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Abstract: In this paper, we conduct a survey of the literature about reinforcement learning (RL)-based
medium access control (MAC) protocols. As the scale of the wireless ad hoc network (WANET)
increases, traditional MAC solutions are becoming obsolete. Dynamic topology, resource allocation,
interference management, limited bandwidth and energy constraint are crucial problems needing
resolution for designing modern WANET architectures. In order for future MAC protocols to
overcome the current limitations in frequently changing WANETs, more intelligence need to be
deployed to maintain efficient communications. After introducing some classic RL schemes, we
investigate the existing state-of-the-art MAC protocols and related solutions for WANETs according
to the MAC reference model and discuss how each proposed protocol works and the challenging
issues on the related MAC model components. Finally, this paper discusses future research directions
on how RL can be used to enable MAC protocols for high performance.

Keywords: MAC reference model; wireless ad hoc network; medium access control protocols;
reinforcement learning

1. Introduction

The wireless ad hoc network (WANET), as a wireless communication network with
frequently changing topology [1], has attracted extensive attention among scholars. A
large number of mobile nodes (MNs) with functions such as information perception, data
processing and wireless communication constitute a WANET environment. Therefore, the
communication medium is often shared by multiple nodes at the same time and controlled
with medium access control (MAC) protocols. A WANET is a decentralized type of wireless
network not relying on a preexisting infrastructure [2,3]. Maintaining the reliability and
security of wireless networks (WNs) is especially difficult, compared to the infrastructured
device because of the mobility of nodes. Moreover, due to the hidden node problem,
signal collision occurs frequently when two nodes do not know the existence of each other
and need to access the shared media at the same time. The wireless network topology is
highly dynamic because wireless links are very fragile due to path loss, poor interference
immunity and the mobility of MNs. Moreover, whenever congestion occurs at intermediate
nodes, packet loss and delays accumulate, which makes it impossible to obtain satisfactory
network performance. It is a pressing demand for the development of efficient intelligent
schemes to improve the performance of WANETs.

In highly dynamic WNs, MAC protocols are also required to be designed to adapt to
changing conditions [4,5]. In the last several years, machine learning (ML) has been widely
applied in solving different application-oriented problems. It allows the agent to learn
different rules through statistics and different data sets by applying artificial intelligence
(AI) to handle the design and development of algorithms and models [6,7]. ML is suitable
for solving network problems due to the following two reasons: its capability of interacting
with the environment from input information and its capability of making control decisions,
i.e., wireless devices collect large quantities of observations, then feed them into ML algo-
rithms to help make better decisions. For example, a series of techniques are used to design
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and optimize nodes in dynamic scenes to adapt to constantly changing environments.
Some solutions are dedicated to rescue operations [8], forest fire monitoring and preven-
tion [9]. Similarly, there are some works for underwater acoustic networks (UANs) [10–12],
the Internet of things (IoT) [13–16], unmanned aerial vehicle (UAV) formations [17–21],
vehicular ad hoc networks [22], flying ad hoc networks (FANET) [23–25], heterogeneous
networks (HetNet) [26–29] and next-generation wireless communication [30–32]. In addi-
tion, there are some works aimed at security [33], robustness [34], energy saving [35,36],
adaptability [37–40,40–42] and stability [43–51]. As recent WNs become more complex,
more demands are placed on learning systems [52]. In such dynamic networks, intelligent
MAC schemes should be designed to adapt to changing topologies. Instead of switching
between different solutions, reinforcement learning (RL) is used to continuously evaluate
channel conditions by inquiring and responding to a channel state in order to maintain a
conflict-free schedule.

Considering the important role of intelligent model in addressing the above chal-
lenges, this paper presents an overview of intelligent applications at the MAC layer with a
comprehensive understanding of ML-based MAC protocols under a MAC reference model.
We focus on RL [53] and deep reinforcement learning (DRL) [54] approaches in the context
of WANETs. The main contributions of this paper are summarized as follows:

• We describe how to use RL to classify observations into positive/negative types, and
how to integrate it with different MAC components, to make a better decision.

• We review different RL algorithms used in various MAC components.
• We summarize open research issues and future directions in this field.

As shown in Figure 1, the rest of the paper is organized as follows. Section 2 discusses
existing survey articles in this area, with some classic RL schemes introduced in Section 3. We
classify the reviewed RL-based MAC protocols according to the MAC reference model [55] and
summarize them in Section 4. Then, we present research challenges to improve the MAC design
and discuss further research issues in Section 5. Finally, we conclude this study in Section 6.

Figure 1. Paper outline.

2. Review of Related Survey Articles

Through a comprehensive survey of the intersection of the two fields, Ref. [56] bridges
the gap between deep learning (DL) and mobile wireless network research by introducing
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DL methods and their potential applications in mobile networks. It also reviews various
technologies that can be used to deploy DL on WNs, such as data analysis, network control,
signal processing, etc. In addition, it also provides a comprehensive list of papers related to
mobile/WNs and DLs and classifies them according to different application fields.

Ref. [57] introduces the latest application of ML in improving the performance of MAC
throughput, energy efficiency and delay in wireless sensor networks. It comprehensively
reviews the application of ML technology and supports the implementation of real-time-
based Internet of things (IoT) applications by optimizing the performance of MAC protocols.
A similar work was conducted in [58]. In order to reduce the energy consumption of IoT
devices and achieve a higher throughput, this paper summarized the RL-based time-
division medium access (TDMA) MAC protocol and compares them from several unified
features.

