
Citation: Qin, R.; Wang, Y.

ImputeGAN: Generative Adversarial

Network for Multivariate Time Series

Imputation. Entropy 2023, 25, 137.

https://doi.org/10.3390/e25010137

Academic Editors: Christian H. Weiss

and Cathy W. S. Chen

Received: 22 October 2022

Revised: 6 January 2023

Accepted: 8 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

ImputeGAN: Generative Adversarial Network for Multivariate
Time Series Imputation
Rui Qin and Yong Wang *

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China
* Correspondence: cla@uestc.edu.cn

Abstract: Since missing values in multivariate time series data are inevitable, many researchers
have come up with methods to deal with the missing data. These include case deletion methods,
statistics-based imputation methods, and machine learning-based imputation methods. However,
these methods cannot handle temporal information, or the complementation results are unstable. We
propose a model based on generative adversarial networks (GANs) and an iterative strategy based on
the gradient of the complementary results to solve these problems. This ensures the generalizability
of the model and the reasonableness of the complementation results. We conducted experiments
on three large-scale datasets and compare them with traditional complementation methods. The
experimental results show that imputeGAN outperforms traditional complementation methods in
terms of accuracy of complementation.

Keywords: data imputation; GAN; informer

1. Introduction

Time series data are widely available and useful in many fields, such as medicine [1],
economics [2], and traffic forecasting [3]. The quality of the data largely determines the
quality of downstream tasks. However, device failure and network connectivity problems
inevitably occur during the use of IoT devices. This can bring about the problem of missing
data. Obviously, the lack of data can have a significant impact on the subsequent analysis
and utilization of the data [4]. The authors in [5] attempted to predict the groundwater
level in a well field using artificial neural networks (ANNs) and support vector machines
(SVMs). When used for the prediction of missing data, an ANN is not as effective as an
SVM. However, when the missing data are found, an ANN predicts better than an SVM.
When complete data are used, both ANN and SVM predict better than when incomplete
data are used.

Complementary methods for missing data can be roughly divided into two categories,
statistical and neural-network-based complementary methods. Statistical methods include
mean value imputation [6], last value imputation [7], mode value imputation [8], K-nearest
neighbor (KNN) algorithm-based imputation [9], and matrix factorization algorithm-based
imputation [10]. In addition to this, there are many other approaches, including SSMLP [11],
extensions to KNN [12], RENUVER [13], and Holoclean [14]. These methods are effective,
but difficult to apply to multivariate time series data because good feature engineering is
required for them to work, and feature engineering, in turn, requires experts to perform
analysis. Therefore, these methods cannot be used for end-to-end models.

Neural-network-based complementation methods include recurrent neural network
(RNN)-based complementation methods [15–19] and generative adversarial network (GAN)-
based complementation methods [18–20]. Compared with statistical complementation
methods, GAN-based complementation methods can effectively utilize the temporal infor-
mation of data [18]. Compared with RNN-based complementation methods, GAN-based
complementation can more adequately determine whether complementation results are

Entropy 2023, 25, 137. https://doi.org/10.3390/e25010137 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25010137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25010137
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25010137?type=check_update&version=1

Entropy 2023, 25, 137 2 of 13

close to the true results because GAN generates missing data via a generative method
that are judged by a discriminator, while RNN completes the missing values by fitting.
Whenever a complementary dataset of a GAN used for complementation is changed, it
needs to be retrained. We ensured the generalizability of the GAN-based complementation
method by designing a new complementation network architecture. An RNN network
suffers from the problem that positions far from the current input do not have enough
weight, which causes the initial input to fail to impact the output when the sequence is too
long [21]. A transformer [22] solves this problem with positional embedding. The proposed
informer [23] not only reduces the memory consumption and time consumption of trans-
formers in long-term time series forecasting (LSTF), but it also improves the accuracy of
forecasting. Moreover, the current GAN-based complementation method does not further
iterate and optimize the complementation results. To overcome this problem, we propose a
new iterative strategy to compare the strengths and weaknesses of the complementation
results. The method first trains an autoencoder that is capable of converting the data into
appropriate feature vectors on a small number of missing datasets. Afterwards, the missing
data are fed into this autoencoder to obtain the feature vectors corresponding to the missing
data. Then random vectors are generated, and a gradient descent method is used to make
these random vectors correspond to the generated data as close as possible to the real
data. Lastly, the vector that is closest to the real data is selected from these vectors as
the complementary result. Experiments on real datasets demonstrate that our approach
achieves a better imputation accuracy and better time consumption compared to those of
other methods.

Our contributions can be summarized as follows:

• We propose a GAN-based neural network for complementation that uses a generative
approach to generate complementary data and judge them with a discriminator that
can handle continuously missing data more effectively.

• In contrast to other GAN-based methods of complementation, imputeGAN ensures
that the complementation values are reasonable through an iterative strategy.

• The generalizability of the model is ensured with a carefully designed training frame-
work.

