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Abstract: Feature detection and correct matching are the basis of the image stitching process. Whether
the matching is correct and the number of matches directly affect the quality of the final stitching
results. At present, almost all image stitching methods use SIFT+RANSAC pattern to extract and
match feature points. However, it is difficult to obtain sufficient correct matching points in low-
textured or repetitively-textured regions, resulting in insufficient matching points in the overlapping
region, and this further leads to the warping model being estimated erroneously. In this paper,
we propose a novel and flexible approach by increasing feature correspondences and optimizing
hybrid terms. It can obtain sufficient correct feature correspondences in the overlapping region with
low-textured or repetitively-textured areas to eliminate misalignment. When a weak texture and
large parallax coexist in the overlapping region, the alignment and distortion often restrict each other
and are difficult to balance. Accurate alignment is often accompanied by projection distortion and
perspective distortion. Regarding this, we propose hybrid terms optimization warp, which combines
global similarity transformations on the basis of initial global homography and estimates the optimal
warping by adjusting various term parameters. By doing this, we can mitigate projection distortion
and perspective distortion, while effectively balancing alignment and distortion. The experimental
results demonstrate that the proposed method outperforms the state-of-the-art in accurate alignment
on images with low-textured areas in the overlapping region, and the stitching results have less
perspective and projection distortion.

Keywords: image stitching; image alignment; feature correspondences increase; hybrid terms
optimization

1. Introduction

Image stitching is the process of merging a series of images with overlapping regions
into a high-resolution image with a wider field of view [1]. It has been widely used in
applications such as panorama [2], autonomous driving [3], video stabilization [4], virtual
reality [5], and many others. Up till now, there are still great challenges for image stitching
to align accurately, eliminate artifacts, and mitigate distortion, especially on low-textured
and large-parallax images.

Traditional image stitching methods often use feature points to obtain a global homog-
raphy matrix, and they map images with overlapping regions to the same plane. However,
these approaches only work if the images are in the same plane or only rotated around the
camera center. Under the condition of both parallax and rotation, global homography often
produces misalignment and/or artifacts in the overlapping region and distortion in the
non-overlapping region. Recently, spatially varying warping [6–8] has been widely used in
image stitching. It divides an image into several grid cells, and then aligns each grid cell
with local homography. It can effectively eliminate misalignment, but it may also produce
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distortions in the non-overlapping region. Since homography-based methods inevitably
generate distortions, researchers have taken a different approach by using a seam-driven
strategy [9–11], which finds the optimal seam according to a customized energy function.
Although such an approach can effectively mitigate distortions, it usually cannot achieve
the desired alignments. In addition, such a method relies too much on the energy function,
and it is more frequently used as a post-processing blending method to eliminate artifacts.
In recent years, deep learning-based image stitching frameworks [12–14] have been widely
studied by researchers. However, they may still not be able to achieve the desired accurate
alignment and distortion preservation performance compared to traditional methods.

Feature detection and correct matching are the basis of the image stitching process.
SIFT [15] is a feature point detection and matching method used by almost all image
stitching methods. After preliminary matching using SIFT, RANSA C [16] is used to remove
outliers and obtain inliers. Although SIFT can extract a large number of feature points,
the correct matching points after RANSAC iteration are greatly reduced compared with
the detected feature points, which may lead to insufficient feature correspondence in the
low-textured or repetitively-textured regions. Figure 1 shows the feature correspondences
of SIFT+RANSAC under three different image types. It can be seen that the traditional
SIFT+RANSAC pattern has sufficient inliers only under the condition of dense texture
in the overlapping region, while obviously insufficient inliers in low-textured areas (see
Figure 1a,c).

(a)

(b)

(c)

Figure 1. Comparing the number and distribution of inliers on different texture images. (a) Dense
texture. (b) Semi-dense texture. (c) Low texture. The images are from [8,17,18], respectively.
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Grid-based image stitching methods are heavily dependent on the quantity and
quality of feature points, which are crucial to the quality of image stitching results. The as-
projective-as-possible (APAP) warp model [8] is a typical mesh-based local warping model.
It uses SIFT+RANSAC as pre-processing. Figure 2a shows the inliers of APAP and the
stitching result. The input images are with low-textured or repetitively-textured regions,
which lead to insufficient inliers after RANSAC. It further causes misalignment of the
stitching result. RANSAC can increase the number of inliers by increasing the threshold.
Figure 2b shows the inliers and the stitching result after increasing the RANSAC threshold
appropriately. Obviously, increasing the number of feature correspondences produces a
more accurate alignment. However, limited by the local alignment of the APAP method,
some unacceptable jagged misalignments appear unnaturally. Furthermore, limited by the
characteristics of the RANSAC algorithm itself, when the RANSAC threshold is too high, it
may still generate false matches if the overlapping region has many similar textures.

(a) (b)

(c) (d)

Figure 2. Comparison of inliers and stitching results of different methods. For each subfigure,
the feature correspondences are on the top, and the stitching results are on the bottom. (a) APAP with
RANSAC threshold 0.1. (b) APAP with RANSAC threshold 0.5. (c) LPC. (d) Ours.

Considering that there may still be the issue of matching errors after RANSAC, elastic
local alignment (ELA) [19] introduces Bayesian feature refinement to further remove possi-
ble outliers. Although outliers hardly exist after using ELA, ELA also removes some of the
original normal values, and this may lead to the issue of insufficient feature points. Lever-
aging line-point consistence (LPC) [20] establishes a relationship between point and line
dual features, and it applies a characteristic number (CN) [21] to add salient points to the
feature point set to enrich the number of feature points. However, the feature points added
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by CN may not be correct matches, and they need to go through RANSAC, which will also
make a low-textured region with insufficient feature points (see Figure 2c). Although some
methods [18,22,23] that introduce line features and use LSD [24] to extract line segment
features can cope well with a low-textured environment, line segments are mainly matched
by endpoints, which are essentially point features, and they are subject to line segment
length thresholds. Currently, line segment matching is still a challenging problem.

