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Abstract: Fidelity mechanics is formalized as a framework for investigating critical phenomena
in quantum many-body systems. Fidelity temperature is introduced for quantifying quantum
fluctuations, which, together with fidelity entropy and fidelity internal energy, constitute three
basic state functions in fidelity mechanics, thus enabling us to formulate analogues of the four
thermodynamic laws and Landauer’s principle at zero temperature. Fidelity flows, which are
irreversible, are defined and may be interpreted as an alternative form of renormalization group
flows. Thus, fidelity mechanics offers a means to characterize both stable and unstable fixed points:
divergent fidelity temperature for unstable fixed points and zero-fidelity temperature and (locally)
maximal fidelity entropy for stable fixed points. In addition, fidelity entropy behaves differently at
an unstable fixed point for topological phase transitions and at a stable fixed point for topological
quantum states of matter. A detailed analysis of fidelity mechanical-state functions is presented
for six fundamental models—the quantum spin-1/2 XY model, the transverse-field quantum Ising
model in a longitudinal field, the quantum spin-1/2 XYZ model, the quantum spin-1/2 XXZ model
in a magnetic field, the quantum spin-1 XYZ model, and the spin-1/2 Kitaev model on a honeycomb
lattice for illustrative purposes. We also present an argument to justify why the thermodynamic,
psychological/computational, and cosmological arrows of time should align with each other, with
the psychological/computational arrow of time being singled out as a master arrow of time.

Keywords: quantum critical phenomena; tensor network algorithms; symmetry-breaking order;
topological order; an analogue of Landauer’s principle; analogues of the four thermodynamic laws;
fidelity flows; renormalization group flows; arrows of time

1. Introduction

Quantum critical phenomena [1–3] arise from cooperative behavior in quantum many-
body systems. Conventionally, there are two categories of theories for describing these
fascinating physical phenomena. One is adapted from Landau’s spontaneous symmetry-
breaking (SSB) theory [4], with a symmetry-broken phase characterized by nonzero values
of a local order parameter. SSB occurs in a system when its Hamiltonian enjoys a certain
symmetry, whereas the ground-state wave functions do not preserve it [5,6]. The implica-
tion of an SSB phenomenon is twofold: first, a system has stable and degenerate ground
states, each of which breaks the symmetry of the system; second, the symmetry break-
down results from random perturbations. The other is Wilson’s renormalization group
(RG) theory [7–12], originated from the field-theoretic approach to classical many-body
systems. However, this so-called Landau–Ginzburg–Wilson paradigm suffers from a few
fundamental problems: first, ubiquitous topologically ordered states occur beyond the
SSB order [13–15]; second, even for SSB-ordered states, using only local-order parameters
is insufficient to quantify quantum fluctuations; third, the proliferation of an unlimited
number of irrelevant coupling constants occurs in various RG schemes, which makes it
impractical to work out RG flows from unstable fixed points to stable fixed points; fourth,
intrinsic irreversibility, i.e., information loss, along RG flows is baffling due to the fact that
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a number of high-energy degrees of freedom are discarded during the construction of the
effective Hamiltonian. As such, a full characterization of quantum critical phenomena is
still lacking.

The latest advances in our understanding of quantum critical phenomena originate
from a perspective of fidelity [16–28], a basic notion in quantum information science.
In Refs. [26–28], it has been argued that the ground-state fidelity per lattice site is funda-
mental in the sense that it may be used to characterize quantum phase transitions (QPTs)
regardless of what type of internal order is present in quantum many-body states. In
other words, the ground-state fidelity per lattice site is able to describe QPTs arising from
symmetry-breaking order and/or topological order. This has been further confirmed
in Refs. [29,30], where topologically ordered states in the spin-1/2 Kitaev model on a
honeycomb lattice [31–33] and the Kosterlitz–Thouless (KT) transitions [34,35] are inves-
tigated. The argument is solely based on the basic postulate of quantum mechanics on
quantum measurements, which implies that two nonorthogonal quantum states are not
reliably distinguishable [36]. Moreover, even for quantum many-body systems with a
symmetry-breaking order, it is advantageous to adopt the ground-state fidelity per lattice
site instead of using conventional local order parameters due to the fact that it is model-
independent, although one may systematically derive local order parameters from tensor
network representations [37–48] of ground-state wave functions by investigating reduced
density matrices for local areas on an infinite-size lattice [49,50]. In fact, a systematic scheme
to study quantum critical phenomena in the context of the fidelity approach consists of
three steps, as advocated in [49,50]: first, map out the ground-state phase diagram by
evaluating the ground-state fidelity per lattice site; second, derive local order parameters
(if any) from the reduced density matrices for a representative ground-state wave function
in a given phase; third, characterize any phase without any long-range order in terms of
non-local order parameters. We remark that this is even valid for thermal phase transitions,
if we extend the notion of fidelity from pure states to mixed states to accommodate thermal
fluctuations [26]. In fact, the logarithmic function of finite temperature fidelity per lattice
site for two thermal mixed states corresponding to two different temperatures reduces to
nothing but the free energy if other non-thermal control parameters are kept fixed. This
implies that the singularities in finite temperature fidelity per lattice site coincide with
those in the free energy, thus showing the equivalence between the fidelity approach and
the conventional one to thermal phase transitions.