2. Related Work

Missing data can be classified into three types: missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR) [24]. MCAR implies
that the data are missing completely at random, do not depend on a missing or observed
variable, and do not affect the unbiasedness of the sample. MAR means that the probability
of missing data is not related to the missing data themselves, but only to the partially
observed data. MNAR implies that missing data are related to the values of the incomplete
variables themselves and the observed variables.

MCAR, the case deletion method of removing the cases with missing terms, is an
option. This is because removing missing cases does not affect the analysis of the overall
data under this condition. However, when there are too many missing cases, the case
deletion method leads to a significant reduction in the amount of information available for
analysis. In addition, when dealing with MAR, the method loses the information related
to the missing data in the residual data [24]. Obviously, imputing the missing values
with the most probable values produces less information loss than deleting incomplete
samples does. Traditional data completion methods fill in the missing data with a mean
value [6], last value [7], or mode values [8]. While these methods can quickly fill in missing
values, they can affect the variance in the original data. For example, if a missing value
is numeric, the missing attribute is filled with the average of the values of the attribute
in all other objects; if the missing value is non-numeric, the missing attribute is filled
with the value of the attribute with the highest number of values in all other objects. So,
this replaces the features of the overall data with the features of part of the data, which
can introduce bias even if the missing type of the data is MCAR [24]. Common machine-

Entropy 2023, 25, 137 3 of 13

learning-based complementary methods include k-nearest neighbor methods, recurrent
neural networks, generative adversarial networks, and matrix factorization algorithms.
The K-nearest neighbor (KNN) [9] algorithm fills missing values with the weighted average
values in the nearest k neighbors of the missing data. K neighbors are selected on the
basis of some distance metric, and their weighted mean values are used to interpolate the
missing data. This method requires us to choose the value of k and the distance metric.
Compared with the case deletion method, KNN does not have to remove missing cases,
which allows for it to preserve the characteristics of the time series data [25]. The KNN
imputation method, implemented by Chen and Chiu [26], renders the mean absolute error
(MAE) and root mean squared error (RMSE) between the complementation result and
the true result as small as possible. One obvious drawback of the KNN algorithm is that
it becomes very time-consuming when analyzing large datasets because it searches for
similar data points throughout the dataset. In addition, in high-dimensional datasets, the
difference between the nearest and farthest neighbors is very small, so the accuracy of KNN
is reduced. The matrix factorization [10] algorithm imputes data by decomposing a time
series matrix into the product of two lower-dimensionality rectangular matrices, and uses
the product of these matrices for missing values. When dealing with MNAR, these methods
often require additional processing to be able to fill in the data more accurately [27].

Random forest is an efficient way to fill in missing data [28]. However, when the
missing data are multivariate time series data, feature engineering is required before this
method can be used. The feature engineering of time series data includes the analysis of
whether the timestamp is a special time, taking the past timestamp for the feature analysis
of the current timestamp. When analyzing multivariate time series data, the above feature
engineering needs to be performed for each variable. This is very time-consuming; thus, it
is difficult to form an end-to-end model. In contrast, neural-network-based models do not
require additional processing for multivariate data.

The RNN-based complementary method [15–17] completes the missing data by fitting
the input. RNN-based data-completion models can capture the temporal dependencies
of time series data [29], but additional processing is required if the relationships between
missing variables need to be learned [16]. Since BRITS speaks of missing data as variables,
M-RNN treats missing data as constants. This indicates whether the corresponding data
update the gradient during the gradient update. That is, M-RNN ignores the effect of the
relationship between missing variables.

The problem with RNNs is that the weights of the current inputs become negligible
after some time, but they should not be ignored [21]. Since GAN is a generative model, it
does not have this problem. GAIN [20] is a GAN-based imputation model. The generator
in GAIN observes real data vectors and imputes missing data, and the discriminator de-
termines which part of the vectors were imputed. As mentioned above, the goal of using
GAN is to make the generator generate data with the same distribution as the original
data through the game between the generator and the discriminator. The GAIN generator
updates the gradient by comparing the difference between the complemented data matrix
and the original data matrix. The discriminator of GAIN calculates the probability that
each position of the complementary matrix is a complementary value by using the comple-
mentary data matrix and the hint matrix. The hint matrix guarantees a random value of 0
or 0.5 for the missing positions and a value of 1 for the non-missing positions. GAIN has
greatly improved the accuracy of data imputation. Both GAN-2-stage and E2GAN use the
architecture of GAN with RNN as the feature extractor in the generator and discriminator.
They train the generator to learn the original input distribution by adding noise to the input
and denoising it.

However, these methods are not further optimized for complementary results. For
these complementation methods, the correctness of these different sequences is the same.
However, in fact, the similarity of these complementation results to the real results is
different. Therefore, we propose a new iterative method to iterate over the complementary

Entropy 2023, 25, 137 4 of 13

results. The iterated results are made to be as close as possible to the true results by a
carefully designed loss function.

The above comparison is summarized in Table 1. As shown in Table 1, “generative”
means that the method uses a generative approach rather than a fitted approach to complete
the data, which is more effective for long-term continuous missing data. “Iterative” means
that the method iterates and selects the few results that are completed to ensure that the
iterated results are closer to the true values.