Grid-based Motion Statistics (GMS) [25] assume that adjacent pixels share similar
motions, which is consistent with the principle of image stitching. It uses ORB [26] to
extract feature points. Since ORB can set the initial feature point threshold, combined
with GMS, it can increase the number of correct matching points in low-textured regions,
thereby ensuring that the warped model has sufficient anchor points for local alignment.
Compared with the SIFT+RANSAC pattern, the ORB+GMS method can not only make
feature correspondences sufficient, but also ensure the correctness of the feature matching,
which helps improve the quality of the stitching. The results of the proposed method are
shown in Figure 2d.

In this paper, we propose a novel image stitching method based on feature correspon-
dences increase and hybrid terms optimization warp. We first use the ORB+GMS algorithm
to extract and match feature points to obtain sufficient feature correspondences, and at
the same time we use line features to assist alignment and structure preservation; then,
an inital homography combining global homography transformation and global similarity
transformation is estimated as the initial homography to be optimized. On this basis, we
estimate various optimization terms for the final image warping. Finally, we obtain the
final stitching result by linear blending or seam-cutting blending. The overall process
architecture of our method is shown in Figure 3.

Figure 3. The overall process architecture of our method. The feature correspondences increase
module mainly increases the number of feature points to ensure accurate alignment. The hybrid
terms optimization warp is based on the above stage to obtain the optimal mesh deformation, which
further balances the alignment and distortion.

The contributions of our approach are as follows:

• A novel method to increase feature correspondences is proposed, which can be added
to any image stitching model. It solves the problem of insufficient feature correspon-
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dence in low-textured or repetitively-textured regions, and it can effectively eliminate
misalignment and artifacts.

• A novel hybrid transformation combining global homography transformation and
global similarity transformation is proposed to serve as the initial homography for
structure preservation, which can flexibly fine-tune the structure of image stitching
results compared to conventional global homography.

• Various optimization terms are used to locally adjust the above hybrid warping model,
which can effectively mitigate projection and perspective distortion. Our flexible and
robust method can effectively balance alignment and distortion, especially on images
with low-textured areas in the overlapping region. For images with large parallax
or significant foreground-background relationship, seam-cutting blending instead of
linear blending is used to eliminate inevitable misalignment or artifacts.

2. Related Work
2.1. Feature Extraction and Matching

Feature points refer to the points where the gray values of the image change drasti-
cally or the points with large curvature on the edges of the image, such as corners and
spots. In the early days, common corner detection algorithms were Harris corner [27] and
FAST [28]. Due to the feature limitations of corner points, Lowe et al. proposed SIFT [15],
which is invariant to scale, rotation, and brightness. It is robust and fast, and it has been
the most popular feature detector until now. SURF [29] improves the speed compared
with SIFT, which is more suitable for practical applications. BRIEF [30] uses the Hamming
Distance to achieve matching using the XOR operation between bits. ORB [26] combines the
advantages of FAST and BRIEF. Compared with SIFT/SURF, it can detect denser matching
points in areas with flat textures, and it has the best comprehensive performance among
the current traditional feature detectors.

After feature detection, the Brute Force (BF) [31] algorithm is often used for prelim-
inary matching, but there are often some false matches. In recent years, RANSAC [16]
has been the most popular method for filtering out outliers. However, it is affected by
the threshold of inliers; especially for locally aligned warping models, inliers are often
mistakenly eliminated by RANSAC, resulting in an insufficient number of points in flat
textured areas, and the rest cannot be guaranteed to be inliers, resulting in wrong stitching
results. Some researchers have taken corresponding countermeasures to the problem of
RANSAC. The triangular facet transformation (TFT) [32] uses bundle adjustment (BA) [33]
to optimize for false matches that may be due to noise. LPC [21] uses the CN [20] point-line
relationship to expand the matching point set, but the two-step RANSAC may lead to the
loss of feature correspondences in the weakly-textured region, thus affecting the stitching
results. Bian et al. proposed GMS [25], which assumes that adjacent pixels have similar
motion and distinguishes between correct and incorrect matches by computing statistical
scores within a small area around the matching point. It can be combined with ORB to
increase the number of features by increasing the matching point threshold to help the
matching quality, which makes it possible to solve challenging image stitching problems.
Therefore, compared to RANSAC, GMS is more robust to address feature matching errors
and insufficient features in low-texture regions.

2.2. Spatially Varying Warping and Seam Cutting

Traditional image stitching uses a global homography [2] to warp the image in the
ideal case where the scene depth has little change in overlapping regions. In recent years,
researchers have used multi-homography spatially varying warping to deal with parallax.
The dual-homography warping (DHW) [34] divides the scene into a background plane and
a foreground plane, and it aligns the background and foreground with two homography
matrices, respectively. Smoothly varying affine (SVA) [7] improves local transformation and
alignment with multiple affine transformations. APAP [8] divides the image into uniform
grid cells, and it performs local homography alignment for each grid, which can better
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cope with parallax scenes. However, grid-based spatially varying warping often produces
severe distortion in non-overlapping regions. The adaptive as-natural-as-possible (AANAP)
warp [17] combines local homography transformation with global similarity transformation
to effectively reduce distortion in non-overlapping regions. The shape-preserving half
projective (SPHP) warp [35] uses subregional warping to smoothly transition overlapping
and non-overlapping regions to reduce distortion.