Ref. [59] surveys ML models, radio and MAC analysis and network prediction ap-
proaches in WNs, considering all layers of the protocol stack: physical (PHY), MAC and
network. A comprehensive review is conducted on the use of ML-based schemes to opti-
mize wireless communication parameter settings to achieve an improved network quality
of service (QoS) and quality of experience (QoE). Finally, research challenges and open
issues are discussed. Ref. [32] also conducts an in-depth survey on recent network opti-
mization AI methods to ensure end-to-end QoS and QoE in 6G. It introduces the ML-based
works of end-to-end transport flows from network access, congestion control and adaptive
flow control. Some outstanding problems and potential research directions are discussed.
Refs. [30,31] also survey multiple access schemes for next-generation wireless systems and
give a detailed comparisons of 1G to 6G.

Ref. [60] surveys the latest works of ML applications in WNs by classifying them into
three types according to different protocol stacks: resource control in the MAC layer, routing
and mobility management in the network layer and localization in the application layer. In
addition, several conditions of applying ML to wireless communication are analyzed, and
the performance comparison between the traditional methods and ML-based methods is
summarized. Finally, challenges and unsolved problems are discussed.

The reconfigurable intelligent surface (RIS) technology is used to reconstruct the
wireless propagation environment by integrating the characteristics of large arrays with
inexpensive antennas based on metamaterials. However, the MAC of RIS channels sup-
porting multiuser access is still in the preliminary stage of research. Ref. [61] elaborates
the architecture of the integration of a RIS and a MAC protocol in a multiuser commu-
nication system, introducing four typical RIS-assisted multiuser scenarios. Finally, some
challenges, prospects and potential applications of RIS technology related to MAC design
are discussed.

Ref. [62] outlines various ML-based methods in wireless sensor networks (WSNs) for
smart city applications. The ML methods in WSN-IoT was investigated in detail, including
supervised and unsupervised learning algorithms and RL algorithms.

ML is expected to provide solutions to various problems of UAVs used for communica-
tion. All relevant research works have been investigated in detail in [63], which have been
used in UAV-based communications from the aspects of channel control, resource allocation,
positioning and security. Table 1 compares our survey with the discussed references.
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Table 1. Comparison between our survey and the related existing ones.

Reference Networking Schemes
Learning Model

Survey Contents
RL DL DRL Other

[56] (2019)
Cellular, ad hoc, cognitive

radio networks (CRNs),
IoT

X X
The crossovers between DL models and

mobile/wireless networking

[57] (2017) WSNs, IoT X X ML algorithms for WSNs.

[58] (2022) TDMA, IoT X X
RL-based schemes for TDMA-based

MAC protocols.

[59] (2021) IoT, mobile big data,
CRNs, WSNs X X X

RL-based schemes for WNs of three layers:
PHY, MAC and network.

[31] (2022) 1G to 6G X
Multiple access schemes for

next-generation wireless.

[32] (2021) WNs X X X
ML-based methods for ensuring

end-to-end QoS and QoE.

[60] (2019) Cellular, WNs X X
ML-based schemes for network access,

routing for traffic control and streaming
adaption in WSNs.

[61] (2021) RIS-aided WNs X AI-assisted MAC for RIS-aided WNs.

[62] (2021) WSN, IoT X X
RL-based methods in WSNs for smart

city applications.

[63] (2019) UAV, WNs X
ML framework for UAV-based

communications.

This paper
WSNs, IoT, cellular, ad

hoc, CRNs, USNs, HetNet,
UANs

X X X
RL/DRL-based MAC protocols for WNs

with a MAC reference model.

3. RL Algorithms

With ML, computers learn to perform tasks by learning a set of training examples
training, then uses the new set of data to perform the same task and give the results. In
this section, we give a brief introduction on the ML framework, and the differences and
relationship between RL and DRL are discussed.

3.1. Machine Learning Framework

One of the most commonly used ML algorithms is a neural network (NN), which
loosely models neurons in biological brains. A typical NN system consists of two parts:
neuron and connection. Each connection has a weight, which determines how strongly a
node at one end affects another [64].

3.2. Reinforcement Learning

Through continuous learning and self-correction, humans spontaneously interact
with their surroundings to accomplish tasks, such as object recognition, adjustment and
selection [65]. Inspired by human behavior, RL was proposed. According to the different
operating mechanisms, RL can be divided into the following two types: model-based RL
and model-free RL [65]. The model-based RL algorithm allows an agent to learn a model
to describe how the environment works from its observation and then uses this model to
make action decisions. When the model is very suitable for the environment, the agent
can directly find the optimal strategy through learning algorithms. However, some tasks
cannot be modeled. The model-free RL scheme is an effective solution. In this scheme,
the agent does not try to model the environment, but updates its knowledge based on
the value iteration method to estimate the future return, so as to understand the value of
actions taken in a given state. According to the strategy updating method, the model-free
RL algorithm can be divided into round-update algorithms and step-update algorithms.
Policy optimization and Q−learning are widely used in step-update algorithms. An RL
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system consists of the following three parts: an agent which interacts with the environment,
an environment from which can be extracted some features and an AI algorithm which
processes data and makes decisions. The AI algorithm makes decisions through an agent to
influence the state and makes decisions again through feedback given by the environment,
as shown in Figure 2a.
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Q-learning [66] is a widely used RL algorithm. A Q-table Q(s, a) is the core and the
expectation that obtain a reward by taking some action a in the state s over a period of time.
The corresponding reward r is obtained from the feedback of the environment according to
agent action a. Therefore, the key idea of Q-learning is to construct a table composed of
states and corresponding actions to store the Q-value, and then selects one action that can
obtain the maximum reward. Through continuous trial and error, an RL system aims to find
a law from the mistakes and learn to achieve the goal without any idea at first. In addition,
the actor–critic algorithm combines two kinds of reinforcement learning algorithms based
on a value (such as Q learning) and policy (such as policy gradients).

