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Abstract: Rotating-disc electrodes (RDEs) are favored technologies for analyzing electrochemical
processes in electrically charged cells and other revolving machines, such as engines, compressors,
gearboxes, and generators. The model is based on the concept of the nonlinear entropy convection-
diffusion equations, which are constructed using semi-boundaries as an infinite notion. In this model,
the surrogate solutions with different parameter values for the mathematical characterization of non-
dimensional OH− and H+ ion concentrations at a rotating-disc electrode (RDE) are investigated using
an intelligent hybrid technique by utilizing neural networks (NN) and the Levenberg–Marquardt
algorithm (LMA). Reference solutions were calculated using the RK-4 numerical method. Through
the training, validation, and testing sampling of reference solutions, the NN-BLMA approximations
were recorded. Error histograms, absolute error, curve fitting graphs, and regression graphs validated
the NN-BLMA’s resilience and accuracy for the problem. Additionally, the comparison graphs
between the reference solution and the NN-BLMA procedure established that our paradigm is
reliable and accurate.

Keywords: mathematical modeling; non-linear equations; numerical solutions; hydrogen and
hydroxide ion concentration; neural networks; machine learning; rotating-disc electrode; entropy

1. Introduction

Rotating-disc electrodes (RDEs) allow performing steady-state studies of a redox re-
action and measuring its kinetic parameters. The mass transfer rate may be controlled
and enhanced in electrochemical investigations using hydrodynamic techniques or micro-
electrodes. Mass transport conditions can be easily changed to resolve (electro) chemical
phenomena of various kinetics, such as electron transfers, adsorption/desorption processes,
and coupled chemical reactions. Over the years, many hydrodynamic techniques (rotating
disc/ring, channel, wall-jet, and dropping mercury electrodes) have been developed and
used to explore the most common reaction mechanisms, such as EC, EC’, and ECE/DISP.
The most widely used technique [1,2], for which a great deal of theoretical work has been
done, is the rotating-disc electrode (RDE). For the first time, Levich solved the transient
equation of diffusion for a spinning-disc electrode, which motivated the mathematical
community to focus on the entropy and kinetics of electrode processing based on transport
theories [3,4]. For proper geometries, the Navier–Stokes equation and the convection-
diffusion equation solution are used to generate the mathematical models [3–5]. In fluid
mechanics, the Von Kármán whirling viscous flow issue is well-known. Von Kármán’s orig-
inal problem concerns a viscous flow caused by an infinitely revolving disc in a situation
where the fluid far from the disc is at rest. Von Kármán first investigated steady laminar
flows of a viscous Newtonian fluid through an infinite spinning disc [6,7]. The equations
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of Navier–Stokes are converted to ordinary differential equations using an ingenious sim-
ilarity transformation that was also introduced by Von Kármán [6,8]. The momentum
integral approach was then used to solve the problems. The numerous electrocatalytic
processes have all been extensively studied using rotating-disc electrodes. Unraveling
reactions with rotating electrodes by Bruckenstein describe how the RDE and allied tech-
niques can be used to unravel complicated heterogenous and homogenous reactions [9].
Popovic described a ring-disk study of the competition between anodic oxygen transfer
and dioxygen-evolution reactions [10]. Electrocatalysis of anodic oxygen-transfer reactions:
chronoamperometric and voltammetric studies of the nucleation and electrodeposition
of β-lead dioxide at a rotating gold disk electrode in acidic media were performed by
Change [11]. Treimer presents the comparison of voltammetric responses of toluene and
xylenes at iron (III)-doped, bismuth (V)-doped, and undoped β-lead-dioxide film elec-
trodes and consideration of the application of Koutecky–Levich plots in the diagnoses
of charge-transfer mechanisms with rotated disk electrodes [12,13]. Electro-oxidation of
aqueous p-methoxy phenol on lead oxide electrodes was presented by Borras [14]. A novel
mounting methodology for cylindrical samples for use as spinning-disc electrodes was
created by Cahan et al. [15,16], which solves numerous issues with more traditional meth-
ods. Below the limiting current, Newman [17,18] attained the uniform current density on
a revolving disc electrode. Eddowes et al. [19,20] used the orthogonal collocation and
finite-difference techniques to resolve the spinning-disc electrode system. Both methods
reduce the ordinary differential equation into a group of concurrent equations that can
be solved with a single matrix operation. Nolan et al. [21,22] examined the first-order
EC-catalytic process at RDE using polynomial approximation. At RDE, Nolan et al. [23,24]
also found a 2nd-order EC-catalytic iterative solution. To measure the concentration on
the revolving disc electrode in both transient and steady-state settings, the homotopy
perturbation technique was employed by Jansi Rani et al. [25,26]. Using fluid viscosity,
Chitra et al. [27,28] computed the steady-state output of spinning disc flow associated with
the mass-concentration field. Dong et al. [29,30] carried out the numerical simulations of
a two-dimensional axisymmetric cell with a revolving disc electrode. The generation of
electrochemical hydrogen at RDE was modeled mathematically by Grozovski et al. [31,32].
Recently, an equation for the production of hydrogen at a revolving disc electrode (RDE)
was created by Sylvia et al. [33,34].

