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Abstract: In this paper, the LASSO method with extended Bayesian information criteria (EBIC) for
feature selection in high-dimensional models is studied. We propose the use of the energy distance
correlation in place of the ordinary correlation coefficient to measure the dependence of two variables.
The energy distance correlation detects linear and non-linear association between two variables,
unlike the ordinary correlation coefficient, which detects only linear association. EBIC is adopted
as the stopping criterion. It is shown that the new method is more powerful than Luo and Chen’s
method for feature selection. This is demonstrated by simulation studies and illustrated by a real-life
example. It is also proved that the new algorithm is selection-consistent.
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1. Introduction

Advancements in technology have led to the production of sophisticated machines
which are able to measure many details about every observational or experimental unit
in a system. This results in data with more features (p or predictors) than the number
of observational or experimental units (sample size n), referred to as high-dimensional
data. Most of these data come from genetic research, e-commerce, biomedical imaging, and
functional magnetic resonance imaging, among many others.

Since there are many more features (p) than the sample size (n), they are analyzed
using a sparse high-dimensional regression (SHR) model:

yi = β0 +
p

∑
j=1

xijβ j + εi, for i = 1, . . . , n. (1)

It is assumed that there is only a relatively small number of the nonzero β j’s. The main
goal in their analysis is feature selection. As stated by [1], feature selection typically has
two goals. The first is for model building using desirable prediction properties. The second
is for identifying the features with nonzero coefficients. For convenience, such features are
referred to as relevant features in this paper.

One approach to the SHR model is to estimate the β j’s by a regularization method,
which is done by simultaneously minimizing the penalized least squares below:

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+
p

∑
j=1

pλ(|β j|),

where λ is the regulating parameter and pλ is a penalty function. When pλ is based on the
L1 norm, thus ‖β‖1 = ∑

p
j=1 |β j|, it is referred to as the LASSO [2]. The L1 norm penalty is

able to shrink the coefficients of redundant predictors to zero. Thus, the LASSO usually
results in sparse models that are easier to interpret. Other penalty functions such as the
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SCAD [3] and adaptive LASSO (ALasso) [4] have also been reported in the literature. SCAD
smoothly clips the L1 penalty (for small |β j|), and assigns a constant penalty (for large
| β j |s). On the other hand, adaptive LASSO utilizes the minimax concave penalty [5],
pλ(| β j |) = λwj | β j |, where wj represents the weights. The regulating parameter, λ, is
usually chosen using cross-validation (CV).

Another approach to analyzing the SHR model, large-p-small-n problem, is sequential
variable selection, which is designed to reduce the dimension of the data such that d < p.
There are two forms of sequential variable selection. The first uses the sure screening
property, which selects from the many features a subset which contains the relevant features
(predictors). This is usually followed by a regularization method such as SCAD or ALasso
to identify and estimate the relevant predictors from the reduced feature space. The other
form is to sequentially select the relevant features through a repetitive process which
terminates when a stopping criterion is met.

A recent addition to sequential feature selection is the sequential LASSO cum EBIC in
ultra high-dimensional feature space (SLasso) by [1], which sequentially solves partially
penalized least squares problems and uses EBIC as the stopping criteria. The EBIC proposed
by [6] are suitable for model selection in large model spaces. It has the ordinary BIC as a
special case. For large model spaces, the ordinary BIC tends to select a model with many
spurious variables. Let k and k + 1 be the number of predictors in two models, respectively.
Using EBIC as the selection or stopping criteria, the model with k predictors is selected if
the EBIC(k + 1) > EBIC(k).

In SLasso, sequentially solving the partially penalized least squares reduces to selecting
the feature(s) which maximize the ordinary correlation coefficient between the features and
the response variable at each step. It is well-known that the Pearson correlation coefficient
is used for measuring the strength of linear associations. Thus, maximizing the Pearson
correlation coefficient might not work well for data structures where the relationship
between at least one feature and the response variable is nonlinear.

In this article, we propose the use of the energy distance correlation instead of the
ordinary correlation coefficient to identify and maximize both the linear and nonlinear
relationships that might exist between each feature and the response. Energy distance is a
metric that measures the distance between the distributions of random vectors. The name
‘energy’ is motivated by analogy to the potential energy between objects in a gravitational
space. The potential energy is zero if and only if the locations (the gravitational centers) of
the two objects coincide, and increases as their distance in space increases [7]. The energy
distance correlation has an explicit relationship with the product-moment correlation, but
unlike the classical definition of correlation, energy distance correlation is zero only if the
random vectors are independent. The empirical energy distance correlation is based on
Euclidean distances between sample elements rather than sample moments.