Due to the difference in parallax and image capture time, artifacts inevitably appear
in the overlapping areas of the stitching results. Gao et al. proposed a seam-driven [9]
approach to deal with parallax and eliminate artifacts. Parallax-tolerant Image Stitch-
ing [10] is inspired by content-preserving warps (CPW) [36] and optimizes the use of
seams to improve the stitching performance of large parallax scenes. Seam-guided local
alignment (SEAGULL) [11] adds curved and straight structural protection constraints.
Perception-based seam cutting for image stitching [37] introduces human perception and
saliency detection to obtain the optimal seam, making the stitching result look more natural.
Xue et al. proposed a stable seam measurement [38], which is used to estimate a stable
seam cutting for mitigating parallax via a hybrid actor–critic architecture.

2.3. Structure Preservation and Distortion Mitigation

Lines are common features in natural images. Line structures bend unnaturally after
image warping. The dual-feature warp (DFW) [18] introduces the line segment feature,
and the constraint term constrains both points and lines to achieve better alignment.
The global similarity prior (GSP) [39] constrains globally similar angles with line alignment,
while local and global constraints are combined to reduce structural distortion. The quasi-
homography warp (QHW) [40] uses intersecting lines to preserve the nature of homography
warping. The single-perspective warp (SPW) [22] utilizes the QHW characteristic; it
introduces a variety of protection terms and uses the least square method to obtain the
optimal solution of the objective function to obtain the optimal homography. LPC [21]
introduces the concept of global lines on the basis of SPW, and it merges short line segments
into long ones to reduce the bending of line structures in natural images. Similarity
transformation has been proved in [34] to reduce distortion in the overlapping region,
and the reason being that similarity transformation are more rectangular and look more
natural than homography. Analogously, the work in [41] introduces line and regular
boundary preservation constraints to make the boundary of the stitching result as close as
possible to a rectangle, while reducing unwanted distortions.

The remainder of this paper is organized as follows. Section 3 presents the proposed
image stitching algorithm. The detailed experimental procedure and results are presented
in Section 4. Finally, the conclusions are summarized in Section 5.

3. The Proposed Method

The homography transformation is the most common method to achieve image stitch-
ing. For the single image warp, global homography warping can handle the cases in the
ideal conditions. However, under low texture and large parallax conditions, it is still a big
challenge to align accurately even with local homography. It is very dependent on the qual-
ity and quantity of features correspondences in the pre-processing stage. The traditional
SIFT+RANSAC pattern has been unable to satisfy the above requirements. Meanwhile,
the homography transformation inevitably introduces distortion in the non-overlapping
region. How to balance alignment and distortion has gradually become the key to single
image warping. In this section, we first describe our feature correspondences increase
module, and then we propose our hybrid terms optimization warp to address the balance
of alignment and distortion.

3.1. Feature Correspondences Increase

Inspired by GMS, we merge the feature correspondences increase module into the
image stitching process to solve the problem of insufficient feature correspondences in low-
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textured areas in the overlapping region. Compared with the one-step RANSAC, we try to
get more correct matches in low-textured or repetitively-textured regions to satisfy the local
warping model’s demand for sufficient feature points in overlapping regions to achieve
more accurate alignment. Here, we use ORB with high robustness and dense feature points
as the detector, BF for preliminary matching, and GMS refinement to distinguish between
correct and incorrect matches.

GMS considers that there are several features that match the matching relationship in
the correctly matched neighborhoods, while there are almost no features in the incorrectly
matched neighborhoods. According to this feature, GMS counts the number of features
that match the matching relationship to distinguish between correct and incorrect matches.
Let {N, M} be the number of feature points of the input image pair {Ia, Ib} after ORB+BF,
respectively. X = {x1, x2, . . . , xn} is all the feature matching neighborhoods from image Ia
to Ib. X can be classified as true or false by measuring the local support of each matching
pair through GMS. Xi ⊆ X is the subset of all neighborhoods. Si is the neighborhood
support, which is expressed as follows:

Si = |Xi| − 1, (1)

where −1 removes the original match from the sum.
GMS assumes that if the motion is smooth in a region, the correct matches have

the same spatial locations across multiple neighborhood pairs, while false matches have
relative spatial locations across multiple neighborhood pairs different. Equation (1) can be
rewritten as follows:

Si =
K

∑
k=1
|Xakbk | − 1, (2)

where K is the number of small neighborhoods predicted to move along with feature match-
ing. {ak, bk} is the predicted region pair, Xakbk belonging to X is the feature matching subset.

Let Tab and Fab be the same and different positions of the region {a, b}, respectively. f b
a

is the nearest neighbor feature in region b to one of the features in region a. pt = p( f b
a |Tab)

and p f = p( f b
a |Fab). Assuming that each region pair {a, b} has {n, m} feature points, then:{

pt = t + (1− t)βm/M
p f = β(1− t)(m/M)

, (3)

where β is the adjustment factor. Thus, Si be the number of matches in the neighborhood
of xi, the distribution of it follows the binomial distribution in Equation (2):

Si ∼
{

B(Kn, pt), if xi is true
B(Kn, p f ), if xi is false

. (4)

where K is the number of disjoint regions which match i predicts move together.
To calculate Si more efficiently, the image is divided into 20 × 20 grids as in [25].

The score Sij for the cell pair {i, j} is calculated as follows:

Sij =
K=9

∑
k=1
|Xik jk |, (5)

where |Xik jk | is the number of feature matches in the nine-square grid. The score threshold
τ is used to distinguish whether the feature matching is correct. If Sij > τ, the matching xi
at grid {i, j} is true; otherwise, xi is false.