Table 1. Comparison of imputation methods.

MCAR MAR MNAR Generative Iterative

Mean/last/mode imputation ! ! # # #

KNN ! ! # # #

Matrix factorization ! ! # # #

BRITS ! ! ! # #

M-RNN ! ! ! # #

GAIN ! ! ! ! #

GAN-2-stage ! ! ! ! #

E2GAN ! ! ! ! #

imputeGAN ! ! ! ! !

Time series data forecasting can be divided into traditional and machine-learning-
based methods. The former include the ARIMA model [30], the Holt model [31] for data
without obvious trends or seasonal factors, and the Prophet model [32], which does not
require the insertion of missing values for forecasting. The latter are mainly based on
recurrent neural networks and their variants for time series data forecasting [21,33,34].
However, when these methods are applied to the complementation of missing data, they
do not work well. Our downstream work is to improve the accuracy of completing missing
time series data.

3. Preliminary

Generative Adversarial Networks (GANs). GANs [35] consist of generators and
discriminators, and train generators that can generate data with the same distribution as
that of the original data by gaming the discriminators with the generators. The role of the
generator is to map the n-dimensional vector into the data in the sample space. The role of
the discriminator is to determine whether the samples are from the original dataset or from
the data generated by the generator. The loss function for GANs is as follows.

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(X)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

Equation (1) is divided into minG and maxD. When training the discriminator, the
corresponding loss function is shown in Equation (2).

max
D

V(D, G) = Ex∼pdata(x)[log D(X)] + Ez∼pz(z)[log(1− D(G(z)))] (2)

The discriminator is expected to accurately determine the original input and the gener-
ator input, i.e., D(X) approximates to 1 and D(G(z)) approximates to 0, thus making
Equation (2) converge to 0. Similarly, when training the generator, the corresponding loss
function is shown in Equation (3).

min
G

V(D, G) = Ex∼pdata(x)[log D(X)] + Ez∼pz(z)[log(1− D(G(z)))] (3)

Entropy 2023, 25, 137 5 of 13

It is expected that the trained discriminator is unable to determine the output of the
generator, i.e., D(G(z)) approximates to 1, thus making Equation (3) converge to the
minimal value. This game process is repeated until the ideal generator is trained.

Data Imputation. For d-dimensional time series data x being recorded at time
t = (t1, t2, . . . , tn), they can be expressed as x = (x1, x2, . . . , xn) ∈ Rd×n. xi is the recorded
value at time ti since the information of missing data locations is important for data imputa-
tion. We recorded this information with the corresponding mask m = {m1, m2, . . . , mn} ∈
Rd×n. If there is missing part in xt, the corresponding part is set to 0 and vice versa.
Multivariate time series data Xi and the mask matrix Mi are shown in Equation (4).

Xi =

1 / 3
/ 5 / · · ·
7 8 /

Mi =

1 0 1
0 1 0 · · ·
1 1 0

 (4)

Our goal is to achieve the accurate prediction of multivariate long time series with
incomplete data input.

4. Proposed Method

Our method completes the missing data by training an autoencoder on datasets with
a small number of missing data, and completes the missing data on the basis of this
autoencoder. The encoder is used to extract the corresponding feature vectors from the
original data, and the decoder is used to recover the corresponding data on the basis of
feature vectors. In the actual use of the model, we input the missing data into the encoder
and randomly generate several vectors that are passed through the decoder to generate
the time series data. We used the gradient descent method to iterate over these vectors to
minimize the difference between the time series data generated by the decoder and the
missing data. The vector with the smallest difference between the generated data and the
missing data is selected, and the result of this vector generated by decoder is used as the
complementary result of the missing data. Since the decoder is trained on a small number
of missing datasets, we expect it to learn the variation patterns implied in the original data.
We formally introduce the method in a later section.

As shown in Figure 1, the corresponding self-encoders are first trained on different
datasets. The encoder of the self-encoder extracts the feature vector of the input data and
the decoder reduces the feature vector to the full vector. The randomly generated vectors
are then decoded by the decoder as the input to participate in the iterations. The gradient
of the input is updated using the gradient descent method, and the vector with the smallest
difference from the recovered data is taken as the result of the recovery.

Auto-Encoder(ETTh1)X
Recovered Data

Incompleted Data

Random Seed

Z1

Z2

Zn

Decoder

Iterator

Random Vetor

Ximputed
Imputed Data

Auto-Encoder(WTH)X

Incompleted Data

X'1

X'2

Figure 1. The overall architecture of the proposed imputation approach. The self-encoder can
transform incomplete time series data into recovered data, and the randomly generated vectors
are decoded into time series data by the decoder, and the difference values between these data are
compared. The gradient descent method is used to iteratively update the random vector, and the
random vector with the smallest difference between the generated and recovered data is taken as the
feature vector of the complementary value, and the corresponding data are the complementary data.

