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Abstract: Biological genotypes do not code directly for phenotypes; developmental physiology is the
control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular
competency, since cells are not passive materials but descendants of unicellular organisms with
complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular
competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal
artificial embryogeny. Virtual embryos consisted of a single axis of positional information values
provided by cells’ ‘structural genes’, operated upon by an evolutionary cycle in which embryos’
fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated
in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic
mode in which cells interact prior to evaluation by the fitness function (“regulative” development).
We find that even minimal ability of cells with to improve their position in the embryo results in
better performance of the evolutionary search. Crucially, we observed that increasing the behavioral
competency masks the raw fitness encoded by structural genes, with selection favoring improvements
to its developmental problem-solving capacities over improvements to its structural genome. This
suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in
to improvements in the intelligence of its agential substrate, with reduced pressure on the structural
genome. This kind of feedback loop in which evolution increasingly puts more effort into the
developmental software than perfecting the hardware explains the very puzzling divergence of
genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling
intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico
and in bioengineering.

Keywords: artificial life; in silico; artificial embryogeny; evolutionary computation; development;
morphogenesis; basal cognition

1. Introduction

One critical aspect of real biology which is not always taken into account in evolution-
ary computation and theoretical biology efforts, is that the mapping between genotype and
phenotype is not direct [1–13]. Genes generally do not directly encode for structure and
function of the organism. Instead, it has become increasingly clear that developmental phys-
iology provides a critical layer of control that sits between genomes (on which mutation
operates) and anatomy (the phenotype which is the subject of selection). During develop-
ment, organisms emerge as the result of a complex set of interactions among cells, with
anatomical order and functionality being the result of cellular activities. While genomes
specify the cellular hardware (proteins), it is the software (cellular activity) studied by
developmental biologists that is ultimately responsible for the organism’s overall structure
and behavior [14–18].

The simple story of genomes determining anatomy is shown to be incomplete by
examples such as the highly regenerative planaria [19]: due to reproduction by fissioning
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and regeneration, they retain mutations made in the parent body and pass them on to their
offspring (somatic inheritance). As a result, planaria have an incredibly messy genome
(indeed, worms are mixoploid—different numbers of chromosomes in each cell). Despite
this, they have the most reliable anatomy: every fragment of a planarian regenerates a
perfect worm each time. They are essentially immortal, and highly resistant to cancer [20].
How can the animal with the most chaotic genome have the most reliable, robust anatomy?
Fundamental knowledge gaps in this area not only impede our understanding of basic
evolutionary developmental biology but also limit our ability to make desired system-level
changes to complex anatomy in the context of regenerative medicine [21–23].

The indirect relationship between genotype and phenotype has a number of important
implications. For example, it is currently impossible to guess the anatomy of an organism
by examining its genome—overall symmetry type, number and kinds of organs, size,
regenerative capacity, etc.—can only be estimated if one compares a genome to that of
another organism for which all of these are already known. Likewise, even when one has
access to complete genomes, for example of the frog and axolotl, one cannot guess the
shape of a chimeric embryo: will a “frogolotl”, consisting of 50% of each kind of cells, make
legs (like an axolotl larva) or not (like a tadpole)? This is because, while much research has
shed light on molecular mechanisms necessary for morphogenesis, the field still largely
lacks an understanding of the key dynamics that determine form and function: large-scale
anatomical decision-making by cellular collectives [19,24,25].

Importantly, the cells that make up these collectives evolved from independent unicel-
lular organisms with extensive capabilities for sensing their environments and responding.
The key role of these capabilities in morphogenesis reframes cells as an agential [26], not a
passive, material. There are numerous examples: one of the most remarkable qualities of
morphogenesis is its competency in reaching an adaptive anatomical outcome despite novel
starting states and perturbations [24,27,28]. For example, mammalian embryos can be split
into pieces, and each piece gives rise to a complete organism (monozygotic twinning). Some
animals retain these regenerative capacities into adulthood—salamanders whose limbs (or
eyes, jaws, tails, etc.) are amputated will re-grow exactly the missing portion and then stop
when the correct structure is complete [29]. Tadpoles with scrambled faces become largely
normal frogs, as the craniofacial organs move in novel paths until the correct configuration
is achieved [30–32]. Tadpoles with eyes placed on their tails (and not in their heads) can
see [33]. All of this means that mutations resulting in noise or changes in initial positions
of the organs, which would have been disastrous for a hardwired architecture, will not
have a strong effect on survival because the tissues will make needed reconfigurations
to compensate for errors in initial state. It is clear that this rapid, built-in capacity for
anatomical homeostasis and problem-solving must have implications for the evolutionary
process, but this has not been extensively explored.

We previously proposed that the competency of the developmental layer results from
the navigation policies of a collective intelligence of cells in anatomical morphospace—an
evolutionary precursor to the intelligence of neural cells which are well known to navigate
3-dimensional and other problem spaces [24,27]. We refer to these navigation policies as
competency of the cellular collective—the capacity to sense their environment and each other,
and to communicate to effectively solve problems in morphospace during development
(i.e., reach appropriate target morphology despite perturbations and changing internal
and external conditions). Such collective cellular intelligence is an essential aspect of
morphogenesis during development, regeneration, and cancer suppression, and is central
to the genome-form-function relationship. As has been claimed for learning [22,34,35],
these collective competencies could greatly smooth the evolutionary landscape and enable
access to regions of the phenotype space that would otherwise have been hard or impossible
to reach.