• This study’s primary goals were to analyze a mathematical model for the reduction
of H+ ions and electrolysis of H2O in non-buffered aqueous electrolyte solutions and
to investigate how specific parameters affect the e entropy of hydrogen (H+) and
hydroxide (OH−) ions in a rotating-disc electrode (RDE).

• The mathematical model of the convection-diffusion equation for the non-dimensional
hydrogen (H+) and hydroxide (OH−) ion concentrations on a rotating-disc electrode
(RDE) has been solved for this problem.

• The behavior of the hydrogen (H+) and hydroxide (OH−) ion concentrations are
studied using the backpropagated Levenberg–Marquardt algorithm (BLMA) and
neural networks (NNs).

• The reference data of target solutions were produced by the Runge–Kutta technique
and were successfully used in the supervised learning phase of the NNs-BLMA.

• Convergence analysis based on curve fitting, mean-square error, error histograms,
and regression analysis by reference data was used to verify the effectiveness of the
designed NN-BLMA. The results establish that the suggested method is slick and
straightforward, extending to more complex problems.

2. Mathematical Formulation of the Problem

As long as the transfer is only produced by convection and diffusion, the transmission
and entropy of numerous physical quantities, such as energy and particles, may often
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be explained using the convection-diffusion equation. The basic form of the convection-
diffusion equation is

∂C
∂t

+ v.∇c = D∇2c, (1)

∂C
∂t

= D∇2c− v.∇c, (2)

where v represents the velocity of the electrolyte, c stands for the concentration of dif-
fusing species, D is the coefficient of diffusion, and ∇2 is the Laplacian operator. In one
dimensional form, Equation (2) can be condensed into [35,36]

∂Ci
∂t

= Dci

∂2Ci
∂z2 − vz

∂Ci
∂z

, (3)

where Ci denotes species concentration, vz denotes the fluid velocity, and Dci is the cor-
responding coefficient of diffusion. H+ reduction in acidic solutions can result in the
formation of hydrogen:

H+ + e− → 1
2

H2, (4)

The electroreduction of water itself is the main source of hydrogen in solutions with a
pH > 7:

H2O + e− → 1
2

H2 + OH−, (5)

In this study, the hydrogen evolution reaction using numerical simulations on a rotating-
disc electrode (RDE) submerged in firmly supported, unbuffered fluids at various pH
levels is described. Two distinguishing portions may be seen in the stationary polarization
curves obtained in mildly acidic solutions; Equation (4) is related to the electro reduction
of H+, and Equation (5) is primarily concerned with the electrolysis of water. Due to the
rapid recombination of H+, a reactant of Equation (4), and OH−, a product of Equation (5),
considering these processes independently is not a solid technique for characterizing the
entire mechanism:

H+ + OH− 
 H2O. (6)

In addition to determining steady-state pH profiles corresponding to certain electrode
potentials, Equation (6) must be taken into account for the modest fluctuation of the
“limiting” H+ reduction current with the electrode potential [37,38], Figure 1 illustrates this
system of reaction.

Figure 1. Diagram illustrating the electrolysis of H2O and the reduction of H+ ions in nonbuffered
aqueous electrolyte solutions.