An intriguing question is to ask whether or not the fidelity approach provides a full
characterization of quantum critical phenomena in the sense that it is not only able to signal
critical points/unstable fixed points but also offers a method for locating stable fixed points.
Moreover, it has to clarify in what sense a quantum many-body system flows from unstable
fixed points to stable fixed points in the control parameter space, which may be understood
as a flow discarding irrelevant information along the way. Given this as our main goal, our
study is motivated by a few specific questions:

(i) There is long-standing folklore pointing towards a similarity between critical points
and black holes, which usually refers to the fact that the effects from a critical point
at zero temperature may be observed in a critical regime at low but finite temper-
ature [51]. Given that both critical points and black holes originate from singulari-
ties, there should be a method for clarifying a formal similarity between QPTs and
black holes.

(ii) RG flows from an unstable fixed point to a stable fixed point are irreversible. This is
relevant to Zamolodchikov’s c-theorem [52–54] and Cardy’s a-theorem [55,56], which
may be regarded as the adaptation of the renowned Boltzmann’s H theorem to the RG
setting. In real space RG theories, such as Kadanoff block spins as well as other coarse-
graining RG schemes, high-energy degrees of freedom are discarded. Therefore, RG
flows seem irreversible in a similar sense to the situations described by Boltzmann’s
H theorem, where physical time is replaced by an RG parameter [57]. Thus, it is
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desirable to see if there are any intrinsic explanations for the irreversibility from the
perspective of fidelity.

(iii) As Landauer first noted [58], at finite temperature T, in order to erase one bit of
information, we need to perform minimum work w: w = kBT ln 2, with kB being the
Boltzmann constant. At zero temperature, do we still need to perform any minimum
work to erase one bit of information?

(iv) During the construction of an effective Hamiltonian along any RG flow, an unlimited
number of irrelevant coupling constants proliferate. In practice, this prevents access
to a stable fixed point. It is tempting to see if there is any deep reason underlying this
observation.

(v) A proper definition of QPTs is still lacking. Traditionally, the ground-state energy den-
sity is used as an indicator to signal a critical point, but it fails in many situations [59].
Instead, some exotic indicators, such as entanglement entropy [60], topological en-
tanglement entropy [61,62], and the ground-state fidelity per lattice site [26–28], are
introduced to signal QPTs due to recent progress in our understanding of quantum
critical phenomena. Therefore, it is important to find a proper criterion to define QPTs.

In this study, we aim to answer these questions. This is achieved by introducing
fidelity temperature to quantify quantum fluctuations present in a given ground-state wave
function for a quantum many-body system, which exhibits QPTs. As it turns out, fidelity
temperature, together with fidelity entropy and fidelity internal energy, offer us a proper
basis to describe QPTs that are both continuous and discontinuous. As a consequence,
this allows us to formulate analogues of the four thermodynamic laws and Landauer’s
principle. As illustrations, we discuss six fundamental models. These are the quantum
spin-1/2 XY model, the transverse-field quantum Ising model in a longitudinal field, the
quantum spin-1/2 XYZ model, the quantum spin-1/2 XXZ model in a magnetic field, the
quantum spin-1 XYZ model, and the spin-1/2 Kitaev model on a honeycomb lattice. Rich
physics is unveiled even for these well-studied models. First, for the quantum spin-1/2
XY model, the disordered circle is interpreted as a separation line between two different
types of fidelity flows, with one type of fidelity flows starting from unstable fixed points
with central charge c = 1, and the other type of fidelity flows starts from unstable fixed
points with central charge c = 1/2. Both types of fidelity flows end at the same stable
fixed point (0, 1), at which fidelity entropy reaches its local maximum. Another remarkable
feature is that fidelity temperatures are zero on the disordered circle, as it should be, since
no quantum fluctuations exist in a factorized state. However, fidelity temperature is not
well-defined at the Pokrovsky–Talapov (PT) transition point [63,64], ranging from 0 to ∞,
depending on how it is approached. Second, for the quantum Ising model with transverse
field λ and longitudinal field h, there are stable fixed points in the (λ, h) plane at (0, 0),
(0, ∞), (∞, 0), and (1, ∞). The existence of stable fixed points (0, 0) and (∞, 0) is protected
by the Z2 symmetry when h = 0, whereas the existence of stable fixed points (0, ∞) and
(1, ∞) may be interpreted as a consequence of the variation of the symmetry group with λ:
U(1) for λ = 0 and none for λ 6= 0, when h 6= 0, although they usually are identified as the
same point. Third, for the quantum spin-1/2 XYZ model, five different dualities have been
identified, which enable us to reproduce the ground-state phase diagram for the quantum
XYZ model. At the ferromagnetic (FM) transition point, fidelity temperature is not well-
defined, ranging from 0 to infinity depending on how the FM transition point is approached.
This is very much similar to the PT transition point for the quantum spin-1/2 XY model.
Furthermore, KT transitions are characterized as topological, since fidelity entropy is not
single-valued at the transition point. Fourth, for the XXZ model in a magnetic field, at
the phase boundary between the critical XY phase and the antiferromagnetic (AF) phase,
fidelity temperatures are not well-defined, ranging from a finite value to ∞. That is, a QPT
at this phase boundary is an intermediate case (IC) interpolating between a KT transition
and a PT transition, which represents a new universality class that is different from both the
KT transitions and PT transitions. Fifth, fidelity mechanical-state functions for the quantum
spin-1 XYZ model, which exhibits the symmetry-protected topological (SPT) phase—the
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Haldane phase [65,66]—are evaluated. It was observed that fidelity entropy takes double
values on the characteristic line (γ = 0) in the Haldane phase, reflecting its topological
nature in the control parameter space. Sixth, the spin-1/2 Kitaev model on a honeycomb
lattice is discussed, with a detailed analysis of fidelity mechanical-state functions being
carried out. The topological nature of the gapped and gapless spin liquid phases is reflected
in the fact that fidelity entropy takes multiple values at the characteristic points.