Entropy 2023, 25, 137 6 of 13

4.1. Encoder Network Architecture

As mentioned before, the encoder needs to extract the corresponding feature vectors
from the original time series data. We adopted the informer’s encoder as the encoder of the
autoencoder. We trained multiple encoders on different datasets to ensure generalizability,
and used multiple encoders to extract features from the same time series data when
completing the data. By giving the feature vector enough initialization space, this ensures
that the final iterated feature vector is as close to the true value as possible.

As shown in Figure 2, the encoder extracts the feature vectors from the input through
the attention layer, removes the redundant information through the distillation layer and
repeats the process several times. The encoder of the informer can be formulated as follows:

Z0
i_enc = Distilling(Attn(Xi_enc)) (5)

Zj+1
i_enc = Distilling(Attn(Zj

i_enc)) (6)

f eaturesi_enc = Zlast
i_enc (7)

where Xi_enc denotes the incomplete time series data.

Decoder Inputs

Encoder
Inputs

Output

Attention Layer

Distillation Layer

FC Layer

Figure 2. Overall informer architecture. The encoder takes the incomplete time series input and
compresses it into the corresponding feature vectors. The decoder takes the compressed feature
vectors and outputs the time series data generated from the feature vectors.

4.2. Decoder Network Architecture

The role of the decoder is to recover the vector into time series data. Similar to the
encoder, we also used the informer’s decoder as the decoder of the autoencoder. Since we
had trained multiple encoders before, we have to train the corresponding multiple decoders.
When complementing the data, the data recovered by the decoder are compared with the
original data, and the data with the smallest gap are selected with the corresponding vector.

As shown in Figure 2, the decoder extracts the feature vector from the input through
the attention layer and recovers the complementary data from the vector through the fully
connected layer. The decoder of the informer can be formulated as follows:

Z0
i_dec = Attn(Xi_dec) (8)

Zj+1
i_dec = Attn(Zj

i_dec) (9)

Entropy 2023, 25, 137 7 of 13

outputs = FC(Attn(f eaturesi_enc, Zlast
i_dec)) (10)

where Xi_dec denotes the second half of Xi_enc with an all-zero mask of imputation length.

4.3. Iteration Strategy

When the training of the encoder and decoder of the autoencoder is completed, we
input the incomplete data X into encoder E to obtain the corresponding feature vector
x and randomly generate the feature vector z with the same dimension as x. Multiple
iterations were performed to find the vector z∗ that minimizes the following equation.

min
z
‖G(z)− X′ ⊕M‖2

2 (11)

where M is the mask matrix identifying the missing data. Then, z∗ was input into decoder
D to obtain the corresponding time series data Z∗. By randomly selecting n initial vectors
and performing L iterations of gradient descent, we were able to estimate z∗, satisfying the
condition as much as possible.

As shown in Figure 3, n is the number of randomly selected vectors Z0
i , the stochastic

gradient descent method is used to iterate Zi for L times, so that the time series data
generated by Zi have the smallest possible difference from X′ ⊕M. Then the vector ZL

i
with the smallest gap with X′ ⊕M among these n vectors is taken as the feature vector of
the optimal imputation value. The formulation of iteration strategy as follows.

Zj+1
i = Zj

i + ηi∇ZL(X, Z)|
Z=Zj

i
(12)

L(X, Z) = ‖G(Z)− X′ ⊕M‖2
2 (13)

where ηi denotes the learning rate.

Z1
0

Z2
0

Zn
0

L-iteration

Feature Vectors

Zi
j Zi

j+1

Random Seed

Random Vectors

Encoder(ETTh1)

X

Incompleted Data

Encoder(WTH)

x1

x2

Decoder(ETTh1)

Decoder(WTH)

X'1

X'2

Recovered Data

Figure 3. Iterating through the n imputation results to find the optimal imputation result. The same
missing data are recovered differently by different autoencoders, but their nonmissing parts are the
same. By randomly generating vectors and iterating them, the decoded data of the random vector are
rendered as consistent as possible with the nonmissing part of the recovered data. The result with the
smallest difference between the decoded and recovered data in the nonmissing part is found as the
result of the complementation.

4.4. Imputation Results

For each incomplete time series datum X, its complementary result is derived from
the corresponding part of its reconstruction vector X′. Thus it can be expressed by the
following equation.

Ximputed = X�M + X′ � (1−M) (14)

Entropy 2023, 25, 137 8 of 13

4.5. Discussion

When GAN is used to fill in missing values in time series data, it simply maps random
vectors to complete time series data. Therefore, the difference of random vectors can have a
great impact on the generated results. Existing approaches ensure that the generated results
are close to the true results by adding a penalty term to the loss function of the generator
that measures the difference on the nonmissing values. In contrast, imputeGAN makes the
complementary results more reasonable by iterating over the generator’s complementary
results. The iterative process is described in Section 4.3.