The H+ and OH− concentrations inside the system may be represented by the mass
balance equation as follows [33,39]:

DH+
d2

dz2 CH+(z) + k−3 = vz
d
dz

CH+(z) + k+3CH+(z)COH−(z), (7)
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DOH−
d2

dz2 COH−(z) + k−3 = vz
d
dz

COH−(z) + k+3CH+(z)COH−(z), (8)

where DH+ is the coefficient of diffusion of H+ ions and DOH− is the coefficient of the
diffusion of OH− ions. CH+ (z) is the concentration of H+ ions, and COH− (z) is the
concentration of OH− ions. k−3 and k+3 are the backward and forward reaction rate
coefficients for Equation (6). At this stage, it was assumed that the transfer of mass occurs
only by diffusion and convection, and other modes of transportation are disregarded.
Regardless of concentrations and spatial coordinates, the diffusion coefficients DH+ and
DOH− are also assumed to be constants. The Cochran series solution of the Von Kármán
equations may be used to characterize the composition of the fluid velocity vz [6,35,40]:

vz = −0.51023 v
−1
2 Ω

3
2 z2 +

1
3

v−1Ω2z3 + . . . , (9)

with Ω being the angular velocity of the electrode and v being the kinematic viscosity of the
electrode. For the majority of solvents (Schmidt number (Sc) ≥ 100 [41,42]), an appropriate
description is obtained by taking into account the first two terms in Equation (9). Injecting
the first two components of the Cochran expansion into Equation (3) results in

∂Ci
∂t

+ (−0.51023 v
−1
2 Ω

3
2 z2 +

1
3

v−1Ω2z3)
∂Ci
∂z

= Dci

∂2Ci
∂z2 , (10)

and the initial and boundary conditions are

(i) At z = 0, the two species become

at z = 0,
dCH+

dz
= C∞

H+ and
dCOH−

dz
= 0, (11)

(ii) As z→ ∞, the concentration of H+ ions (CH+ ) equals the bulk concentration of H+

ions (C∞
H+ ), and the concentration of OH− ions (COH− ) approaches zero. That is,

as z→ ∞, CH+ = C∞
H+ and COH− → 0, (12)

(iii) The H+ and OH− concentrations become

CH+(0, t) = eηCOH−(0, t), (13)

DH+(
dCH+

dz
)z=0 = −DOH−(

dCOH−

dz
)z=0, (14)

where η is potential, which is equal to

η =
F

RT
(E− E0

′
), (15)

where E0
′

is the formal potential; E is the applied potential; and F, R, and T have their
standard meanings [35,43].

When the previously described problem is resolved, and the concentration profiles are
known, the current response (i(t)) is established as

i(t)
FA

= −DH+(
dCH+

dz
)z=0, (16)

as long as the diffusion rates of the two electroactive species are equivalent (DH+ =
DOH−= D). It is feasible to demonstrate that the sum of electroactive species’ concentra-
tions stays constant throughout the experiment in any part of the solution, which implies:
CH+ (z,t) + COH− (z,t) = C∞

H+ . The surface concentrations of the electroactive species
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are immediately found by combining this result with the Nernstian condition in
Equations (13) and (14):

CH+(0) = C∞
H+

eη

1 + eη and COH−(0) = C∞
H+

1
1 + eη , (17)

Moreover, it is noted that

CH+COH− = 10−14mol2dm−6. (18)

Equations (7) and (8) can be rewritten in the non-dimensional form as follows:

d2m
dζ2 + ζ2 dm

dζ
− c1mn + c0 = 0, (19)

d2n
dζ2 + ζ2 dn

dζ
− c1mn + c0 = 0, (20)

where the non-dimensional parameters are

m = CH+

C∞
H+

, n = COH−
C∞

H+
, c0 = k−3

D
1
3 a

2
3 C∞

H+

, c1 =
k+3C∞

H+

D
1
3 a

2
3

, ζ = z ( a
D )

1
3 , and

a = 0.51023 v
3
2 v
−1
2 . (21)

From Equation (18), the values of m and n are attainable as follows:

mn = (10−14mol2dm−6)(C∞
H+)

2, (22)

let c = −c1mn + c0, (23)