The remainder of the article is arranged as follows: in Section 2, we discuss the
derivation of the energy distance correlation, extended Bayesian information criteria and
our proposed method (energy distance correlation with EBIC (Edc + EBIC)). In Section 3,
we report simulation studies comparing Edc + EBIC with various other methods and
provide an analysis of real data. In Section 4, we conclude the article with a discussion of
the results.

2. EBIC with Energy Distance Correlation
2.1. Energy Distance Correlation

The authors in [8] proposed the energy distance correlation between two random
variables. Suppose that W ∈ Rp and Z ∈ Rq are two random vectors with E‖W‖ < ∞,
and E‖Z‖ < ∞, where ‖.‖ is the euclidean norm and E is the expected value. Let F and
G be the cumulative distribution function (CDF) of W and Z, respectively. Further, let W

′

denote an independent and identically distributed (iid) copy of W; that is, W and W
′

are
iid. Similarly, Z and Z

′
are iid.
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The squared energy distance can be defined in terms of expected distances between
the random vectors

D2(F, G) := 2E‖W − Z‖ −E‖W −W ′‖ −E‖Z− Z′‖ ≥ 0,

and the energy distance between distributions F and G is defined as the square root of
D2(F, G).

The energy distance correlation between random vectors W and Z with finite first
moments is the nonnegative numberR(W, Z) defined by

R(W, Z) =


ν2(W,Z)√
ν2(W)ν2(Z)

, ν2(W)ν2(Z) > 0

0, ν2(W)ν2(Z) = 0

where ν2(W, Z) is the energy distance covariance between W and Z, ν2(W) and ν2(Z) are
the energy distance variance of W and Z respectively.

For a statistical sample (w, z) = {(wk, zk), k = 1, 2, . . . , n} from a pair of real-valued or
vector-valued random variables (W, Z), the sample energy distance correlation,Rn(W, Z),
is calculated by first computing the n by n distance matrices (aj,k) and (bj,k) containing
all pairwise distances (aj,k) = ‖Wj −Wk‖, j, k = 1, 2, . . . , n and (bj,k) = ‖Zj − Zk‖, j, k =
1, 2, . . . , n where ‖.‖ denotes euclidean norm. Secondly, calculate all doubly centered
distances Aj,k = aj,k − āj. − ā.k + ā.., Bj,k = bj,k − b̄j. − b̄.k + b̄.. where āj. is the jth row mean,
ā.k is the kth column mean, and ā.. is the grand mean of the distance matrix of the w sample.
The notation is similar for the b values.

The squared sample distance covariance (a scalar) is the arithmetic average of the
products Aj,kBj,k.

ν2
n(w, z) =

1
n2

n

∑
j=1

n

∑
k=1

Aj,kBj,k.

The sample energy distance variance for sample w

ν2
n(w) =

1
n2

n

∑
j,k=1

A2
j,k.

The sample energy distance variance for sample z

ν2
n(z) =

1
n2

n

∑
j,k=1

B2
j,k.

The sample energy distance correlation is

Rn(W, Z) =


ν2

n(W,Z)√
ν2

n(W)ν2
n(Z)

, ν2
n(W)ν2

n(Z) > 0

0, ν2
n(W)ν2

n(Z) = 0.

Some basic properties of the distance correlation are as follows:

(i) 0 ≤ Rn(W, Z) ≤ 1;
(ii) If E(|W|p + |Z|q) < ∞, then Rn(W, Z) = 0 if and only if W and Z are independent;
(iii) Suppose that Rn(W, Z) = 1. Then, there exist a vector a, a nonzero real number b and

an orthogonal matrix C such that Z = a + bWC.

For further details on the energy distance correlation, see [7].
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2.2. EBIC

Ref. [6] derived the EBIC which have special cases as AIC and BIC. Let {(yi, xi) : i =
1, 2, . . . , n} be independent observations. Suppose that the conditional density function of
yi given xi is f (yi|xi, β), where β ∈ Θ ⊂ Rpn , pn being a positive integer. The likelihood
function of β is given by

Ln(β) = f (x; β) =
n

∏
i=1

f (yi|xi, β).