In this way, we obtain a denser set of feature correspondences compared with the
traditional SIFT+RANSAC pattern. It will be used as input for the subsequent warping.
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3.2. Hybrid Terms Optimization Warp
3.2.1. Mathematical Preparation

Let X1 = [x1, y1, 1]T and X2 = [x2, y2, 1]T denote the feature points obtained by the
feature correspondences increase in the input images Ia and Ib, respectively. The alignment
of the overlapping region of the two images is a linear transformation from Ia to Ib in
homogeneous coordinates, which is defined below:

X2 = HX1, (6)

where H is defined as a 3× 3 matrix. If it is a global homography transformation, then we
have the following:

Hgh =

h1 h2 h3
h4 h5 h6
h7 h8 h9

. (7)

Similarly, if it is a global similarity transformation, we have the following:

Hgs =

s cos θ s sin θ tx
s sin θ s cos θ ty

0 0 1

, (8)

where s and θ are the scale and angle of the transformation, respectively. tx and ty are the
translation distances along the x and y directions, respectively.

In inhomogeneous coordinates:

x′2 =
h1x1 + h2y1 + h3

h7x1 + h8y1 + h9
, y′2 =

h4x1 + h5y1 + h6

h7x1 + h8y1 + h9
. (9)

Next, we would like to solve the homography Hgh and Hgs. Even though these inho-
mogeneous equations involve the coordinates non-linearly, the coefficients of H appear
linearly. Given N pairs of feature correspondences, we can form the following linear system
of equations:

Ah = 0, (10)

where A ∈ R2N×9. It is obtained by transforming Equation (9). Equation (10) can be solved
using homogeneous linear least square methods like Singular Value Decomposition (SVD).
From SVD, the right singular vector that corresponds to the smallest singular value is the
solution h, and then we reshape h into the matrix Hgh. For similarity transformation, we
filter out the similarity matrix corresponding to the rotation angle with the smallest angle
according to the feature points as the global similarity Hgs.

Global homography has difficulty producing an accurate alignment when the scenes
are not coplanar. In contrast, APAP uses spatially varying warping H∗, which expands
the homography H into multiple local homographies applied to each grid cell, and it uses
moving DLT for image alignment. This allows for better alignment in the overlapping
region. Similar to the method in [42], assuming that the feature point p in the image Ia can
be represented by a linear combination of a vector composed of four vertices of the mesh
V = [v1, v2, v3, v4]

T . It can be expressed as: p = WV, and the bilinear interpolation weight
of the four mesh vertices W = [w1, w2, w3, w4]

T . Then, these mesh vertices are formed into
the transformed mesh vertices V̂ = [v̂1, v̂2, v̂3, v̂4]

T after mesh deformation. Therefore, the
deformed vertex coordinate p̂ is calculated as the bilinear interpolation as follows:

p̂ = w1v1 + w2v2 + w3v3 + w4v4. (11)

As a result, we convert point correspondence constraints to mesh vertex correspondence
constraints.
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After the above preparation, the energy function can be defined as:

E = Ea + Ed + Es, (12)

where Ea addresses the alignment issue by feature correspondences increase model to
increase the number of correct matching (see Section 3.2.2), Ed addresses the distortion
issue by cross lines with a novel hybrid initial warp prior (see Section 3.2.3), and Es
addresses the salient content-preserving issue by protecting both local and global lines
from being bent in the non-overlapping region (see Section 3.2.4). The mesh warping result
is obtained by minimizing E (see Section 3.2.5). As all constraint terms are quadratic, they
can be solved and minimized by any sparse linear solver.

3.2.2. Alignment Term

The point alignment item Ep is used to align the two images {Ia, Ib}, which is defined
as follows:

Ep = ∑
i
||WiV̂i − p′i ||2= || p̂− p′||2, (13)

where p′ indicates the matching points in the image Ib. Line alignment is also considered
as an alignment supplement. Given a set of line correspondences {laj, lbj}, where laj ∈ Ia

is represented by the line segment with the endpoints Pak, and Pak = WpkV̂pk. lbj ∈ Ib is
represented by the line equation ajx + bjy + cj = 0 [18], then the line alignment term is
represented as below:

El = ∑
j,k
|| l′Tbj Pakλj ||2, (14)

where λj =
1√

a2
j +b2

j

. With the scalar λj, the weight between two endpoints is balanced in

terms of geometric meaning.
In summary, the alignment term is represented as:

Ea = λpEp + λlEl . (15)

3.2.3. Distortion Term

Both global homography and local homography can cause distortion in the non-
overlapping region of the image. This distortion is negligible for content close to the
common main plane, but more severe for content further away from the main plane.
In order to control the distortion of the target image Ia, a series of horizontal and vertical
lines are constructed, called cross lines. They are regarded as the intrinsic structure of the
image and are used to reflect the overall warping degree of the target image Ia.

In [40], s(x, y, k) is the slope of the line in Ib corresponding to the line passing (x, y)
with slope k in Ia. lu is the warped horizontal line and lv is the vertical line that is closest to
the boundary between overlapping and non-overlapping areas. If a homography warp is
given, there is a unique set of parallel lines corresponding to it. The slopes of the parallel
lines before and after warping are as follows:

k1 = −h7

h8
, s(x, y, k1) =

h4h8 − h5h7

h1h8 − h2h7
. (16)

Therefore, lv can be set to be the split line with slope k1 that is closest to the boundary of
the overlapping region and non-overlapping region, and lu can be set to be orthogonal to lv
before and after warping, as shown below:

k1 · k2 = −1, s(x, y, k1) · s(x, y, k2) = −1, (17)

Although cross lines can effectively alleviate the distortion of the global homography
and balance the projection and perspective distortion in the non-overlapping region, it
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can produce a severely stretched single-perspective stitching result when the scene depth
or parallax is large (see Figure 4b). Furthermore, it relies on the initial global homogra-
phy. If the global homography transformation is misaligned in the overlapping region
and severely distorted in the non-overlapping region, the cross lines can only alleviate
less distortions and cannot flexibly deal with the distortion and misalignment problems
without a fundamental solution that the distortion in the non-overlapping region caused
by homography. In [17], the global similarity transformation can effectively mitigate the
distortion in the non-overlapping region by iteratively finding the minimum rotation angle
of the transformation. Therefore, we mix the global homography transformation with the
global similarity transformation, and we adjust the rotation angle of the cross lines by
adding weights, so as to reduce the distortion flexibly (as shown in Figure 4d).