The evolutionary importance of information not encoded in the genome directly has
been studied previously by evolutionary biologists and in the field of artificial life, primarily
in the context of learning [24,27]. Many organisms can modify their behavior in light of
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experience, improving their fitness via information that was not provided by the genome.
As early as 1896, Baldwin proposed that such adaptive behaviors, while not encoded by
the genome, are assimilated into the genome (hardcoded) over evolutionary timescales,
a phenomenon known as the Baldwin Effect [24,27]. Classic simulations of the interplay
between learning and evolution demonstrated that the Baldwin Effect does indeed change
the evolutionary landscape of organisms capable of learning [24,27]. This dynamic offers
competing tendencies, in which learning takes pressure off the genome via a shielding
effect [24,27] at first, by providing behaviors that do not need to be discovered by evolution
of the genome. Subsequently, genetic assimilation takes the pressure off the need for
learning, by eventually finding ways to hardcode those behaviors. This learning paradigm
emphasizes two different kinds of fitness [24,27]. Genotypic fitness is the quality of the
structural genome—what the organism would have been able to accomplish given only
the static information in its genome. Phenotypic fitness is what selection actually ‘sees’—the
performance of the organism after both hardwired and learned repertoires have had their
chance to shine.

Here, we introduce cellular competency as another important contributor to pheno-
typic fitness. Cellular competency [25,34,35] has a number of important differences from
learning. First, the ability of cells and tissues to attain and maintain setpoints in morpholog-
ical spaces is independent of learning at the level of the individual. Second, learning at the
level of the organism needs a mechanism (e.g., nervous system architecture) that must itself
be painstakingly evolved—evolution must discover, maintain, and pay the costs of new
capabilities such as brains and exploratory behaviors. In contrast, cellular competencies
come “by default” because organisms consist of cellular components that already have
many capabilities evolved during their ancestral lifetime as independent organisms. Thus,
it is important to begin to study how cellular competencies affect evolution, to complement
approaches focused on learning, evolvability mechanisms [36–41], and the material proper-
ties of morphological computation [42–46]. All of these factors interact in vivo, and will
need to be studied separately and together.

The question we address here is: How do diverse levels of competency in the cellular
collective during morphogenesis impact the rate and course of the evolutionary process? We
undertook a quantitative investigation of this question using a minimal model of artificial
embryogeny. Our model did not include learning or classical behavior at the individual
level, but instead solved a problem in morphogenetic space. Our system simulates an
animal with a single axis of positional information values (such as the anterior-posterior
axis) [47,48]. Virtual embryos consist of a 1-dimensional array of integers, with their
evolutionary fitness being proportional to the degree of monotonicity of those values. In
the baseline case, we use a direct encoding where the phenotype is a direct consequence of
the genotype—the values of the array directly specify the order of values in each embryo.
Under these conditions, a genetic algorithm eventually produces structural genes in which
all the values are in the correct (monotonic) order. We compare these outcomes to a more
realistic case, in which the mapping is not direct: we introduce a development algorithm
in which individual cells have some degree of competency to rearrange themselves based
on their local environment. Cells can move to numerically more-advantageous positions
before evaluation of phenotypic fitness. We accomplish this through a restricted bubble
sort procedure [49], highlighting the conceptual similarity between sorting algorithms
and navigation in a geometric problem space. This corresponds to embryogenesis in vivo,
in which cells act before the mature animal’s fitness is ascertained in the environment.
Importantly, our system does not include Lamarckian inheritance. Instead, it features a
strong barrier between soma and germline: the rearrangements occur for each individual
but the only thing that gets passed on to their offspring is their original pre-swap structural
genome [50,51].

We varied the degree of cellular competency, and tracked the dynamics of the resulting
evolution, both in terms of raw genotypic fitness and phenotypic fitness. We also explored
the effects of adding a competency cost. We observed a number of interesting outcomes.
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First, including a developmental layer that models a range of cellular competencies im-
proves evolutionary efficiency in proportion to the degree of cellular competency. Second,
in mixed populations, competent individuals tend to eventually dominate the population.
Third, when the degree of competency is itself allowed to evolve, populations settle on a
specific, sub-maximal level of competency. Finally, and most critically, we observed that
because competency hides genetic deficiencies from selection, pressure to improve the
structural genome is released, while pressure to improve the morphogenetic competency of
cells is increased. These dynamics establish a positive feedback loop in which populations
advance by progressively improving cellular capacities, not just the genes dictating the
actual initial structure of each embryo. This provides an explanation for the otherwise mys-
terious disconnect between planarian genomes and their amazing anatomical robustness,
and suggests the existence of an evolutionary ratchet working to optimize intelligence in
even very basal forms [52–57].

2. Methods

We simulate the evolution of artificial 1-dimensional embryos in silico. The following
sections describe the structure of each embryo, our paradigm for modeling developmental
morphogenesis towards a target adult anatomy, and the process of selection employed to
study their dynamics over time.

2.1. Creating Populations for Evolution

A population consists of a number of embryos. Each embryo is represented as a
one-dimensional array of fixed size (matching the cell count in the 1-dimensional embryo).
Each cell of this array is initialized with a different integer value representing the positional
value gene for the corresponding cell of the embryonic axis (see Supplement S1). In this
minimal model, there is no further chromosomal structure or transcriptional change, and
we simply refer to the structural genes as directly specifying the positional preference of a
given cell. Each embryo undergoes a developmental cycle (described below) to become
a mature “individual”. We model evolution in three kinds of populations: a “hardwired”
population consisting of only hardwired embryos, a “competent” population of only
competent embryos, and a “mixed” population which contains both kinds of embryos, in
varying proportions. Our mixed populations have 200 embryos, the rest have 100.

