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Jarosław Kwapień and Marcin
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Abstract: We analyze the correlation between different assets in the cryptocurrency market through-
out different phases, specifically bearish and bullish periods. Taking advantage of a fine-grained
dataset comprising 34 historical cryptocurrency price time series collected tick-by-tick on the HitBTC
exchange, we observe the changes in interactions among these cryptocurrencies from two aspects:
time and level of granularity. Moreover, the investment decisions of investors during turbulent
times caused by the COVID-19 pandemic are assessed by looking at the cryptocurrency community
structure using various community detection algorithms. We found that finer-grain time series
describes clearer the correlations between cryptocurrencies. Notably, a noise and trend removal
scheme is applied to the original correlations thanks to the theory of random matrices and the concept
of Market Component, which has never been considered in existing studies in quantitative finance.
To this end, we recognized that investment decisions of cryptocurrency traders vary between bearish
and bullish markets. The results of our work can help scholars, especially investors, better understand
the operation of the cryptocurrency market, thereby building up an appropriate investment strategy
suitable to the prevailing certain economic situation.

Keywords: cryptocurrencies; noise and trend effects; tick-by-tick data; network structure; community
detection; COVID-19

1. Introduction

The cryptocurrency market has become an attractive target for many financial investors
in recent years due to its potential for rapid gains. One research topic being explored in this
market is the correlation between different cryptocurrencies. Understanding how different
assets interact with each other can help in portfolio optimization [1], predicting the future
volatility or downturn [2] and also in observing the risk spillover that benefits portfolio
diversification [3], to mention only a few.

Thanks to a network-based methodology, cryptocurrencies’ cross-relationships can be
learned and observed visually [4]. The idea of this method is that it builds up a network of
different objects such that the distance between two objects depends on how similar they
are: the shorter the distance, the more similar the two objects are. Eventually, we can see
the interaction between objects by looking at their network’s structure and analyzing char-
acteristics of the network. Different network construction approaches have been explored
in the literature, from Minimum Spanning Tree (MST) [5], k-Nearest neighbors (kNN) [6],
planar maximally filtered graph (PMFG) [2] to Threshold Weighted-Minimum Dominating
Set (TW-MDS) [7], to name but a few. In financial markets, normally, the similarity between
two assets is measured by comparing the evolution of two corresponding price time series,
one typical method to do this is Pearson correlation metric [8]. The study on correlation of
traditional asset classes such as stocks, bonds, national fiat currencies and commodities has
been developed a long time ago, with varying approaches invented to learn the correlation
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between different entities in the same market but also between different asset classes,
ranging from statistical [9,10] to AI-based methods [11].

Generally, there are two common shortcomings with correlation-related studies. Firstly,
one mainly uses a low-frequency dataset such as daily or monthly, and this might cause
a loss of important information from each time series, hence failing to reflect their true
nature [12]. This appears to be a major concern in the cryptocurrency market, since it is
well-known for its high fluctuations in terms of price movement. For example, in [13],
the authors show that the losses of cryptocurrencies can reach 70% within one day. Recently,
in 2020, by comparing the volatility in the returns between cryptocurrency and stock
markets, the authors of [14] revealed that major cryptocurrencies such as BTC and ETH
have volatilities of 5.68 and 7.10, respectively, which is two-fold higher than that of S&P500
and Euro Stoxx 50 indices. Notably, Dirk et al. calculated the daily price volatility of Bitcoin
from 2001 until 2021 and found that there are extremely volatile days when the volatility
can hit 120% [15]. Thus, using a high frequency means that we are ignoring valuable
information (e.g., the intraday fluctuations of a time series) on purpose. As a result, this can
adversely affect the correlation extracted from the dataset, potentially leading to inaccurate
correlation-using experiments (e.g., portfolio optimization). Secondly, researchers tend
to analyze the inter-relation between different time series by using trading price values
reported on a website (e.g., Coinmarket (https://coinmarketcap.com/), Yahoo Finance
(https://finance.yahoo.com/)). However, this practice deliberately ignores the effects of
noise and trends in financial time series, which we will describe clearly in Section 4.

Another important factor to consider is the recent COVID-19 pandemic which forced
all countries to close off borders and restrict movements for residents as well as busi-
nesses [16]. This had a strong effect on the global downturn which occurred in March
2020 as a response to governments’ efforts to control the disease spreading [17]. These
historical events have been shown to disturb and devalue different financial asset classes
such as stocks, bonds and also cryptocurrencies [18,19]. Instead of looking at the changes
in time-series elements such as volumes, prices, returns and volatilities during the COVID-
19 pandemic, in this study, we will investigate the impact of the pandemic by looking
at the changes in network structures over time. Furthermore, based on these network’s
structures, we show how we can observe the corresponding community structures via
community detection methods. The results from our experiment can be used to learn
behaviours of investors in different periods of time, especially during downturn times in
the financial market.

From the shortcomings of existing studies and utilizing the advantage of network-
based analysis, this study aims to investigate the network structure of cryptocurrencies
without noise and trend effects and how this structure changes under the impact of the
COVID-19 pandemic. Specifically, the research target is to answer these research questions:

• RQ1. Is there evidence of the existence of noise and trend effects in the cryptocurrency
market? If yes, how do noise and trend effects influence the interactions between
cryptocurrencies? What does the network structure of these cryptocurrencies look like
after removing noise and trend effects?

• RQ2. Does the network structure change when the level of granularity changes? If this is
the case, what level of granularity should we use to obtain the true network structure?

• RQ3. Is there evidence that historical events such as the COVID-19 pandemic and the
global downturn in 2020 changed the overall cryptocurrency network structure? If this
is the case, how did they change it? Moreover, is there any possibility that this change
was caused by a change in investors’ investment strategy? In other words, does the
way investors react to a downturn change the interactions between cryptocurrencies?

It should be noted that we are not new to the subject of time-varying cryptocur-
rency network structure, we merely build on work by the team of Drozdz, Watorek,
Kwapien [20,21] as well as, more recently, Nie [22]. However, our work expands the exist-
ing studies since we consider the investment decisions of investors based on the observed
network structure and we acknowledge the negative effect of not only trend but also noise

https://coinmarketcap.com/
https://finance.yahoo.com/
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presenting in cryptocurrencies. As suggested by Miceli [23], the trend and noise removal re-
sults in a filtered MST that better explains investment strategy and also potentially uncovers
endogenous or exogenous factors that drive the price of cryptocurrencies

To solve these research questions, we use a tick-by-tick dataset which consists of
34 price time series corresponding to 34 cryptocurrencies traded on the HitBTC exchange
during the period between 13 February 2019 and 6 April 2021. When it comes to network
formation, we calculate the correlation between cryptocurrencies by adopting the linear
similarity measurement named Pearson and then construct a Minimum Spanning Tree
(MST) based on these correlation coefficients. The noise and trend removal is carried
out by applying Random Matrix Theory (RMT). Community structure is found by using
community detection methods. In addition, different metrics are used to analyze the
network structures and support our findings.

The remainder of the article is organized as follows: Section 2 presents an overview of
the relevant literature. Section 3 provides a description of the dataset. Section 4 describes
terminologies, methods and preprocessing procedures. Section 5 discusses the experimental
results followed by implications and hypotheses. Finally, the conclusion of this study is
given in Section 7.

2. Related Works
2.1. Correlation-Based Analysis in the Financial Markets

The topic of correlation analysis has a long history in connection with stock markets
throughout various historical economic crises using different correlation-calculating metrics.
In [24], the authors estimated the correlation between 116 S&P500 stocks between 1982
and 2000 using Pearson coefficient. They further used MST to build up a correlation-based
network in order to observe time-varying correlations based on three network measuring
metrics including normalized tree length, survival ratio and mean occupation layer. As a
result, they pointed out a large change in the network structure during Black Monday.
More recently, [6] came up with a Neural Network approach to construct a graph and
found a dramatic difference in the network structure during the downturns in 2008, 2011
and 2020. In [1], a Pearson correlation matrix of 200 and 400 stocks from the CSI 300
and S&P500 index, respectively, was used to find an optimized portfolio following the
Markowitz optimization scheme. Instead of using Pearson method, Liu et al’s paper used
an interesting alternative method Mutual Information to generate a distance metric to take
account of non-linear effects in intra-day S&P stock data [25]. Other methods to estimate
the correlation coefficients (i.e., Wavelet coherence, Fast Fourier Transform) and construct
correlation-based networks (i.e., PMFG, threshold method) were introduced in several
studies [2,11,26].