Comparing the differences in the time efficiency of GANs is difficult because they
have different parameter settings and training methods. In the case of E2GAN, for example,
to ensure the effectiveness of the generator, the generator has to be trained several times
for each training of the discriminator. In addition, the size of the dataset used for training
has a significant impact on the training time. ImputeGAN uses multiple datasets in the
training process in order to ensure the generalization of the model, which leads to its time
disadvantage compared to other GAN-based methods.

5. Experimental Evaluation

In this section, we present the results of our proposed model run on real datasets and
compare them with the baseline.

5.1. Datasets, Tasks, and Baseline

We evaluated our proposed model on four real datasets: two medical datasets, an
electricity transformer temperature dataset, and a city weather dataset.

Electricity Transformer Temperature (ETT dataset was acquired at https://github.c
om/zhouhaoyi/ETDataset (accessed on 22 June 2022).) (ETT): The ETT dataset contains
two years of data on oil temperature of power transformers in two counties in China and
six other metrics.

KDD Cup 2018 Dataset (KDD CUP. Available on: http://www.kdd.org/kdd2018/
(accessed on 22 June 2022), 2018.) (KDD): contains weather data and air pollution data
collected hourly from 30 January 2017 to 30 January 2018 for Beijing and London.

Electricity Consuming Load (ECL Dataset. Available on: https://archive.ics.uci.ed
u/ml/datasets/ElectricityLoadDiagrams20112014 (accessed on 22 June 2022).) (ECL):
contains electricity consumption data for 321 clients from 2012 to 2014. The dataset has a
time interval of hours and 1% missing data.

Weather Dataset (Weather Dataset. Available on: https://www.ncei.noaa.gov/data/l
ocal-climatological-data/ (accessed on 22 June 2022).) (Weather): contains weather data
collected hourly from 2010 to 2013 for 1600 locations in the United States. The dataset has
5% missing data. A comparison of the datasets is shown in Table 2. The second column of
Table 2 indicates the number of features of the time series data, the third column indicates
how many moments of data were collected in total, the fourth column indicates the missing
rate of the dataset, and the fifth column indicates the interval time of the time series data.

Downstream Task: After we had completed training on a dataset with a small number
of missing data, we took the data in the test set, discarded 50% of it at random, and
attempted to complete the dataset. The accuracy of our method was compared with the
accuracy of the prediction method on the basis of the original dataset to measure the
effectiveness of our method when used for prediction on the missing dataset.

The baseline models are as follows.

• Statistical imputation methods: we filled in the missing values with the average [6]
or the last observed value [7].

• LSTnet [36]: uses a CNN and an RNN to predict time series data.
• LSTMa [37]: adds an automatic search strategy to the encoder–decoder architecture.
• Reformer [38]: improves transformer efficiency by locally sensitive hashing self-

attention.

https://github.com/zhouhaoyi/ETDataset
https://github.com/zhouhaoyi/ETDataset
http://www.kdd.org/kdd2018/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.ncei.noaa.gov/data/local-climatological-data/
https://www.ncei.noaa.gov/data/local-climatological-data/

Entropy 2023, 25, 137 9 of 13

• LogTrans [39]: the LogSparse transformer improves transformer efficiency by using a
heuristic method.

• Informer [23]: improves transformer efficiency with ProbSparse self-attention.

Table 2. Dataset details.

Dataset Features Samples Missing Rate Interval Time

ETTh1 7 17,420 1% 1 h

ETTh2 7 17,420 10% 1 h

ETTm1 7 69,680 1% 15 min

ECL 321 26,280 1% 1 h

Weather 12 35,040 5% 1 h

5.2. Implementation Details

In our experiments, the encoder stack of the informer in the generator contained a
stack of three attention layers with two distillation layers. the decoder stack contained two
attention layers. The dropout rate was fixed at 0.05. All datasets were normalized, and
missing values were padded with 0. Then, 10% of the dataset was used as the validation
set, and another 10% was taken as the test set. The optimizer was the ADAM optimizer.

5.3. Performance Comparison of Downstream Task

Table 3 shows the results of our proposed method compared with other prediction
methods. Our method was used to complete the dataset with 50% of the data missing, the
prediction method was used to predict the data on the basis of the original data, and the
mean fill was used to fill the missing values on the basis of the mean value of the data at a
certain time before. The first column of the table represents the dataset, the second column
represents the step size used to fill or predict, the first row represents the method to fill or
predict, and the second row represents the measure of the difference between the predicted
or filled value and the actual value. The average column indicates that the fill method was
based on the average of the data before the missing values. The MSE = 1

n ∑n
i=1(y− ŷ)2 and

MAE = 1
n ∑n

i=1 |y− ŷ| are used to indicate the difference between the imputation values
and the actual values. The smaller these values are, the better the imputation is. In the
case of 50% missing data, the accuracy of our imputation method still does not lag too
far behind.

Table 3. MSE and MAE results of imputation and prediction methods on five datasets.