2.2. Hardwired and Competent Embryos

We define two types of embryos, a “hardwired embryo” and a “competent embryo”
(Figure 1A,B). The difference between them lies in the way they develop during the evolu-
tionary cycle. A competent embryo consists of cells capable of sensing neighboring cells
and adapting morphology by moving around prior to the adult stage in which fitness is
evaluated. “Competency” is the capability of these embryos to carry out such reorganiza-
tion, and they carry a gene that dictates their degree of motility (fixed, in some experiments,
but free to evolve in others). Our competent embryos leverage sensing and motility to
reorganize their cells during ‘development’ in a way that boosts fitness (see below and
Supplement S1). We vary the degree to which they can reorganize (competency level). A
hardwired embryo lacks this capability; its structure from birth to maturity is constant.

2.3. Developmental Cycle

Soon after initialization, embryos undergo a developmental cycle. During this pro-
cess, competent (but not hardwired) embryos undergo a restricted bubble-sort procedure
(see Supplement S1) to rearrange their cells in a way that boosts fitness (i.e., to increase
ascending order of its array of integers). At the end of the developmental cycle, embryos
are considered “individuals”.
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Figure 1. Schematic of experimental setup. (A): Definition of a hardwired embryo: Each hardwired
embryo is a 1-D array consisting of 50 cells (10 shown here as example). Each cell takes an integer
value between [1, 50], and is considered to be its Structural Gene. The fitness of an individual is
defined as the degree of order within its genes (0 implying descending order, 0.5 implying random
order and 1.0 implying ascending order). In the example shown here, the embryo is randomly
initialized and hence has a fitness close to 0.5. (B): Definition of a competent embryo: Each competent
embryo is identical to a hardwired embryo except that it carries an additional “functional” gene
indicating how many cell movements it can carry out during a developmental cycle to achieve
ordered ascending arrangement before phenotypic assessment. The functional gene can be locked
down to a pre-specified value for an entire population or can be evolvable. (C): Description of the
genetic algorithm used to evolve hardwired and competent embryos. See Methods for details.

2.4. Fitness of Embryos and Individuals

We define fitness as the degree to which an embryo’s array of integers is in ascending
order. Individuals with cells arranged in ascending order by value are attributed a fitness
of 1.0 (maximum), those whose cells are randomly ordered are attributed a fitness of 0.5.
We calculate the fitness (the degree of order) of an array by counting the number of non-
inversions present (see Supplement S1). At the beginning of each evolutionary cycle,
all embryos are considered “just born”; their morphological structure determined by
their parents from the previous generation. Therefore, we call their fitness at the start
of each cycle the genotypic fitness. At the end of the developmental cycle, the fitness
of each resulting individual is calculated again, which we call the phenotypic fitness.
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For hardwired individuals, phenotypic and genotypic fitnesses are always identical. For
competent individuals, however, phenotypic fitness reflects the reorganization that occurs
based on their competency level.

2.5. Competency Level

At the start of each developmental cycle, a competent embryo is assigned an integer
representing its competency level. This integer determines how many successive bubble-
sort swaps will take place during its developmental cycle. Usually, competency levels are
much lower than the total number of bubble-sort swaps required by an embryo to attain
maximum fitness, for this reason it is called “restricted” bubble-sort.

2.6. Genetic Algorithm

To evolve populations (hardwired or competent), we iteratively pass them through
three stages (Figure 1C):

1. Selection: The fittest 10% of individuals in a population are selected to move on to the
next generation. Selection in a population is based on its individuals’ phenotypic fitness.

2. Cross-Over: In order to repopulate a population back to its original strength, we carry
out a process of reproduction called cross-over. It occurs as follows: Two individuals
are involved, each of these are split at a random location along their length. One
half of Individual 1 is swapped with the same half of Individual 2 to give rise to
two children. Figure 1 contains an illustration of this process.

3. Mutation: The repopulated population is subjected to random point mutations. We
set the probability of an individual receiving a point mutation to be 0.6.

3. Results
3.1. A Minimal System for Investigating Effects of Cellular Competency on Evolution

We built a virtual embryogeny model in which fitness was defined by the degree of
monotonicity of a 1D array of numbers, simulating a minimal metazoan bodyplan—a single
axis of positional information (Figure 1). The initial sequence of numbers for each embryo
was assigned randomly. Since these sequences decided the embryo’s structure (cell order),
they are referred to as its structural genes. As described above, in hardwired embryos, that
sequence is fixed: their genome directly encoded their phenotype. For competent embryos,
we implemented different degrees of competency during a developmental period in which
cells were allowed some degree of movement relative to their neighbors, allowing them to
reorganize to improve monotonicity prior to evaluation of phenotypic fitness. This enabled
phenotypic fitness for competent individuals to diverge from raw genotypic fitness, with
the extent of divergence depending on how much cell movement was permitted. This
corresponds to different degrees of capacity for cells in vivo to optimize homeostatically
preferred local conditions with respect to informational signals such as positional cues and
polling of neighboring cell states [58]. An evolutionary cycle was implemented around
these developmental events [58]. In the initial experiments, the competency gene is fixed
across the evolutionary run, enabling study of the evolutionary dynamics over time as a
function of different degrees of cellular competency.