Different existing approaches to study the correlations in the stock market have
been applied to digital coins. Some common conclusions from existing articles are that
the cryptocurrency network changes over time but Ethereum tends to act as a central
node in the whole network, i.e., it is a densely connected node [5,27,28]. A few works
remedy the problem of dataset shortages that have been concerned in the traditional
markets, i.e ones tended to use low-frequency data to implement their studies such as
daily or weekly. However, they only account for a small portion of the existing literature.
For example, Antonio et al. [29] used small frequency resolutions such as one hour and
four hours and also consider daily data of 25 large market capitalized entities traded
on the FTX exchange to discover the evolution of cryptocurrency network structures
between different time frequencies. By using Pearson correlation-based MST, they found an
increase in the complexity of networks’ shape for coarser time resolutions. In other words,
cryptocurrencies converge into a bigger group as resolution increases. On the contrary,
the authors in [20] using multiple timescales starting at 10 min to 360 min proposed
an opposite statement that low timescales cause the network to be centralized while
it is distributed and more correlated at high timescales. They used the liquidity and
capitalization differences among the assets to explain this result, since cryptocurrencies
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with low capitalization are traded less frequently than those with large capitalization, it
takes more time for a piece of market information to spread over such cryptocurrencies.
Thus, they are more inclined to use longer scales. Notably, this is one of the very few studies
that remove the trend effect from the original dataset. Interestingly, instead of using return
time series like other researchers, a research using hourly realized volatility values was
carried out to observe the risk spillover between 7 high-capitalized cryptocurrencies [3].

Different methods have been introduced to detect communities given a correlation
matrix. The authors in [4] applied Louvain method on the MST of 119 cryptocurrencies to
cluster potential communities. The time-varying dynamics from the community structures
found suggests collective behaviour among these communities. With the communities
found by the same method, the authors in [30] went one step further by using Principal
Component Analysis (PCA) to find an optimal portfolio out of 200 cryptocurrencies in
circulation. Another community detection method that is worth taking into consideration
is Girvan–Newman, which has been adopted widely for multiple purposes such as link
prediction, portfolio diversification, etc. [31,32]. A few other methods are also being used
to grouping similar entities but are less popular such as Clauset algorithm, Stochastic block
model (SBM), Latent Dirichlet Allocation (LDA) and Markov random field (MRF) [33]. One
obstacle from existing studies is that some used a specific community detection algorithm
only, raising a doubt about the robustness of the community structure. To this end, we
first use the Louvain method to detect communities in our dataset and then adopt Girvan–
Newman method to examine the robustness of the communities found earlier.

2.2. How the COVID-19 Pandemic Intervened on the Economy Worldwide

At the beginning of 2020, the economy of China started to be influenced by COVID-19,
earlier than other countries. Moreover, as the world’s hub for global manufacturing and
trade, immediate adverse effects on the Chinese economy resulted in global impacts [16].
Different regulations have been applied to handle the disease, such as closing national
borders as well as stopping business activities across the world, strongly influencing the
global economy [16]. Eventually, the global financial panic in March 2020 took place. In [18],
the authors pointed out that the similarity calculated by ACC and ADCC models between
the US and Chinese markets increased dramatically during the pandemic. Regarding
the stock prices, when the pandemic occurred, the prices of the US and Chinese stocks
decreased but started to recover again since July 2020. This trend is also true for other
emerging and developed stock markets in different countries from different continents such
as Japan, Germany, Australia and Canada [34]. Likewise, even less risky assets such as gold
were adversely affected [35]. The increase in the correlation between different financial
markets in the presence of good and bad news has been observed for some decades. In [36],
the authors stated that stocks are more affected by the presence of bad news, compared to
good news. Moreover, bad news has a stronger correlation in traditional markets. These
results align with what happened during the COVID-19 pandemic. Although the world
continued facing different COVID-19 waves afterwards, its impact on different asset classes
lessened significantly [37], stock prices increased and volatilities decreased again to their
original values before the pandemic [38]. Furthermore, the connectedness between different
assets also experienced a major decline [39].

In [19], the authors investigated the impact of the COVID-19 pandemic on the cryp-
tocurrency market by using daily prices of 45 well-known cryptocurrencies between
September 2019 and April 2020—the majority of which are also used in our present study.
In particular, they measured the stability of cryptocurrency time series using Largest Lya-
punov Exponent and Approximate Entropy. All time series are divided into two parts:
the first part spans September to December 2019, considered normal time, while the sec-
ond spans January to April 2020, considered a pandemic period. They revealed that the
pandemic increases in cryptocurrency market uncertainty as prices fluctuated significantly.
Moreover, the same experiment has also been carried out on the stock market, results
indicating a lower level of price fluctuations in the stock compared to digital currencies.
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Also on the same topic, Drozdz et al. [21] compared the Pearson correlation between the
cryptocurrency market and different asset classes including stocks, fiat currencies and
commodities, revealing that these conventional markets easily influence the cryptocurrency
market when they are in turbulent times, while there is no significant correlation between
digital currencies and other markets in normal times, given the time resolutions they used
are 10 and 360 mins.

Reactions of the general public to the COVID-19 outbreak were also observed to
examine its relationship with cryptocurrencies’ returns. For example, authors in [40]
measured the fear of people by the frequency of occurrence of keywords COVID-19 and
coronavirus on Google Trends (https://www.thinkwithgoogle.com/, accessed on 4 August
2022). Thanks to the vector autoregressive (VAR) models, they compared the evolution
of this fear with the stock market’s expectation of volatility VIX index (the VIX index is
a measure of constant, 30-day expected volatility of the US stock market, derived from
real-time, mid-quote prices of S&P500. Normally, it is calculated using the Black–Scholes
formula) as well as the Bitcoin returns. They found that increases of fear can lead to
Bitcoin crashes, as the correlation coefficient is −0.9. Furthermore, negative sentiment
generated by coronavirus news is associated with market volatility, which is in line with
other findings such as in [41]. Interestingly, some studies on the relationship between
news-based sentiment and cryptocurrencies showed that, although both bad and good
news cause the change in the returns and volatilities of cryptocurrencies, positive news has
more effect on the volatilities and returns of cryptocurrencies in comparison with negative
news [42–44].

Recently, network analysis in the cryptocurrency market during the COVID-19 pan-
demic has been carried out, with the common result being that the pandemic, as well as the
global downturn, actually caused a change in the network structure of the cryptocurrency
market. Specifically, cryptocurrencies tend to form bigger groups during the downtime,
i.e., the number of potential clusters found in the network decreases during the downtime,
with a few cryptocurrencies acting as central nodes. This topic has only been explored
in a few studies to date [21,22,45,46]. Moreover, there are some gaps: (1) the lack of deep
investigation of the network structure as they only consider MSTs; (2) the noise and trend
effects are not removed; (3) data limitation issues.

We will address these shortcomings by doing deeper experiments on the network
structure of the cryptocurrency market before, during and after the COVID-19 pandemic via
a longer dataset with the effect of noise and trend removed. In addition, we will look at the
way cryptocurrencies form a group during turbulent times by considering their rankings
(identified by its market capitalization, the larger its maket capitalization, the higher its
rank). We believe that this research can propose a better understanding of interconnections
between digital currencies during standard and unstable periods. Furthermore, we also
aim at understanding the investment decision of investors in different market states based
on the results of community detection.

3. Data Description

All experiments in this study have been carried out based on a tick-by-tick price
dataset (tick data are the highest resolution intraday data and consist of the sequence of
each executed trade or bid/ask quote aggregated from an exchange) that was collected from
the hitBTC exchange (a platform for digital asset and currency exchange to quickly and
securely trade cryptocurrencies—website address: https://hitbtc.com/) from 13 February
2019 to 6 April 2021. The dataset comprises 34 cryptocurrencies with a hybrid of high
and low rankings. Specifically, the highest rank is 1 (Bitcoin) while the lowest rank is 260
(FunToken), according to the price-checking website Coinmarketcap (https://coinmarketcap.
com, accessed on 4 August 2022) in April 2021; full list in Table 1.

https://www.thinkwithgoogle.com/
https://hitbtc.com/
https://coinmarketcap.com
https://coinmarketcap.com
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Table 1. A list of 34 cryptocurrencies used in this study. Abbreviations are put in parentheses.