A learning automaton (LA) is an RL algorithm that operates in a probability space and
learns the optimal value by continuously interacting with an unknown environment. LA
algorithms do not need to know their usage scenarios or any knowledge about the target
to be optimized is a major advantage [67]. In recent years, some works [21,67,68] have
attempted to apply LA to solve various practical problems, e.g., optimizing congestion-
aware scheme and configuring the LA in the routing node.

3.3. From RL to DRL

As modern WNs become more and more complex, learning systems are required
to have better performance, such as more powerful computing power, faster learning,
better robustness and more extensible input and output mechanisms [52]. Therefore, DL
applications for WNs have aroused widespread interest. Compared to a traditional RL
algorithm, DL offers more improvements in WANET applications with more complex and
large input data, by using multiple hidden layers between the input and output layers. Due
to the increase of the action space and the state space from the input data, the Q-table is
too huge to calculate. To address the above problems, a deep Q-learning (DQN) algorithm
combines DL with Q-learning and uses the function instead of Q-tables to fit the relationship
between the action and the state. A DQN algorithm extracts the features of the input state
as the input, then calculates the value function through an NN as the output and trains
the function parameters until convergence. The schematic structure of a DQN is shown in
Figure 2b. The input data are accepted by the input neurons and transmitted to the hidden
layer neurons. An agent obtains output data through the output layer after the training
phase. The agent takes the result of the algorithm and computes the error by comparing it

Figure 2. Schematic diagrams of RL and DRL. (a) Schematic diagram of reinforcement learning.
(b) Schematic diagram of deep reinforcement learning [54].

Q-learning [66] is a widely used RL algorithm. A Q-table Q(s, a) is the core and the
expectation that obtain a reward by taking some action a in the state s over a period of time.
The corresponding reward r is obtained from the feedback of the environment according to
agent action a. Therefore, the key idea of Q-learning is to construct a table composed of
states and corresponding actions to store the Q-value, and then selects one action that can
obtain the maximum reward. Through continuous trial and error, an RL system aims to find
a law from the mistakes and learn to achieve the goal without any idea at first. In addition,
the actor–critic algorithm combines two kinds of reinforcement learning algorithms based
on a value (such as Q learning) and policy (such as policy gradients).

A learning automaton (LA) is an RL algorithm that operates in a probability space and
learns the optimal value by continuously interacting with an unknown environment. LA
algorithms do not need to know their usage scenarios or any knowledge about the target
to be optimized is a major advantage [67]. In recent years, some works [21,67,68] have
attempted to apply LA to solve various practical problems, e.g., optimizing congestion-
aware scheme and configuring the LA in the routing node.

3.3. From RL to DRL

As modern WNs become more and more complex, learning systems are required
to have better performance, such as more powerful computing power, faster learning,
better robustness and more extensible input and output mechanisms [52]. Therefore, DL
applications for WNs have aroused widespread interest. Compared to a traditional RL
algorithm, DL offers more improvements in WANET applications with more complex and
large input data, by using multiple hidden layers between the input and output layers. Due
to the increase of the action space and the state space from the input data, the Q-table is
too huge to calculate. To address the above problems, a deep Q-learning (DQN) algorithm
combines DL with Q-learning and uses the function instead of Q-tables to fit the relationship
between the action and the state. A DQN algorithm extracts the features of the input state
as the input, then calculates the value function through an NN as the output and trains
the function parameters until convergence. The schematic structure of a DQN is shown in
Figure 2b. The input data are accepted by the input neurons and transmitted to the hidden
layer neurons. An agent obtains output data through the output layer after the training
phase. The agent takes the result of the algorithm and computes the error by comparing it
to the target model [69]. The policy is also updated using backpropagation by the agent.
After a certain time, the agent adopts various actions and saves the current status, rewards
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obtained, next status and actions adopted into the experience replay memory (ERM), which
is employed into the DQN framework to avoid potential nonconvergence of the gradient
calculation. This makes the algorithm converge faster and more stably, and the agent can
make decisions efficiently using the learned model. A taxonomy of RL is shown in Figure 3.

Figure 3. A taxonomy of reinforcement learning.

3.4. Optimal Design with RL

WNs have complex characteristics in their communication signals, channel quality,
node topology, link congestion, etc. [70]. Moreover, the communication performance
is significantly affected by MAC protocol targets, such as access delay, fairness, energy
efficiency, congestion control, etc. The relationship between each state in the network
environment satisfies the Markov property, and the stochastic process can be regarded as
a Markov process (MP). When RL schemes are used to make decisions for the protocol,
the reward and the action are introduced into the system, thus turning the MP problem
into a Markov decision process (MDP). RL schemes have been widely developed to handle
complicated wireless network situations with superiority over conventional schemes as
listed below.

• Interaction with the environment: Due to node mobility, the network topology is
constantly changing so that protocols are also required to be dynamically and auto-
matically configured to achieve better network performance. RL can interact with the
environment and feed back network changes to the protocol in time.

• Self-learning and self-correction: The characteristics of self-learning and interaction
with the surroundings make systems adapt to the frequent changes of the network
in time. Thus, the optimal scheme should be more adaptive, highly scalable and
energy-efficient.

