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Supplement S1 
 

The general theme of our paper concerns the evolution of artificial embryos in silico. This section 

describes the nature, structure, life cycle, and the evolutionary process of artificial embryos in our 

simulation. 

 

S1.1 Nature of Embryos 

 

An artificial embryo is a single one-dimensional array of size 50. Each cell of this array carries an 

integer value ranging from 1 – 50 (inclusive). At initialization (i.e. generation 0),  cells of this array 

take random values in [1-50] with repetition. We consider this one-dimensional array (i.e. the 

embryo) as a hypothetical biological organism with a specific “morphological structure”, arising 

because of the arrangement of integer values in its cells. At generation 0, multiple one-

dimensional arrays are initialized with random cell values, each of which possesses a different 

“morphological structure”. 

 

Two kinds of artificial embryos exist in our setting: “hardwired” embryos and “competent” 

embryos. The difference between them is in how they “develop” (described below). A 

“competent” embryo consists of cells capable of sensing its neighboring. It leverages its sensing 

capabilities to reorganize its cells in a way to boost fitness (described below). “Competency” is 

the capability of these embryos to carry out such reorganization. A hardwired embryo, on the 

other hand, does not have any such capability, nor any other capability. Their structure from birth 

to maturity is constant i.e., hardwired. 

 

S1.2 Competent Embryos  

 

A competent embryo is a one-dimensional array of size 50. The cells of this array are initialized 

randomly (with repetition) in the range of [1-50]. Competent embryos have a unique capability: 

Each cell of the one-dimensional array can sense its neighbor’s (right neighbor) integer value. By 

doing so, each cell can swap its integer value with its neighbor. Swapping occurs in a manner so 

as to lead to an ascending arrangement of its cells by integer value. Since the data structure in 

question is an array, swaps occur by means of a bubble-sort procedure. However, unlike 

conventional bubble-sort which proceeds until an array is completely sorted, we carry out 

“restricted” bubble-sort, wherein the number of swaps is restricted by a “competency value” 

which is pre-specified as a hyperparameter in all experiments (Figures 2, 3, 4 in the main paper) 



except in the experiment where “competency value” is made evolvable (Figures 5, 7 in the main 

paper.) 

 

S1.3 Hardwired Embryos 

 

A hardwired embryo is a one-dimensional array of size 50, the cells of which are initialized 

randomly (with repetition) in the range of [1-50]. Hardwired embryos do not have the capability 

to swap: they remain as initialized throughout a generation.  

 

Embryos (regardless of kind) are evolved until their cells are arranged in ascending order by 

integer value. This specific ascending “morphological structure” is set to carry maximum fitness. 

 

S1.4 Fitness 

 

Based on the arrangement of integer values in a one-dimensional array (i.e the embryo), fitness 

of the embryo is calculated as follows: 

 

Consider an embryo A, of size n initialized with random integer values in the range of [1, n]. Let 

A(0), A(1), … , A(n) be its elements.  

We count the number of array elements which do not require to be swapped for the array to have 

ascending order. We call this the “non-inversion” count. Specifically: 

 
𝒏𝒐𝒏𝑰𝒏𝒗𝑪𝒐𝒖𝒏𝒕𝒔 (𝑨)  =  # { ( 𝑨(𝒊), 𝑨(𝒋) )   |   𝒊 <  𝒋  & 𝑨(𝒊)  ≤  𝑨(𝒋) } 

 

where i ≠ j and i = 0, 1… n-1  

j = 1, 2, … n-1 

and where ‘#’ = number of elements 

 

Non-inversion counts of array A are normalized as follows: 

 

  𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅𝑪𝒐𝒖𝒏𝒕 =  
𝒏𝒐𝒏𝑰𝒏𝒗𝑪𝒐𝒖𝒏𝒕𝒔 (𝑨)

𝒏𝑪𝟐
 

 

Finally, the fitness is reported on an exponential scale: 

 

  𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =  
𝟗(𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅𝑪𝒐𝒖𝒏𝒕)

𝟗
 

 

S1.5 Developmental Cycle: Restricted Bubble Sort   

 

At the beginning of each evolutionary cycle, competent embryos are considered “just born”; their 

morphological structure having just been decided by their parents from the previous generation. 