Equations (19) and (20) become

d2m
dζ2 + ζ2 dm

dζ
+ c = 0, (24)

d2n
dζ2 + ζ2 dn

dζ
+ c = 0; (25)

the dimensionless initial and boundary conditions become

At ζ = 0,
dm
dζ

= 1 and
dn
dζ

= 0, (26)

At ζ = 1, m = 1 and n = 0, (27)

At ζ = 0, m = neψ. (28)

Equations (19) and (20) are a set of ordinary inhomogeneous differential equations that are
severely nonlinear. To solve these equations numerically, the finite difference [19,44] and
the orthogonal collocation [21,45] techniques can be applied.

The artificial neural network (ANN), a machine learning technique that focuses on
the supervised neural processes, is discussed in this model created by McCulloch, based
on the human brain in 1943. ANNs can learn, recognize, and deal with a wide range of
complicated issues. Feed-forward neural networks (FFNNs) are the only ANN models
that are widely used in a wide range of applications. A neural network (ANN) is a linked
neuron network that can process several inputs but produces only one output. This
work uses a multiple-layer perceptron (MLP) to optimize the number of hidden units.
The MLP, sometimes referred to as the feed-forward neural network (FNN), is a form of
neural network that contains a hidden layer between the input and output layers. The



Entropy 2023, 25, 134 6 of 22

architectural depiction of an FFNN makes it interesting, since it enables the identification
of a computational model (a function) in network form. Furthermore, an FFNN framework
makes it a popular function approximator. It has the effect of approximating and solving
any function or challenge. The connection weights and biases were also optimized. The
standard MLP construction with one hidden layer is as follows:

Aj =
n

∑
i=1

wijxi + bj, (29)

where xi denotes inputs, bj denotes biased vectors, and wij denotes connection weights,
respectively. The activation function, a log-sigmoid, is used in the feed-forward neural
network model, which is expressed as:

f j(x) =
1

1 + e−Aj . (30)

• In the first step, a numerical solution is computed using the Runge–Kutta technique
of fourth order (Rk4) using Mathematica’s “ND Solve” module to create an initial
dataset.

• In the second step, using the “nftool” from the MATLAB package, the BLM algorithm
is run with the proper hidden neuron parameters and test data. Additionally, BLM
employs the training, testing, and validation process and a reference solution to
provide approximations for various nonlinear equation instances. Figures 2 and 3
illustrate the NNs-LM technique using a single neuron model.

A two-step process is used to implement NN-BLMA. Figure 4 presents the design algo-
rithm’s detailed workflow.

Figure 2. The architecture of a single neural network.

Figure 3. The architecture of a neural network.
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Figure 4. Mechanism of the NN-BLMA for the solution of highly nonlinear equations.

3. Comparison of Numerical Solutions

The approximate solutions obtained by a designed algorithm, NN-BLMA, were com-
pared with Rk4’s results, which show the analysis of the phase plane between dimensionless
H+ and OH− ion concentrations. It contains 50 points in each case on the y axis. The
comparison graphs are closer to the real solution of a surrogate model. The blue line
represents targeted data, and red stars with yellow in the center represent the output
data of a present surrogate model. Figure 5 demonstrates that at c = 0.1 and c = 0.3, the
absolute error ranges between 10−7 and 10−10; at c = 0.2 and c = 0.4, it ranges between
10−7 and 10−8. Figure 6 demonstrates that at c = 0.1 and c = 0.3, the absolute error ranges
between 10−7 and 10−10; at c = 0.2, it ranges between 10−6 and 10−8; and at c = 0.4, it
ranges between 10−7 and 10−8. The NN-BLM method coincides with the analytical answer,
demonstrating the flawless modeling of a surrogate model. The figures show that the
concentration of H+ ions increases quickly from its initial value to its steady-state value. It
is also clear that dimensionless OH− concentration steadily drops to a steady-state value
of zero. Tables 1 and 2 display the absolute differences between results provided by the
NN-BLM algorithm for various instances and the desired data [46–50].
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(a) (b)

(c) (d)

Figure 5. Results of dimensionless H+ ion concentration with various rate constants, c. (a) at c = 0.1;
(b) at c = 0.2; (c) at c = 0.3; (d) at c = 0.4.