3.2. Developmental Competency Accelerates Evolutionary Search

We first compared, over 250 generations, the time-course of evolutionary search
towards a fully ordered axis in hardwired vs. competent individuals. After 100 generations,
the hardwired population had the least fitness compared to populations with varying
degrees of competency (Figure 2 and Table 1). Table 1 provides a summary of the generation
number at which each population crossed different fitness thresholds. We compared
fitness of the best individual in competent and hardwired populations at generations 2, 10,
and 20 (because these points exhibited the greatest sample variances.) At each of these,
the difference in fitness between hardwired and competent populations was significant
(p-values << 1 × 10−3 for all points, Student’s t-test; for details see Supplement S2.1.1).
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Figure 2. Competent individuals have a higher rate of fitness than their Hardwired counterparts.
Three populations with different competency levels [Levels 20, 100, and 400] and a single hardwired
population were initialized. Competency level refers to the maximum number of cell-swaps a
competent embryo can execute during its developmental cycle. The individual with the maximum
fitness in each population was plotted over 250 generations. Shaded areas represent 95% confidence
interval bands over n = 100 repeats of each experimental condition.

Table 1. The number of generations different populations take to break through a particular
fitness threshold. The break-through times reported are for the best individual in the population.
Competency level indicates the number of swaps available to each embryo when initialized.

Competency Level Fitness Threshold
0.65 0.75 0.8 0.9 0.97 1.0

No competency (Hardwired) 10 18 24 42 72 250
Level 20 9 16 21 36 55 93
Level 100 5 9 12 19 26 37
Level 400 2 2 2 2 3 5

Figure 2 also shows that the 95% confidence interval bands over 100 repeat runs
decreased with increasing competency level, suggesting that more competent architectures
are also more consistent in performance over time. Note that hardwired individuals
gradually improved to reach peak fitness, taking well over 200 generations to do so,
whereas the most competent individuals (with a competency level of 400) did so in under
6 generations. These data demonstrate the role competency plays in non-linearly improving
the rate of fitness of a population and support a clear conclusion: the higher the competency,
the better the performance.

Based on the impact of competency, one could hypothesize that progressively in-
creasing competency would lead to a progressive decrease in selective pressure for good
structural genes to appear. An embryo with high competency would have no selective
pressure to improve its structural genes beyond a certain level because it can rely on its
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competency to re-order its cells to reach peak fitness. This is in fact what we observed
(Figure 3). We compared the genotypic fitnesses of the best individual in three populations
with different levels of competency (20, 100, and 400) to that of a hardwired population.
In all three competent populations, genotypic fitness rose with that of the hardwired pop-
ulation for a few generations, after which it plateaued, indicating that at this point, the
structural genes were good enough for competency to achieve a phenotypic fitness that
insured selection. Further, with increased competency, the 95% confidence interval bands
for genotypic fitness grew wider. Thus, as hypothesized, increasing competency in our
simulation enabled excellent performance but reduced selective pressure on the embryo’s
structural genes.

Figure 3. Competency comes at the expense of reduced genotypic fitness. Genotypic fitnesses of
the best individual in three different competent populations (competency levels 20, 100, and 400) were
compared with that of a hardwired population over 250 generations. Genotypic fitness is calculated
by computing what the phenotypic fitness of an individual would have been if it were not allowed
to enact its competencies. Shaded areas in the figure represent 95% confidence interval bands over
n = 100 repeats.

3.3. Competent Individuals Take over Mixed Populations

Given these tradeoffs, we next asked how mixed populations (200 embryos per popu-
lation) of competent and hardwired embryos would evolve (Figure 4). We varied both the
level of competency and the percentage of competent embryos in the hybrid population at
the start of the simulation. To probe the levels of competency required for embryos to dom-
inate the population over the evolutionary simulation, competent embryos were always
initialized as a minority of the starting population. Relationships between competency,
initial population proportion and dominance were observed over several runs.

When competent embryos constituted just 2.5% of the initial population, they failed to
dominate even at the highest level of competency tested: embryos with a competency level
of 95 merely reached equal percentages with hardwired embryos. As their initial proportion
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in the population increased, competent embryos required progressively less competency
to dominate over their hardwired competitors. At 10%, embryos with a competency level
of 75 could dominate; at 20%, the competency level required for domination decreased
to 40; and at 30%, competent embryos dominated with a competency as low as 10 (Figure 4).
In all starting conditions that resulted in dominance of competent embryos, it occurred
rapidly, in just two or at most three generations (Table 2).

Figure 4. Competent individuals dominate over hardwired individuals in a mixed setting when
given adequate competency. Each column represents the percentage of competent embryos in a
hybrid population (n = 200 total) at initialization, increasing from left to right. Each row shows data
from experiments at different competency levels, which increase from the top to bottom. Simulations
were run for 30 generations. Shaded area represents variance over 20 repeat runs of each experiment.

Table 2. Time taken by competent embryos to dominate over hardwired embryos when mixed
together in different ratios. Each column indicates the proportion of competent embryos in a hy-
brid population of size 200. The remaining embryos of the population are hardwired. Each hybrid
population was evolved over 30 generations with a fixed level of competency (rows). Compe-
tent embryos are said to dominate when their prevalence rises over that of hardwired embryos
and continues to rise or remains stable without dropping. Values indicate the number of genera-
tions required for competent individuals to dominate over hardwired individuals. “x” indicates
no dominance.

Competency Level Percentage of Competent Embryos
2.5% 10% 20% 30%

Level 10 x x x 3
Level 25 x x x 3
Level 40 x x 3 3
Level 75 x 3 3 2
Level 95 x 3 2 2
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3.4. Evolution Results in a High, Constant Level of Competency

To determine how competency might spontaneously evolve over generations, we
introduced competency as an evolvable trait by letting each embryo’s competency level
be determined by a single ‘competency gene’ with value in the range [1, 500]. During
initialization, the competency genes of all embryos were set randomly to low values in
the range [1, 15]. Then, during evolution cycles, we allowed each competency gene to be
mutated, potentially taking values across the range of [1, 500], and tracked the competency
gene values of the best individual over 1000 generations (Figure 5). The prevalence of
the competency allele rapidly rose, meandering and exploring values up to 485 during
evolution (shaded area in Figure 5A) before plateauing at ~470. We provide a possible
explanation for this outcome in the Discussion section.