Denote y = (y1, y2, . . . , yn)τ . Let s ⊂ {1, 2, . . . , pn} and β(s) be the parameter vector
β with those components outside s set to 0. Let S be the underlying model space, i.e.,
S = {s : s ⊆ {1, 2, . . . , pn}}, let p(s) be a prior for model s. Assume that, given s, the prior
density of β(s) is π(β(s)). The posterior is

p(s|y) = m(y|s)p(s)
∑s∈S m(y|s)p(s)

,

where m(y|s) is the likelihood in model s, i.e.,

m(Y|s) =
∫

f (y; β(s))π(β(s))dβ(s).

Suppose S is partitioned into ∪p
j=1Sj, such that models within each Sj have an equal

dimension. Let τ(Sj) be the size of Sj. Assign the prior distribution P(Sj) proportional to
τη(Sj) for some η between 0 and 1. For each s ∈ Sj, assign equal probability, p(s|Sj) =
1/τ(Sj); this is equivalent to P(s) for s ∈ SJ proportional to τ−γ(Sj), where γ = 1− η.
Then, the extended BIC family is given by

EBICγ(s) = −2 log Ln{β̂(s)}+ |s| log(n) + 2γ ln(τ(S|s|)), 0 ≤ γ ≤ 1,

where β̂(s) is the maximum likelihood estimator of β(s) and |s| is the number of compo-
nents in s.

2.3. Energy Distance Correlation with EBIC (Edc + EBIC) Algorithm

We propose a sequential model selection method which we call energy distance
correlation with EBIC, and for convenience abbreviate it as Edc + EBIC. Let yi, i = 1, . . . , n
be a continuous response variable and xj, j = 1, . . . , p be an n× p data matrix. Let S be the
index set of all predictors. Let s0 = {j : β j 6= 0, j = 1, . . . , p}. For s ⊂ S, let s− = sc ∩ s0. If
s ⊂ s0, then s− is the complement of s in s0. Let p0 = |s0| be the number of elements in the
set s0.

At the initial stage we standardize all the variables. Next, we find the energy dis-
tance correlation between the response variable and each of the predictor variables—
{R(xj, y) j = 1, . . . , p.}. We then select the predictor (feature) which has the highest
distance correlation with the response and store it in the active set s∗1.

Let L(s) be the linear space spanned by the columns of X(s) and H(s) its correspond-
ing projection matrix, i.e., H(s) = X(s)[Xτ(s)X(s)]−1Xτ(s). Next, we compute I − H(s∗1),
EBIC(s∗1), ỹ = [I − H(s∗k)]y and x̃j = [I − H(s∗k)]xj. The variable ỹ is the unexplained
part of y by X(s∗1). This gives X(s∗1) close to a zero chance of being selected in the
subsequent steps.

For the general step where k > 1, we calculate {R(x̃j, ỹ) j = 1, . . . , p.} and update the
active set to s∗k+1, which is the union of all the previous selected variables and the current
one. We then compute EBIC(s∗k+1) and compare it with EBIC(s∗k). The procedure stops
if EBIC(s∗k+1) > EBIC(s∗k). The selected variables which we call the relevant variables
will be X(s∗k). We can then fit a linear regression model between the response y and the
relevant variables.
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We wish to note that care must be taken in fitting this model because some of the
predictors might be non-linearly related to y, and thus some of the predictors may have
to enter into the model in their quadratic or cubic form, etc. Alternatively, a Box–Cox
transformation can be performed on the data before fitting the model.

The algorithm details are given in the following.

• Initial Step: With y, xj, j = 1, . . . , p satisfying yτ1 = 0, xτ
j 1 = 0 and yτy = n, xτ

j xj = n,
computeR(xj, y) for j ∈ S. Let

sTEMP = {j : R(xj, y) = max
j′∈S
R(xj′ , y)}.

Let s∗1 = sTEMP be the active set. Compute I − H(s∗1) and EBIC(s∗1), where
H(s) = X(s)[Xτ(s)X(s)]−1Xτ(s).

• General Step: In the selection step k, compute R(x̃j, ỹ) for j ∈ sc
∗k, where

ỹ = [I − H(s∗k)]y, x̃j = [I − H(s∗k)]xj. Let

sTEMP = {j : R(x̃j, ỹ) = max
j′∈Sc

∗k
R(x̃j, ỹ)}.