Cryptocurrencies

Argur
(REP)

Bitcoin SV
(BSV)

Ethereum Classic
(ETC)

MaidSafeCoin
(MAID)

Ontology
(ONT)

Tron
(TRX)

Bancor
(BNT)

Cardano
(ADA)

FunToken
(FUN)

Maker
(MKR)

Ox
(ZRX)

Verge
(XVG)

Basic Attention
Token(BAT)

Decentraland
(MANA)

ICON
(ICX)

Monero
(XMR) QTUM Zcash

(ZEC)
Bitcoin
(BTC)

Dogecoin
(DOGE) IOST Nem

(XEM)
Ripple
(XRP)

Zilliqa
(ZIL)

Bitcoin Cash
(BCH) EOS Lisk

(LSK) NEO Stellar
(XLM)

Bitcoin Gold
(BTG)

Ethereum
(ETH)

Litecoin
(LTC)

OMG Network
(OMG)

Tezos
(XTZ)

3.1. A Note on Data Sampling and Missing Data

Since price values are collected tick-by-tick, there is no fixed timescale for all cryptocur-
rencies leading to an inconsistency between the time series. For this reason, we re-sample
the dataset by using data points at a specific timescale. In particular, we choose four
different timescales, namely 30 min, 6 h, 12 h and 24 h. Each data point of a dataset is taken
to be the price of the last transaction of 34 cryptocurrencies within the considered timescale.
Eventually, we have four datasets corresponding to four different timescales. Table 2 shows
the description of each re-sampled dataset.

Table 2. Characteristics of four re-sampled datasets at four different levels of granularity.

Level of Granularity # Data Points # Missing Values

30 min 37,632 289 (0.8%)
6 h 3136 24 (0.8%)
12 h 1568 12 (0.8%)
24 h 784 0 (0%)

Three out of four datasets have missing values with the same percentage of 0.8%. Note
that a data point of a dataset is considered missing if at least one cryptocurrency does not
have the price value at this data point. For each time series, instead of simply removing
missing values from the time series and values from other time series from the same time,
we replace missing values with the average value of the corresponding time series. This
technique has been adopted in different research topics with good performance [47–49].
Furthermore, we notice that this does not change the statistical properties of the correlation
between time series but, instead, helps to keep more information and thus the results found
from conducting the experiments are more reliable and accurate.

3.2. Aggregational Gaussianity

Aggregational Gaussianity is considered a stylized fact in traditional financial markets.
In [50], the authors observed the evolution of distributions of the IBM stock returns by
looking at different levels of granularity, e.g., 30 min, one day, one week and one month,
finding evidence of Aggregational Gaussianity. Another study on this topic drawing the
same conclusion is described in [51]. However, these authors used different stocks and a
higher set of timescales from one day to one year, showing that this stylized fact is also true
for stocks at coarser time resolutions.

We investigate whether Aggregational Gaussianity exists in our log-return time series
using a set of four timescales: 30 min, 6 h, 12 h and 1 day. We observe this statistical aspect
by implementing three experiments: Firstly, we construct the histogram as well as kernel
density estimation (KDE) for each cryptocurrency time series. Secondly, we generate the
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Q-Q plot, which is a popular approach to test normality for a time series [52]. Lastly, we use
the Lilliefors hypothesis test for normality [53]. We obtained the following findings: firstly,
although the distributions of these cryptocurrency time series have a bell curve shape at
all timescales considered, they are not (from the Q-Q plot and Lilliefors test) normally
distributed; secondly, however, there appears to be evidence to say that Aggregational
Gaussianity exists in all cryptocurrencies used in this present study from the Q-Q plots.
This result is in line with existing findings in the cryptocurrency market such as [54,55].

4. Research Methodology
4.1. Correlation Matrix Based on Pearson Coefficients and Random Matrix Theory

Given xi is the price time series of cryptocurrency i, we use its return values to find
the correlation between cryptocurrencies. This is because Return values are represented
as a percentage, making them scale-free and especially, stationary, which is an important
requirement for many statistical tools, such as Normalization. Thus, we first calculate the
corresponding return time series ri as follows [56]: ri = log

(
xt

i /xt−1
i

)
, where xt

i is the price
value of the cryptocurrency i at timestamp t.

Each of these return time series can be normalized as follows [57]: r̂i = (ri − µi)/σi,
where µi and σi are the average value and standard deviation of time series i, respectively.

We form a m × n matrix G such that each column represents a normalized return
time series of a cryptocurrency and each row represents a timestamp. The corresponding
correlation matrix C can be expressed as follows [56]: C = 1

m GGᵀ. In other words,
each element Cij of C shows the correlation strength between cryptocurrencies i and j by
calculating the dot product of the two normalized return time series, Cij =< r̂i, r̂j >. Such
a correlation matrix is called Pearson correlation matrix.

It should be noted that Pearson correlation has some limitations as described in [58].
In particular, its sensitivity to outliers and inability to capture non-linear relationships both
have the potential to cause misleading results. However, we believe that this correlation
metric is appropriate to use in our study for the following reasons:

• Firstly, we make use of cryptocurrency returns in order to retain the statistical nature
of the associated time series. While some authors have proposed addressing the non-
linearity problem (e.g., Spearman [59] and Kendall [53]), these have the disadvantage
of converting rational numbers into integer rankings, with the potential to lose out on
critical information from financial time series [60]. Moreover, it has been shown that
rank correlation metrics also suffer from the nonlinearity issue in some cases [58].

• Secondly, Pearson has been widely applied in the existing literature, not only in
the cryptocurrency market [21,22,32] but also in markets for more traditional asset
classes [2,6,24]. This strongly reinforces our belief in the applicability of this method
of correlation calculation for our problem.

• Thirdly, rank-based correlation metrics require independent observations. This is a
known weakness of non-linear correlation methods such as Spearman and Kendall [60].
On the other hand, Pearson works well for time series with duplicate observations
(because there is no requirement for independent observations), as is the case in
financial time series. For example, the price of a cryptocurrency can be unchanged for
a period of time.

One issue raised from this type of matrix is the question of how reliable these correla-
tions are, in other words, whether the correlation matrix shows genuine and authentic rela-
tionships between the considered time series. Thanks to the RMT [61], this hypothesis can
be examined. Particularly, given a m× n random matrix N whose elements are distributed
randomly with zero mean and unit variance, the eigenvalue distribution of the correlation
matrix CN = 1

m NNᵀ follows the Marchenko–Pastur probability density function [62] if
the Quality Factor Q = m

n ≥ 1 holds when the number of timestamps m → ∞ and the

number of features n→ ∞: P(λ) = Q
2π

√
(λ+−λ)(λ−λ−)

λ , where P is the Marchenko–Pastur
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probability density function, λ is an eigenvalue of CN, λ± = 1 + 1
Q ± 2

√
1
Q are upper and

lower limits, respectively.
From RMT, eigenvalues falling outside of [λ−, λ+] are assumed to deviate from its

expected predictions [63,64]. Hence, we can use this theory to test the reliability of the
relationships in our empirical data [65]. That is, if an empirical correlation matrix actually
has real valuable information, it must have eigenvalues that are outside the bounds of
[λ−, λ+]. Otherwise, the empirical correlation matrix can be taken to contain mainly
random noise. In this study, RMT has been used to test our correlation matrices. The results
show that all correlation matrices are not random and contain valuable information.

4.2. Cleaning Trend and Noise Effects in the Cryptocurrency Market
4.2.1. Noise and Trend

The cryptocurrency market is known to have a higher percentage of noise than other
traditional financial markets. According to [66], the average daily signal-to-noise ratio of
the cryptocurrency market is 36%, which is extremely low compared to well-established US
stock exchanges such as NYSE and NASDAQ, with an average daily signal-to-noise ratio
of 90%, given the considered period between March 2017 and November 2017. The noise in
the cryptocurrency market might come from different sources. For instance, there is no fixed
volume for a transaction to be executed at a time, so investors can freely choose the amount
that they want to trade; however, this issue causes one problem, in that investors can
reduce the transaction costs by splitting their budget into smaller pieces and then buy one
cryptocurrency many times with different amounts of volume and price, a practice which
can trigger unforseen price movements, see [67]. Furthermore, cryptocurrencies’ prices
are vulnerable to “pump and dump” schemes [68], which have become pervasive recently,
and also regulatory news enacted by national authorities [69]. All of these factors might
intervene in the price movements of digital assets. Consequently, the correlation matrix
between cryptocurrencies cannot explain their real connections as it is highly influenced by
these noise factors.