Therefore, their fitness at this point of time is called the “genotypic fitness”. Hardwired embryos 

and competent embryos both carry a genotypic fitness at the start of every evolutionary cycle. 



Soon after, embryos undergo a process of development. Competent embryos carry out restricted-

bubble sort to rearrange their cells in a way to boost fitness (i.e. in a way to increase ascending 

order of its elements). Hardwired embryos have no such capability. They end their life cycle with 

the same structure as that of at birth.  

 

At the end of their respective developmental cycles, embryos become “individuals”: competent 

embryos become competent individuals, and hardwired embryos become hardwired individuals 

(even if nothing changes structurally in them). At this point, the monotonicity of each embryo’s 

array is calculated again to determine the “phenotypic fitness” of the individual. Since competent 

“individuals” have rearranged cells by restricted bubble sort during development cycle, their 

phenotypic and genotypic fitnesses diverge. In contrast, hardwired individuals do not rearrange, 

therefore their genotypic and phenotypic fitnesses are identical.  

 

The process by which competent embryos swap their cells (carry our restricted bubble sort) to 

become competent “individuals” is as follows: 

 

 

Given: CompetentPopulation (list of arrays), competencyValue (int), SwapsCalculator 

(function returning int), BubbleSort (function returning an array) 

 

for embryo in CompetentPopulation:  

 swapsRemaining = SwapsCalculator (embryo) 

defecitSwaps = swapsRemaining – competencyValue 

  

 if defecitSwaps > 0: 

  swapsToExecute = competencyValue 

 

 else:  

  swapsToExecute = swapsRemaining 

 

 individual = BubbleSort (nTimes = swapsToExecute) 

 

 CompetentPopulation.replace(embryo, individual) 

 

 

S1.6 Populations for Evolution 

 

Each experiment in our paper begins with a population of embryos. If a population contains only 

hardwired embryos, it is termed the “hardwired population”, if it contains only competent 

embryos, it is termed the “competent population”, and if it consists of both hardwired and 

competent embryos it is termed a “hybrid” or “mixed” population. For most of the simulations 

reported here n=100 embryos. The one exception is the simulations of hybrid populations, for 

which n=200. 



S1. 7 Genetic Algorithm 

 

In order to evolve populations (hardwired or competent), we iteratively pass them through three 

stages (Figure 1C in the main paper): 

 

1. Selection: The fittest 10% (selection stringency) of individuals in a population are chosen 

to move on to the next generation.  Selection occurs at the end of the developmental cycle. 

 

2. Cross-Over: In order to repopulate a population back to its original strength we carry out 

a process of reproduction called cross-over. It occurs as follows: Two individuals are 

involved, each of these are split at a random location along their length. One half of 

Individual 1 is swapped with the same half of Individual 2 to give rise to two children. 

Figure 1C contains an illustration of this process. Note that hardwired and competent 

embryos do not “interbreed” in our crossover model. 

 

3. Mutation:   The repopulated population is subjected to random point mutations. We set 

the probability of an individual receiving a point mutation to be 0.6 

 

Note: It could so happen that for small sized arrays (less than 10 cells), repeated point 

mutations could cause the array to have identical cell values. However, given the large 

size of our arrays (50 in our experiments) and accounting for the cross-over of individuals, 

it is unlikely that random point mutations would lead to such a situation. Indeed, we did 

not notice any such pre-sorted array in our experiments. 