Let s∗k+1 = s∗k ∪ sTEMP. Compute EBIC(s∗k+1). If EBIC(s∗k+1) > EBIC(s∗k), stop;
otherwise, continue computing I − H(s∗k+1).

• When the process terminates, return the least-squares estimates for parameters in the
selected model.

2.4. Selection Consistency of Edc + EBIC

We attempt to establish the large sample property for the Edc + EBIC. We will show
that under regular conditions, the Edc + EBIC is selection-consistent. The proof essentially
follows the approach in [9]. We proceed with the regularity conditions.

Assumption 1. Random vectors X and Y possess the subexponential tail probabilities, uni-
formly in p, specified as follows. There is a constant a0 > 0, such that for any 0 < a ≤ 2a0,
supp max1≤k≤p E{exp(a‖Xk‖2

1)} < ∞ and E{exp(a‖Y‖2
q)} < ∞.

Assumption 2. The minimum distance correlation of predictors on which y functionally depends
satisfies minj∈s0 R(X̃j, Ỹ) ≥ 2cn−d, for some constants 0 < c < 1 and 0 ≤ d < 1/2.

Assumption 3. For the index set S of all predictors, let s0 = {j : β j 6= 0, j = 1, . . . , p} and
p0 = |s0| (p0 is the number of elements in the set s0). For s ⊂ S let s− = sc ∩ s0. If s ⊂ s0 then
s− is the complement of s in s0. For s ⊂ s0, maxj∈sc

0
R(X̃j, Ỹ) < q maxj∈s− R(X̃j, Ỹ) for some

0 < q < 1, where Ỹ = [I − H(s∗k)]Y, X̃j = [I − H(s∗k)]Xj. For k = 0, s∗0 is defined as the
empty set ∅.

Details for requiring Assumption 1 and 2 are stated in [9]. Intuitively, Assumption 1 is
required to make it easy to establish a relationship between the energy distance correlation
and the squared Pearson correlation to aid with the derivations in the proof. Assumption 2
requires that the energy distance correlation for the relevant predictors cannot be too
small. Assumption 3 requires that the maximum energy distance correlation between the
selected features and the residual response Ỹ is smaller than the maximum energy distance
correlation between the remaining features and the residual response in the sequential step
of the algorithm.

Theorem 1. Suppose that Assumptions 1–3 hold. The proposed Edc + EBIC with the energy
distance correlation is consistent, i.e.,

lim
n→∞

P(s∗k∗ = s0n) = 1,
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where s∗k∗ is the set of features selected at the k∗th step of Edc + EBIC such that |s∗k∗ | = p0n, s0n is
the set of relevant features and p0n = |s0n|.

Proof. Suppose that X ∈ Rp and Y ∈ Rq with cumulative distribution function (CDF) F
and G, respectively, where E‖X‖ < ∞, and E‖Y‖ < ∞ . The energy distance correlation
R(X, Y) is the square root of the standardized coefficient:

R(X, Y) =


ν2(X,Y)√
ν2(X)ν2(Y)

, ν2(X)ν2(Y) > 0

0, ν2(X)ν2(Y) = 0

where 0 ≤ R(X, Y) ≤ 1. In the numerator is the distance covariance defined by [8], as

dcov2(x, y) = S1 + S2 − 2S3,

where Sj, j = 1, 2, and 3 are defined as:

S1 =E‖X− X′‖‖Y−Y′‖
S2 =E‖X− X′‖E‖Y−Y′‖

S3 =E‖X− X′‖‖Y−Y
′′‖

(2)

where (X, Y), (X′, Y′), and (X
′′
, Y
′′
) are independently and identically distributed.

For a random sample {(xi, yi), i = 1, . . . , n} from (x, y), [8] estimated S1, S2, S3 as:

Ŝ1 =
1
n2

n

∑
k,l=1
|xk − xl |p|yk − yl |q

Ŝ2 =
1
n2

n

∑
k,l=1
|xk − xl |p

1
n2

n

∑
k,l=1
|yk − yl |q

Ŝ3 =
1
n3

n

∑
k=1

n

∑
l,m=1

|xk − xl |p|yk − yl |q

so the sample distance covariance is d̂cov
2
= Ŝ1 + Ŝ2 − 2Ŝ3.