On the other hand, the trend effect found in other correlated systems [70] might be
found in the cryptocurrency market. Briefly speaking, a trend among cryptocurrencies
means that they tend to move together in terms of price values. We notice that the majority
of cryptocurrencies are created based on the protocol of leading cryptocurrencies such as
Bitcoin and Ethereum (e.g., MKR, BNT, ICX, ETC and LTC) [71]. Moreover, cryptocurrencies’
prices readily fluctuate with mass media [72], causing a herding behavior [72]. Similar
characteristics contribute to creating a trend in cryptocurrencies.

Generally, these phenomena might be reasons for a high-value correlation matrix of
cryptocurrencies from our dataset. Thus, it is important to remove of the existing noise and
trend before moving on to further analysis.

4.2.2. Cleaning Method

In recent studies, different approaches have been proposed to remove the noise from
a correlation matrix through modification of the corresponding eigenspectrum, e.g., Lin-
ear shrinkage [73], Eigenvector clipping [74], Non-linear shrinkage [75] and Rotationally
invariant, optimal shrinkage [76]. One common obstacle for most of the existing cleaning
methods is that they have parameters needing definition. This raises an obvious question:
how do we choose these? It is acknowledged that a lot of effort has been made to obtain
the right parameter values, i.e., the noise is removed completely without the loss of data
information [77,78]. However, these optimization approaches have one issue, which is that
they use the Frobenius norm in their formula, so they fail to work with outlier-containing
data, a downside of the Frobenius metric [79]. On the other hand, Eigenvector Clipping
distinguishes itself from others [74] as it does not require any training parameters, making
its outcome robust and more reliable. Furthermore, this cleaning method is straightforward
to implement, with the guaranteed efficiency as it keeps the information part, i.e., after
the cleaning process, the trace of the correlation matrix remains unchanged [80]. This
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method has shown good performance in different studies and has been applied widely to
different topics such as programming education, portfolio optimization and signal process-
ing [70,81,82]. The outstanding performance of the Eigenvector clipping encourages us to
choose this method for our cleaning scheme.

Given eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn and corresponding eigenvectors
v1, v2, . . . , vn of our empirical correlation matrix C, we can identify k ≤ n such that λk > λ+

and λk+1 ≤ λ+. The Eigenvector clipping defines the denoised correlation matrix Cdenoised
by [83]:

Cdenoised = Σn
i=1λ∗i viv

ᵀ
i , λ∗i =

{
λk+1+λk+2+...+λn

n−k , ∀i ≥ k + 1
λi, ∀i ≤ k

(1)

Equation (1) uses the same eigenvectors as C but modifies their corresponding eigen-
values such that those greater than λ+ remain unchanged while the rest will be replaced
by their average value. Notably, although small eigenvalues are replaced, the trace of the
denoised correlation matrix is equal to its origin.

Regarding the trend effect, it is explained by the first eigenvalue and eigenvector,
referred to as “market component” [83]. The market component is proved to influence the
outcome of the correlation matrix. In particular, it is involved in all interactions observed
from the correlation matrix due to its enormous amount of information, consequently,
lessening the performance of clustering algorithms [84]. Thus, removing this component
is a necessary step to clean the trend effect so that a greater portion of the correlation
can be explained by components that affect specific subsets of the cryptocurrencies and,
hence, facilitate clustering algorithms to find dissimilarities across clusters. A cleaned
correlation matrix Ccleaned is obtained by subtracting the market component from the
denoised correlation matrix:

Ccleaned = Cdenoised − λ1v1vᵀ1 (2)

We found that the connections between cryptocurrencies decrease greatly without noise
and trend effects: large cryptocurrencies such as Bitcoin, Ethereum and Ripple do not see
to affect the cryptocurrency market as they did before the cleaning process, since there
is no strong connection between them and other cryptocurrencies. This result is in line
with [70], where the Eigenvalue Clipping method was also used to clean the education-
related correlation matrix.

4.3. Distance Matrix and Its Minimum Spanning Tree

Although the correlation coefficient can explain some aspects of the relationships
between cryptocurrencies, it is not a metric [85]. Thus, the connections learned from the
correlation matrix lack topological characteristics because they are not placed in a metric
space [85]. To tackle this issue, a concept named Distance Matrix has been introduced to
replace the correlation matrix.

Let D be a distance matrix deriving from Ccleaned, then:

dij =
√

2 ∗
(
1− cij

)
(3)

where dij ∈ [0, 2] is an element of D, with 0 indicates the complete similarity between
2 nodes while 2 indicates the complete difference between 2 nodes. From the Equation (3),
we can prove that: (1) dij ≥ 0, (2) dij = 0 if i = j and (3) dij = dji, i.e., the requirements of a
metric are satisfied [85]. By using the distance matrix, we can derive a network (graph) of
cryptocurrencies (nodes) with a specific topology, where similar cryptocurrencies are close
to each other and cryptocurrencies with different behaviors are far away from each other,
the link (edge) between each pair of cryptocurrencies is their distance value. Thanks to this
topology, different communities of cryptocurrencies can be observed.
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One problem with this type of network is that it is dense. That is, for a set of N
nodes, the corresponding graph deriving from D has N×(N−1)

2 edges such that each vertex
connects to all other vertices. To reduce the complexity of the network, we use a Minimum
Spanning Tree (MST) [86], which refers to a special tree from the graph that links all vertices
together in which its length is minimal. Particularly, it reduces the amount of redundant
information since it only keeps the N − 1 most important edges, i.e., N − 1 shortest edges
that are well connected. MST stems from graph theory and is applied widely to different
fields [4,87,88], especially in financial markets [89–91]. To exploit the useability of MST,
the dynamics of community structures in the stock market are observed by Huang et al. [92]
with the dataset split into consecutive smaller periods and a MST constructed at each
of them. Thus, the characteristics of a financial network can be captured by observing
the evolution of MSTs. More recently, the cryptocurrency market was introduced and
attracted a number of investors, and the demand for exploring the correlation between
cryptocurrencies thereby emerged. However, this topic is rather new and needs more
studies to be implemented [4,93].

There are two famous algorithms to find the MST, namely Prim [93] and Kruskal [94].
While both methods show good performance, Kruskal seems to be better in terms of time
complexity. A comparison between the two from [95] shows that the prior works well with
a big network, while the latter is dominant when the network is small, which is appropriate
for this study as we have only 34 cryptocurrencies. Moreover, Kruskal is used more often
in finance-related topics compared to other approaches [96–98], which strengthens the
reliability of the algorithm. With these advantages, we choose Kruskal for this study.

4.4. Community Detection in the Cryptocurrency Market

Given a MST from the distance matrix D, different communities are formed and can be
recognized clearly, i.e., cryptocurrencies belonging to one community have short distance
edges among them and the distance between two others in two different communities is
longer than any edges of these two communities. However, there are less common cases in
which some nodes are scattered between communities, or it is not visible from the graph
how close the two communities are. This issue motivates us to further analyze the MST
to optimize the clustering result using several community detection methods which have
been developed [99–103]. Of these, the Louvain method is applicable across a wide range
of domains [104–107]. Thus, we apply this method to our MST in order to obtain optimal
communities. Theoretically, Louvain is an optimization problem that uses Modularity to
measure the density of links inside communities compared to links between communities.
The target of Louvain is to minimize the Modularity measure, which means that different
authentic communities are clustered very tightly [108].

However, it is not convincing just to show results from one method only, as the
community structure of a network might be just random. To overcome this issue, we
also adopt another commonly used method named Girvan–Newman, which removes
edges from the original graph one-by-one such that the edge having the highest number of
shortest paths between nodes passing through it is removed first. Eventually, the graph
breaks down into smaller pieces, so-called communities [109].