• Model without prior training: WNs are generated at any time and easy to construct;
they do not need to be supported by preexisting networks. Compared with other
learning schemes using trained models, RL schemes train the model by interacting
with the networks in real time to make the trained model more suitable for the
current environment.

4. Application of Reinforcement Learning for MAC Protocols

Several papers have investigated the applications of RL in MAC protocol design to
provide accelerated data processing while maintaining a high throughput, with a mini-
mization of collision and time saving. The review here adopts the MAC reference model
proposed in [55], which compartmentalizes a MAC protocol into the following three com-
ponents: operation cycle (OC), medium access unit (MAU) and MAC mechanism (MM). At
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the beginning of an OC, some MMs start running, which can be used to compete for the
channel, and then, node accesses the medium with certain MAUs for transmission. Various
MMs have different running sequences, the exchanged message content, the capacity and
number of MAUs available in each OC constituting the MAC protocol process, which vary
according to the function and design of different protocols [55]. The architecture diagram
of MAC protocol components is illustrated in Figure 4. These components form the general
structure of various MAC schemes for easier understanding.

Following this model, how RL schemes are used to improve the performance and
effectiveness of these components are discussed below.

4.1. Operation Cycle

A MAC operation cycle is a repeated time epoch with either a fixed format or a random
interval, which includes general frames, large frames and superframes [55]. One approach
of using RL in MAC protocol design is modifying the OC, such as the length of the general
frame and the structure of the frame. Modifying the superframe has been used in [46] for
the purpose of protocol design and optimization.

The time slot is divided into a normal time slot and an emergency time slot, such as
the superframe. Traditional MAC protocols lack efficient transmission rate control and
backoff strategies in emergency transmission. This is a challenge for reliable emergency
data transmission. To overcome these problems, an enhancement objective Q-Learning
MAC (eOQ-MAC) protocol for emergency transmission was proposed in [46]. A novel
superframe structure was designed for a slotted frame structure in eOQ-MAC, which
modified the MAC frame by adding a new type of slot in it and selected a time slot
to transmit data through a distributed slot selection algorithm with Q-Learning. If an
emergency message needed to be sent, it automatically used the emergency time slot. If
there was a data collision in the emergency time slot, the node without emergency data left
its emergency time slot. The simulations showed that this packet loss rate of modification
was lower than CSMA/CA’s 79.6% in emergency transmissions.

4.2. Medium Access Unit

A medium access unit is the fundamental unit for nodes to access the shared medium.
It can be determined not only by the MAC scheme, e.g., MAC frames, time slots and
minislots, but also by the multiplexing solution in the physical layer, e.g., time slots, code
and sub-bands [55]. The second approach of using RL in MAC protocol design is modifying
a MAC unit or multiplexing unit in the MAU, such as the channel access method [10,45].

Figure 4. The architecture diagram of MAC protocol components [55].

In [10], the author proposed a slotted carrier sensing multiple access (CSMA) protocol,
using RL to extend the life cycle of nodes in underwater acoustic wireless sensor networks
(UA-WSNs), which have energy constraints due to the complex environment, where power
replacement and charging for underwater devices are difficult and expensive. Meanwhile,
the channels are vulnerable and changing with a poor delay and limited available band-
width [55]. The underwater acoustic channel was divided into several subchannels. The
design of the protocol mainly considered three factors: the transmission power, the number
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of shared channel neighbors and the selection of subchannels. These factors were consid-
ered to design the reward function in the protocol, using Q-learning to adjust the time slot
length and choose a suitable subchannel to ensure the success of the transfer. It was shown
that the proposed scheme was able to extend the lifetime of the network by adjusting the
parameters of the algorithm to adapt to the underwater environment and reduce energy as
much as possible.

Ref. [45] designed an adaptive MAC scheme for WSNs with the irregular repetition
slotted ALOHA (IRSA) protocol. Due to uncertain and changing channel conditions in
WSNs, especially the waterfall effect in the traditional IRSA protocol, Q-learning was used
there to allocate a limited frame size and improve the common channel throughput. It tried
to find the optimal policy that optimized expected rewards for all actions by learning the
input–output relationship. RL-IRSA was optimized for small frame sizes, and the global
throughput for high channel loads was effectively improved.

HetNet is a large-scale network with more access competition. Ref. [28] proposed a
novel DRL-based MAC scheme for HetNet, named deep-reinforcement learning multiple
access (DLMA). By correctly defining the state space, action space and rewards in a novel
multidimensional DRL system, this scheme could maximize the total throughput and
ensure the fairness of agents by selecting a specific time slot for transmission. The work
in [71] also proposed an RL-based MAC protocol to select the appropriate time slot to
access the network for slotted CSMA. By collecting collision conditions among slots, the
RL system could effectively reduce collisions and packet delay. The above-discussed MAC
protocols are summarized in Table 2.

Table 2. Comparison of the RL techniques used in OC and MAU.

Protocols
(Reference) MAC Components Network Algorithm Data Used for Learning Performance

eOQ-MAC [46]
(2019) Superframe (OC) WNs Q-learning Packet loss rate, emergency

time slot, throughput

Lowered packet loss rate
for emergency data

transmission.

UA-Slotted CSMA
[10] (2013) Slot (MAU) UA-WSNs Q-learning

Lifetime, channel status,
energy consumption,

bandwidth

Minimized power
consumption and

extended the life of the
network.

RL-IRSA [45] (2020) MAC frame, slot
(MAU) CRNs Q-learning Convergence time, channel

status, throughput

Significantly reduced
convergence time with

optimized degree
distributions for small

frame sizes.