(a) (b) (c) (d)

Figure 4. The cross lines distortion mitigation results. (a) Warped mesh result of homography.
(b) Warped mesh result of SPW. (c) Warped mesh result of LPC. (d) Warped mesh result of ours.
The blue line is closest to the border of the overlapping region and the non-overlapping region,
and the red line is perpendicular to it. The smaller the slope of the cross lines, the less distortion.

In this paper, we change the initial global homography to a hybrid global homography
transformation and a global similarity transformation as shown in Figure 5. This is defined
as follows:

Hinit = Hgh + Hhy, (18)

where Hinit, Hgh, Hhy are the initial transformation, the global homography transformation,
and the hybrid adjustment terms, respectively. They are all 3× 3 matrices. The purpose
is to accurately align in the overlapping region, reduce distortion in the non-overlapping
region, and flexibly cope with large parallax and large scene depth. The hybrid adjustment
term is defined as follows:

Hhy = Why(Hgs − Hgh), (19)

where Hgs is the global similarity transformation, and Why is the weighting factor in the
range of [0, 1) for adjusting Hgs and Hgh. If Why is 0, Hinit is the global homography
transformation Hgh, at this time the slope of the cross line in Equation (15) is the largest.
Since the overall warping change is the largest, the distortion is the most serious. However,
the alignment is better; if Why is 1, Hinit is the global similarity transformation Hgs, but the
slope of the cross lines does not exist. The closer the value of Why is to 0, the higher the slope;
the higher the degree of warp, the better the alignment, but the more serious the distortion.
On the contrary, the closer the value of Why to 1, the smaller the slope, the smaller the
transformation angle, the less distortion, but the more serious the misalignment. Therefore,
it is necessary to choose the appropriate value of Why according to different types of images
to be stitched. The stitching results at different Why are shown in Figure 4.
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Figure 5. Hybrid global transformation. For the target image, the red dashed frame represents
the global homography transformation and the blue dashed frame represents the global similarity
transformation. The solid black frame in the middle represents the hybrid global transformation.

By the method discussed above, we divide the distortion term Ed into a perspective dis-
tortion term Eps that preserves the perspective given by the new hybrid homography warp
in Equation (18) and a projection distortion term Epj that mitigates the projective distortion.

Given the set of cross line correspondences {lu
ai, lu

bi} and {lv
aj, lv

bj} that are parallel to lu
and lv, the points of cross lines are recorded as {pui

k } and {pvi
k }, then

Eps = ∑
i=1

∑
k=1
|〈Wpui

k+1
V̂pui

k+1
−Wpui

k
V̂pui

k
,~nu

i 〉|2

+ ∑
j=1

∑
k=1
|〈W

pvj
k+1

V̂
pvj

k+1
−W

pvj
k

V̂
pvj

k
,~nv

j 〉|2

+ ∑
j=1

∑
k=1
‖W

pvj
k

V̂
pvj

k
+ W

pvj
k+2

V̂
pvj

k+2
− 2W

pvj
k+1

V̂
pvj

k+1
‖2,

(20)

where~nu
i and~nv

j are the normal vectors of lu
bi and lv

bj. In Equation (19), the first two terms
preserve the slopes of lu

bi and lv
bj, and the last term preserve the ratios of lengths on lv

aj.
The projection distortion term for the non-overlapping region of image Ia is defined

as follows:
Epj = ∑

i=1
∑
k=1
‖Wpui

k
V̂pui

k
+ Wpui

k+2
V̂pui

k+2
− 2Wpui

k+1
V̂pui

k+1
‖2. (21)

In fact, Equation (20) linearizes the scale on lu
ai in the non-overlapping region of Ia.

In summary, the distortion term is represented as:

Ed = λpsEps + λpjEpj. (22)

3.2.4. Salient Term

The salient term is used to preserve the line structure in the non-overlapping region
of Ia. Given the set of salient lines {ls

ak}, each ls
ak ∈ Ia is denoted by the set of endpoints

pk
j , then:

Els = ∑
k=1

∑
j=1
‖〈Wpk

j+1
V̂pk

j+1
−Wpk

j
V̂pk

j
,~nk〉‖2, (23)

where~nk is the normal vector of {ls
bk} that is calculated from the new homography Hinit in

Equation (17).
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Due to the limitations of line segment detection, the detected line segment is generally
not very long, and it may not be the actual line structure affected by the viewing direction or
other factors. When some local lines are actually collinear, if they are not globally optimized,
there will be significant global line bending after warping. Inspired by [20], we merge some
apparently collinear local line segments into global lines, while adding the global line term
Egs to the salient term.

Given the set of global lines {ls
ag}, each ls

ag ∈ Ia is denoted by the set of endpoints pg
k ,

then we have the following:

Egs = ∑
g=1

∑
k=1
‖〈Wpg

k+1
V̂pg

k+1
−Wpg

k
V̂pg

k
,~ng〉‖2, (24)

where~ng is the normal vector of {ls
bg}. Figure 6 also shows the effect of adding the global

line term on the stitching results.

(a) (b) (c) (d)

Figure 6. Global lines and hybrid transformation with different Why. (a) No global lines and Why = 0.
(b) With global lines and Why = 0. (c) With global lines and Why = 0.4. (d) With global lines and
Why = 0.9. The blue circles show the distortion mitigation effect with different Why, and the red
rectangles show the global lines for structure preservation.