The layout of this study is as follows. Section 1 is an introduction, describing our
motivations to formalize a full characterization of quantum critical phenomena in the
context of fidelity mechanics. In particular, five questions are raised regarding the current
status of theoretical investigations into quantum critical phenomena. In Section 2, we first
define a fidelity mechanical system and its environment, thus attaching a physical meaning
to the present, the past, and the future, with information storage as a key ingredient, and
then we introduce three fidelity mechanical-state functions, i.e., fidelity entropy, fidelity
temperature, and fidelity internal energy, with an analogue of Landauer’s principle at
zero temperature as a basic requirement from the internal logical consistency. Here, we
emphasize that a key relation between an unknown function, as a defining factor for
fidelity internal energy, and fidelity temperature is established in Section 2.5. In Section 3, a
canonical form of the Hamiltonian in fidelity mechanics is discussed, thus unveiling an
inherently fundamental role of duality in fidelity mechanics. In particular, the meaning of a
canonical form of the Hamiltonian is clarified by relating duality with a shift operation in
the Hamiltonian. Therefore, any artificial choice of the definition of duality is irrelevant
as long as the identification of unstable and stable fixed points is concerned for fidelity
flows, introduced later on in Section 13. Moreover, the consequences ensuing from a
shift operation in the Hamiltonian is elaborated. In Section 4, a fictitious parameter σ
is introduced to address different choices of a dominant control parameter in a given
regime for quantum many-body systems. As demonstrated, information encoded in this
fictitious parameter σ arising from different choices of a dominant control parameter
is irrelevant in fidelity mechanics. In Section 5, fidelity mechanical-state functions are
discussed under a shift operation in the Hamiltonian with respect to a reference benchmark.
In Section 6, distinct features of different types of QPTs and quantum states of matter in
fidelity mechanics are described, thus offering a means to characterize topological QPTs
and topological quantum states of matter in the control parameter space. In Section 7, we
present fidelity mechanical-state functions for the quantum spin-1/2 XY model, which
is a typical example for continuous QPTs. In Section 8, fidelity mechanics is discussed
for the transverse-field quantum Ising model in a longitudinal field, which exhibits a
discontinuous QPT. In Section 9, fidelity mechanics are discussed for the quantum spin-1/2
XYZ model, thus offering a prototype for the role of dualities in fidelity mechanics. In
Section 10, an analysis of fidelity mechanical-state functions is presented for the quantum
spin-1/2 XXZ model in a magnetic field, which enables us to unveil an IC transition point.
In Section 11, fidelity mechanics are discussed for the quantum spin-1 XYZ model, which
exhibits the SPT phase—the Haldane phase [65,66]. In Section 12, a detailed analysis
of fidelity mechanical-state functions is carried out for the spin-1/2 Kitaev model on a
honeycomb lattice, which exhibits a topological phase transition (TPT). Here, we stress
that, apart from the quantum spin-1/2 XY model and the spin-1/2 Kitaev model on a
honeycomb lattice, a tensor network algorithm [39–41,46–48,67–69] in a matrix-product
state representation has been exploited to simulate quantum many-body systems in these
illustrative examples, thus making it possible to numerically evaluate the ground-state
fidelity per lattice site and, in turn, fidelity mechanical-state functions. In Section 13, we
answer the questions raised in the Introduction and define fidelity flows as an alternative
form of RG flows. Moreover, an argument is presented to justify why the thermodynamic,
psychological/computational and cosmological arrows of time should align with each
other in the context of fidelity mechanics, with the psychological/computational arrow of
time being singled out as a master arrow of time. Section 14 explains what insight fidelity
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mechanics might provide into our search for a classification of quantum states of matter
and QPTs. The last Section 15 is devoted to concluding remarks.