DLMA [28] (2019) Slot (MAU) HetNet DRL Convergence time,
throughput

Maximized the total
throughput with faster

learning speed.

Q-CSMA [71] (2021) Slot (MAU),
scheduling (MM) WNs Q-learning Channel status, packet loss

rate, delay

Reduced the number of
collisions and
packet delay.

4.3. MAC Mechanism

A MAC mechanism is the competitive action taken by nodes expecting access to
the medium, which can be divided into basic mechanisms and complex mechanisms
(combination of basic mechanisms) [55]. Some significant basic mechanisms are listed
below: free access, slot access, backoff, signaling, carrier sensing, messaging, scheduling,
prioritization, etc. The third approach of using RL in MAC protocol design is modifying
the MM for collision avoidance. MMs are modified and controlled by RL schemes to access
the channel and find approximate solutions for optimization.
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4.3.1. Backoff

In [8], the author proposed a fully distributed rate adaptive CSMA/CA protocol,
which was an energy-saving multiuser scheduling MAC protocol based on RL for delay-
sensitive data. Enabling the system to effectively trade off consumption and delay by
using traditional CSMA/CA schemes is challenging. In order to balance consumption and
delay, the energy-saving and delay-sensitive multiuser resource allocation problem was
formulated as an MDP. Then, an RL algorithm was used to solve the agent’s access task,
and an optimal policy for each agent was learned through interaction with the environment.
Unlike traditional CSMA/CA, this scheme adaptively changed the congestion windows
(CWs) so that a node could increase the rate of transmission if the queue buffer was
insufficient. Additionally, the proposed MAC protocol assumed that the backoff counters
would be updated to fit its current situation instead of freezing it when multiple nodes
grabbed the channel. Compared with the traditional CSMA/CA, this solution enabled
nodes to achieve tighter latency limits with an energy consumption of 53%. Moreover, the
proposed learning algorithm could be updated multiple times in each time slot to speed up
the convergence speed and improve runtime efficiency.

In [72–76], a CW size adjustment was also used to improve network quality.
Ref. [72] obtained a more efficient data exchange process by adjusting the size of CWs for
vehicular ad hoc networks. The proposal could extract channel characteristics and predict
the transmission success rate of packets. The simulations showed that the proposed scheme
performed better than the existing backoff schemes. Ref. [73] tried to use the RL model to
adjust the CW size by counting the current network throughput, while [74] tracked the
wireless traffic load to promote the RL model for a novel CSMA/CA-based MAC. In [75],
the authors proposed a novel RL model based on channel observation to predict the future
channel state by observing whether the channel state was busy or idle and reduced the
collision of access channels in dense WNs by controlling the size of the CW. A wireless
smart utility network (Wi-SUN) is a large-scale smart city network that uses unslotted
CSMA/CA. With the increase of the network scale, the competition becomes more serious,
and the performance of a wireless MAC protocol will deteriorate rapidly. Ref. [76] proposed
a Q-learning-based unslotted CSMA/CA (QUC) scheme to select the best backoff delay.
The performance of the packet delivery ratio was improved by 20%.

Due to the poor performance of the latest CSMA scheme in multihop scenarios,
Ref. [37] proposed a scheme to adopt an experience-driven approach and train a CSMA-
based MAC with a DRL algorithm named Neuro-DCF. The solution adopted a multiagent
RL framework for stable training with a distributed execution and introduced a new graph
neural network (GNN)-based training construction for training a unified approach that
incorporated various perturbation patterns and configurations. A GNN is a network that is
used to process graph-type data. The representation of each node in a graph is calculated
from the characteristics of the node, the characteristics of the edges connected to the node,
the neighbor representation of the node and the characteristics of its neighbor nodes. That
scheme comprehensively investigated multiple factors in the network, such as throughput,
delay and channel utilization, which can accelerate the speed of decision convergence.
Simulation showed that the scheme could improve the delay performance while preserving
optimal utility.

Besides the channel allocation schemes, energy consumption is also considered as a
solution for network performance improvement. Ref. [77] proposed an RL-based CSMA
scheme for energy saving, which took into account the input and output of a power control
method and multiple variables at the PHY layer. A similar study was proposed in [78],
which introduced a deep-Q−learning-based scheme named ambient energy harvesting
CSMA/CA (AEH-CSMA/CA) for the IoT. This scheme obtained the energy of the envi-
ronment to intelligently adjust the size of its initial backoff window during the backoff
process. The simulation results showed that the throughput of this scheme was 20% higher
than IEEE 802.11 with a low energy supply. The above-discussed MAC protocols are
summarized in Table 3.
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Table 3. Comparison of the RL techniques used for the backoff mechanism.

Protocols
(Reference) MAC Components Network Algorithm Data Used for Learning Performance

Distributed rate
adaptive CSMA/CA

[8] (2016)
Backoff (MM) WNs Q-learning Channel status, CW, energy

consumption

Enabled users to reduce
energy consumption

based on their
latency-limited needs

with faster convergence.

Backoff Improvement
[72] (2020) Backoff (MM) Vehicular

networks Q-learning Channel status,
transmission success rate

Had a more efficient data
exchange process and

ensured fairness.

CW adjustment
scheme [73] (2021) Backoff (MM) WNs

Q-learning,
supervised

learning
CW, throughput

Effectively reduced the
collision and improved
the system throughput.