Figure 5. Allowing evolution to set competency level: a perfect genome is not required to boost
fitness. Competency gene values for embryos (n = 100) were randomly initialized in the range
of [1, 15]. Over the course of evolution each competency gene was allowed to mutate to a value in the
range of [1, 500]. (A): Competency gene value of the most fit embryo over the course of evolution.
Shaded area represents the range of competency gene values in the population. (B): Fitnesses of
the best individual in a population of competent embryos with evolvable competency. Shaded area
represents variance over 100 runs. (C): Correlation of the genotypic and phenotypic values of the
population (shown as average values over sequences of 10 generations).

To understand how allowing the competency gene to evolve over 1000 generations
affects genotypic fitness, we looked at the phenotypic and genotypic values for the fittest
individual in each generation (Figure 5B). Values for the fittest individual quickly settled
at consistent configurations in which the phenotypic and genotypic fitnesses diverged
considerably. This is a fascinating outcome because it suggests that a certain level of
competency reduces the pressure for improvements in an embryo’s structural genes. Once
selection can no longer distinguish whether fitness is achieved by a set of good structural
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genes or by a high competency level that compensates for a poor set of structural genes, it
can only improve the population by increasing competency, not by selecting better genetics.

To quantify this effect and determine how well selection, which ‘sees’ phenotypic
fitness only, selects for genotypes when competency is allowed to evolve, we plotted the
degree of correlation between genotypic and phenotypic fitness for all individuals in these
populations (Figure 5C). Correlation dropped to 0 within about 20 generations as indi-
viduals who succeeded because of their developmental competencies rapidly dominated
the population. We conclude that allowing competency to evolve disrupts the ability to
select for the best structural genes. We further validated this by examining the frequency,
over 1000 cycles of evolution, with which positional changes to a single ‘cell’ resulted from
tweaks to the competency gene vs. from tweaks to one of the structural genes. Figure 6
shows that the frequency of changes to the competency gene was much higher than the
average of all fifty structural genes across 1000 generations in our simulation.

Figure 6. Evolution spends a greater proportion of time tweaking the competency gene compared
to any structural gene. Employing the experimental setup of Figure 5, we checked how often
changes occur within the structural genome of embryos vs. the competency gene, to determine
where the evolutionary process focuses most of its effort under various conditions. (A): Frequency of
changes that 50 structural genes undergo versus the frequency of change that 1 competency gene
underwent, averaged over time. Error bars represent standard deviation over n = 100 repeat runs of
the experiment. (B): Comparison of frequency of changes in 50 structural genes versus 1 competency
gene, as a function of evolutionary time. The graph is cumulative, i.e., the number of changes made
in the previous generation carry forward to the next. Shaded area represents variance over n = 100
repeat runs of the experiment.

3.5. A Fitness Penalty for Competency Leads to Continued Improvement of an Embryo’s
Structural Genes

The Baldwin Effect [59] is the now broadly accepted phenomenon in which individual
organisms can achieve greater reproductive success based on behavioral adaptations, and
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that these adaptations can eventually become hardwired into the genome in subsequent
evolutionary cycles. Hinton and Nowlan [58] found that introducing an algorithm for
behavioral learning into evolutionary simulations produced outcomes consistent with the
Baldwin Effect. Our initial simulations of the evolutionary impact of cellular competency
did not exhibit the Baldwin Effect. This could have been due to the fact that our minimal
model did not simulate any cost associated with increasing cellular competency, and thus
there was no selective pressure towards genomic changes. Although the actual energetic
(or other) costs of cellular competencies are not known for any living model system, it
is possible that the cellular computations required for axial patterning require additional
resources over and above developmental events (competent or not) that are essential for any
embryo. Thus, we next studied the effects of introducing a competency cost by penalizing
the fitness of embryos in our model by a factor of their competency-value. Using penalty
factors in the range of [1 × 10−7, 0.5], we did see a Baldwin effect: the rate of rise of
genotypic fitness corresponded positively with the increase in penalty factors. For penalty
factors over 0.5, the genotypic fitness rose well above the phenotypic fitness, leading to
disappearance of the Baldwin effect.

The results of simulation using a penalty factor of 1 × 10−4 over 3000 generations
are shown in Figure 7. As described above for simulations with no competency cost,
phenotypic fitness reached its maximum in under 20 generations. However, unlike the
previous experiment, the fitness of the structural genes did not plateau after a brief increase,
but continued to improve over the course of evolution (Figure 7A). Further, as the geno-
typic fitness rose, selection preferred progressively lower competency values (Figure 7B).
Phenotypic fitness was maintained at the maximum level, but the way in which embryos
achieved phenotypic fitness evolved to value structural genes over the competency gene.
Over time, selection ensured that the genotype improved to a stage where competency
became redundant—the Baldwin effect [59]. We conclude that in the context of expensive
competencies, selection is faced with a tradeoff between competency and the structural
genome: it can either pick high competencies and bear subsequent penalties, or, it can
pick low competencies and improve its structural genome. Since improving the structural
genome does not bear a cost, selection prioritizes improvement of the structural genome,
and over time, nullifies the effect of competency. Thus early gains based on the competency
gene are later assimilated into the structural genes, paralleling what has been described
previously in the context of organism-level learning [59].