Some supplementary materials are also presented in the Appendices, which are in-
tended for readers interested in technical details. In Appendix A, we introduce the ground-
state fidelity per lattice site and define a pinch point as an intersection point between two
singular lines on a fidelity surface. As typical examples, the transverse-field quantum Ising
model and the spin-1/2 Kitaev model on a honeycomb lattice are presented to illustrate
QPTs arising from symmetry-breaking and topological orders, respectively, based on the
exact expressions for the ground-state fidelity per lattice site, which in turn are derived
from the exact solutions for the quantum spin-1/2 XY model and the spin-1/2 Kitaev
model on a honeycomb lattice. In Appendix B, we summarize the infinite time-evolving
block decimation algorithm (iTEBD) [46–48], which is efficient for generating ground-state
wave functions in the matrix-product state representation for quantum many-body systems
in one spatial dimension. Thus, it offers an efficient scheme to evaluate the ground-state
fidelity per lattice site and to identify (unentangled) separable states [70,71] numerically.
In Appendix C, dualities are presented for the quantum spin-s XYZ model and the spin-
1/2 Kitaev model on a honeycomb lattice, respectively. In Appendix D, arrows of time
are discussed, with a focus on the thermodynamic, psychological/computational, and
cosmological arrows of time. It is argued that fidelity mechanics may be regarded as an
attempt to understand the psychological/computational arrow of time in the context of
quantum many-body systems. Appendix E recalls three theorems in quantum information
science, which are used to justify our definition of a fidelity mechanical system and its
environment. In Appendix F, three extensions of fidelity mechanics are made to adapt it
to other situations: (1) when the ground-state energy density e(x) is always positive; (2)
quantum many-body systems are not translation-invariant; (3) thermal phase transitions
occur at finite temperature. In Appendix G, scaling entropy is discussed for the quantum
spin-1/2 XYZ model, the quantum spin-1 XYZ model, and the spin-1/2 Kitaev model on a
honeycomb lattice. In Appendix H, a scaling behavior of fidelity entropy in the vicinity of
a critical point is performed, and a scaling analysis is presented for the quantum spin-1/2
XY model near a line of the Gaussian critical points. In Appendix I, a universal logarithmic
scaling behavior of the block entanglement entropy is summarized for scale-invariant states
arising from SSB with type-B Goldstone modes (GMs), which is relevant to a characteri-
zation of QPTs in fidelity mechanics. In Appendix J, the bond-centered and site-centered
non-local order parameters are defined, which are used to characterize the SPT phases and
the symmetry-protected trivial (SPt) phases, respectively. An efficient method for evaluat-
ing the bond-centered and site-centered non-local order parameters in the matrix-product
state representation is described. In Appendix K, mathematical details are discussed about
fidelity entropy, fidelity temperature, and fidelity internal energy for the quantum spin-1/2
XY model. In Appendix L, explicit expressions for fidelity entropy, fidelity temperature,
and fidelity internal energy are presented for the transverse-field quantum Ising model
in a longitudinal field. In Appendix M, mathematical details for fidelity entropy, fidelity
temperature, and fidelity internal energy are discussed for the quantum spin-1/2 XYZ
model. In Appendix N, mathematical details for fidelity entropy, fidelity temperature, and
fidelity internal energy are discussed for the quantum spin-1/2 XXZ model in a magnetic
field. In Appendix O, mathematical details for fidelity entropy, fidelity temperature, and
fidelity internal energy are discussed for the quantum spin-1 XYZ model and for the quan-
tum spin-1 bilinear–biquadratic model. In Appendix P, mathematical details for fidelity
entropy, fidelity temperature, and fidelity internal energy are discussed for the spin-1/2
Kitaev model on a honeycomb lattice. In Appendix Q, a distinction between fidelity flows
mimicking Zamolodchikov RG flows and fidelity flows mimicking real space RG flows is
made, with the quantum spin-1/2 XY model as an illustrative example.

Although fidelity mechanics is formalized as a unifying framework for quantum
critical phenomena, its ramifications are well beyond this specific research area. Indeed,
its relevance to physical information is deeply rooted in the fact that fidelity itself is
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a basic notion in quantum information science. Moreover, information storage plays
a fundamental role in both fidelity mechanics and computer science in addition to the
supposition that fidelity work might be exploited to quantify computational costs in
solving a mathematical problem from a temporal perspective, thus establishing a link to
computational complexity [72].

The layout is arranged in such a way that a reader, who is only interested in the main
ideas, may choose to focus on Sections 2–5 and Sections 7–15, which contain the basic
ingredients in our formalism. In addition, one may choose to peruse any of Sections 7–12 to
see how the formalism is implemented for a specific model, and these sections offer typical
examples for distinct types of quantum states of matter and QPTs, including continuous
QPTs, discontinuous QPTs, the KT and PT transitions, the SPT phases, and topologically
ordered states, and other sections can be skipped without any effect on further reading. The
Appendices are intended for a reader who is interested in various technical details involved,
which also act as a pointer to further references, although Appendices A–H contain some
background materials.

2. Fidelity Mechanics: Basic State Functions
2.1. Preliminaries

Consider a quantum many-body system on a lattice described by a Hamiltonian
H(x1, x2), with x1 and x2 being two control (coupling) parameters. However, it is straight-
forward to extend our discussion to a Hamiltonian with an arbitrary number of coupling
parameters. For our purpose, it is necessary to determine its ground-state phase diagram,
in addition to symmetries, dualities, and factorizing fields. As is well known, lines of criti-
cal/transition points divide the control parameter space into different phases, which may
be characterized in terms of local-order parameters for symmetry-breaking ordered phases
and non-local order parameters for topologically ordered phases. In contrast, symmetries,
dualities, and factorizing fields furnish characteristic lines in the control parameter space,
which separate a given phase into different regimes. Note that a multi-critical point arises
if two lines of QPT points, both continuous and discontinuous, meet each other. As a conse-
quence, a peculiar type of characteristic lines may appear, originating from a multi-critical
point, if no characteristic line arising from symmetries, dualities, and factorizing fields
exists. We introduce six fundamental models to be investigated for illustrative purposes
and explain the relevant terminologies to set a stage for our formalism.