Performance
enhancement CSMA

[74] (2021)

Backoff, Scheduling
(MM) WNs Reinforcement

learning
Channel status, energy

consumption, traffic load Had a stable throughput.

Channel-observation-
based MAC [75]

(2018)

Backoff, scheduling
(MM) Dense WLANs DRL CW, throughput, channel

status
Efficiently predicted the

future channel state.

QUC [76] (2022) Backoff (MM)
Wireless smart

utility
networks

Q-learning Throughput, delay
The performance of the

MAC layer was
improved by 20%.

Neuro-DCF [37]
(2021)

Backoff (MM),
Slot(MAU) WNs DRL + GNN Throughput, delay, channel

utilization

Reduced the end-to-end
delay while preserving

optimal utility.

AEH-CSMA/CA [78]
(2020) Backoff (MM) (2020) IoTs Deep Q-learning Throughput, CW, energy

Ensured a high
throughput and low

energy supply.

4.3.2. Scheduling

In cognitive ad hoc networks lacking a central controller, the secondary users (SUs)
and the primary users (PUs) interfere with each other and synchronization is difficult. To
overcome the above problems, Ref. [33] proposed a multichannel cognitive MAC protocol
based on distributed RL for opportunistic spectrum access scheduling. This learning
mechanism selected channels based on SUs’ detection of PU traffic, avoided collisions with
the PUs and kept SUs synchronized. Due to the burstiness of PUs’ traffic, SUs needed to
detect transmission opportunities in channels, and each SU employed an LA mechanism
whose actions were updated based on environmental feedback from each channel. Having
the same PU between clusters of nodes consisting of SUs, they could exchange their PU’s
existence experience within the cluster. Meanwhile, the protocol employed a control
channel for resource reservation to handle interference and hidden terminal issues between
SUs. Compared with the transmission opportunity through the statistical mechanism, the
channel utilization of the proposed protocol was improved by 40% and the collision with
the PUs was reduced.

In [43], the author proposed a novel p-persistent CSMA protocol based on RL by
optimizing channel access scheduling. The channel allocation for SUs is a challenging
issue due to packet collisions, while SUs may degrade the performance of PUs. This
scheme achieved better channel utilization with reduced collisions for SUs by decreasing
p in the presence of collisions and increasing p for successful transmissions. Meanwhile,
this method maintained the throughput of the PUs and improved the channel utilization
rate through sharing the PUs and SUs’ traffic. The results showed that when the PUs
increased the delay, the SUs could effectively use the available channels. Considering the
transmission probability greatly affects the network throughput in WNs using p-persistent
CSMA schemes, Ref. [79] proposed a multistate RL scheme. This scheme learned its optimal
strategy by sensing the channel history information, especially the number of collisions or
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successful transmissions. Simulation showed that the average transmission success rate of
this scheme was 45% higher than the traditional schemes.

The performance of the IEEE 802.15.4 MAC depends on the correct configuration of
MAC parameters. In [80], an optimization method for adaptively configuring IEEE 802.15.4
MAC parameters was proposed. This scheme determined the MAC parameters based
on the channel traffic status and channel characteristics with the predictive feature of RL
algorithms and hence supported the dynamic nature of communications. The proposed
solution built a learning model that could obtain optimized parameters, including sending
rate frequency and packet interarrival time by considering a multilayer perceptron and
random forests. Compared to the IEEE 802.15.4 standard with default parameters, this
scheme reduced the end-to-end delay and ensured a stable throughput.

The performance of RL schemes relying on timely feedback rewards is severely limited
because of the poor delay in UANs. An improved two-stage Q-learning scheme was
proposed to obtain hidden reward for UANs, named the packet flow ALOHA with Q-
learning (ALOHA-QUPAF) MAC protocol [11]. The two stages in that scheme were denoted
as slot selection and flow harmony. They could not transmit and receive simultaneously in
a UAN with half-duplex communication. Therefore, this scheme penalized these received
slots to avoid collisions by reducing their Q-values. In a healthy channel, there is a
continuous flow of packets on the chain. Thus, when the first packet is received, the receiver
expects a packet in every frame that follows. As long as the packet flow is interrupted, a
packet collision is inferred. The scheme isolated the receiving slot from the transmitting
slot to avoid collisions by modifying the scheduling in the MM.

An RL-based MAC protocol for multimedia sensing in UANs was proposed in [12]. It
improved the efficiency of mobile relay nodes by using transmission opportunity (TXOP)
for relay nodes in multihop UANs. Transceiver nodes and relay nodes were allocated
traffic demands based on the competition of sensors using the initial phase of Q-learning.
Moreover, this solution allocated TXOP resources for the uplink devices based on the traffic
demands. The simulations showed that the scheme had an efficient packet delivery rate
and throughput.

To control the data transmission rate of nodes in CSMA/CA systems, Ref. [81] de-
signed an RL scheme. By learning the timeout events of packets in the environment, the
agent selected actions to control the data transmission rate of the node and adjusted the
modulation and coding scheme (MCS) level of data packets to effectively use the avail-
able bandwidth in the dynamic channel conditions. Similarly, Ref. [82] also proposed a
Q-learning system to control the data transmission rates for CSMA/CA-based systems.
The RL agent tried to collect channel information and control the MCS level of data packets
to obtain better network throughput.