 

Supplement S2 
 

The following section provides details of each experiment. Each of these experiments were set up 

to run in the python programming language. Our code is made available at: 

https://github.com/Niwhskal/CellularCompetency 

 

S2.1  

Experiment 1: Evolving a single hardwired population with three different competent 

populations 

 

 

Common specifics of hardwired or competent population: 

 

arraySize = 50 

cell value initialization range = [1, 50] 

selection stringency = 10% 

number of embryos in the population = 100 

max. Generation = 1000 

mutation Probability = 0.6 

https://github.com/Niwhskal/CellularCompetency


number of repetitions = 100 

 

Specifics of competent population (level 20): 

  

 competency value = 20 swaps 

 

Specifics of competent population (level 100): 

  

 competency value = 100 swaps 

 

Specifics of competent population (level 400): 

  

 competency value = 400 swaps 

 

Phenotypic and genotypic fitnesses of the best individual in each of the four populations (one 

hardwired, three competent) in each generation are plotted over 250 generations (Figures 2 and 

3 respectively in the paper). 

 

Shaded areas indicate 95% confidence interval bands over 100 repeats of the experiment. 

 

S2.1.1 Statistical significance 

 

Based on the results of Experiment 1 (Figure 1 in the paper), it can be deduced that increasing 

the competency value leads to a higher rate of fitness increase compared to lower 

competency/zero competency (hardwired) values. 

 

We verify this observation statistically by employing a student’s t-test: Experiment-1 was 

repeated 100 times and fitness curves were compared at several generations. We compared the 

hardwired individual’s phenotypic fitness to each of the competent individual’s phenotypic 

fitnesses at generations 2, 10, and 20.  

These specific generations were chosen because the variance in repeats around them was the 

greatest. At each of these generations, the conditions to carry out a t-test were verified: it was 

ensured that our repeats were gaussian distributed, and that they shared similar variances (the 

variance ratio between any two distributions was ensured to be less than 1:4). We used different 

random seeds for each experimental run to ensure that they were independent of each other.  

 

Results from t-tests are as follows: (we notice the same p-values for generations 2, 10, and 20) 

 

Phenotypic fitness [Competency 20] vs Hardwired P-value << 10−3 

Phenotypic Fitness [ Competency 100] vs Hardwired  P-value << 10−3 



Phenotypic Fitness [ Competency 400] vs Hardwired  P-value << 10−3 

 
Table S1: P-values for comparison of different competent populations to a hardwired population at 

generations (2, 10, 20). 

 

S2.2 

Experiment 2: Evolving multiple hybrid populations, each composed of hardwired and 

competent embryos 

 

Common specifics of a hybrid population: 

 

 arraySize = 50 

 cell value initialization range = [1, 50] 

 max. Generation = 30 

selection stringency = 10% 

total number of embryos (regardless of kind) = 200 

 mutation probability = 0.6 

 number of repetitions = 20 

 

Specifics of hybrid population 1: 

 

 competency value = 10 

 number of hardwired embryos = 140 

 number of competent embryos = 60 

 

Specifics of hybrid population 2: 

 

 competency value = 10 

 number of hardwired embryos = 160 

 number of competent embryos = 40 

 

Specifics of hybrid population 3: 

 

 competency value = 10 

 number of hardwired embryos = 180 

 number of competent embryos = 20 

 

Specifics of hybrid population 4: 

 

 competency value = 10 

 number of hardwired embryos = 195 

 number of competent embryos = 5 



 

 

Specifics of hybrid population 5: 

 

 competency value = 25 

 number of hardwired embryos = 140 

 number of competent embryos = 60 

 

 

Specifics of hybrid population 6: 

 

 competency value = 25 

 number of hardwired embryos = 160 

 number of competent embryos = 40 

 

Specifics of hybrid population 7: 

 

 competency value = 25 

 number of hardwired embryos = 180 

 number of competent embryos = 20 

 

Specifics of hybrid population 8: 

 

 competency value = 25 

 number of hardwired embryos = 195 

 number of competent embryos = 5 

 