2.1.1. Quantum Many-Body Systems: Six Illustrative Models

The first model is the quantum spin-1/2 XY model, described by the following
Hamiltonian:

H(λ, γ) = −∑
i
(

1 + γ

2
σx

i σx
i+1 +

1− γ

2
σ

y
i σ

y
i+1 + λσz

i ), (1)

where σx
i , σ

y
i , and σz

i are the spin-1/2 matrices at site i, γ is the anisotropic parameter, and
λ is the transverse field. The second model is the transverse-field quantum Ising model in
a longitudinal field, described by the following Hamiltonian:

H(λ, h) = −∑
i
(σx

i σx
i+1 + λσz

i + hσx
i ), (2)

where λ is the transverse field, and h is the longitudinal field. The third model is the
quantum spin-1/2 XYZ model described by the following Hamiltonian:

H(γ, ∆) = ∑
i
(

1 + γ

2
σx

i σx
i+1 +

1− γ

2
σ

y
i σ

y
i+1 +

∆
2

σz
i σz

i+1), (3)
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where γ and ∆ are the anisotropic coupling constants. The fourth model is the quantum
spin-1/2 XXZ model in a magnetic field, described by the following Hamiltonian:

H(∆, h) = ∑
i
(σx

i σx
i+1 + σ

y
i σ

y
i+1 + ∆σz

i σz
i+1 + 2hσz

i ), (4)

where ∆ is the anisotropic coupling constant, and h is the magnetic field strength. The fifth
model is the quantum spin-1 XYZ model, for which its Hamiltonian takes the
following form:

H(γ, ∆) = ∑
i
(

1 + γ

2
Sx

i Sx
i+1 +

1− γ

2
Sy

i Sy
i+1 +

∆
2

Sz
i Sz

i+1), (5)

where Sx
i , Sy

i , and Sz
i are the spin-1 matrices at site i, and γ and ∆ are anisotropic coupling

constants. The sixth model is the spin-1/2 Kitaev model [31] on a honeycomb lattice,
with the following Hamiltonian:

H(Jx, Jy, Jz) = −Jx ∑
x−bonds

σx
i σx

j − Jy ∑
y−bonds

σ
y
i σ

y
j − Jz ∑

z−bonds
σz

i σz
j . (6)

Here, i and j label a pair of the nearest-neighbor sites, which hosts an Ising-like
coupling on the three distinct types of bonds, labelled as the x-bonds, the y-bonds, and the
z-bonds, on a honeycomb lattice, and Jx, Jy, and Jz denote coupling constants on the three
distinct types of the bonds, respectively.

2.1.2. Ground-State Fidelity per Lattice Site

The ground-state phase diagram may be mapped out by evaluating the ground-state
fidelity per lattice site. As demonstrated in [26–30,49,50,73–75], the ground-state fidelity per
lattice site is able to signal QPTs arising from symmetry-breaking order and/or topological
order. Here, we restrict ourselves to briefly recall the definition of the ground-state fidelity
per lattice site (also cf. Appendix A for more details).

For two ground states |ψN(x1, x2)〉 and |ψN(y1, y2)〉, the ground-state fidelity is a
measure of the similarity between them, with N being the system size. Mathematically, it is
defined as the absolute value of their overlap

FN(x1, x2; y1, y2) = |〈ψN(y1, y2)|ψN(x1, x2)〉|. (7)

Here, we stress that y1 and y2 should be understood as different values of the same
control parameters as x1 and x2, respectively. In the thermodynamic limit, any two ground
states are always distinguishable (orthogonal). That is, the fidelity between these two
states vanishes. However, for a large but finite lattice size N, FN(x1, x2; y1, y2) scales as
dN(x1, x2; y1, y2), with d(x1, x2; y1, y2) being a scaling parameter. In the thermodynamic
limit, one may introduce the ground-state fidelity per lattice site as follows

d(x1, x2; y1, y2) = lim
N→∞

F1/N
N (x1, x2; y1, y2). (8)

Note that d(x1, x2; y1, y2) is well-defined in the thermodynamic limit. An efficient
scheme to evaluate the ground-state fidelity per lattice site is described in Appendix B for
ground-state wave functions in the matrix-product state representation, which in turn are
generated from a tensor network algorithm—the iTEBD algorithm [46–48].

2.1.3. A Characteristic Line and a Characteristic Point

We introduce a concept—a characteristic line—which turns out to be a key ingre-
dient in fidelity mechanics. We itemize four types of characteristic lines, each with an
illustrative example.
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(i) Generically, the symmetry group of the Hamiltonian varies with coupling parameters
x1 and x2. If the Hamiltonian possesses a distinct symmetry group when the coupling
constants take special values on a characteristic line in a given phase, then it separates
this phase into different regimes in the control parameter space. An example to
illustrate this observation is the quantum spin-1/2 XYZ model (3). For this model,
on the line (γ = 1− ∆), the Hamiltonian possesses U(1) symmetry, which is lost
when coupling parameters move away from this characteristic line. In particular, a
U(1) symmetry occurs when one coupling parameter is infinite in value. This type of
characteristic line is referred to as a symmetric line.

(ii) Characteristic lines also arise from dualities [3,76], which are defined via a local
or nonlocal unitary transformation, and they separate a given phase into different
regimes in the control parameter space. An example to illustrate this observation is the
quantum spin-1/2 XY model (1) [3,76]. Dualities exist along the two lines (λ = 0 and
γ = 1). This type of characteristic line is referred to as a dual line. Caveat: Sometimes
it is a bit tricky to recognize a dual line as a type of characteristic line. Suppose
dualities exist on a plane. Then, the plane itself is a characteristic plane. Generically,
a line in this plane is not a characteristic line, unless this line is self-dual in nature.
However, if a line turns out to be a dual line for a sub-model, with one of the two
control parameters being zero, then it is also recognized as a characteristic line for the
full model. Mathematically, this amounts to stating that such a characteristic line is
semi-self-dual in the sense that only one of the two coupling parameters remains to
be the same. This is seen in the quantum spin-1/2 XYZ model (3) and the quantum
spin-1 XYZ model (5).