If the results proposed by these two community detection methods are similar, it im-
plies that the relationship of the cryptocurrencies as well as their corresponding community
structure are reliable and reflects their genuine characteristics. The results after applying
these methods are shown in Section 5.

4.5. Time Window Division

Given the dataset described earlier, one important question about constructing a
network structure in these cryptocurrencies is how to split the dataset into different consec-
utive periods. This is because a network structure corresponding to each period of time
should be able to explain what has happened to the cryptocurrencies throughout that time,
i.e., there must be a reason behind this topological structure. If we divided the dataset
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randomly, we could not capture important historical events at a specific period. As a result,
the topology we found would be meaningless in the corresponding time window. To this
end, we must select time windows rationally. We note that our dataset contains the period
of the COVID-19 pandemic as well as the global downturn 2020. From the literature in
Section 2, we see these historical events actually adversely influenced the financial markets.
Thus, we postulate that the COVID-19 pandemic is a reasonable milestone to separate
our dataset.

To verify the pandemic’s impact on the global economy and thereby choose the
right time windows for the dataset, we consider the movements of four different factors.
Firstly, the attention to the COVID-19 pandemic, as measured by the frequency of COVID-
19-related keywords searched on Google Trends. For this factor, we use two keywords
including COVID-19 and coronavirus disease 19 . Secondly, we use the VIX index to observe
fluctuations of the stock market, this index starts at 0 for no upper bound and a higher
value implies that the stock market has stronger fluctuation. Thirdly, we also observe the
prices of the S&P500 index, representing the US economy. Lastly, the growth rate of the
world’s GDP is used as a proxy for the development of the global economy in general.

Figure 1 visualizes these aforementioned factors. From Figure 1a, people started to
worry about this disease in January 2020. However, it was not until March 2020 that the
COVID-19 pandemic actually caught the attention of people worldwide, as the volume
of searches for COVID-19-related terms quickly peaked. This remained a topic of interest
until July 2020. Furthermore, March 2020 was the month in which a pandemic-induced
economic recession first occurred, seriously affecting the economy of nations worldwide.
This effect is shown in Figure 1b–d. In particular, the GDP’s growth rate decreased by
3.3% in 2020, which is the highest decrease ever, even worse than the Great Recession in
2007–2009 [110]. Simultaneously, the stock market fluctuated dramatically, which can be
seen via the VIX index and the S&P500 index, both of which experienced a significant fall
during March 2020. However, the economy started to recover afterward, the stock market
became less fluctuated and the S&P500 index regained its original pre-pandemic value in
July 2020.

(a) Public attention (b) GDP growth rate

(c) VIX index (d) S&P5000 index

Figure 1. The reaction of general public and global economy to the COVID-19 pandemic. Four factors
are considered: (a) Worldwide attention to the pandemic, (b) Global GDP growth, (c) VIX index,
(d) S&P500 index.
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Consequently, we split the 784 days from 13 February 2019 to 6 April 2021 into three
time windows which correspond to three different stages, including normal time, downturn
time and recovery time. The details for these time windows are shown in Table 3.

Table 3. Three time windows used in this work (time windows split to take into consideration the
COVID-19 pandemic).

Time Window Stage Time Span # Days

1 Normal time 13 February 2019–31 December 2019 322 days
2 Downturn time 1 January 2020–30 June 2020 182 days
3 Recovery time 1 July 2020–6 April 2021 280 days

5. Experimental Results and Discussion

This section sets out our three research questions. We will first examine the impact
of noise and trend effects on the correlation between cryptocurrencies as well as their
corresponding topological structure. Then, we observe the evolution of the structure
according to the levels of granularity. Finally, the results from these two experiments will be
used to construct the right network structure. Consequently, the corresponding community
structure is identified, which is used to learn the investment decisions of crypto investors
during the COVID-19 pandemic.

We note that all calculations in our study are implemented using Python programming
language (version 3.7.14, designed by Guido van Rossum, Centrum Wiskunde & Informat-
ica (CWI), The Netherlands). Regarding network-related calculations (e.g., network con-
struction and network-involved metrics), we utilize the networkx (https://networkx.org/)
package incorporated into Python.

5.1. The Response of Network Structures to Noise and Trend Effects

Given the fact that there are noise and trends in the cryptocurrency market, we
examine whether these factors affect the cryptocurrency network structure. Since we have
four datasets corresponding to four timescales (e.g., 30 min, 6 h, 12 h and 24 h), we use
both metric-related methods and visualization for all available datasets to discover the
discrepancy between original and cleaned (after removing noise and trends) datasets.

To show the difference between two network structures, we choose two such metrics
to measure the connection strength in a network of cryptocurrencies:

• Residuality Coefficient [93]: This compares the relative strength of the connections
above and below a threshold distance value. In this experiment, we use the highest
distance value ensuring connectivity of the MST as the threshold, denoted L:

R =
Σ[dij>L]d

−1
ij

Σ[dij≤L]d
−1
ij

(4)

• MST-based mean distance [111]: this calculates the average distance of the MST:

M =
1

N − 1
Σdij∈MSTdij (5)

An increase in these means that cryptocurrencies are further from each other. By con-
trast, cryptocurrencies are closer to each other if these metrics decrease. Note that although
both metrics are used to examine the connection strength of cryptocurrencies, the Resid-
uality coefficient is known to be more vulnerable to the links between cryptocurrencies
in different groups, i.e., if the connection strength between cryptocurrencies in different
groups increases, the Residuality coefficient will decrease dramatically, and vice versa;
the connections between cryptocurrencies within one group do not affect the Residual-
ity coefficient much [112]. On the other hand, Mean distance is more vulnerable to the

https://networkx.org/
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links between cryptocurrencies belonging to one group, as it mainly uses the connections
within a group to find the average value and ignores the connections between different
groups [111].

Table 4 shows the results of the two metrics using different levels of granularity. It
is clear that both Residuality coefficients and Mean distance values increase significantly
when the effects of noise and trend are dismissed. This phenomenon remains unchanged
in different timescales, implying that this is a genuine characteristic of the cryptocurrency
market. Furthermore, a visualization of network structures before and after cleaning is
shown in Figure 2 to reinforce our finding. As can be seen, the topological structure changes
after the noise and trends are removed. Moreover, what happens in each time window
is that the number of communities decreases after removing these effects. From these
figures and illustrations, we can conclude that the connections between cryptocurrencies
are caused mainly by the noise and trend effects. That is, these factors result in different
cryptocurrencies becoming closer to each other and forming a group. This phenomenon
can be explained by low values for Residuality coefficients and Mean distance values in
the original data compared to the cleaned data. A value less than unity of the prior metric
means that there are few connections greater than the threshold L. Moreover, a small value
of the latter metric means that cryptocurrencies within a group are closer to each other.
In summary, each group of the network is compact with strong links inside, which helps
the community detection algorithm to easily cluster them. In other words, the difference
between different groups is clear because the links between different groups are weak,
i.e., the ones greater than L. However, after cleaning the correlation matrix, cryptocurrencies
that are closely related to each other through noise and trend become further away, i.e., the
strong links between some cryptocurrencies are broken. This causes our metrics to increase
dramatically, which means that the network structure starts to expand, forming a sparse
network. For example, the Residuality coefficient of the second time window in the 30 min
original data is 0.28, while it is 20 times higher after cleaning the effects of noise and
trends. This fact is also true for the rest of our dataset. The result is in line with [20]; these
authors did not consider the noise effect but, with the removal of trends, they found that the
correlation between the 80 most liquid cryptocurrencies from 1 January 2020 to 1 October
2021 decreased.

Table 4. Cryptocurrency network connection strength through three time windows measured by
Residuality Coefficient and Mean Distance. Four different granularity levels are considered, each
with datasets, including original and cleaned dataset after removing noise and trend effects.