Methods Informer LogTrans Reformer LSTMa LSTnet Our Method Average

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.577 0.549 0.686 0.604 0.991 0.754 0.650 0.624 1.293 0.901 1.250 0.656

1.536 0.744
48 0.685 0.625 0.766 0.757 1.313 0.906 0.702 0.675 1.456 0.960 1.452 0.675

168 0.931 0.752 1.002 0.846 1.824 1.138 1.212 0.867 1.997 1.214 1.491 0.636
336 1.128 0.873 1.362 0.952 2.117 1.280 1.424 0.994 2.655 1.369 1.996 0.659
720 1.215 0.896 1.397 1.291 2.415 1.520 1.960 1.322 2.143 1.380 2.818 0.769

ETTh2

24 0.720 0.665 0.828 0.750 1.531 1.613 1.143 0.813 2.742 1.457 5.288 1.198

3.071 1.005
48 1.457 1.001 1.806 1.034 1.871 1.735 1.671 1.221 3.567 1.687 5.835 1.312

168 3.489 1.515 4.070 1.681 4.660 1.846 4.117 1.674 3.242 2.513 5.732 1.236
336 2.723 1.340 3.875 1.763 4.028 1.688 3.434 1.549 2.544 2.591 7.375 1.327
720 3.467 1.473 3.913 1.552 5.381 2.015 3.963 1.788 4.625 3.709 9.934 7.705

ETTm1

24 0.323 0.369 0.419 0.412 0.724 0.607 0.621 0.629 1.968 1.170 0.909 0.542

1.527 0.740
48 0.494 0.503 0.507 0.583 1.098 0.777 1.392 0.939 1.999 1.215 0.977 0.55
96 0.678 0.614 0.768 0.792 1.433 0.945 1.339 0.913 2.762 1.542 1.068 0.575

288 1.056 0.786 1.462 1.320 1.820 1.094 1.740 1.124 1.257 2.076 1.458 0.690
672 1.192 0.926 1.669 1.461 2.187 1.232 2.736 1.555 1.917 2.941 1.375 0.659

Entropy 2023, 25, 137 10 of 13

Table 3. Cont.

Methods Informer LogTrans Reformer LSTMa LSTnet Our Method Average

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

24 0.335 0.381 0.435 0.477 0.655 0.583 0.546 0.570 0.615 0.545 3.750 0.858

4.531 1.213
48 0.395 0.459 0.426 0.495 0.729 0.666 0.829 0.677 0.660 0.589 3.438 0.854

168 0.608 0.567 0.727 0.671 1.318 0.855 1.038 0.835 0.748 0.647 4.120 0.884
336 0.702 0.620 0.754 0.670 1.930 1.167 1.657 1.059 0.782 0.683 3.906 0.861
720 0.831 0.731 0.885 0.773 2.726 1.575 1.536 1.109 0.851 0.757 3.997 0.912

ECL

48 0.344 0.393 0.355 0.418 1.404 0.999 0.486 0.572 0.369 0.445 1.118 0.619

5.993 1.498
168 0.368 0.424 0.368 0.432 1.515 1.069 0.574 0.602 0.394 0.476 1.22 0.643
336 0.381 0.431 0.373 0.439 1.601 1.104 0.886 0.795 0.419 0.477 1.205 0.622
720 0.406 0.443 0.409 0.454 2.009 1.170 1.676 1.095 0.556 0.565 1.352 0.664
960 0.460 0.548 0.477 0.589 2.141 1.387 1.591 1.128 0.605 0.599 1.002 0.571

5.4. Analysis

Influence of Missing Rate
We also investigated the effect of the missing rate of the input time series data on

the accuracy of the imputation.The results are shown in Figure 4. Figure 4a,b depict the
effect of the missing rate of the data on the MSE versus MAE of the fill results when other
conditions are held constant. They illustrate that the length of the input also affects the
MSE and MAE of the imputation when the missing level is the same. As the missing rate of
the dataset increases, the accuracy of the imputation decreases accordingly.

10 20 30 40 50 60 70 80
Missing Rate(%)

0.5

1.0

1.5

2.0

2.5

3.0

M
SE

input length=48
input length=96

(a) MSE

10 20 30 40 50 60 70 80
Missing Rate(%)

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

input length=48
input length=96

(b) MAE

Figure 4. Influence of missing rate on the accuracy of the imputation. (a,b) The accuracy of comple-
mentation gradually decreased with the increase in missing data. In addition to this, increasing the
length of the sequences used for completeness decreases the accuracy of completeness.

Influence of Datasets
We also investigated the effect of the input time series data on the accuracy of the

imputation. The results are shown in Figure 5, where the x axis indicates the missing rate
of time series data, and labels indicate the name of the time series data. The accuracy of our
method for completing was high when the original dataset was missing to a small extent,
but when there was no sufficiently complete missing dataset, the accuracy of our method
for completing suffered when it was used.

Entropy 2023, 25, 137 11 of 13

10 20 30 40 50 60 70 80
Missing Rate(%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
AE

ETTh1
ETTh2
ETTm1

Figure 5. Influence of datasets on the accuracy of the imputation. The increase in the missing rate of
the original dataset led to a decrease in the accuracy of data completion.