Specifics of hybrid population 9: 

 

 competency value = 40 

 number of hardwired embryos = 140 

 number of competent embryos = 60 

 

Specifics of hybrid population 10: 

 

 competency value = 40 

 number of hardwired embryos = 160 

 number of competent embryos = 40 

 

Specifics of hybrid population 11: 

 

 competency value = 40 

 number of hardwired embryos = 180 



 number of competent embryos = 20 

 

Specifics of hybrid population 12: 

 

 competency value = 40 

 number of hardwired embryos = 195 

 number of competent embryos = 5 

 

Specifics of hybrid population 13: 

 

 competency value = 75 

 number of hardwired embryos = 140 

 number of competent embryos = 60 

 

Specifics of hybrid population 14: 

 

 competency value = 75 

 number of hardwired embryos = 160 

 number of competent embryos = 40 

 

Specifics of hybrid population 15: 

 

 competency value = 75 

 number of hardwired embryos = 180 

 number of competent embryos = 20 

 

Specifics of hybrid population 16: 

 

 competency value = 75 

 number of hardwired embryos = 195 

 number of competent embryos = 5 

 

Specifics of hybrid population 17: 

 

 competency value = 95 

 number of hardwired embryos = 140 

 number of competent embryos = 60 

 

Specifics of hybrid population 18: 

 

 competency value = 95 

 number of hardwired embryos = 160 

 number of competent embryos = 40 



 

Specifics of hybrid population 19: 

 

 competency value = 95 

 number of hardwired embryos = 180 

 number of competent embryos = 20 

 

Specifics of hybrid population 20: 

 

 competency value = 95 

 number of hardwired embryos = 195 

 number of competent embryos = 5 

 

At the start of each evolutionary cycle, hardwired and competent embryos exist together. Each 

embryo develops into an individual according to its respective developmental cycle.  

 

Selection occurs in a combined fashion: Phenotypic fitnesses of hardwired individuals are 

compared with the phenotypic fitnesses of competent individuals to determine the fittest 10% of 

the hybrid population. 

 

During the process of cross-over, selected hardwired and competent embryos reproduce to 

repopulate the hybrid population to its original strength (200 in our experiments). Selected 

hardwired and competent embryos do not interbreed. 

 

The repopulated population is subject to point mutations at random locations on their arrays, and 

the cycle repeats. 

 

Prevalence (percentage) of hardwired and competent embryos in each hybrid population at the 

start of each evolutionary cycle is plot over 30 generations (Figure 4 in the paper) 

 

Shaded areas around each curve indicates the variance over 20 experimental repeats. 

 

S2.3 

Experiment 3: Evolving a competent population with evolvable competency 

 

Competent population specifics: 

 

arraySize = 50 

cell value initialization range = [1, 50] 

selection stringency = 10% 

number of embryos in the population = 100 

max. Generation = 1000 

mutation Probability = 0.6 



number of repetitions = 100 

competency = evolvable 

 

Competency value of a competent population is set to be evolvable. i.e, each array has an extra 

cell at position n+1 whose value is indicative of the competency value. At generation 0, every 

competent embryo (one-dimensional array) is initialized with an extra cell. This cell is randomly 

set to carry values in the range of [1-15]. During the first evolutionary cycle (i.e generation 1), this 

extra cell provides the competency value for each embryo. Its function is solely to provide this 

value; it is not considered part of the “morphological structure” of the array.  

Post generation 1, we allow this competency cell to be mutated to a value in the range of [1-500].  

 

Fitnesses of the best individual in the population (Figure 5B), together with its respective 

competency value (called the competency gene value in the paper) (Figure 5A) are plotted over 

1000 generations. The shaded area in Figure 5A indicates the range of competency gene values 

prevalent at any generation.  

 

Since the population being evolved is competent in nature, it has two kinds of fitnesses: the 

genotypic fitness and the phenotypic fitness. Each of which is shown in Figure 5 (in the paper). 