The remaining part of the proof is to show that the energy distance correlation is
uniformly consistent and has the sure screening property. The numerator and denominator
of the energy distance correlation are similar, so to show the uniform consistency of the
energy distance correlation it suffices to show that both the numerator and the denominator
are uniformly consistent.

The uniform consistency of the numerator, d̂cov
2
= Ŝ1 + Ŝ2 − 2Ŝ3, of the energy

distance correlation between the random vectors (x, y) is shown by [9]. However, in the
general step of the sequential algorithm for Edc + EBIC, the energy distance correlation is
calculated between the residuals ỹ = [I − H(s∗k)]y, and x̃j = [I − H(s∗k)]xj at each step
of the algorithm. Thus, to show the uniform consistency of Edc+EBIC it is equivalent to
follow the proof by [9].

Additionally, in [9] they showed that the energy distance correlation has the sure
screening property. They showed that the energy distance is able to select a subset of the
features which contains the relevant features. Their argument applies here because we
used the energy distance correlation as well, thus the Edc + EBIC has the sure screening
property.

Therefore, the Edc + EBIC is selection-consistent since it is uniformly consistent and
has the sure screening property. The proof is complete.
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3. Simulation Studies and Data Analysis
3.1. Sure Independence Screening Using Energy Distance Correlation

We establish the need for Ebc + EBIC by firstly examining the performance of a
sure independence screening method introduced by [9] called Distance Correlation Sure
Independence Screening (DC-SIS). This is similar to the Sure Independence Screening (SIS)
introduced by [10].

In SIS, they perform a componentwise regression between each predictor and the
response and select the first n− 1 or [n/log(n)] predictors with the largest estimates. Per-
forming a componentwise regression is equivalent to finding the ordinary correlation
between the response and each predictor when the two variables are standardized. Hence,
in DC-SIS, they replaced the ordinary correlation with the energy distance correlation.

We examine the performance of DC-SIS through a simulation study. We are interested
in observing, on average, the model size selected by SCAD or ALasso if we screened the
data first using DC-SIS. We present two simulation set-ups. For each simulation we gener-
ated two hundred datasets, and for each dataset we ran SCAD, ALasso, DC-SIS + SCAD,
DC-SIS + ALasso and found the average model size and the standard deviation.

In [10], details of two simulation setups we adapted for this subsection are discussed,
namely independent features setup and dependent features setup. In Tables 1 and 2 we
present results under the independent features setup and in Tables 3–5 we present results
under the dependent features setup. In each simulation, n is the sample size, p is the
number of features and s is the true model size. For the screening using the energy distance
correlation we chose d = [n/ log n] features and applied SCAD or ALasso.

In Tables 1 and 2, we report the average selected model size and their standard
deviations. We observe that applying the sure screening by distance correlation before
either SCAD or ALasso in all cases did not lead to significant differences in the average
model size when SCAD and ALasso were applied directly to the data. This suggests that
either applying distance correlation before SCAD or ALasso did not yield the intended
result, and thus needs some improvement.

Table 1. Comparing model size selected with or without screening for n = 200, s = 8, p = 1000.

Methods MSize (SD)

SCAD 12.87 (7.292)
DC-SIS + SCAD 10.7 (3.1575)

ALasso 25.24 (9.0365)
DC-SIS + ALasso 11.74 (4.419)

Table 2. Comparing model size selected with or without screening for n = 800, s = 14, p = 3000.

Methods MSize (SD)

SCAD 16.62 (2.78807)
DC-SIS + SCAD 16.69 (3.5525)

ALasso 14.78 (0.7860)
DC-SIS + ALasso 14.78 (3.8522)

Table 3. Comparing model size selected with or without screening for n = 200, p = 1000, s = 5.

Methods MSize (SD)

SCAD 12.215 (12.2560)
DC-SIS + SCAD 7.335 (2.6109)

ALasso 44.485 (13.8041)
DC-SIS + ALasso 8.21 (2.5844)
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Table 4. Comparing model size selected with or without screening for n = 200, p = 1000, s = 8.

Methods MSize (SD)

SCAD 14.625 (10.3324)
DC-SIS + SCAD 10.905 (2.3158)

ALasso 19.95 (3.2789)
DC-SIS + ALasso 12.36 (3.9875)

Table 5. Comparing model size selected with or without screening for n = 800, p = 3000, s = 14.