Figure 7. Cont.
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Figure 7. Penalizing competency leads to its redundancy over time: the Baldwin Effect. Compe-
tent embryos (n = 100) were initialized with an evolvable competency gene. At each developmental
cycle, a fitness penalty of 1 × 10−4 times the competency value was applied. (A): Fitnesses of the best
individual in a population of competent embryos with evolvable competency penalized by a factor
of 1 × 10−4. Shaded area represents variance over 100 runs. (B): Competency gene value chosen by
the most fit embryo over the course of evolution. Shaded area represents the range of competency
gene values in the population at each time point. (C): Correlation of the genotypic and phenotypic
values of the population (shown as average values over sequences of 50 generations).

4. Discussion

Here, we focused on a specific and novel question: the implications, for the rate and
course of evolution, of a developmental process that exhibits competency at problem-
solving in anatomical morphospace [59]. We produced a minimal simulation (Figure 1)
that abstracted away many biological details to focus on a simple architecture: a phenotype
easily optimized by traditional genetic algorithms, and a new component: competency
of the individual cells to move based on interactions with neighboring cells, simulating a
single body axis morphogenetic gradient of positional information [59].

4.1. Genotypic vs. Phenotypic Fitness: Cellular Competencies and Learning

Our approach is related to the work on the role of learning in evolution [58,60–67].
What is similar is the emphasis on genetics as the specification for a system that will then
exhibit diverse behaviors that are not themselves hardcoded in the genome. Additionally,
similar is the fact that DNA, as a code for specifying protein sequences, actually cannot
encode directly for behavioral repertoires any more than it can directly encode morphology.
What is crucially different is that traditional approaches focus on animal-scale behavior,
which requires a novel and specific mechanism to evolve, such as nervous systems wired
so as to facilitate specific types of learning. In our model, there is no learning needed;
moreover, our system’s competency arises from a basic property of single cells: the ability
to sense their neighbors, prefer those of similar type, and migrate as needed to reduce stress
based on unmet expectations (e.g., intercalary regeneration in the limb [68–71]). Because
cells were once themselves individual organisms and are organized into networks with
homeostasis, allostasis, and homeorhesis properties [72–77], evolution is working with an
agential material [24,26], which has competencies that do not need to be evolved directly
(are present from the start).

However, it is likely that the cellular competency we examine here, and the behav-
ioral learning that has been modeled by others, interact in ways that have evolutionary
impact. For example, cellular activities can be the subject of behavior shaping by signals
(implemented by evolutionarily-sculpted properties of the subcellular hardware such as
signaling machinery and GRNs). In other words, much as organism-level learning enables
an individual’s function to be molded by signals from conspecifics and parasites; similarly,
cellular competencies open cells up to beneficial or detrimental signals from other cells
in the organism itself that can control them via real-time triggers. It will be interesting in
future work to understand how many results from the evolutionary learning field carry
over to the evolutionary implications of competency, and how these two different aspects
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of the divergence of genotype from phenotype interact with each other in hybrid models
that have both features.

4.2. Limitations of the Study

Our framework was more complete than many evolutionary simulations because
it included an explicit developmental layer between the genotype and phenotype. It
was multiscale in the sense that important changes occurred on an evolutionary scale
across individuals, but also ones driven by components of those individuals within their
lifetime—the cells, which had their own perspective and local goals. However, our system
clearly omitted a huge amount of biological detail with respect to cellular mechanisms
of sensing, competition, cooperation, etc. We intentionally designed a minimal model
to specifically focus on a few sufficient dynamics, and this likely under-emphasized the
difference between cellular competencies and, for example, effects of learning at the organ-
ism level on evolution. Fundamentally we explored a toy model virtual world in which
the individual roles of selection and competency could be quantitatively dissected in the
absence of confounding complexity—we sought generic laws and dynamics [78–82], not a
simulation of the detailed trajectory of any existing biological species.

Future work will add physiological layers, diverse cell types, computation at gene-
regulatory and cellular-network levels, and a multi-dimensional target morphology
(e.g., 2D or 3D pattern instead of just one primary axis) to more closely model biological
reality. There is also much that can be improved with respect to the specific mechanisms
that cells use to implement their competency: a rich set of diverse genes will be added in
the future to enable evolution to manipulate different types of local goals and competencies.
Moreover, recent discoveries in transgenerational inheritance [78–82] suggest that barrier
between the genome and the phenotype is at least somewhat porous, and the effects of
propagating sort order to offspring should be investigated.

4.3. The Role of Cellular Competency in Evolution

We found that providing cells with a minimal homeostatic competency to improve
their position in the virtual embryo results in better performance of the evolutionary
search. Populations reach better fitness values faster when cellular activity is able to
make up for genetic deficiencies (Figure 2). Indeed, in mixed populations, competent
individuals tend to dominate and rapidly take over (Figure 4), as long as they have a
minimal level of competency and/or are present in adequate numbers (Table 2). The
simulation highlighted the distinction between two properties of each individual that are
often conflated or obscured in simulations that do not include an explicit competency step:
genotypic vs. phenotypic fitness.

Indeed, biology has many examples of evolution’s attempts to gauge genomes that it
cannot see directly, for example by fluctuating asymmetry [83,84] and the near universal
standards of sexual selection for left-right symmetrical features (which in turn is correlated
with lack of genetic damage) [85–87]. In this system, we see that competency results in
good phenotypic fitness but takes selective pressure off of genotypic fitness, which settles
at a sub-optimal level (Figure 3).