Metric Data Type
Time

Window
Granularity

30 min 6 h 12 h 24 h

Residuality
Coefficient

Original Data

1 0.41 0.11 0.16 0.08
2 0.28 0.111 0.06 0.05
3 0.14 0.05 0.07 0.34

Cleaned data

1 1.69 6.66 14.82 14.40
2 5.98 8.90 14.41 15.34
3 2.32 2.99 1.88 1.05

Mean
distance

Original Data

1 1.08 0.82 0.80 0.76
2 0.99 0.71 0.65 0.56
3 0.98 0.57 0.46 0.45

Cleaned data

1 1.29 1.38 1.42 1.42
2 1.40 1.42 1.42 1.42
3 1.29 1.12 1.01 1.22
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(a) Time window 1, original (b) Time window 1, cleaned

(c) Time window 2, original (d) Time window 2, cleaned

(e) Time window 3, original (f) Time window 3, cleaned

Figure 2. Cryptocurrency network structures using daily data. For each time window, Louvain
method is applied to both original and cleaned data to detect existing communities. The illustrations
on the left and right hand side are for the original and cleaned data, respectively, for 3 time windows
referring to normal, downturn and recovery times, respectively.

5.2. Real Network Structures in Different Levels of Granularity: An Experiment on Cleaned Data

In this section, we will construct the network structure of 34 cryptocurrencies removing
the effects of noise and trends. By doing this, we can look at the evolution of network
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structures at each timescale over time and, of greater interest, the differences in the network
structures between different timescales. Note that community detection results found by
using Louvain algorithm are also included in these networks. The results of this experiment
can shed light on the influence of timescales on cryptocurrencies’ connections and what
timescale should be used for cryptocurrency-related analysis.

5.2.1. The Evolution of the Cryptocurrency Network According to Timescales

Figures 3–5 show the results of network structures along with detected communities
using the Louvain method with each figure representing a different time window. For each
window, four network structures corresponding to four different levels of granularity are
displayed. One obvious statement that can be made from the illustrations is that the com-
munity structures at each level of granularity change over time. Additionally, if we consider
different levels of granularity at the same time, the number of detected communities tends
to decrease when the timescale becomes more coarse-grained. For large timescales, such
as 24 h, cryptocurrencies build up big groups with few cryptocurrencies acting as central
nodes that link directly to the remainder. For example, in Figure 3d, MANA acts as a central
node that links all other cryptocurrencies together. This explains why community detection
techniques cannot distinguish several subsets as the network in this case is naturally one
group. Figure 4d shows a similar pattern, while in Figure 5d there are two central nodes
that create two big groups with relatively similar sizes. To this end, with low-frequency
data, we expect we can predict the long-term trend of cryptocurrencies in the future by
looking at the central nodes from their corresponding community structures. If this is the
case, it will be very beneficial for investors who choose a long-term investment. However,
this behaviour requires deeper investigation and will be the subject of further research.

(a) Time window 1, 30 min (b) Time window 1, 6 h

(c) Time window 1, 12 h (d) Time window 1, 24 h

Figure 3. Network structure for the first time window, community detection is applied using Louvain
method. Four different timescales are used, e.g., (a) 30 min, (b) 6 h, (c) 12 h, (d) 24 h.

We notice that the difficulty of detecting communities in this market increases with
the timescale length. In other words, cryptocurrencies are more likely to belong to the
same community if we just look at their price values at a high level of granularity such as
daily. Thankfully, it can be explained based on the nature of the cryptocurrency market.
In particular, the cryptocurrency market is well-known for its high volatility compared to
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other traditional asset classes such as stocks, bonds and commodities [113–116]. In [117],
the authors used 5 min data of Bitcoin prices traded on three different exchanges, Kraken,
Bitstamp and Btcbox, during the period between 2017 and 2021 to calculate the realized
volatility (the assessment of variation in returns for an asset by analyzing its historical
returns within a defined time period) of this most stable and popular cryptocurrency. The re-
sults showed that although Bitcoin is the most valuable and trustworthy cryptocurrency, its
volatility fluctuates from 4.8 to 7.5. By contrast, with the same level of granularity, the stock
market seems to be more stable, as the realized volatility stood at roughly 0.58 during
normal times [118] and increased to just around 1.0 during the COVID-19 pandemic [119].
These facts suggest that the cryptocurrency price fluctuations are dramatic even within a
5 min period. Consequently, using a low-frequency dataset such as 12 h or 24 h appears to
cause a loss of important information that influences the results of analysis. This problem
has also been described in earlier studies such as [12]. However, existing studies mainly
focused on daily data to detect communities in the cryptocurrency market.

(a) Time window 2, 30 min (b) Time window 2, 6 h

(c) Time window 2, 12 h (d) Time window 2, 24 h

Figure 4. Network structure for the second time window, community detection is applied using
Louvain method. Four different timescales are used, e.g., (a) 30 min, (b) 6 h, (c) 12 h, (d) 24 h.

In this study, the loss of information by using large timescales including 6 h, 12 h and
24 h makes judging the correlation between different cryptocurrencies unclear. As a result,
it affects the corresponding MST which can be seen in Figures 3–5. Ideally, we would like
to use a dataset that is as fine-grained as possible. Unfortunately, our experiments show
that for frequencies lower than 30 min, there are a huge amount of missing values as some
cryptocurrencies are not traded frequently [120], thus requiring their removal or imputing
a value. This adversely affects the correlation between time series and impacts our analysis.
Finally, we choose a 30 min dataset for further experiments.
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(a) Time window 3, 30 min (b) Time window 3, 6 h

(c) Time window 3, 12 h (d) Time window 3, 24 h

Figure 5. Network structure for the third time window, community detection is applied using
Louvain method. Four different timescales are used, e.g., (a) 30 min, (b) 6 h, (c) 12 h, (d) 24 h.

5.2.2. Louvain vs. Girvan–Newman for Community Structure Detection

The Louvain method is our main technique for detecting communities but we also use
the Girvan–Newman method to double-check the communities found. The v-measure gives
the similarity between these two methods [121], shown in Table 5. This metric ranges from
0 to 1 such that 0 indicates a complete dissimilarity between two graphs while 1 indicates a
complete similarity. We found that the v-measure in all cases is high with the lowest value of
0.82 from the third time window in the 6 h dataset in Table 5. That is, the Louvain method
proposes similar results as Girvan–Newman. Thus, the communities found by Louvain are
reliable for use in further analysis.

Table 5. v-Measure between Louvain and Girvan–Newman methods.

Granularity

30 min 6 h 12 h 24 h
Time window 1 0.88 1.00 1.00 1.00
Time window 2 1.00 1.00 1.00 1.00
Time window 3 0.87 0.82 0.91 1.00

5.3. Analysis of Investors’ Investment Decisions Based on the Time-Varying Network Structure
5.3.1. The Changes in Crypto Network Structure during Times of Crisis

To observe the growth of the network structure over time, we use Degree Assortativity
Coefficient [122] and Average Betweenness Centrality [3]. However, these metrics fail to tell
us the similarity between two networks. Thus, to statistically compare the topological
change between two networks, we use three more metrics, including v-measure, Degree
centrality [26] and Eigenvalue method [123,124].

Table 6 shows results of Betweenness Centrality and Degree Assortativity. Immediately,
we can see that there is a huge change occurring in time window 2, which corresponds to
the turbulent time caused by the pandemic on both metrics.
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Regarding the Betweenness Centrality, this metric decreases from 0.15 in time window
1 to 0.05 in the next period before going back to its original value prior to the pandemic
outbreak (time window 1). A reasonable explanation for this movement is that the network
structure of the cryptocurency market during normal times appears to have a dispersive
tendency with the whole network divided into multiple small-size groups such that each
group share common characteristics. However, during COVID-19, these synchronize to
form a big group. Thus, the number of groups decreases while the size of each group
increases. This might be a consequence of an increase in the connectedness of cryptocurren-
cies during the pandemic, as shown in many research papers [11,27,45]. In the recovery
time, however, the network started to divide into smaller parts again, perhaps because the
cryptocurrency market overcame the most connected period and started to go back to its
normal behavior.

The Degree Assortativity results strongly support those of the Betweenness Centrality.
In particular, a negative value shows that high-degree nodes are more likely to link to low-
degree nodes, which means that each group in the network has one node acting as a central
node connecting to the rest. While the values in time window 1 and 3 are approximately
the same, time window 2 shows a decline by nearly 50 percent. This indicates that the
number of connections between high-degree nodes and low-degree nodes increases, i.e., the
network forms big groups with a large number of leaf nodes in each group.

We notice that this time-varying structure is similar to what have been shown in works
of Drozdz et al. [20,21], who stated that the market has a distributed-network topology or a
hierarchical-network topology in which no node dominates the network during normal
times. However, it becomes more centralized during the pandemic and started to distribute
as this turbulent time is gone. More recently, another work proposed by Nie also confirmed
the same result [22].