Methods MSize (SD)

SCAD 19.185 (5.0146)
DC-SIS + SCAD 17.675 (4.6038)

ALasso 38.125 (5.6372)
DC-SIS + ALasso 31.845 (13.1011)

In Tables 3–5 we report the selected model size and the standard deviation. We observe
that applying DC-SIS followed by either SCAD or ALasso did not yield any significant
difference in the average model size, as was also observed in the independent features setup.

3.2. Simulation Studies to Compare Edc + EBIC with Other Feature Selection Methods

In this simulation study we adopted two simulation setups from [1], which they call
group A and group B, respectively. Under their group A we considered four settings of
the covariance structure for the design matrix X, namely GA1, GA2, GA3, and GA5. In
their group B setup we considered all three settings of the covariance structure for the
design matrix X, namely GB1, GB2, and GB3. We compared the performance of adaptive
LASSO (ALasso) [11], SCAD [12], SIS+SCAD [10], SLasso [1], and the energy distance
correlation with EBIC (Edc + EBIC) based on the model size (MSize), positive discovery

rate (PDR), PDR = |s∗k∗∩so |
|so | , and false discovery rate, FDR =

|s∗k∗∩sc
0|

|s∗k∗ |
averaged over 200

and 500 simulations, respectively.
We considered the diverging pattern (n, p, po) = (n, [5en0.3

], [4n0.16]), meaning that as
the sample size increased, the number of predictors increased and the number of relevant
predictors also increased. The coefficients were generated as independent random variables
distributed as (−1)u(4n−0.15 + |z|), where u ∼ PBernoulli(0.4) and z is a normal random
variable with mean 0 and satisfies P(|z| ≥ 0.1) = 0.25. The variance of the error term in the
linear model was determined by

h =
βτΣβ

βτΣβ + σ2 = 0.8

where Σ is the variance-covariance matrix of relevant features. The response variable is
simulated from the sparse high-dimensional regression (SHR) model

yi = β0 +
p

∑
j=1

β jxij + εi, i = 1, ..., n

3.2.1. Group A Simulations and Results

We used two sample sizes, n = 100 and n = 200. By the diverging pattern considered
for the simulation, for a sample size of 100 we have (n, p, p0) = (100, 268, 8) and for a
sample size of 200 we have (n, p, p0) = (200, 672, 9). Under the two sample sizes we had
eight and nine relevant features, respectively, and we expected a well-performed selection
model to select the right number of relevant predictors (model size) on average. The details
about the covariance structure for GA1, GA2, GA3, and GA5 are in [1].
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In Tables 6 and 7, we report the simulation results under the conditions for GA1, GA2,
GA3, and GA5 using sample sizes 100 and 200, respectively. We observed that under all
setups, Edc + EBIC improved in terms of the average model size, PDR, and FDR, as we
increased the sample size. This demonstrates the selection consistency of Edc + EBIC.

Table 6. We compared the methods using PDR, FDR, and model size (MSize) averaged over 200 sim-
ulation replications. The relevant predictors were 8 and the sample size was 100. The standard
deviations are in parentheses.

Setting Methods MSize PDR FDR

GA1 ALasso 34.105 (13.95) 1.000 (0.000) 0.721 (0.120)
SCAD 25.735 (5.020) 1.000 (0.000) 0.676 (0.065)

SIS + SCAD 8.100 (1.790) 0.866 (0.239) 0.157 (0.167)
SLasso 8.565 (0.848) 1.000 (0.000) 0.058 (0.081)

Edc + EBIC 8.365 (1.375) 0.978 (0.125) 0.056 (0.085)

GA2 ALasso 34.455 (11.095) 1.000 (0.000) 0.754 (0.108)
SCAD 25.650 (6.720) 0.876 (0.141) 0.709 (0.075)

SIS + SCAD 7.335 (1.740) 0.813 (0.182) 0.103 (0.107)
SLasso 6.055 (1.725) 0.688 (0.185) 0.080 (0.104)

Edc + EBIC 6.075 (1.713) 0.717 (0.195) 0.050 (0.082)

GA3 ALasso 14.710 (3.847) 1.000 (0.000) 0.423 (0.131)
SCAD 26.27 (5.244) 1.000 (0.000) 0.680 (0.070)