Ablation Study
We tested our proposed method on the ETTh1 dataset and the method of filling the

missing values with the mean value and the method of de-selection strategy for the results.
The results of the tests are shown in Figure 6, in which the x axis shows the missing rate
of the dataset, the line marked with our method shows the test results of our proposed
method, the line marked with ave imputation shows the method of filling the missing
values with the mean value, and the line marked with method-no-choosing shows our
method with the selection strategy for the results removed. Only when the degree of
missing data was extremely high did the method of filling with the average value work
better than our proposed method.

10 20 30 40 50 60 70 80
Missing Rate(%)

0

1

2

3

4

5

6

M
SE

our method
ave imputation
method no choosing

Figure 6. Ablation study of our method without a discriminator and choosing strategy. Our method
had better complementary results than those of the mean fill method in most cases.

6. Conclusions

In this paper, we proposed a GAN and informer-based model called imputeGAN
for solving missing multidimensional time series data.The model was compared with
traditional complementary methods and models used to predict time series data. Experi-
mental results demonstrate that imputeGAN outperformed traditional methods in terms of
accuracy. When performing downstream tasks such as time series data prediction, even
with 50% of the original data missing, the accuracy of imputeGAN complementation was
similar to that of models that perform prediction with complete data (e.g., LSTnet). We
proposed a multidimensional time series data imputation model based on GAN and In-
former. We proposed a new method for the selection and iteration of data complementation
results, which makes the complementation results closer to the true values. By comparing
imputation and downstream tasks on four real datasets, we confirmed that our new model
had better imputation results than those of existing models.

Entropy 2023, 25, 137 12 of 13

Author Contributions: The two authors contributed equally. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code used in this article is available at https://github.com/ubikp
kd/d-gan_informer. A reproduction of the code provides access to all of the data generated in this
paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. de Jong, J.; Emon, M.A.; Wu, P.; Karki, R.; Sood, M.; Godard, P.; Ahmad, A.; Vrooman, H.; Hofmann-Apitius, M.; Fröhlich,

H. Deep learning for clustering of multivariate clinical patient trajectories with missing values. GigaScience 2019, 8, giz134.
[CrossRef] [PubMed]

2. Azoff, E.M. Neural Network Time Series Forecasting of Financial Markets; John Wiley & Sons: New York, NY, USA, 1994.
3. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction With Big Data: A Deep Learning Approach. IEEE Trans. Intell.

Transp. Syst. 2015, 16, 865–873. [CrossRef]
4. Berglund, M.; Raiko, T.; Honkala, M.; Kärkkäinen, L.; Vetek, A.; Karhunen, J.T. Bidirectional Recurrent Neural Networks as

Generative Models. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY,
USA, 2015; Volume 28.

5. Gill, M.K.; Asefa, T.; Kaheil, Y.; McKee, M. Effect of missing data on performance of learning algorithms for hydrologic predictions:
Implications to an imputation technique. Water Resour. Res. 2007, 43. [CrossRef]

6. Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms; John Wiley & Sons: New York, NY, USA, 2011; Chapter 5,
pp. 140–168.

7. Amiri, M.; Jensen, R. Missing data imputation using fuzzy-rough methods. Neurocomputing 2016, 205, 152–164. [CrossRef]
8. Purwar, A.; Singh, S.K. Hybrid prediction model with missing value imputation for medical data. Expert Syst. Appl. 2015,

42, 5621–5631. [CrossRef]
9. Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of species-level, plot-scale

forest structure attributes from LiDAR data. Remote. Sens. Environ. 2008, 112, 2232–2245. [CrossRef]
10. Acar, E.; Dunlavy, D.M.; Kolda, T.G.; Mørup, M. Scalable Tensor Factorizations with Missing Data. In Proceedings of the SDM10:

2010 SIAM International Conference on Data Mining, Columbus, Ohio, USA, 29 April–1 May 2010; pp. 701–712. [CrossRef]
11. Huang, F.; Cao, Z.; Jiang, S.H.; Zhou, C.; Huang, J.; Guo, Z. Landslide susceptibility prediction based on a semi-supervised

multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [CrossRef]
12. Song, S.; Sun, Y.; Zhang, A.; Chen, L.; Wang, J. Enriching Data Imputation under Similarity Rule Constraints. IEEE Trans. Knowl.

Data Eng. 2020, 32, 275–287. [CrossRef]
13. Breve, B.; Caruccio, L.; Deufemia, V.; Polese, G. RENUVER: A Missing Value Imputation Algorithm based on Relaxed Functional

Dependencies. In Proceedings of the EDBT, Edinburgh, UK, 29 March–1 April 2022.
14. Rekatsinas, T.; Chu, X.; Ilyas, I.F.; Ré, C. HoloClean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 2017,

10, 1190–1201. [CrossRef]
15. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.A.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing

Values. Sci. Rep. 2018, 8, 6085. [CrossRef] [PubMed]
16. Cao, W.; Wang, D.; Li, J.; Zhou, H.; Li, L.; Li, Y. BRITS: Bidirectional Recurrent Imputation for Time Series. In Proceedings of the

Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018.
17. Yoon, J.; Zame, W.R.; van der Schaar, M. Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent

Neural Networks. IEEE Trans. Biomed. Eng. 2019, 66, 1477–1490. [CrossRef] [PubMed]
18. Luo, Y.; Cai, X.; ZHANG, Y.; Xu, J.; xiaojie, Y. Multivariate Time Series Imputation with Generative Adversarial Networks. In

Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.
19. Luo, Y.; Zhang, Y.; Cai, X.; Yuan, X. E2GAN: End-to-End Generative Adversarial Network for Multivariate Time Series Imputation.

