.
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5.1. Setting

We configure the ground-truth compatibility matrix Cg ∈ Ωn with two different
distributions. The first is the uniform distribution:

∀{i, j} ∈ P, Cg
i,j ∼ U(0, 1). (67)

Here, we denote the uniform distribution between 0 and 1 as U(0, 1). The second distribu-
tion is the Poisson distribution:

∀{i, j} ∈ P, Cg
i,j ∼ Poisson(1). (68)

Here, we denote the Poisson distribution whose mean is λ as Poisson(λ). In the numerical
simulation, the number of elements in the system n varied from 100 to 1000 in intervals of
100. For each n, we conducted 100 trials with different randomly generated ground-truth
compatibility matrices Cg based on Equation (67) or Equation (68). We quantified the
performance for each derived pairing S ∈ S(n) by 2〈S, Cg〉/n and evaluated its average
over 100 trials for each value of n.

5.2. Simulation Flow

The ground-truth compatibility matrix Cg is transformed into Ce1 by the observation
algorithm based on Equation (60). The variance optimization transforms Ce1 into Ce2 . The
combining algorithm, which is called PNN+p2-opt [17], yields a pairing with the intention
of achieving higher total compatibility. The exchange limit l is an internal parameter in
PNN+p2-opt. This determines the number of maximum trials, and is set to 600 in the
present study.

We evaluated the performance on the basis of Cg, Ce1 , and Ce2 , as shown in flows (i),
(ii), and (iii), respectively, in Figure 2.

 True Compatibility Matrix Cg

Observation Algorithm Ce1

Variance Optimization Ce2

Combining Algorithm

(ⅰ)

(ⅱ)

(ⅲ)

Figure 2. Schematic illustration of the three heuristic pairing optimization algorithms tested in the
simulation. Case (i) (blue) applies the combining algorithm directly to the ground-truth compatibility
matrix Cg. Case (ii) (red) first applies the observation algorithm to obtain an estimated compatibility
matrix Ce1 , followed by the combining algorithm. Case (iii) (yellow) first estimates the compatibility
from observation (Ce1 ), followed by the variance optimization (Ce2 ), and then executes the combining
algorithm.

5.3. Performance

The blue, red, and yellow curves in Figure 3 demonstrate the performance of cases
(i), (ii), and (iii), respectively, as a function of the number of elements for the uniform
distribution (Figure 3a) and the Poisson distribution (Figure 3b). For the uniform distributed
ground-truth we observe that the performance of case (ii) is inferior to that of case (i),
demonstrating the performance degradation by the transformation from Cg to Ce1 through
observation. Furthermore, the performance of case (iii) is enhanced compared with that
of case (ii), which confirms the performance gain from variance optimization. The results
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differ for the Poisson distribution. Here, the performance of case (iii) is higher than case (i).
That is, for the Poisson case the variance optimization (Flow (iii)) not only counteracted
the performance loss of the observation algorithm (Flow (ii)), but actually enhanced the
performance compared to the ground truth matrix Cg (Flow (i)). Further numerical tests
revealed that the relationship of performances for a Gaussian distribution are similar to
those for the uniform distribution. Conversely, the performance for a binary distribution
hardly differed between any of the algorithms.

100 200 300 400 500 600 700 800 900 1000
Number of elements

0.95

0.955
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0.965

0.97

0.975

0.98
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0.99
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1
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an

ce

Flow (i) Cg

Flow (ii) C e1

Flow (iii) C e2

Optimal

100 200 300 400 500 600 700 800 900 1000
Number of elements
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3.5
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5

5.5

Pe
rfo
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ce

Flow (i) Cg

Flow (ii) C e1

Flow (iii) C e2

Optimal

(a) (b)

Figure 3. Comparison of the achieved total compatibility for Flows (i), (ii), and (iii), as described in
the caption for Figure 2. Each graph shows the mean and standard deviation of the performance of
100 different compatibility matrices with each given number of elements, simulated under (a) uniform
distributions and (b) Poisson distributions.

The variance of Cg, Ce1 , and Ce2 are evaluated as shown in Figure 4 as a function of
the number of elements. We clearly observe that the variance of Ce1 is higher than Cg while
the variance of Ce2 becomes comparable to the ground-truth case Cg for both the uniform
and Poisson distributions.

From these numerical results, we can conclude that the variance optimization mini-
mizes the variance and enhances the performance of the achieved total compatibility. It
is worth noting that the performance with the uniform distribution after variance opti-
mization is still lower than the case based on the ground-truth matrix Cg, as observed in
Figure 3a. This occurs because the variance optimization algorithm does not transform Ce1

to the original compatibility matrix Cg. In other words, there exist additional factors that
influence the performance of the combining algorithm that are related to the compatibility
distribution. The distribution of the original compatibility Cg (uniform distribution) is
seemingly beneficial for the performance of the heuristic combining algorithm, even when
compared to the compatibility matrix with minimum variance Ce2 .