SIS + SCAD 8.165 (1.160) 0.951 (0.113) 0.062 (0.078)
SLasso 8.625 (1.005) 1.000 (0.000) 0.062 (0.089)

Edc + EBIC 8.265 (1.373) 0.976 (0.132) 0.048 (0.074)

GA5 ALasso 23.845 (7.005) 0.964 (0.057) 0.652 (0.092)
SCAD 24.070 (6.147) 0.997 (0.020) 0.642 (0.102)

SIS + SCAD 7.605 (2.020) 0.832 (0.245) 0.127 (0.141)
SLasso 7.650 (2.182) 0.856 (0.217) 0.089 (0.113)

Edc + EBIC 7.180 (2.453) 0.842 (0.270) 0.050 (0.081)

Table 7. We compared the methods using PDR, FDR, and model size (MSize) averaged over 200 sim-
ulation replications. The relevant predictors were 9 and the sample size was 200. The standard
deviations are in parentheses.

Setting Methods MSize PDR FDR

GA1 ALasso 27.670 (12.996) 1.000 (0.000) 0.638 (0.180)
SCAD 17.035 (7.746) 1.000 (0.000) 0.454 (0.168)

SIS + SCAD 9.215 (1.507) 1.000 (0.000) 0.112 (0.123)
SLasso 8.710 (0.944) 1.000 (0.000) 0.072 (0.088)

Edc + EBIC 8.42 (0.712) 1.000 (0.000) 0.045 (0.071)

GA2 ALasso 27.92 (9.686) 1.000 (0.000) 0.675 (0.124)
SCAD 15.11 (6.241) 1.000 (0.000) 0.397 (0.171)

SIS + SCAD 9.16 (1.509) 1.000 (0.000) 0.108 (0.171)
SLasso 8.72 (0.947) 1.000 (0.000) 0.073 (0.089)

Edc + EBIC 8.49 (0.763) 1.000 (0.000) 0.051 (0.076)

GA3 ALasso 27.115 (12.867) 1.000 (0.000) 0.632 (0.177)
SCAD 16.245 (7.770) 1.000 (0.000) 0.434 (0.162)

SIS + SCAD 9.22 (1.617) 1.000 (0.000) 0.110 (0.128)
SLasso 8.70 (0.857) 1.000 (0.000) 0.072 (0.084)

Edc + EBIC 8.47 (0.694) 1.000 (0.000) 0.050 (0.071)

GA5 ALasso 38.95 (8.308) 0.939 (0.075) 0.797 (0.054)
SCAD 19.075 (7.427) 1.000 (0.000) 0.520 (0.159)

SIS + SCAD 9.975 (1.858) 1.000 (0.000) 0.174 (0.132)
SLasso 8.765 (1.125) 0.989 (0.061) 0.087 (0.094)

Edc + EBIC 8.44 (0.768) 0.998 (0.025) 0.048 (0.073)
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3.2.2. Group B Simulations and Results

We considered three different covariance structures named GB1, GB2, and GB3 for the
features (predictors), as used in [1]. We also increased the signal-to-noise ratio by increasing
the value of the expected predictors.

GB1. All the features had constant pairwise correlation pij = 0.5.(n, p, p0) = (100, 200, 15).
σ = 1.5. The coefficients of the relevant features were specified as |β j| = 2.5 for 1 ≤ j ≤ 5,
1.5 for 6 ≤ j ≤ 10, 0.5 for 11 ≤ j ≤ 15. The signs of the coefficients were determined
as (−1)ui , where the uis were iid Bernoulli random variables with probability of success
p = 0.5.

GB2. This structure was the same as in GB1, that is, (n, p, p0) = (100, 200, 15) and
σ = 1.5. The covariance structure of the features was specified such that the partially orthog-
onality condition [11] was satisfied. Specifically, while s0 was taken as {1, . . . 5, 11, . . . , 15, 21,
. . . , 25}, the correlations were specified as ρij = 0.5|i−j| for 1 ≤ i ≤ 215 and 1 ≤ j ≤ 215.
The coefficients were specified as |β| = 2.5 for 1 ≤ j ≤ 5, 1.5 for 10 ≤ j ≤ 15, 0.5 for
21 ≤ j ≤ 25. The signs of the coefficients were determined in the same way as in GB1.