Table 7 shows results of the three similarity metrics for different time periods: normal
time (time window 1), downtime (time window 2) and recovery time (time window 3). Each
values shows the similarity between two time windows. For v-measure, the higher the value
is, the more alike two networks are. On the other hand, for the remaining values, a lower
value indicates that two networks are more similar.

The differences between time window 2 and the other two time windows are very
clear. In particular, the v-measure between time window 1 and 3 is 0.32, meaning that
communities found in time window 3 hold roughly one third of characteristics from time
window 1’s communities. By contrast, v-measure values between time window 1 and 2 as
well as between time window 2 and 3 are negligible, standing at 0.04 and 0.02, respectively.
Additionally, for the topological structures of MSTs, the other two metrics also show the
same principle since time window 1 and 3 share common characteristics and the similarity
degree of other cases are nearly zero. Remarkably, the Eigenvalue method shows a significant
divergence of time window 2 with others, as shown in Table 7.

The severe pandemic and the global downturn of March 2020 together seem to have
actually changed the way cryptocurrencies interact with each other. The changes of these
interactions have created new communities and broken down old ones, i.e., some cryp-
tocurrencies become closer to each other while others moved further away from each other
due to the COVID-19 pandemic and the economic recession. Eventually, the topological
structure during this turbulent time shows completely different patterns compared to the
periods when the global market is stable. Furthermore, we noticed that the community
structure started to recover back to its pre-COVID-19 levels after June 2020, which coincides
with the time the global economy recovered and the COVID-19 pandemic had less impact.
During this time, some characteristics of the network structure reappeared that are similar
to the structure during the normal time (it is obvious that these structures are not fully
similar because they change over time, as proven in previous sections and, in addition,
after June 2020, the global economy started to recover, but not as well as in the past, and
the pandemic still had an impact on the economy worldwide to some extent). This is
why the v-measure between time window 1 and 3 increased significantly and the corre-
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sponding differences measured by Degree centrality and Eigenvalue method are very small.
The community structures for the three time windows are shown in Figures 3a, 4a and 5a.

Table 6. The growth of network structures over time measured by Betweenness Centrality and
Degree Assortativity.

Metrics Time Window 1 Time Window 2 Time Window 3
Betweenness centrality 0.15 0.05 0.16
Degree Assortativity −0.49 −0.72 −0.51

Table 7. Similarity in network structures between different phases of the cryptocurrency market
measured by three metrics. A higher value of v-measure indicates a greater similarity between two
structures, whereas, higher values of degree centrality and eigenvalue method indicate more dissimilarity
between two structures.

Metrics

Time
Window 1 vs. 2 1 vs. 3 2 vs. 3

Degree centrality 0.5 0.09 0.42
Eigenvalue method 844.45 4.59 759.16

v-measure 0.04 0.32 0.02

5.3.2. Learning the Investment Decision of Crypto Traders Based on Ranking Distribution

The ranking of a cryptocurrency is measured by its market capitalization (a multipli-
cation between the number of coins in circulation and the current market price of a single
coin). We obtain cryptocurrencies’ ranking on the https://coinmarketcap.com website
(accessed on 15 August 2022).

We use this characteristic of cryptocurrencies to examine how they are distributed in
each community of the cryptocurrency network. More importantly, we will have a look at
the way cryptocurrencies form groups during different phases of the global economy by
observing the distribution of ranking in each group between different periods of time.

Table 8 summarizes the results of community detection using the Louvain method.
For each period of time, the found communities are listed with a set of cryptocurrencies and
corresponding rankings belonging to each of them. We found that during the normal time,
there is a mix between high-ranking and low-ranking cryptocurrencies in each community.
For example, group 6 has a size of 7 including top-ranking cryptocurrencies such as BTC,
ETH and BCH, while also having very low-ranking ones such as MAID and ICX. We pay
more attention to communities found in the downturn time. At this phase, we recognized
that the community formation of these cryptocurrencies seems to be dramatically different
from the previous period. In particular, there are only two communities found during this
period, while the other has six. More importantly, there seems to be a separation between
high-ranking and low-ranking cryptocurrencies, because the majority of top-ranking cryp-
tocurrencies belong to one group while the majority of low-ranking cryptocurrencies are
in the other. Additionally, by comparing these results with the period of recovery, we no-
ticed that this period shares common characteristics with both normal time and downturn
time. Specifically, after the downturn time, cryptocurrencies started to separate from each
other; this can be seen by looking at the number of communities during this time. There
was an increase from 2 to 6, which is equal to the normal time case. While the majority
of communities show a mix between high- and low-ranking cryptocurrencies, there are
two communities that are similar to the downturn time: group 4 with all high-ranking
cryptocurrencies and group 5 with all low-ranking cryptocurrencies.

https://coinmarketcap.com
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Table 8. Distributions of rankings in each community during different phases of the financial market:
normal time, downturn time and recovery time. The rankings are sorted in ascending order. Bold
values are minimum and maximum ranks in each period.

Group Cryptocurrencies Rankings

N
or

m
al

ti
m

e

1 ADA, XLM, BAT, ZIL 10, 13, 32, 99
2 BTG, IOST, XTZ, ZRX, ETC 12, 21, 45, 57, 83
3 LSK, OMG, REP, FUN, MKR 26,54, 58, 70, 168
4 NEO, MANA, BNT, XVG, XEM, QTUM 19, 31, 41, 86, 117, 184
5 ONT, ZEC, XMR, XRP, EOS, TRX, LTC 3, 6, 7, 11, 16, 29, 35
6 ICX, MAID, DOGE, BTC, BSV, ETH, BCH 1, 2, 5, 9, 34, 84, 130

D
ow

nt
ur

n
ti

m
e 1

DOGE, ICX, BNT, MANA, ZRX, FUN,
MAID, BAT, XVG, ONT

32, 33, 40, 45, 60, 81,
105, 124, 139, 196

2

ADA, BCH, BSV, BTC, BTG, EOS,
ETH, ETC, IOST, LSK, LTC,
MKR, NEO, OMG, QTUM, REP, TRX,
XEM, XLM, XMR, XRP, XTZ, ZEC,
ZIL

1, 2, 4, 5, 6, 7, 9,
11, 12, 15, 17, 18,
21, 22, 27, 30, 34, 48,
51, 53, 54, 62, 65, 91

R
ec

ov
er

y
ti

m
e 1 BTG, MANA, BAT, ZEC 56, 62, 67, 107

2 ONT, QTUM, EOS, BSV, MKR 24, 31, 53, 75, 88
3 XVG ,ZIL, XEM, MAID, BTC, ETH 1, 2, 38, 48, 109, 136
4 ADA, DOGE, XRP, BCH, XLM, LTC 6, 7, 9, 15, 16, 20
5 OMG, BNT, IOST, REP, ICX, LSK 68, 78, 85, 100, 101, 140
6 ETC, ZRX, TRX, NEO, XMR, FUN, XTZ 17, 27, 33, 35, 64, 76, 129

Figure 6 shows the distribution of cryptocurrencies’ rankings in three different phases
of time. We use this visualization to show readers the changes of ranking distributions
in a clearer and easier manner. Each community is represented by a circular shape while
the rankings of cryptocurrencies are represented by the intensity of the blue color, i.e., the
darker the blue, the lower the cryptocurrency’s rank. Figure 6b shows that the circular shape
of group 1 is clearly darker than that of group 2. On the other hand, there is a combination
of both bright and dark blue in the majority of cases in two remaining sub-figures. Notably,
Groups 3 and 5 in Figure 6c show a clear difference from the rest.