Table 1. Dimensionless H+ ion concentration.

m(ζ) Rk4 BLMA Error

At c = 0.1

0 0 2.43× 10−7 2.43× 10−7

0.1 0.112628 0.112628 7.65× 10−8

0.2 0.224126 0.224126 7.99× 10−8

0.3 0.334163 0.334163 3.91× 10−8

0.4 0.442201 0.442201 2.97× 10−10

0.5 0.547518 0.547518 5.56× 10−9

0.6 0.649234 0.649234 6.17× 10−9

0.7 0.74636 0.74636 6.25× 10−8

0.8 0.837858 0.837858 1.15× 10−7

0.9 0.922711 0.922711 1.09× 10−7

1 1 1 2.20× 10−7
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Table 1. Cont.

m(ζ) Rk4 BLMA Error

At c = 0.2

0 0 5.34× 10−7 5.34× 10−7

0.1 0.117043 0.117043 1.60× 10−7

0.2 0.231951 0.231951 1.57× 10−7

0.3 0.344387 0.344387 4.47×10−8

0.4 0.453808 0.453808 9.72× 10−8

0.5 0.559495 0.559495 2.60× 10−8

0.6 0.660585 0.660585 6.33× 10−8

0.7 0.756128 0.756128 3.61× 10−8

0.8 0.845145 0.845145 1.55× 10−7

0.9 0.926705 0.926705 1.92× 10−7

1 1 1 4.36× 10−7

At c = 0.3

0 0 1.46× 10−7 1.46× 10−7

0.1 0.121457 0.121457 1.16× 10−7

0.2 0.239776 0.239776 1.04× 10−7

0.3 0.354611 0.354611 7.20× 10−8

0.4 0.465415 0.465415 2.60× 10−8

0.5 0.571471 0.571471 8.12×10−10

0.6 0.671937 0.671937 2.42× 10−8

0.7 0.765896 0.765896 5.86×10−8

0.8 0.852433 0.852433 8.15× 10−8

0.9 0.930699 0.930699 8.29× 10−8

1 1 1 1.40× 10−7

At c = 0.4

0 0 1.84× 10−7 1.84× 10−7

0.1 0.125872 0.125872 1.10× 10−7

0.2 0.247601 0.247601 1.04× 10−7

0.3 0.364835 0.364835 6.84× 10−8

0.4 0.477022 0.477022 2.68× 10−8

0.5 0.583448 0.583448 4.50× 10−9

0.6 0.683288 0.683288 2.75× 10−8

0.7 0.775665 0.775665 5.40× 10−8

0.8 0.85972 0.85972 6.86× 10−8

0.9 0.934694 0.934694 6.24× 10−8

1 1 1 1.25× 10−7

Table 2. Dimensionless OH− ion concentration.

n(ζ) Rk4 BLMA Error

At c = 0.1

0 1 1 1.62× 10−7

0.1 0.896201 0.896201 1.10× 10−7

0.2 0.791525 0.791524 9.64× 10−8

0.3 0.686286 0.686286 5.69× 10−8

0.4 0.581012 0.581012 2.07× 10−8

0.5 0.476435 0.476435 4.28× 10−10

0.6 0.373469 0.373469 1.36× 10−8

0.7 0.273176 0.273176 4.27× 10−8

0.8 0.176716 0.176716 7.91× 10−8

0.9 0.085278 0.085278 8.91× 10−8

1 −3.6× 10−9 1.3× 10−7 1.31× 10−7
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Table 2. Cont.