When nodes become active and inactive in the WSN as nodes randomly join and leave
the network, the long-term average network age of information (AoI) of their respective
processes can be collectively minimized at the remote monitors. An optimized modification
of the ALOHA-QT algorithm was proposed in [35], which employed a policy tree (PT) and
RL to achieve high throughput. A PT is a prediction model, which represents a mapping
relationship between attributes and values. The proposed algorithm was provided with an
upper bound on the average AoI and a pointer to select its key parameters. The simulations
showed that the proposed algorithm outperformed ALOHA-QT in terms of AoI while
requiring less consumption and computation. The above schemes based on scheduling
changes are summarized in the Table 4.
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Table 4. Comparison of the RL techniques used for the scheduling mechanism.

Protocols
(Reference) MAC Components Network Algorithm Data Used for Learning Performance

MCC-MAC [33]
(2015) Scheduling (MM) CRNs Q-learning + LA Network traffic, channel

status
Avoided the conflict

between SUs and PUs.

p-persistent CSMA
[43] (2011) Scheduling (MM) CRNs Q-learning Throughput, channel

utilization

Had good robustness and
the SU efficiently utilized
the available channel at
the expense of an extra

delay of the PU.

Optimal parameters
for IEEE 802.15.4 [80]

(2020)
Scheduling (MM) WNs Supervised

learning
MAC parameters, delay,

channel status
Increased the dynamic
adaptability of nodes.

ALOHA-QUPAF [11]
(2021) Scheduling (MM) UA-WSNs Modified

Q-learning Throughput, channel status
Isolated the receiving slot
from the transmitting slot

to avoid collisions.

RL-MAC [12] (2022) Scheduling (MM) UA-WSNs Q-learning Channel traffic, energy
consumption

Improved throughput
with limited energy.

Improved
ALOHA-QT [35]

(2022)
Scheduling (MM) WNs RL + PT Throughput, AoI, energy

consumption

Adapted to the changing
number of active agents

with less energy.

Rate adaptation
scheme [81] (2020) Scheduling (MM) WNs Q-learning MCS channel utilization,

bandwidth
Obtained better

network throughput.

Improved
p-persistent CSMA

[79] (2018)
Scheduling (MM) WNs Multi-state

Q-learning Channel status
Investigated the

application of multistate
RL algorithm.

4.3.3. Other MAC Mechanisms

A smart-CSMA (SCSMA) MAC scheme with control messages was proposed for
low-power and low-bandwidth WSNs in [44]. The 802.15.4 MAC does not use control
messages for transmission due to the small size of the data, and the cost of control messages
is relatively high. The proposal assigned different start delay slot numbers (SDNs) to
neighboring nodes by making each node rebroadcast a message. A node was designed
to collect the above data to reduce collisions from neighbor nodes and hidden terminals.
For two competing hidden users, their waiting time difference was adjusted to be greater
than the sum of the transmission times of RTS and CTS. Therefore, the busy channel status
was detected by users with a longer waiting time. The blind learning (BL) algorithm was
proposed to optimize the exchange of messages. By listening the control messages, BL-based
agents adjusted their SDN intelligently with hidden terminals or topology changes. The
result showed that this scheme appropriately adjusted its SDN to improve the throughput
by 42.1% and reduced the energy consumption by 15.7%.

In [39], a distributed-RL MAC protocol with localized information in WSNs was
proposed. In order to maximize the network throughput, the solution adopted distributed
learning of the optimal MAC transmission strategy among nodes. Moreover, nodes also
obtained channel information from the closest two-hop neighbor nodes and adaptively
adjusted their transmission strategy to maintain maximum throughput under dynamic
topology loads. This solution was also designed to parametrically change the access priority
of nodes while learning, which is very practical for WANET applications with different
priorities. The results showed that the performance of this scheme was improved by 20%.

Many RL solutions proposed so far assume real-time feedback of the results of packet
transmission. In [83], a novel RL-based MAC protocol ALOHA-dQT was proposed, which
improved the channel utilization by letting nodes periodically broadcast short summaries
of their known channel history. The channel history for the last N slot states was stored
by each node, and it iteratively merged its information with the channel history based on
the node broadcast. The RL system updated the relevant information to make the node
adaptive.
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Ref. [23] proposed a novel RL-based scheme for FANET, named position-prediction-
based directional MAC (PPMAC). This scheme addressed the directional deafness problem
by using position information, which is very practical for FANET applications in a dynami-
cally changing environment. The results showed that the reward of this learning system
was improved by 16%.

In addition, in order to achieve a better end-to-end QoS and ensure fairness in user-
dense scenarios, work on the optimization of learning algorithms has also been proposed.
In [84], a novel Monte Carlo (MC) reward update scheme for DRL training was proposed.
This scheme used the access history of each site to derive the DRL-based MAC protocol.
Compared with the traditional distributed coordination function (DCF), this scheme could
effectively improve the network throughput. The above-discussed MAC protocols are
summarized in Table 5.

Table 5. Comparison of the RL techniques used for other mechanisms.

Protocols
(Reference) MAC Components Network Algorithm Data Used for Learning Performance

SCSMA [44] (2020) Messaging (MM) WSNs Blind learning [44] SDN, throughput,
channel status

Improved throughput,
reduced energy

consumption and could
avoid hidden

terminal problems.

Distributed ALOHA
[39] (2022) Prioritization (MM) IoTs Q-learning Throughput, channel status

Maintained maximum
throughput under

dynamic topology loads.

ALOHA-dQT [83]
(2020) Messaging (MM) WNs Reinforcement

learning
Channel history,

throughput
Achieved a high

channel utilization.

PPMAC [23] (2018) Messaging (MM) FANET Q-learning Channel status, position
information

Provided an intelligent
and highly adaptive

communication solution.