Perhaps the most interesting aspect was the role that competency plays in exacerbating
the inability of selection to evaluate the genetic material that gets passed on to subsequent
generations. We observed that increases in competency made it harder and harder for
selection to pick the best structural genes. Specifically, the correlation between genotypic
and phenotypic fitness drops to insignificant levels very rapidly (Figure 5C). This could be
expected to result in complex dynamics, because competency improves fitness of individu-
als but impairs the ability of the evolutionary hill-climbing search in fitness space to pick
out the most elite structural genomes. Thus, we studied what happens when evolution
is also allowed to control the degree of competency, which is biologically realistic since
cellular capacities for sensing, computation, and action are themselves under evolutionary
selection. We observed that the population drives towards picking the highest competency



Entropy 2023, 25, 131 15 of 22

gene value in the population (Figure 5A), settling at a value close to 470. While this value
of competency is sufficient to boost an embryo’s fitness to maximum, it is not necessary.
We propose the following explanation.

Initially when evolution begins, the ordering of the cells is far enough from ascending
order that a high competency gene value is required to create individuals with high fitness.
At generation 20 or so, maximum fitness is achieved by choosing high competency gene
values, and by simultaneously improving structural genome quality to 57% genotypic
fitness. After generation 20, the genotypic fitness drops to a value of 52% and stabilizes
with no further improvements. From this value of genotypic fitness, a competency value
of 364 would theoretically be adequate to reach peak fitness. As a result, there is no selection
pressure for evolution to always pick the highest possible competency value (i.e, a value
of 480 seen in the shaded area of Figure 5A), because a value of 480 confers no additional
phenotypic fitness over a value of 364. They are perceived as equal by the selection process
and hence a random walk between these values would suffice. The reason we notice
evolution picking values close to 480 at the end of 1000 generations could be because of a
stochastic component to selection of embryos with competency gene values above 364. In
our experiments, if >10% of the population have a fitness of 1.0 before selection, we pick
the first 10%. This leads to the random selection of competency genes within the range
of [364, 480].

In our models, we had to make a number of quantitative choices with respect to
the evolutionary process. Thus, we checked how sensitive our conclusions were to these
decisions via a hyperparameter scan: re-running the simulations with different choices
for various hyperparameters (see Supplement S2.3.1). Specifically, we identified mutation
probability and selection stringency as key hyperparameters which could influence the
results of evolution. In an effort to probe their influence on the final competency gene value
attained, we ran this experiment for 132 different combinations of mutation probability
and selection stringency in the range of [0.2, 0.8] and recorded the stable-competency value
attained for each hyperparameter combination (Figure S1 in Supplement S2.3.1). Corre-
lation analysis revealed that a correlation of −0.4 existed between mutation probability
and stable-competency-gene-value. However, no relationship was found between selection
stringency and the stable-competency-gene-value. A possible reason for this could be that
after generation 20, almost every embryo in the population achieves maximum phenotypic
fitness, therefore there is no difference in choosing the top 20% of the population or the top
80% of the population. Mutation probability on the other hand has a direct influence on
changing individual fitness, which explains its moderately significant relationship with the
stable-competency-gene-value.

4.4. The Paradox of Robustness: Why the Animal with the Worst Genome Has the Best Anatomy

The competency of a population can be seen as granting robustness against pertur-
bations, i.e., competency resolves aberrations in the genome and lessens the burden on
evolution. The role of robustness in evolution has been a popular topic of discussion [88–92].
A population’s robustness is hypothesized to cause an evolutionary reduction in its adaptive
performance; a sort of maladaptation caused when improved robustness traits layer on
top of one another over evolutionary time and hide the underlying adaptive traits. This
paradox has been shown to have broad implications on organismal design and is supposed
to be a key aspect of evolution. Our results are in line with this paradox. Figure 3 is a
clear depiction of the role robustness plays in hindering the quality of the genome. At each
generation, increasing competency adds robustness that shields genomes which otherwise
would have been culled by evolution. When compared to a population with no competency
(hardwired), genomes in competent populations stabilize to a mediocre value whereas the
untampered hardwired genomes rise steadily to maximum fitness. However, it must be
noted that this is not necessarily a disadvantage. The paradox reveals the efficiency of
competency: genomes need not be perfect; a stable threshold value of the structural genome
is all that is required for competency to boost an individual’s fitness to maximum. Genetic
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information and problem-solving capacity of the cells work together to achieve a perfect
solution to this fitness function.

This dynamic relationship between genotype and cell competency demonstrated in our
simulation uniquely explains the remarkable example of planarian biology described in the
introduction [19]. How can animals with a chaotic genome have such robust anatomies? We
propose that planaria are an example of runaway competency: when cells get really good at
making up for deficiencies in the structural genes, evolution has such a hard time selecting
for the best genomes that further improvements instead increase generic competency to
reach their target morphology despite perturbations. This positive feedback loop results
in biological hardware that is highly successful at maintaining a specific morphology in a
wide range of circumstances.

Tolerance to genetic and environmental insults is seen to some extent in other species;
for example, human embryos are tolerant to being split at early stages, creating normal
monozygotic twins, while mutations in important genes can sometimes be overcome by
development [93–95]. However, in the amazingly regenerative planaria the effect was
apparently much stronger. We propose this also as an explanation for another curious
aspect of planaria. In every other model species, mutant lines are available—fruit flies
with different number of wings or color of eyes, mice with abnormal tails, and many more
genetic strains that are available from stock centers. In planaria this does not exist—no
morphologically abnormal genetic strains have been reported. In fact, the only available
abnormal line of planaria is a permanently two-headed form [96–98], which was produced
not genetically but by manipulating bioelectrical signaling—the modality that is used
to coordinate cellular competency [99–101], as is predicted by our model for species like
planaria. Given their resistance to mutation, it’s unclear how speciation in planaria happens,
but it should be noted that the same bioelectrical strategy that controls computation and
cognition (i.e., behavioral competencies) in brains has been shown to coax genetically
wild-type planaria to grow the heads appropriate to other species [102,103].