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, Macao, China, 10–16
August 2019; pp. 3094–3100. [CrossRef]

20. Yoon, J.; Jordon, J.; van der Schaar, M. GAIN: Missing Data Imputation using Generative Adversarial Nets. In Proceedings of the
35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698.

21. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you

Need. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017;
Volume 30.

https://github.com/ubikpkd/d-gan_informer
https://github.com/ubikpkd/d-gan_informer
http://doi.org/10.1093/gigascience/giz134
http://www.ncbi.nlm.nih.gov/pubmed/31730697
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1029/2006WR005298
http://dx.doi.org/10.1016/j.neucom.2016.04.015
http://dx.doi.org/10.1016/j.eswa.2015.02.050
http://dx.doi.org/10.1016/j.rse.2007.10.009
http://dx.doi.org/10.1137/1.9781611972801.61
http://dx.doi.org/10.1007/s10346-020-01473-9
http://dx.doi.org/10.1109/TKDE.2018.2883103
http://dx.doi.org/10.14778/3137628.3137631
http://dx.doi.org/10.1038/s41598-018-24271-9
http://www.ncbi.nlm.nih.gov/pubmed/29666385
http://dx.doi.org/10.1109/TBME.2018.2874712
http://www.ncbi.nlm.nih.gov/pubmed/30296210
http://dx.doi.org/10.24963/ijcai.2019/429
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Entropy 2023, 25, 137 13 of 13

23. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [CrossRef]

24. Schafer, J.; Graham, J. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177. [CrossRef] [PubMed]
25. Torgo, L. Data Mining with R: Learning with Case Studies, 2nd ed.; Chapman and Hall/CRC: London, UK, 2017.
26. Chen, C.W.S.; Chiu, L.M. Ordinal Time Series Forecasting of the Air Quality Index. Entropy 2021, 23, 1167. [CrossRef] [PubMed]
27. Sportisse, A.; Boyer, C.; Josse, J. Imputation and low-rank estimation with Missing Non At Random data. Stat. Comput. 2018,

30, 1629–1643. [CrossRef]
28. Tang, F.; Ishwaran, H. Random forest missing data algorithms. Stat. Anal. Data Min. ASA Data Sci. J. 2017, 10, 363–377. [CrossRef]

[PubMed]
29. Suo, Q.; Yao, L.; Xun, G.; Sun, J.; Zhang, A. Recurrent Imputation for Multivariate Time Series with Missing Values. In Proceedings

of the 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China, 10–13 June 2019; pp. 1–3.
30. Ariyo, A.A.; Adewumi, A.O.; Ayo, C.K. Stock Price Prediction Using the ARIMA Model. In Proceedings of the 2014 UKSim-AMSS

16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014; pp. 106–112.
31. Kalekar, P.S. Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi Sch. Inf. Technol. 2004, 4329008, 1–13.
32. Samal, K.K.R.; Babu, K.S.; Das, S.K.; Acharaya, A. Time series based air pollution forecasting using SARIMA and prophet model.

In Proceedings of the 2019 International Conference on Information Technology and Computer Communications, Singapore,
16–18 August 2019; pp. 80–85.

33. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In
Proceedings of the International Conference on Learning Representations (ICLR ’18), Vancouver, BC, Canada, 30 April–3 May 2018.

34. Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 636–644.

35. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

36. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. arXiv
2018, arXiv:1703.07015.

37. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

38. Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The Efficient Transformer. In Proceedings of the International Conference on
Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

39. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting. In Proceedings of the 33rd International Conference on Neural Information Processing Systems;
Curran Associates Inc.: Red Hook, NY, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.1037/1082-989X.7.2.147
http://www.ncbi.nlm.nih.gov/pubmed/12090408
http://dx.doi.org/10.3390/e23091167
http://www.ncbi.nlm.nih.gov/pubmed/34573792
http://dx.doi.org/10.1007/s11222-020-09963-5
http://dx.doi.org/10.1002/sam.11348
http://www.ncbi.nlm.nih.gov/pubmed/29403567

	Introduction
	Related Work
	Preliminary
	Proposed Method
	Encoder Network Architecture
	Decoder Network Architecture
	Iteration Strategy
	Imputation Results
	Discussion

	Experimental Evaluation
	Datasets, Tasks, and Baseline
	Implementation Details
	Performance Comparison of Downstream Task
	Analysis

	Conclusions
	References