SPCA [85] (2019) Messaging (MM) WSNs DRL Spectrograms of TDMA,
channel utilization

Reduced the number of
collisions with efficient

channel utilization.

4.4. Summary

We can find that most of the proposals try to improve the MMs by obtaining medium
access opportunity and then performing optimal scheduling. The traditional medium
access schemes cannot well meet the rapid changes of the wireless network topologies,
while RL solutions can learn what the regular nodes’ behavior is by creating models from
past scenarios. Modifying the MAU has been proposed, such as assigning subchannels
to make networks have a better performance, and with scheduling, the sender makes
decisions locally to reduce collision from different senders.

Meanwhile, RL schemes are often used to optimize the channels, as some of the
channel variations occur in a changeable environment, to let the node learn and make
real-time decisions tailored to each situation, especially with the advantage of enabling
nodes to perceive and interact with the environment.

5. Open Research Issues

Here, we discuss some challenging issues following the MAC reference model and
give some directions for future research in this section. A summary of the discussed is
presented in Table 6.

5.1. Operation Cycle

Both large frame and superframe divide the time into several segments. The former
allocates each segment equally to the nodes and uses the same access scheme, while the
latter adopts different access schemes for each segment, which is mainly used in scenarios
that need to run multiple transmission methods at the same time, such as prioritization and
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emergency transmission. In this regard, RL solutions can be used for adaptive selective
access schemes. In addition, coordinated scheduling with neighbors can use RL schemes to
adapt the changing networks and topologies in future research, e.g., for nodes to learn the
parameters selection and the extent of dynamic network changes.

5.2. Medium Access Unit

Several schemes have been proposed in certain functions, such as adjusting the slot
length to handle the channel access and channel allocation with multiple access schemes.
However, there are still some issues to be discussed. For example, with TDM, time is
divided into regular time units. Although collisions are avoided by inserting a guard time
between two adjacent time slots, it reduces bandwidth utilization. RL schemes can be used
by nodes to adaptively adjust the size of the guard time according to the distribution of
active nodes. With learning individual node patterns and requirements, RL schemes can
help agents to learn which slot should be accessed to maximize bandwidth utilization.
Another issue in the MAU is data channel allocation in multichannel protocols. Since a
node can only work either on the control channel or the data channel, but not both at the
same time, RL schemes can be applied to learn individual node’s channel conditions and
requirements to allocate channels required by the node without the control channel.

5.3. MAC Mechanism

A MM can be used alone to prevent collisions, or multiple MMs can be combined to
form a new complicated mechanism [55]. State-of-the-art RL-based works focus on tuning
the MMs’ parameters. An issue is how to choose those MMs reasonably to effectively
improve the MAC protocol performance. RL schemes can be used to choose MMs and form
them to design a MAC protocol for different network scenarios by creating RL models and
learning from current and past network status.

5.4. Other Issues

In WANETs, there are usually no nodes dedicated to coordinate communication, and
each node dynamically forms a temporary network due to mobility. Mobility is one of
the main factors affecting network performance since it produces a frequently chang-
ing network topology. In the following topics, some applications of RL for adaptability
are discussed.

(1) Environmental prediction: The wireless network environment is complex and
changeable; RL schemes are used to discover the rules of potential changes between
environmental characteristics and reduce the impact of uncertain factors on the protocol
performance to make better real-time decisions. For example, a method called spatial reuse,
which enables two adjacent transmitters to send signals simultaneously without affecting
each other. It is feasible to exploit similar features to maximize channel utilization as much
as possible by using RL.

(2) Resource allocation and task scheduling: Channel resources are usually limited, and
actual power allocation and channel constraints are the main causes of message collisions.
The latest mathematical optimization theory still lacks a systematic resource allocation
method, and resource scheduling will increase the complexity of the protocol. The protocol
design can further use RL schemes to improve the capabilities of nodes, by decreasing
complexity and high overheads.

(3) Systematical cross-layer design: Some MAC protocols using a cross-layer design also
focus solely on MAC performance and ignore the performance degradation of the network
as a whole. For example, the physical layer data is employed to detect channel variation
and quality; meanwhile, the network layer data, for instance congestion, is employed to
determine the status of an entire link. Using the powerful data aggregation function of RL, a
protocol design can comprehensively consider all available optimization options to enhance
performance [55].
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(4) Underwater acoustic networks: Many modifications have noticed the drawbacks
of long propagation delays in UANs and tried to turn the drawbacks of long delays into
advantages by setting relevant parameters [55]. However, some protocols do not thoroughly
consider the peculiar features of UANs, such as an unstable channel, rapidly changing
channel states and the leveraging of long propagation delay. With RL, these features can be
fully considered as much as possible to reduce the probability of signal collision.

Table 6. A summary of open research issues.

MAC Components Open Research Issues

Operation cycle Variable large frames and superframes
Smart frame allocation algorithms

Medium access unit Channel allocation in multichannel
Adaptively adjust the guard slot

MAC mechanism Optimize MMs’ parameters
Choose MMs reasonably

Other issues

Network prediction standardization and model accuracy
Resource allocation and task scheduling
Systematical cross-layer design
Fully consider the features of UANs

6. Conclusions

This paper reviewed the methodologies of applying an RL scheme in WNs within the
context of the MAC reference model. Although some works have been conducted in devel-
oping RL in MAC protocol design, there are still some open issues that urgently need to be
addressed in this field, covering some directions according to different MAC components,
especially the MMs. We hope that this article will help the reader to understand the novel
RL-based MAC schemes and provide a guide for researchers to optimize WNs using RL
techniques.
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