4.5. Genes Can Specify Direct Features, or Problem-Solving Behaviors

Of course, competency is itself carried out by molecular hardware which itself is
subject to evolution and is encoded in the genome. However, it has long been clear that
genotype does not uniquely determine the phenotype [104–106]). Development (and
thus, evolution) can make use of many principles of physics (bioelectric computations,
biomechanics, GRN memory, and other inherent properties [14–16,107–114]) that are not
directly encoded anywhere but are exploited by the genome-specified machine. Our
simulations study the effects of one type of such “free lunch”: cellular positional preferences
and ancestral capability of motility during development, which are distinct from the
environmental influences studied during typical epigenetics research. Our distinction is
between structural genes (which directly specify phenotypic features) and competency
genes (which specify a problem-solving machine that can exert context-sensitive activity).
This is a powerful distinction for the same reason that the hardware-software distinction has
driven a revolution in information technology. While the hardware (genome) is essential
and important, software (competency) harnesses novel laws of physics, computation, and
information processing that are not directly encoded by the hardware. This is akin to the
way a logic table is implemented, but not directly encoded by, the specification of the
transistors that make up a logic gate. This has been emphasized by fascinating work on
the “arrival of the fittest” (evolutionary exploitation of “free lunches” provided by generic
laws such as network properties [107,113–119]). While genes determine enzyme function
fairly directly, the relationship between genes and complex morphology and behavior is
extremely indirect [120]. However, the distinction between these modalities is not binary.
Thus, a more nuanced future framework will quantify (and exploit) a continuum of degrees
of directness with which a generative encoding determines form and function from a given
informational seed.
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4.6. Where the Hard Work Is Done: An Intelligence Ratchet

In planaria, most of the evolutionary “effort” seems to have gone into perfecting
the algorithm (the ability of cells to create a normal worm morphology), vs. keeping a
clean genome, because of the vicious cycle of competency increases. We found that the
competency gene is changed significantly more often over the course of evolution than any
structural gene (Figure 6). When gains can no longer be made efficiently by tweaking the
genome (once selection cannot reliably pick out the good genotypes), all the effort goes
in to increasing the competency level. This suggests the existence of a powerful ratchet
mechanism in which evolution progressively becomes locked into improvements in the
intelligence of the agential material with which it works, with reduced pressure on the
structural genes. A positive feedback loop in which evolution increasingly puts more effort
into the developmental software than perfecting the hardware points to a possible drive
for scaling intelligence in morphological and other spaces [53–55,121–123]. It is possible
that a drive for increased competency is an ancient and ubiquitous pressure [72], which
plays out to different degrees in different biological lineages based on other aspects of their
environmental and reproductive hyper-parameters.

4.7. The Costs of Competency

One factor resisting the runaway positive feedback for multiscale intelligence is the
cost of competencies. When included in our models (Figure 7B), it induced a classic
Baldwin effect of assimilation into the genome and subsequent lessening of the drive for
competency. However, whether this is realistic remains to be determined by measurements
in vivo that have not yet been done. On the one hand, it is reasonable to posit that
specific developmental computations (that might be needed for anatomical homeostasis for
example [124,125]) could carry a metabolic or other cost. On the other hand, these may be
capacities that cells are already doing regardless—they may be impossible to turn off, and
may represent a use of internal processes that carries no extra penalty. Examples include
bioelectric signaling that controls morphogenesis via ion channels needed for housekeeping
physiology and cancer suppression [99,126], and learning properties of gene regulatory
networks [127,128], which are emergent and require no new mechanisms for structural
plasticity. Moreover, some properties (such as behaviors and morphogenetic outcomes)
may simply be too hard to encode genetically, since genes directly specify proteins—not
complex anatomical states. Our simple model of a 1D positional information axis did not
enable that distinction (which may have otherwise limited the Baldwin effect and kept up
the pressure for competency, for the same reason that brainy and highly morphologically
plastic animals have advantages, despite the possibility of assimilation).

Another reason to include a competency penalty is to account for the extra develop-
mental time that may be needed for the cellular activities to take place. However, it is
not clear that this is a fair adjustment. We know of no data to suggest that the cleverer
activity of competent morphogenetic processes takes longer than is required by minimal,
feed-forward developmental mechanisms. Thus, giving a hardwired individual credit for
completing development faster (equivalent to the penalty for competency in our Baldwin
effect experiments) may not be an accurate modeling of the biology. Thus, we believe con-
clusions about the Baldwin effect and the limitations on competency observed in Figure 7
should be re-investigated in future work, when the real-world costs of these processes can
be measured.

5. Conclusions

These results suggest a diverse research program on the evolutionary interplay
between biological hardware and software. We suggest that the field of basal cognit
ion [52–54,57,121,122,129–131] is an important part of understanding evolutionary de-
velopmental biology [73,132–135], and that intelligence (problem-solving competency)
was an evolutionary driver long before complex brains and muscle-driven behavior
arose [52,53,56,136–143]. Beyond understanding natural evolution, we suggest that the
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design of autonomous robotics [144,145], synthetic life [146], and interventions for re-
generative medicine [35] can all benefit from deciphering and exploiting the multiscale
competency architecture so richly exhibited by living forms.
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