Similarly, local lines term and global line term can be represented as follows:

Es = λlsEls + λgsEgs. (25)

3.2.5. Total Energy Function

The above terms can be written as a total energy function:

E = λpEp + λlEl + λpsEps + λpjEpj + λlsEls + λgsEgs. (26)

The above function is quadratic, and this turns into an optimization problem which can be
solved and minimized by any sparse linear solver.

To sum up, we define alignment terms, distortion terms, and salient terms based on a
novel hybrid initial warp prior to address alignment and distortion issues. Among them,
the point alignment term in the alignment term is based on our proposed feature cor-
respondences increase model. The stitching process of the two images is shown in
Algorithm 1.
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Algorithm 1 Stitching two images.

Input: a target image Ia and a reference image Ib.
Output: a stitched image.

1: Match point and line features between Ia and Ib to obtain {pa, pb} and {la, lb} via
feature correspondences increase.

2: Calculate a global homography Hgh and a global similarity matrix Hgs via dual-feature.
3: Calculate a hybrid warp Hinit by Equation (18) and Equation (19).
4: Calculate {lu

ai, lu
bi} and {lv

aj, lv
bj} from Hinit by Equation (16) and Equation (17).

5: Detecting salient line segments in the non-overlapping region to obtain {ls
ak}.

6: Merge collinear local line segments into global lines {ls
ag}.

7: Uniformly sample {lu
ai},{lv

ai},{ls
ak},{l

s
ag}.

8: Solve V̂ via minimizing the total energy term in Equation (26).
9: Warp Ia via the bilinear interpolation on the basis of V̂.

10: Stitching the warped Ia with Ib via linear blending or seam-cutting blending.

4. Experiments
4.1. Experimental Setup

The proposed method has been tested on selected datasets, including some public
datasets with 10 pairs of images in [8,10,17,20,34,39], and our own collected datasets with
5 pairs of images. Some input image pairs as examples are shown in Figure 7 for quantitative
evaluation and qualitative comparison. All the images are natural RGB ones. In addition
to regular natural images, we focus on images with low-textured or repetitively-textured
regions in the overlapping region, which will better demonstrate the effectiveness of the
proposed method.

(a) runway (b) car park

(c) football field (d) sidewalk

(e) jump runway (f) 025

Figure 7. Datasets for experimental demonstration. (a–e) are our own images. (f) is from [10].

We compare our approach with some state-of-the-art methods, including homography,
APAP, AANAP, SPHP, SPW and LPC. The parameters of the existing methods are set
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as suggested by the original papers. In order to facilitate the comparison of alignment
effects in the overlapping region and structure preservation effects in the non-overlapping
region, while avoiding seam-cutting blending to mask the original misalignment, all the
methods use linear blending. In addition, we also show the visual enhancement brought
by seam-cutting blending in [37].

In the experiments, we first extract and match ORB feature points, then we remove
mismatches with GMS, while using LSD [24] to detect line segments and match them
by [21]. The number of ORB feature points is 30,000. Since the image stitching task does
not involve rotation and scaling, the parameters of rotation and scaling in GMS are both 0.
For the hybrid terms optimization parameters, the deformation mesh size is set to 40 × 40,
and the inputs λp, λl , λps, λpj, λls, and λgs are set to 1, 5, 50, 100, 50, and 100, respectively.
The initial homography fine-tuning weight Why is set to 0.4. It is worth noting that Why and
λps are inversely proportional. If Why is too large and the transformation is approximately
similar to the global one, the perspective relationship will change significantly. Therefore,
the perspective term should be reduced to ensure alignment of the overlapping regions.
In this way, the non-overlapping region is close to the rectangle with the least distortion,
and the distortion term and the salient term can be appropriately reduced, and vice versa.
Since the salient term and the distortion term are competing in [22], the ration of the inputs
λpj and λgs are 1:1.

The proposed model is mainly implemented in MATLAB (some portions of the code
are written in C++), and all the experiments are carried out on a PC with AMD Ryzen 7
4800 H 2.90 GHz CPU and 16 GB RAM.

4.2. Quantitative Evaluation

We quantitatively evaluate the stitching quality of different single-perspective methods
using SSIM [43] in the range of [0, 1]. The larger the value of SSIM, the more similar the
structure after warping. The overlapping regions of each pair of images in the dataset are
extracted to compute the corresponding SSIM after alignment.

Besides, we quantitatively evaluate the alignment accuracy of the proposed method
by root mean squared error (RMSE) on feature correspondences:

RMSE( f ) =

√√√√ 1
N

N

∑
i=1
‖ f (pi)− p′i‖2, (27)

where N is the number of feature correspondences and f represents a planar warp. Table 1
shows the number of matches, SSIM and RMSE using different methods on different
datasets. Among them, the first four rows are dense texture images with small parallax,
the fifth to eighth rows are images with large parallax and no obvious low-textured areas,
and the last seven rows are images with obvious low-textured areas in the overlapping
region. The traditional SIFT+RANSAC model is used as a baseline model for comparison.
Compared to it, our feature correspondences increase model significantly increases the
number of matches generally. The more feature correspondences there are, the greater the
image information entropy is, and the better the image detail performance is, so as to obtain
a better stitching result. In particular, it allows sufficient matches for grid-based stitching
algorithms, especially for low-textured images. Additionally, the values of SSIM and RMSE
also show that our method outperforms other methods, especially that our method achieves
the highest scores on images with significantly weakly textured or repetitively textured
regions. On other types of images, although some scores are low, the scores of our method
are comparable with other methods.
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Table 1. Comparison on matches, SSIM and RMSE.