When it comes to these results, investors’ investment decisions can be considered as
potential explanations for the time-varying community structure. During normal times,
i.e., when the financial market is stable and there is no major event occurring that impacts
wider society, investors show a non-herding behaviour. That is, their decision for investing
in a cryptocurrency is based on their own market analysis and is not influenced by other
investors’ choice. This might push up the vibrancy of the cryptocurrency market where
a large number of coins with both high and low rankings are traded. As a result, there
is a diversification in terms of rankings in each community. Empirically, it is found that
there was no herding behavior before the pandemic. In particular, Larisa et al. in [125]
used hourly price time series of multiple exchanges such as Binance, Bitbay, BitFinex,
Coinbase and major cryptocurrencies including BTC, LTC and ETH to find the existence of
herding before the start of COVID-19. Based on the Cross Sectional Absolute Deviation model,
they found that the herding behavior was free during this time. By contrast, during a
turbulent time, investors are panicked by the fluctuations of cryptocurrencies’ price as well
as being bombarded by bad news that strongly affect their investment. Different studies
have been carried out to investigate the investors’ behavior since the onset of the COVID-19
outbreak. Generally speaking, these reached the same conclusions: that the pandemic
actually increased herding behavior in the cryptocurrency market. In [126], the authors
used 43 cryptocurrencies with large market capitalization between 2013 and 2020; they
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found that investors in the cryptocurrency market follow the consensus and the impact
of coronavirus media coverage is significant on the herding behavior. In particular, news
related to the coronavirus increases fear and affects the behavior of investors reducing
appetite for risk. Consequently, investors disregard their private information and follow
others’ investment decisions. However, the impact of media is reduced when the market
returns to a normal phase. This is in line with different studies that use different datasets
and time periods [125,127,128]. More importantly, the way investors show herding behavior
is that they tended to invest in the major and most-tradable cryptocurrencies [27]. This
can be explained by the fact that high-ranking cryptocurrencies are more mature so they
are more stable than the rest and are more likely to retain value under the uncertainty
of the global financial market, causing a bias from investors [129]. Consequently, major
cryptocurrencies were seen to increase in terms of trading volume and act as a store of value
during the turbulence times [130]. In other words, there was a risk aversion occurring after
the pandemic outburst as described in [72]. Eventually, all high-ranking cryptocurrencies
belonged to one group.

(a) Time window 1 (b) Time window 2

(c) Time window 3

Figure 6. Cryptocurrency’s rankings distributions in three different phases of time. Each community
is represented by a circular shape while the rankings of cryptocurrencies in this community are given
by the blue color intensity, i.e., the darker the blue, the lower the cryptocurrency’s rank.

When it comes to low-ranking cryptocurrencies, we notice that cryptocurrencies with
the lowest rankings in our dataset belong to another group. This might be because they
receive the same treatment from investors during the downturn time, so they have the
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same trend. One possible reason for this is that low-ranking cryptocurrencies are less likely
to be used as an investment option during the downturn time because they have negligible
value and bring more risk to investors. Instead, they are mainly used for other purposes,
such as paying transaction fees, as currency for a smart contract or simply a token on a
cryptocurrency platform used to access applications [27]. This seems reasonable as the
pandemic stopped in-person interactions. Hence, they had to complete all work remotely.
In this case, cryptocurrencies and blockchain technology are extremely useful since they
thrive under the proposed online environment to resume working activities worldwide and
also bring benefits to users. Being used for the same purpose causes a similarity between
these cryptocurrencies.

All findings that we have shown earlier help us to explain the community structure
in time window 3, which corresponds to the recovery period. During this time, the con-
cerns about the pandemic started to decrease, meaning that not only cryptocurrency but
also other traditional assets recovered with investors’ newfound positive attitude bring-
ing them back to normal trading. Crypto traders started to diversify their portfolio by
investing in different low and high market-capitalized assets and making their own deci-
sions [126]. However, one remarkable phenomenon that is worth taking into consideration
is ] risk-taking behavior. A piece of research implemented by Christoph et al. [131] used
100 return time series of risky stocks to conduct a survey related to the investment behavior
of professional market traders. The responses of more than 800 participants revealed that
a number of investors underestimate risk after prolonged exposure to high risk, as they
become accustomed to the uncertainty of the economy. Thus, they go back to investing in
risky assets or even engage in more risk-taking to gain more profits. This tendency explains
the similarity in the community structures between time windows 1 and 3. However, as we
can see, there exists one group with high-ranking cryptocurrencies and one group with
low-ranking ones as a result of the risk aversion of a portion of investors after the great
shock caused by the pandemic.

6. Limitations and Future Works
6.1. Limitations

Although the tick-by-tick dataset used in this study is large, which strengthens the
results of the experiments, the number of cryptocurrencies should ideally be higher so
that we can draw firmer conclusions regarding the cryptocurrency market (e.g., whether
the results generalise for large-cap and small-cap crypto assets). This will be the subject
of future work. Secondly, while 30 min granularity has been found to suffice for our
calculations, it would be better if we could use a lower level, say 15 min or even finer.
Unfortunately, some cryptocurrencies are not traded regularly causing a lot of missing
values at these timescales. This will also be the subject of future work.

There is also a concern with respect to the use of Pearson correlation for clustering
problems. In particular, although this correlation metric has been applied widely in the
existing literature and proposed various findings in the financial markets [2,21,22], it is
sensitive to outliers [58] and cannot capture non-linear relationships that might cause
misleading results [25]. Consequently, this adversely affects the clustering results. In-
deed, these issues are also observed in other correlation metrics such as Spearman and
Kendall [58]. Furthermore, we noticed that the results of clustering vary significantly by
using different correlation measuring methods. Thus, it is necessary to deeply investigate
different methods for a specific research task and analyze the results from each of these
methods. Indeed, the creation of new approaches for calculating correlation coefficients
that overcome the current limitations needs to receive more attention.

6.2. Future Works

Understanding how cryptocurrencies are correlated with each other sheds light on
portfolio optimization. Based on the outcome of this study, we can take one step further by
constructing and comparing the portfolio optimizations at different phases of the market,
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i.e., during bear and bull market periods. Therefore, the unique characteristics of an
optimized portfolio at different market phases can, in theory, be learned and analysed.
Secondly, we have noted that different network structures can be observed for a number of
exchanges. Thereby, a comparison between them can be made. Another future plan which
is worth taking into consideration is to observe the correlation using different techniques.
For instance, we are aiming to use mutual information, which is successfully applied in [25],
to estimate the correlation between two cryptocurrencies. This method can overcome
obstacles from popular linear and non-linear methods since it can measure the non-linear
correlation while allowing the existence of non-monotonic relationships. Lastly, we have
noticed that the network structure of low-frequency data behaves differently to that of
high-frequency data. We remark that we can expect to learn the long-term characteristics of
cryptocurrencies based on this structure which could be potentially beneficial for investors
who choose to make a long-term investment decision.

7. Conclusions

This research aims at answering three questions related to cross-correlations in the
cryptocurrency market: Firstly, how do noise and trends in cryptocurrencies influence
their cross-correlations and then the corresponding network structure? Secondly, what
level of granularity should we use? Lastly, is the dramatic change in the cryptocurrency
network structure during the pandemic caused by investors’ investment strategy? We
firstly analyze the effect of noise and trend in cryptocurrencies on their cross-correlations
and then remove these factors thanks to Random Matrix Theory and Market Component.
Four sub-datasets with different levels of granularity including 30 min, 6 h, 12 h and 1 day
are created from the original tick-by-tick data to examine the importance of choosing the
right frequency resolution. Then, we use MST to construct a correlation-based network and
detect different potential communities by using Louvain and Girvan–Newman algorithms.
We found that the correlations between cryptocurrencies are mainly caused by noise and
trend effects, which might lead to a big problem for the traders’ investment strategy
because investors might be fooled by looking at the counterfeit relationship. It is necessary
to analyze and explore real interactions between cryptocurrencies so that the evolution
of the cryptocurrency market can be learned properly and thus investors can choose a
good strategy for their investment. Moreover, the frequency resolution of our data plays
an important role in the performance of correlation matrix and also community detection.
Specifically, the finer the data, the more precise the community structure. Thus, we use a
30 min dataset, which is the finest available timescale in this study. The dramatic change
in the community structures between bearish and bullish markets reveals a change in the
investment decisions of investors. In particular, investors makes their own investment
decisions based on their personal market analysis and experience during normal times.
Eventually, this causes a diversification in the cryptocurrencies chosen to invest in, since
not only high- but also low-ranking cryptocurrencies are added in the portfolios. On the
other hand, investors tend to only trade cryptocurrencies with high market capitalization
during turbulent times, while smaller cryptocurrencies are mainly used for other purposes,
such as transaction fees, smart contracts tokens or simply used to run a digital platform.
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