(iii) Another type of characteristic line comes from factorizing fields [77–82]. Indeed,
apart from various analytical approaches, there is an efficient numerical means for
identifying factorizing fields for quantum many-body systems in the context of tensor
networks [70,71] (also cf. Appendix B). A line of factorizing fields divides a specific
phase into different regimes. Examples to illustrate this observation are the quan-
tum spin-1/2 XY model (1) and the quantum spin-1/2 XYZ model (3) [77–82]. An
interesting feature for a line of factorizing fields is that they frequently occur in a
symmetry-broken phase and, in turn, are frequently associated with the PT transitions
and FM transitions. We remark that factorizing fields also occur when one coupling
parameter takes infinity in value or when more than one coupling parameters are
infinite in value. This type of characteristic line is referred to as a factorizing-field line.

(iv) There is a peculiar type of characteristic line, originating from an isolated critical
or a multi-critical point and ending at a point on a symmetric line, a dual line, or a
factorizing-field line. This type of characteristic line is needed, if any other type of
characteristic line is absent at such an isolated critical point or a multi-critical point.
An illustrative example is a characteristic line (λ = 1) for the transverse-field quantum
Ising model in a longitudinal field (2). This type of characteristic line is referred to
as a soft line due to the fact that this type of characteristic line does not impose any
rigid constraints in a sense that its location in the control parameter space is not
fixed in contrast to the constraints imposed by a symmetric line, a dual line, and a
factorizing-field line.

In addition, it is useful to introduce a characteristic point, which is defined as an
intersection point between two or more characteristic lines, including a symmetric line, a
dual line, and a factorizing-field line, in the control parameter space.

2.1.4. A Principal Regime

Given that characteristic lines separate a given quantum phase into different regimes,
we need to clarify physical reasons underlying this separation. In our scenario, all ground
states in a given phase share the same relevant information, with their distinguishability
fully attributed to the fact that irrelevant information encoded in different ground states
is different (cf. Appendix A for more details). However, this does not categorize any
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different types of irrelevant information that are possible in a given phase, which in turn
may be traced back to critical points belonging to different universality classes. Actually, it
is the four different types of characteristic lines that separate a given phase into different
regimes, making it possible to attach a certain type of irrelevant information to each regime.
That is, there is a one-to-one correspondence between a regime and the type of irrelevant
information in a given phase. In addition, this also applies to characteristic lines themselves:
different types of irrelevant information are attached to different characteristic lines, if they
are present simultaneously in a given phase.

As a result of dualities, not all regimes are independent; we refer to all independent
regimes as principal regimes, which actually represent the underlying physics for a given
quantum many-body system. Accordingly, all other regimes, dual to a principal regime,
are referred to as non-principal regimes. As a rule, a principal regime always includes an
isolated critical point, a line of discontinuous QPT points ending at an isolated critical point
or a line of critical points as a boundary. In addition, non-principal regimes are symmetric
or dual image regimes that are symmetrical or dual in nature relative to a principal regime.

2.1.5. A Dominant Control Parameter x and an Auxiliary Control Parameter τ

Now we are ready to introduce a dominant control parameter x and an auxiliary control
parameter τ to replace the original coupling parameters x1 and x2 such that there is a
one-to-one correspondence between (x, τ) and (x1, x2) in a specific regime. Therefore, the
Hamiltonian H(x1, x2) is re-parametrized as H(x, τ). As a dominant control parameter, x
has to satisfy three conditions. First, as a function of x, the ground-state energy density
e(x, τ) is monotonic with increasing x for a fixed τ. Second, the range of x is finite. Third,
the ground-state fidelity per lattice site d(x, τ; y, τ) is nonzero.

An auxiliary control parameter τ is certainly needed for a principal regime, given a
one-to-one correspondence between (x, τ) and (x1, x2). However, we only need to define
a dominant control parameter x on a characteristic line, which appears as a boundary in
a principal regime. In addition, once a dominant control parameter x and an auxiliary
control parameter τ are defined for a principal regime, their symmetric or dual images act
as a dominant control parameter and an auxiliary control parameter for a non-principal
regime that is symmetrical or dual in nature relative to the principal regime. Generically,
x starts from a critical point xc or a discontinuous QPT point xd and ends at a point on a
characteristic line, including a characteristic point. Such a characteristic line itself may start
from a multi-critical point and describes a QPT belonging to a universality class different
from what xc or xd belongs to. As a consequence, our emphasis is on irrelevant information
instead of relevant information encoded in ground-state wave functions for a quantum
many-body system. This is in contrast to local order parameters in Landau’s SSB theory, but
it resembles real-space RG theories that merely manipulate high-energy degrees of freedom.