100 200 300 400 500 600 700 800 900 1000
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Figure 4. Comparison of the variance of the compatibility matrices of Cg, Ce1 , Ce2 as a function of the
number of elements in the system under (a) uniform distributions and (b) Poisson distributions.
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6. Conclusions

One of the most challenging issues in the pairing problem is how to understand the
underlying compatibilities among the elements under study. An accurate and efficient
approach is essential for practical applications such as wireless communications and online
social networks. This study reveals several algebraic structures in the pairing optimization
problem.

We introduce an equivalence class in the compatibility matrices, containing matrices
that yield the same total compatibility although the matrices themselves differ. This can also
be expressed through a conserved value or invariance in the equivalence class. Based on
such insights, we propose a transformation of the initially estimated compatibility matrix
to another form that minimizes the variance of the elements. We demonstrate that the
highest total compatibility found heuristically is improved significantly with the proposed
transformation relative to the direct approach.

In the future, the proposed algorithm may be applied to bipartite matching and
assignment problems, for example. Therefore, if the compatibility between elements that
should not be paired is set to a negative value with a relatively large absolute value, we
may solve the problem heuristically. Hence, the variance optimization proposed in this
study may aid in performance enhancement.

Author Contributions: Conceptualization, N.F., M.H. and M.N.; methodology, N.F.; software, N.F.;
validation, N.F., A.R. and T.M.; formal analysis, N.F. and A.R.; investigation, N.F., A.R., T.M., R.H.,
A.L., M.H. and M.N.; resources, T.M., R.H. and M.N.; data curation, N.F.; writing—original draft
preparation, N.F., A.R. and M.N.; writing—review and editing, N.F., A.R., T.M., R.H., A.L., M.H.
and M.N.; visualization, N.F.; supervision, M.N.; project administration, M.H. and M.N.; funding
acquisition, M.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Japan Science and Technology Agency through the
Core Research for Evolutionary Science and Technology (CREST) Project (JPMJCR17N2), and in part
by the Japan Society for the Promotion of Science through the Grants-in-Aid for Scientific Research
(A) (JP20H00233) and Transformative Research Areas (A) (JP22H05197). AR is a JSPS International
Research Fellow.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We would like to thank the editors of this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Matrix Form of Conserved Quantities

In Theorem 2, the following values are conserved in the same equivalence class.

∀{i, j} ∈ P(n), Ci,j −
1

n− 2
(
〈Ri, C〉+ 〈Rj, C〉

)
. (A1)

We can transform Equation (A1) into the following form using the Hadamard product ◦.

C− 1
n− 2

(Jn − In) ◦ (JnC + CJn). (A2)

Therefore, the following equation holds:

A ∼ B if and only if

A− 1
n− 2

(Jn − In) ◦ (Jn A + AJn) = B− 1
n− 2

(Jn − In) ◦ (JnB + BJn). (A3)



Entropy 2023, 25, 146 18 of 19

Appendix B. Computational Time

We compared the computational time of four different algorithms in the new Figure A1 in
the new version of the manuscript. Three of them are for the cases from Figure 2. For cases
(ii) and (iii), the computational time also includes the time needed for variance optimization.
We compared them to a conventional MWM algorithm whose code (https://jp.mathworks.
com/matlabcentral/fileexchange/42827-weighted-maximum-matching-in-general-graphs
(accessed on 10 January 2023)) was developed and distributed by Daniel R. Saunders
(http://danielrsaunders.com (accessed on 10 January 2023)). This conventional algo-
rithm is based on “Efficient algorithms for finding maximum matching in graphs” by Zvi
Galil [32]. The number of elements changes from 100 to 1000. One hundred different
compatibility matrices were simulated and averaged to obtain the computational time.

100 200 300 400 500 600 700 800 900 1000
Number of elements

10 −2

10 −1

10 0

10 1

10 2

10 3

10 4
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om
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ta

tio
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l t
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e 
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] Flow (i) Cg

Flow (ii) Ce
1

Flow (iii) C e2

Conventional Algorithm

Figure A1. Comparison of computational time between different four algorithms, which are case (i),
(ii), (iii) and the conventional MWM algorithm.

Figure A1 shows that, as expected, the PNN+p2-opt algorithm is significantly faster
than the conventional algorithm, and Flow (i), Flow (ii), Flow (iii) work faster in this
order. These computational times can be explained as follows: First, PNN+p2-opt is
heuristic and a O(n2) algorithm. Therefore, PNN+p2-opt is significantly faster than the
conventional MWM algorithm that aims to find the absolute best solution. Second, we
count the computational time, including the variance optimization procedure. The variance
optimization takes some time, so the computational time of flow (ii) and flow (iii) is longer
than flow (i). Third, flow (ii) has a tendency to become stuck in local minima, resulting in
less computational time than flow (iii), due to the faster termination of the p2-opt algorithm.

In the future, the comparison to machine-learning-based methods such as the one
proposed in Ref. [16] is of great interest. However, at this point, it is unclear how to conduct
a fair comparison, as the ML-based algorithm requires extensive training on multiple
examples before it is able to solve the problem. Nevertheless, as machine learning is a
rapidly evolving field, it is possible that ML-based algorithms specialized for the pairing
problem could be developed in the near future.
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