Databases
SIFT+RANSAC Global Homography APAP SPW LPC OURS

Matches RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM Matches SSIM RMSE

fence [17] 597 0.6489 1.7674 0.7011 1.7773 0.6952 1.4592 0.6807 1.3368 5911 0.7184 1.5014
Potberry [20] 360 0.3971 2.3419 0.5904 2.3419 0.4648 2.0559 0.5144 1.8928 3772 0.6142 1.7384
railtracks [8] 651 0.4474 2.5763 0.6354 2.5767 0.6361 2.217 0.5871 1.5155 6176 0.6738 1.6670

DHW-temple [34] 322 0.5517 2.6633 0.6799 2.6437 0.6057 2.2674 0.4999 2.3199 5474 0.6935 1.6570
MemorialHall [39] 64 0.5370 2.5169 0.5590 2.5169 0.5018 2.2710 0.5217 1.7471 1603 0.5417 1.8711

017 [10] 330 0.5871 3.0506 0.6151 3.3019 0.6254 2.3501 0.6139 2.6153 5064 0.6273 2.4313
cup [20] 159 0.4747 2.6436 0.5509 2.1149 0.4778 2.4807 0.4778 2.6069 3041 0.5730 2.0057

office [20] 181 0.5415 3.5423 0.6582 3.5423 0.6150 3.0166 0.6124 2.8839 2991 0.6904 1.9996
intersection [17] 426 0.3612 3.4626 0.4809 3.5073 0.4152 2.5591 0.4285 2.8868 4314 0.5520 1.9684

tower [19] 652 0.5734 3.2967 0.7601 3.2989 0.7702 2.2089 0.8259 1.6391 6409 0.8501 1.6145
runway 208 0.5180 3.0860 0.5892 3.0865 0.5510 2.7476 0.5584 2.0154 3846 0.6632 1.4540
car park 293 0.4044 2.6544 0.4573 2.6544 0.4313 2.4622 0.2328 3.7501 3565 0.4978 2.3074

football field 237 0.4881 3.1110 0.5828 3.1110 0.4872 2.5211 0.4251 1.9414 3641 0.5879 1.6641
sidewalk 245 0.7261 2.3933 0.7681 2.3933 0.7270 1.9704 0.4740 2.9211 3130 0.7953 1.9711

jump runway 117 0.7299 1.8474 0.7457 1.8470 0.7535 1.6250 0.6628 1.9676 2347 0.7499 1.7163

4.3. Qualitative Comparison

First of all, we replace the traditional SIFT/SURF + RANSAC pattern in each method
with the proposed feature correspondences increase model. Figure 8 compares the stitching
results of some methods before and after applying feature correspondences increase on the
dataset intersection [17]. As in the original three methods shown in Figure 8a, the inliers
are mostly concentrated in the house area as indicated by the blue circle, so the alignment
around the house area is better. Since the feature points are only concentrated in the
dense-textured region, the feature correspondences of low-textured region is insufficient,
which leads to serious misalignment, as shown in the red rectangle. APAP is a grid-based
local alignment method, and some pixels will destroy the continuity and consistency of the
original texture. However, SPW, LPC and SPHP do not destroy the original texture of the
image due to the restriction of alignment terms. Figure 8b shows the results after applying
our proposed method. Due to the increase of feature correspondences, the alignment of
the three methods is more accurate in low-textured regions. The local alignment property
of APAP itself causes it to suffer structural damage, but with less distortion in the non-
overlapping region. It also illustrates that grid-based local alignment relies on a sufficient
and efficient distribution of the number of feature points. In the case of increased feature
correspondences, SPW and LPC ignore the distortion of non-overlapping regions due to
over-focusing on alignment. It results in a less smooth transition between overlapping
and non-overlapping regions. LPC is better than SPW, but it still has artifacts. SPHP has
more accurate alignment compared to using SIFT+RANSAC. However, due to its excellent
distortion preserving properties, alignment is not as accurate as SPW and LPC. The above
experiments indicate that our proposed feature correspondences increase model can be
added to any feature point-based method to replace the original SIFT/SURF+RANSAC
pattern to improve alignment accuracy. However, accurate alignment is often accompanied
by inevitable distortions in the non-overlapping region. The next issue we want to focus on
is how to balance alignment and distortion.

(a)

Figure 8. Cont.
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(b)

Figure 8. Comparison of the stitching results for increasing the number of features. (a) The original
methods of APAP, SPW, LPC and SPHP, respectively. (b) After applying our method. The red boxes
represent the low texture region, and the blue circles represent the dense texture region.