n(ζ) Rk4 BLMA Error

At c = 0.2

0 1 0.999998 1.94× 10−6

0.1 0.900616 0.900615 7.85× 10−7

0.2 0.79935 0.799349 6.61× 10−7

0.3 0.69651 0.69651 2.59× 10−7

0.4 0.592619 0.592619 6.06× 10−7

0.5 0.488411 0.488411 1.82× 10−7

0.6 0.38482 0.384819 6.23× 10−7

0.7 0.282944 0.282944 1.93× 10−7

0.8 0.184004 0.184004 3.84× 10−8

0.9 0.089272 0.089272 3.53×10−8

1 1.99× 10−9 2.7× 10−6 2.72× 10−6

At c = 0.3

0 1 1 2.53× 10−7

0.1 0.905031 0.90503 1.13× 10−7

0.2 0.807175 0.807175 1.04× 10−7

0.3 0.706734 0.706734 2.45× 10−8

0.4 0.604225 0.604225 2.15× 10−8

0.5 0.500388 0.500388 1.05× 10−8

0.6 0.396172 0.396172 5.29× 10−10

0.7 0.292713 0.292713 4.35× 10−8

0.8 0.191291 0.191291 8.11× 10−8

0.9 0.093267 0.093267 7.17× 10−8

1 4.9× 10−9 2.3× 10−7 2.24× 10−7

At c = 0.4

0 1 0.999999 7.11× 10−7

0.1 0.909445 0.909445 7.94×10−8

0.2 0.815 0.815 8.51× 10−8

0.3 0.716958 0.716958 6.50× 10−8

0.4 0.615832 0.615832 1.58× 10−7

0.5 0.512365 0.512365 1.35×10−8

0.6 0.407523 0.407523 6.56× 10−8

0.7 0.302481 0.302481 5.64× 10−8

0.8 0.198578 0.198578 1.48× 10−7

0.9 0.097261 0.097261 1.70× 10−7

1 8.01× 10−9 5.7× 10−7 5.60× 10−7

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Results of dimensionless OH− ion concentration with various rate constants, c. (a) at c = 0.1;
(b) at c = 0.2; (c) at c = 0.3; (d) at c = 0.4.

4. Results and Discussion

The figures of the numerical solutions of Equations (24) and (25) for dimensionless H+

and OH− ion concentrations were constructed using Matlab software. The network was
trained with the backpropagation Levenberg–Marquardt algorithm (BLMA). The NN-BLM
technique is simple and has a straightforward framework for dealing with and processing
nonlinear situations. The NN-BLMA is a gradient-free approach with a substantially faster
convergence rate than other machine learning algorithms and cutting-edge approaches.
It contains 70% (701 samples) training data, 15% (150 samples) validation data, and 15%
(150 samples) testing data. Ten neurons were used in the fitting network’s hidden layer,
as shown in Figure 3. Each neuron contained three weights, and the number of weights
increased with the number of neurons. Table 3 displays the parameter settings for carrying
out the design plan.

Table 3. Parameters for the NN-BLM algorithm’s implementation.

Training Testing Validation Max.iteration Hidden Neurons Performance Function

70% 15% 15% 1000 10 Mean square error

Figures 7 and 8 shows that the approximate solution and targeted data of
Equations (24) and (25) for dimensionless H+ and OH− ion concentrations fit well to-
gether and have the fewest absolute errors. The absolute error (AE) for dimensionless H+

concentration at c = 0.1 and c = 0.2 lies between 10−7 and 10−8; at c = 0.3 and c = 0.4, it
lies between 10−6 and 10−8. The AE for dimensionless OH− ion concentration at c = 0.1
and c = 0.4 lies between 10−7 and 10−8; at c = 0.2, it lies between 10−6 and 10−8; and at
c = 0.3, it lies between 10−5 and 10−7. Figures 9 and 10 illustrate the fitting functions
of Equations (24) and (25) for the non-dimensional H+ and OH− ion concentrations at
different values of the rate constant. Figure 9 shows that the non-dimensional H+ ion
concentration increases as the rate constant increases, and Figure 10 shows that the non-
dimensional OH− ion concentration decreases progressively as the rate constant increases.
Figures 11 and 12 show the performance values of Equations (24) and (25) for the dimen-
sionless H+ and OH− ion concentrations. At c = 0.1, the best validation performance for
the dimensionless H+ ion concentration is 2.4799× 10−14 at epoch 141; at c = 0.2, its value is
1.5317× 10−14 at epoch 211; at c = 0.3, its value is 2.5715× 10−13 at epoch 151; and at c = 0.4,
its value is 2.6457× 10−13 at epoch 151. At c = 0.1, for dimensionless OH− ion concentration,
its value is 2.2551× 10−14 at epoch 166; at c = 0.2, its value is 3.3495× 10−13 at epoch 154;
at c = 0.3, its value is 1.2034× 10−13 at epoch 376; and at c = 0.4, its value is 1.868× 10−13