Correlation of the genotypic and phenotypic fitnesses over sequences of 10 generations is also 

show. (Figure 5C) 

 

S2.3.1 Hyperparameter test 

 

Further, we assessed the role of hyperparameters on the value at which the competency gene 

stabilizes. Specifically, we checked the effect of mutation probability and selection stringency on 

the final stable competency gene value attained (Figure S1): 

 
Figure S1: Results of varying mutation probability and selection stringency on the final stable 

competency gene value. 132 different combinations of mutation probability and selection stringency in 

the ranges of [0.2, 0.8] were chosen for each experimental run. Each point represents the stable 



competency gene value attained for a specific combination of mutation probability and selection 

stringency. 

 

Visually, we did not notice any distinct relationships between these hyperparameters and the 

stable-competency-gene-value attained. We carried out a correlation analysis of each of these 

variables to further probe the issue (Figure S2). 

 

 

 
Figure S2: Correlation matrix of mutation probability, selection stringency, and stable competency-gene 

value attained. 

 

The correlation matrix indicated no correlation between selection stringency and stable-

competency-gene-value attained. However, a minor negative correlation (-0.4) exists between 

mutation probability and the stable-competency-gene-value attained.   

 

Finally, we checked to see how often the “structural cells” of an array (the part which is assessed 

for its order) get modified versus how often the competency cell / gene gets modified over the 

course of evolution.  

 

At each generation, each of the 50 structural cells of the array were checked to see how often they 

get modified. At the end of 1000 generations, we had a count of how often each of the 50 structural 

genes changed, and how often the competency gene of the array changed.  

 

We took the average of these 50 structural-cell counts, and compared them to the competency-

gene-change counts at each generation (Figure 6B in the paper), and at the end of 1000 generations 

(Figure 6A in the paper). 

 

S2.4 



Experiment 4: Evolving a competent population with evolvable competency subject to a penalty  

 

Similar to experiment 3, a competent population with an evolvable competency gene was chosen 

for evolution. However, unlike the previous experiment, we penalize competency in direct 

proportion to the competency value. 

 

Competent population specifics: 

 

arraySize = 50 

cell value initialization range = [1, 50] 

selection stringency = 10% 

number of embryos in the population = 100 

max. Generation = 3000 

mutation Probability = 0.6 

number of repetitions = 100 

competency = evolvable 

competency penalty weight = 1e-04 

max competency gene value allowed = 500 

 

During the developmental cycle of a competent embryo from this population, restricted bubble-

sort (specified by the embryo’s competency gene) proceeds as usual. However, for every swap 

carried out we apply a fixed penalty. Specifically, 

 

If the competency gene value of an embryo = 𝒙 

 

𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  ( 
𝒙 

(𝑚𝑎𝑥_𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦_𝑔𝑒𝑛𝑒_𝑣𝑎𝑙𝑢𝑒_𝑎𝑙𝑙𝑜𝑤𝑒𝑑)
 )  ∗  (𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑤𝑒𝑖𝑔ℎ𝑡) 

 
𝑛𝑒𝑤 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 –  𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

 

This new phenotypic fitness is carried by the competent “individual” and selection is based on 

this modified fitness. 

 

As before, fitnesses of the best individual, competency-gene-value of the best individual, range 

of competency gene values in the population, and correlation between genotypic and phenotypic 

fitnesses over 1000 generations are plot (Figure 7 in the paper).  

 

In order to assess the role of the “competency penalty weight” hyperparameter, we ran several 

instances of experiment-4, each with a different competency penalty weight in the range of  

[10−7, 1].  

Progressively increasing the penalty weight from 10−7 led to an increase in the rate of rise of the 

genotypic fitness, with the Baldwin effect being clearly evident. However, increasing the penalty 

weight beyond 0.5 lead to the disappearance of the Baldwin effect altogether. 