A few remarks are in order. (1) Two characteristic lines, as the boundaries in a
principal regime, originate from two critical/transition points belonging to two different
universality classes. (2) A critical point at infinity arises when one of the two coupling
parameters x1 and x2 in a given regime is infinite in value, with an extra U(1) symmetry
at this point. This appears to be a result of duality, if a self-dual point does not describe
a critical point. (3) A characteristic point at infinity arises when one of the two coupling
parameters x1 and x2 in a given regime is infinite in value, with an extra U(1) symmetry at
this characteristic point. In particular, a factorized ground state occurs at this characteristic
point. (4) A characteristic line at infinity arises when two coupling parameters x1 and x2
in a given regime are infinite in value in proportionality, with an extra U(1) symmetry on
this characteristic line, if a factorized state occurs as a ground state. Here, we emphasize
that, for a quantum many-body system, if one of the coupling parameters x1 and x2 is
infinite in value, then there are two possibilities: It accommodates either a trivial factorized
ground state or a critical point—a fact that remains unnoticed in the conventional theories.
A point that deserves to be mentioned is that when we speak of a critical point at infinity
or a characteristic point at infinity, we are referring to the original coupling parameters,
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x1 and x2, instead of a dominant control parameter and an auxiliary control parameter
given the extent of a dominant control parameter x is, by definition, finite. Related to this
is that a characteristic point at infinity is occasionally referred to as a characteristic line,
since such a characteristic line at infinity should be regarded as a point, given that the
Hamiltonian is essentially identical on a characteristic line located at infinity (at most up to
a local unitary transformation).

2.1.6. Nineteen Principal Regimes for the Six Illustrative Models

Here, we collect all nineteen principal regimes for the six illustrative models.
There are five principal regimes in the quantum spin-1/2 XY model (1), labelled as

I, II, III, IV, and V, which are shown in Figure 1a. There are two principal regimes in the
transverse-field quantum Ising model in a longitudinal field (2), labelled as I and II, which
are shown in Figure 1b. There are two principal regimes in the quantum spin-1/2 XYZ
model (3), labelled as I and II, which are shown in Figure 2a. There are four principal
regimes in the quantum spin-1/2 XXZ model in a magnetic field (4), labelled as I, II, III,
and IV, which are shown in Figure 2b. There are four principal regimes in the quantum
spin-1 XYZ model (5), labelled as I, II, III, and IV, which are shown in Figure 3a,b. There are
two principal regimes in the spin-1/2 Kitaev model on a honeycomb lattice (6), labelled as
I and II, which are shown in Figure 3c.
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Figure 1. (a) Five principal regimes in the region λ ≥ 0 and γ ≥ 0 for the quantum spin-1/2 XY model.
Here, arrows are used to indicate a dominant control parameter x for a fixed value of an auxiliary
control parameter τ in the five principal regimes. (b) Two principal regimes for the transverse-field
quantum Ising model in a longitudinal field, with h ≥ 0 and λ ≥ 0. Here, arrows are used to indicate
a dominant control parameter x for a fixed value of an auxiliary control parameter τ in the two
principal regimes.
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Figure 2. (a) Two principal regimes for the quantum spin-1/2 XYZ model with γ ≥ 0. Here, arrows
are used to indicate a dominant control parameter x for a fixed value of an auxiliary control parameter
τ in the two principal regimes. We remark that regime I, regime III, regime V, regime VII, regime
IX, and regime XI are dual in nature relative to each other, whereas regime II, regime IV, regime
VI, regime VIII, regime X, and regime XII are dual relative to each other. Therefore, there are only
two principal regimes with regime I and regime II as our choice. (b) Four principal regimes for the
quantum spin-1/2 XXZ model in a magnetic field, with h ≥ 0. Here, arrows are used to indicate
a dominant control parameter x for a fixed value of an auxiliary control parameter τ in the four
principal regimes, labelled as I, II, III, and IV, respectively.

Meanwhile, a choice for a dominant control parameter x and an auxiliary control
parameter τ is made in each of the nineteen principal regimes for the six illustrative models.

For the quantum spin-1/2 XY model (1), a dominant control parameter x is chosen
to be γ, starting from γ = γc = 0 up to the disordered circle, and an auxiliary control
parameter τ is chosen to be λ in regime I. A dominant control parameter is chosen to be
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1− λ, starting from λ = λc = 1 up to the disordered circle: λ2 + γ2 = 1, or λ = 0; an
auxiliary control parameter τ is chosen to be γ in regime II or regime III; a dominant control
parameter is chosen to be 1− 1/λ, starting from λ = λc = 1 up to λ = ∞, and an auxiliary
control parameter τ is chosen to be γ in regime IV or regime V. This choice is to retain
consistency with duality for the transverse-field quantum Ising model, corresponding to
the quantum spin-1/2 XY model with γ = 1.

For the transverse-field quantum Ising model in a longitudinal field (2), a dominant
control parameter x is chosen to be x = h/(1 + h), starting from x = 0 up to x = ∞,
and an auxiliary control parameter τ is chosen to be λ in regime I. A dominant control
parameter x is chosen to be x = r/(1 + r), starting from x = 0 up to x = 1, and an auxiliary
control parameter τ is chosen to be θ in regime II. Here, we have defined a radius r and
an azimuthal angle θ: r =

√
(λ− 1)2 + h2 and θ = arctan h/(λ− 1), with r ranging from

r = rc = 0 to r = ∞, but x ranges from xc = 0 to x = 1. This choice is consistent with the
requirement from the Kramers–Wannier duality when θ = 0.

For the quantum spin-1/2 XYZ model (3), a dominant control parameter x is chosen to
be γ, and an auxiliary control parameter τ is chosen to be ∆ in regime I and regime II. Here,
γ ranges from γ = γc = 0 to γ = 1− ∆ for a fixed ∆ ∈ (0, 1) in regime I and to γ = 1 + ∆
for a fixed ∆ ∈ (−1, 0) in regime II.