at epoch 178. Figures 13 and 14 show the regression analysis of Equations (24) and (25)
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for the non-dimensional H+ and OH− ion concentrations for different values of the rate
constant. Its value is one, which shows a close relationship between outputs and targets
and the accuracy of the problem. Further, the statistical performance of the gradient of
Equations (24) and (25) for the dimensionless H+ and OH− ion concentrations at different
values of a rate constant is illustrated in Figures 15 and 16. At c = 0.1, for the dimensionless
H+ ion concentration, its gradient value is 9.9882× 10−8 at epoch 141; at c = 0.2, its value
is 9.9249× 10−8 at epoch 211; at c = 0.3 its value is 9.9617× 10−8 at epoch 151; and at
c = 0.4, its value is 9.9869× 10−8 at epoch 150. At c = 0.1, for the dimensionless OH−

ion concentration, its gradient value is 9.9334× 10−8 at epoch 166; at c = 0.2, its value is
9.9487× 10−8 at epoch 154; at c = 0.3, its value is 9.9788× 10−8 at epoch 376; and at c = 0.4,
its value is 9.9451× 10−8 at epoch 178. These figures also illustrate that mu in all cases lies
between 10−7 and 10−12. Tables 4 and 5 show the convergence metric for gradient, mu,
epoch, testing, training, validation, and regression. From the above figures, it has been
obtained that the dimensionless H+ ion concentration rises quickly from a starting point to
one at steady state, and the dimensionless H+ ion concentration decreases progressively
from a starting point to one at steady state. It is also implied that the H+ ion concentration
increases and OH− ion concentration decreases with increasing the rate constant.

(a) (b)

(c) (d)

Figure 7. Error histogram analysis of dimensionless H+ ion concentration. (a) At c = 0.1; (b) At
c = 0.2; (c) At c = 0.3; (d) At c = 0.4.
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(a) (b)

(c) (d)

Figure 8. Error histogram analysis of dimensionless OH− ion concentration. (a) At c = 0.1; (b) At
c = 0.2; (c) At c = 0.3; (d) At c = 0.4.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Fitting analysis of dimensionless H+ ion concentration. (a) At c = 0.1; (b) At c = 0.2; (c) At
c = 0.3; (d) At c = 0.4.

(a) (b)

(c) (d)

Figure 10. Fitting analysis of dimensionless OH− ion concentration. (a) At c = 0.1; (b) At c = 0.2;
(c) At c = 0.3; (d) At c = 0.4.
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(a) (b)

(c) (d)

Figure 11. Mean-square error of NN-LMT prediction of dimensionless H+ ion concentration. (a) At
c = 0.1; (b) At c = 0.2; (c) At c = 0.3; (d) At c = 0.4.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. Meansquare error of NN-LMT prediction of dimensionless OH− ion concentration. (a) At
c = 0.1; (b) At c = 0.2; (c) At c = 0.3; (d) At c = 0.4.

(a) (b)

(c) (d)

Figure 13. Regressionanalysis of dimensionless H+ ion concentration. (a) At c = 0.1; (b) At c = 0.2; (c)
At c = 0.3; (d) At c = 0.4.
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(a) (b)

(c) (d)

Figure 14. Regression analysis of dimensionless OH− ion concentration. (a) At c = 0.1; (b) At c = 0.2;
(c) At c = 0.3; (d) At c = 0.4.

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Performance analysis of dimensionless H+ ion concentration. (a) At c = 0.1; (b) At c = 0.2;
(c) At c = 0.3; (d) At c = 0.4.

(a) (b)

(c) (d)

Figure 16. Performance analysis of dimensionless OH− ion concentration. (a) At c = 0.1; (b) At
c = 0.2; (c) At c = 0.3; (d) At c = 0.4.
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Table 4. NN-BLMA’s performance measurement statistics for different rate constant values to obtain
dimensionless H+ ion concentration solutions.