Figure 9 shows the stitching results of different methods on the dataset runway.
The first column shows the stitching results. The runway areas in the red rectangles
represent low-textured regions, and the magnified versions are shown in the second col-
umn. Similarly, the buildings in the blue rectangles represent the densely-textured regions,
and their magnified versions are shown in the third column. Global homography does not
yield satisfactory results due to the presence of parallax. There is obvious misalignment,
either in the building or the runway. The results of APAP based on local alignment are
slightly better than those of global alignment, but the feature points are concentrated in
the densely-textured region, while they are insufficient in the low-textured regions. This
leads to more accurate alignment in the building and serious misalignment in the runway.
Further, global homography and APAP have the same projection and perspective distortion
in the non-overlapping regions. The third and fourth rows demonstrate two methods of
warping two images. While they effectively mitigate the distortion in the non-overlapping
regions, insufficient inliers cause misalignment in low-textured regions, as shown in the red
rectangles. The fifth row shows the results of TFA. Although it uses a two-step RANSAC
outlier removal method to ensure the matching points as correct as possible, the character-
istic of SIFT+RANSAC pattern leads to a serious lack of correct matches in the low-textured
regions, which in turn leads to misalignment as shown in the red rectangles. Meanwhile,
the triangulation method destroys the original structure, causing the line structure to be
bent in the overlapping regions. In the non-overlapping region, its distortion preservation
is better than global homography and APAP. In addition, SPW also shows misalignment in
the overlapping regions. Although LPC aligned the densely-textured regions, it still caused
serious misalignment of the runway areas due to insufficient feature points. Due to its more
accurate alignment in the densely-textured regions in the blue rectangles, the distortion in
the non-overlapping regions is more severe than SPW. To better demonstrate the effective-
ness of our method, we provide three comparisons of results. The eighth row presents the
results using only our feature correspondences increase (FCI) model. The ninth row shows
the result of using only our hybrid terms optimization (HTO) warp but SIFT+RANSAC as
the feature matching stage. The last row is the results of using both FCI and HTO. Using
only FCI or HTO may not achieve the results we expect. Alignment using only FCI is
significantly more accurate, but there is still slight distortion. Distortion is significantly
alleviated by using only HTO but SIFT+RANSAC in the non-overlapping regions, and the
target image is more rectangular, but the alignment of overlapping regions is less accurate.
When both FCI and HTO are used, our method is aligned in the densely-textured regions.
In addition, our alignment is very accurate in the low-textured regions compared to other
methods. Furthermore, our method also outperforms SPW and LPC in terms of distortion
in the non-overlapping regions. Our method achieves a balance between alignment and
distortion to a certain extent.
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Figure 9. Comparison of stitching quality on runway. Row 1: Results using global homography. Row
2: Results using APAP. Row 3: Results of AANAP. Row 4: Results using SPHP. Row 5: Results of TFA.
Row 6: Results of SPW. Row 7: Results of LPC. Row 8: Results only using our feature correspondences
increase (FCI) model. Row 9: Results only using our hybrid terms optimization (HTO) warp but
SIFT+RANSAC. Row 10: Results of our approach by using both FCI and HTO.
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4.4. Seam-Cutting Blending

The proposed method has achieved more accurate alignment and it effectively balances
alignment and distortion by linear blending. Nonetheless, in some challenging large
parallax scenes, our method may produce misalignment if only linear blending is used.
Therefore, we introduce seam-cutting blending, which can effectively eliminate the artifacts
and misalignment brought by linear blending.

The approach proposed in [10] is a typical seam-driven stitching method. Similar to
the other methods we compared, it uses SIFT+RANSAC as feature matching, and it has
similar optimization constraints. However, there is no line structure preservation term
in its energy function. Figure 10 presents the comparison of [10] and our method on the
dataset 025. The red circles highlight the differences between the two methods in the
overlapping regions. The results of [10] present significant bending of the line structures
at the transparent glass building. In contrast, our method outperforms this approach in
terms of line structures preservation since our salient term can effectively protect the line
structures from being bent. Besides, our method is also slightly better for distortion in the
non-overlapping regions.

(a)

(b)

Figure 10. Comparison of [10] and our method on dataset 025. (a) Stitching result of [10].
(b) Stitching result of our method. The red circles highlight the differences between the two methods
in the overlapping regions. Our method protects the line structure better from being bent.

In addition to applying seam-cutting blending to handle large parallax scenes to a
certain extent, our method can also deal with continuous structure damage and heavy
occlusion issues due to a more accurate alignment. In fact, seam-cutting blending also
depends on the pre-alignment. If the pre-alignment is severely misaligned, seam-cutting
blending may destroy the original texture structure, resulting in inconsistent and discontin-
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uous stitching results due to the inaccurate pre-alignment. Figure 11 shows the difference
between LPC and our proposed method using seam-cutting blending on a large parallax
example in our own dataset. It can be seen that the linear blending results of our pro-
posed method are better than those of LPC with a different optimal seam. As a result,
the seam-cutting blending of LPC destroys the original line structures, resulting in an
obvious misalignment. This is shown in the blue circle in Figure 11e. In Figure 11f, our
method achieves accurate alignment.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Comparison seam-cutting blending effects of LPC and ours. (a) Stitching result of LPC
using linear blending. (b) Stitching result of ours using linear blending. (c) Optimal seam of LPC.
(d) Optimal seam of ours. (e) Stitching result of LPC. (f) Stitching result of ours. The difference is
shown in the blue circle. It is obvious to see that the seam blending of LPC destroys the original texture
structure owing to misalignment seriously. In contrast, our method produces better seam-cutting
blending due to more accurate alignment.

Likewise, if the object has a serious occlusion relationship between the foreground and
the background, the degree of post-warp alignment will seriously affect the final results.
Figure 12 shows an example with a front-to-back occlusion relationship via [19]. It can
be seen that the optimal seam of our method effectively avoids the occlusion of the target
foreground and background, and achieves accurate alignment (see Figure 12d,f).
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(a) (b)

(c) (d)

(e) (f)

Figure 12. (a–f) Seam-cutting blending results of images with severe occlusions. The red line
indicates the optimal seam of LPC and ours. The seam of the LPC destroys the relationship between
the foreground and background of the object in the blue circle. However, our method is capable of
aligning accurately enough to avoid this problem.

5. Conclusions

In this paper, we propose a novel feature correspondences increase and hybrid terms
optimization warp for image stitching. It can deal with the misalignment issue caused by
insufficient feature correspondences of low-textured areas in the overlapping region and the
distortion issue in non-overlapping regions, with better balancing alignment and distortion.
The proposed method with seam-cutting blending can solve the issue of large parallax
and occlusion. Both quantitative evaluation and qualitative comparison experiments show
that the proposed method is more accurate in alignment and less distortion in the non-
overlapping region compared with other methods, especially on images with low-textured
areas in the overlapping region.
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