GB3. (n, p, p0) = (100, 1000, 10) and σ = 1. The relevant features were generated as
iid standard normal variables with coefficients (3, 3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9, 9.75).
The irrelevant features were generated as

xj = 0.25Zj +
√

0.75 ∑
k∈s0

Xk, j /∈ s0,

where Zjs are iid standard normal and independent from the relevant features.
In Table 8, we report the simulation results under the conditions for GB1, GB2, and

GB3. We observed that SLasso and Edc + EBIC performed better. SLasso had the highest
PDR while Edc + EBIC had the lowest FDR. Thus, when there was some correlation among
the features, Edc + EBIC still performed well.

Table 8. We compared the methods using PDR, FDR, and model size (MSize) averaged over 500
simulation replications. The standard deviations are in parentheses.

Setting Methods MSize PDR FDR

GB1 ALasso 23.32 (3.018) 0.766 (0.062) 0.501 (0.066)
SCAD 14.08 (1.644) 0.853 (0.065) 0.085 (0.068)

SIS + SCAD 10.656 (1.688) 0.694 (0.112) 0.025 (0.067)
SLasso 14.916 (2.194) 0.893 (0.081) 0.092 (0.089)

Edc + EBIC 14.094 (2.035) 0.869 (0.088) 0.067 (0.076)

GB2 ALasso 40.474 (11.7331) 0.447 (0.0858) 0.710 (0.0605)
SCAD 20.966 (7.6121) 0.517 (0.0614) 0.315 (0.1896)

SIS + SCAD 10.314 (1.0797) 0.403 (0.0427) 0.042 (0.0712)
SLasso 13.65 (2.038) 0.499 (0.052) 0.077 (0.081)

Edc + EBIC 14.006 (1.657) 0.67 (0.014) 0.0273 (0.0785)

GB3 ALasso 22.464 (2.4414) 1.000 (0.000) 0.5495 (0.0498)
SCAD 11.000 (0.000) 1.000 (0.000) 0.091 (0.000)

SIS + SCAD 9.964 (0.6897) 0.992 (0.0764) 0.107 (0.050)
SLasso 10.182 (0.475) 0.667 (0.006) 0.015 (0.039)

Edc + EBIC 10.158 (0.440) 1.000 (0.000) 0.0139 (0.038)

3.2.3. Real Data Example

The new method was applied to the gene expression data used in [1]. For the data and
details of data collection and variable definitions, see [1].

This study aimed to find the probes among the remaining 18,975 probes most closely
related to TRIM32. The response variable was the expression level of probe 1389163_at. The
features were the expression levels of the remaining 18,975 probes. Of the 18,975 probes,
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the top 3000 probes with the largest variances were considered. The expression levels were
standardized to have mean 0 and standard deviation 1.

In our analysis of the data, for each of the 100 replications we selected a random
sample of size 100 from 120 rats and applied Edc + EBIC to the sample. From these
100 replications, Edc + EBIC selected the distinct probes 1367705_at and 1367728_at. In [1],
the probes selected by five (5) variable selection methods are reported. The probes selected
by Edc + EBIC did not intersect with any of the probes these methods selected. Among
the probes selected by these five (5) methods, some intersected, but this is not a surprise
because these methods essentially maximized only the linear relationship between TRIM32
and each of the probes. Since Edc + EBIC is capable of detecting and maximizing both the
linear and nonlinear relationships that might exist between TRIM32 and each of the probes,
as evidenced in the simulation studies by the high PDR and low FDR, we are convinced
that the two probes selected by our method are the most associated with TRIM32.

4. Conclusions and Discussion

From the simulation results in Tables 6 and 7 we observed that, as the sample size
(n) increased, Edc + EBIC selected on average the expected number of predictors and
did so with decreasing standard deviations, meaning that through the simulation runs
more and more of the selected predictors were close to the expected number of relevant
predictors. We also observed the positive discovery rate of 100%, indicating that on average
for each simulation run, out of the selected features all of the relevant features were
selected. Of greater importance was the small false discovery rates recorded as the sample
size increased.

We found through simulation studies that when we applied the Energy Distance
Correlation Sure Independence Screening proposed by [9] for variable screening followed
by a regularization method such as SCAD and ALasso, the average model size selected
was higher than expected and with high standard deviations.
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