Mean Square Error

c Neurons Epochs Gradient Mu Training Testing Validation Regression

0.1 10 141 9.99× 10−8 1.00×10−07 2.40× 10−14 2.31× 10−14 2.48× 10−14 1
0.2 10 211 9.93× 10−8 1.00× 10−12 1.25× 10−14 1.52× 10−14 1.53× 10−14 1
0.3 10 151 9.96× 10−8 1.00× 10−11 2.42× 10−13 2.42× 10−13 2.57× 10−13 1
0.4 10 150 9.99× 10−8 1.00× 10−11 2.50× 10−13 2.51× 10−13 2.65× 10−13 1

Table 5. NN-BLMA’s performance measurement statistics for different rate constant values to obtain
dimensionless OH− ion concentration solutions.

Mean Square Error

c Neurons Epochs Gradient Mu Training Testing Validation Regression

0.1 10 166 9.93× 10−8 1.00× 10−12 2.09× 10−14 2.32× 10−14 2.25× 10−14 1
0.2 10 154 9.95× 10−8 1.00× 10−11 2.94× 10−13 3.40× 10−13 3.35× 10−13 1
0.3 10 376 9.98× 10−8 1.00× 10−09 7.54× 10−12 6.82× 10−12 1.20× 10−11 1
0.4 10 178 9.95× 10−8 1.00× 10−12 1.79× 10−14 2.06× 10−14 1.87× 10−14 1

5. Conclusions

In this study, the impacts of parameter variations in the mathematical model for
diffusion of OH− and H+ ions in the hydrogen production process in a non-buffered
aqueous electrolyte were shown. Approximate solutions were calculated for the math-
ematical characterization of a rotating-disc electrode (RDE). This model contains a set
of highly nonlinear, completely coupled equations. The nonlinear convection-diffusion
equations were used, which were constructed using semi-boundary circumstances as an
infinite notion. Reference solutions were found using the RK-4 numerical technique, and
the outcome of NN-BLMA was contrasted with those of the reference solutions. The back-
propagation Levenberg–Marquardt algorithm (BLMA) was used to train, test, and validate
the calculated solution models. The profiles of the hydrogen (H+) and hydroxide (OH−)
ion concentrations were calculated numerically. We displayed error histograms, absolute
error, curve fitting graphs, and regression graphs of the dimensionless H+ and OH− ion
concentrations for different values of rate constant c. We also indicated how certain factors
affect the amounts of hydrogen (H+) and hydroxide (OH−) ion concentrations at RDE. The
numerically acquired data showed how the hydrogen evolution reaction system behaved.
The Rk4 and output results of the NN-BLMA were also compared with the help of Matlab
software to see their behavior. The results show that the concentration of H+ ions increases
quickly from its initial value to its steady-state value, and that the dimensionless OH−

ion concentration steadily drops to a steady-state value of zero. It is also implied that the
H+ ion concentration increases and OH− ion concentration decreases as the rate constant
increases. This approach may be utilized for useful results for all hydrogen evolution
models of rotating-disc electrodes (RDEs).
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Nomenclature

Symbol Description Unit
CH+ H+ ion concentration mol cm−3

COH− OH− ion concentration mol cm−3

C∞
H+ H+ ion bulk concentration mol cm−3

C∞
OH− OH− ion bulk concentration mol cm−3

DH+ coefficient of diffusion of H+ ions cm2 s−1

DOH− coefficient of diffusion of OH− ions cm2 s−1

υ kinematic viscosity cm2 s−1

Ω rotation rate s−1

k+3 forward rate coefficient mol−1 s−1 cm3

k−3 backward rate coefficient mol s−1 cm−3

vz = −0.51 z2 Ω
3
2 v

−1
2 velocity cm s−1

a = 0.51023 v
−1
2 Ω

3
2 parameter cm−1 s−1

m0 = k−3

D
1
3 a

2
3 C∞

H+

dimensionless backward rate coefficient none

m1 =
k+3C∞

H+

D
1
3 a

2
3

dimensionless forward rate coefficient none

m = −m1 uv + m0 parameter none
ψ current Ampere (or) C s−1

η potential volt
F Faraday constant C mol−1

A area cm2

T temperature K
ζ dimensionless axial distance none
Z axial distance cm
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