For the quantum spin-1/2 XXZ model in a magnetic field (4), a dominant control
parameter x is chosen to be x =

√
(∆ + 1)2 + h2/(1 +

√
(∆ + 1)2 + h2), starting from the

point (−1, 0) up to the point (−∞, −∞), and an auxiliary control parameter τ is chosen
to be τ = arctan(h/(∆ + 1)) ∈ (π/2, π] in regime I. A dominant control parameter x is
chosen to be x = 1− 1/(h− ∆), starting from h = ∆ + 1 up to h = ∞, and an auxiliary
control parameter τ is chosen to be τ = ∆ ∈ [−1, ∞) in regime II. A dominant control
parameter x is chosen to be x = −∆, starting from ∆ = ∆c up to ∆ = h− 1, and an auxiliary
control parameter τ is chosen to be τ = h ∈ (0, ∞) in regime III, with ∆c being a QPT
point on the line of the IC transition points for a fixed τ. A dominant control parameter
x is chosen to be x = hc − h, starting from h = hc up to h = 0, and an auxiliary control
parameter τ is chosen to be τ = ∆ ∈ (1, ∞) in regime IV. Here, an IC transition point
represents an intermediate case interpolating between a KT transition and a PT transition.

For the quantum spin-1 XYZ model (5), a dominant control parameter x is chosen to
be x = ∆c/(2− ∆c)− ∆/(2− ∆), starting from the point (∆c, τ − ∆c), up to (0, τ), and an
auxiliary control parameter τ is chosen to be τ = γ + ∆, ranging from ∆c1 to 1, in regime
I, with (∆c, τ − ∆c) denoting the Ising transition point between the Haldane phase and
the AFx phase, which is located on the straight line (γ = τ − ∆), for a fixed τ ∈ [∆c1, 1],
and ∆c1 denoting the critical value of ∆ for the KT transition from the critical XY phase
to the Haldane phase on the U(1)-symmetric line γ = 0. A dominant control parameter
x is chosen to be x = γ, starting from γ = 0 up to γ = 1 + ∆, and an auxiliary control
parameter τ is chosen to be τ = ∆ ∈ (−1, 0) in regime II. A dominant control parameter x
is chosen to be x = ∆/(2− ∆)− ∆c/(2− ∆c), starting from (∆c, τ − ∆c) up to (τ, 0), and
an auxiliary control parameter τ is chosen to be τ = γ + ∆, ranging from ∆c1 to 1, in regime
III. A dominant control parameter x is chosen to be x = (γ + ∆)/(2− γ− ∆)− ∆/(2− ∆),
and an auxiliary control parameter τ is chosen to be τ = γ + ∆ in regime IV.

For the spin-1/2 Kitaev model on a honeycomb lattice (6), a dominant control param-

eter x is chosen to be x =
√

J2
x + J2

y(1− Jx − Jy)/(Jx + Jy), starting from the critical point

(Jx/(Jx + Jy), Jy/(Jx + Jy)) up to the U(1)-symmetric point (0, 0), and an auxiliary control
parameter τ is chosen to be τ = Jy/Jx ∈ (1, ∞) in regime I; a dominant control parameter

x is chosen to be x =
√
(Jx − 1)2 + (Jy − 1)2(Jx + Jy − 1)/(2− Jx − Jy) starting from the

critical point ((Jy − 1)/(Jx + Jy − 2), (Jx − 1)/(Jx + Jy − 2)) up to the S3-symmetric point
(1, 1), and an auxiliary control parameter τ is chosen to be τ = (Jy − 1)/(Jx − 1) ∈ (0, 1)
in regime II.
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Figure 3. (a) Four principal regimes for the quantum spin-1 XYZ model, with γ ≥ 0. Here, regime I,
regime V, regime IX, regime XIII, regime XVII, and regime XXI are dual relative to each other; regime
II, regime VI, regime X, regime XIV, regime XVIII, and regime XXII are dual relative to each other;
regime III, regime VII, regime XI, regime XV, regime XIX, and regime XXIII are dual relative to each
other, whereas regime IV, regime VIII, regime XII, regime XVI, regime XX, and regime XXIV are
dual relative to each other. Therefore, there are only four principal regimes, with regime I, regime II,
regime III, and regime IV as our choices. Note that regime XV and regime XVI only appear when γ is
large, and they do not exist in the current parameter region when γ varies from 0 to 4. Here, their
presence is only indicative. (b) Arrows are used to indicate a dominant control parameter x for a
fixed value of an auxiliary control parameter τ in the four principal regimes for the quantum spin-1
XYZ model. (c) Two principal regimes in the region Jx ≥ 0 and Jy ≥ 0 for the spin-1/2 Kitaev model
on a honeycomb lattice. Here, arrows are used to indicate a choice of a dominant control parameter x
for a fixed value of an auxiliary control parameter τ in regime I and regime II. Here, regime I, regime
III, regime V, regime VII, regime IX, and regime XI are dual relative to each other, whereas regime II,
regime IV, regime VI, regime VIII, regime X, and regime XII are dual relative to each other. Therefore,
there are only two principal regimes, with regime I and regime II as our choices.

We remark that all the non-principal regimes are either symmetrical or dual to the
principal regimes for the quantum spin-1/2 XYZ model (3), the quantum spin-1 XYZ
model (5), and the spin-1/2 Kitaev model on a honeycomb lattice (6), which are subject to
duality transformations (cf. Appendix C). A salient feature is that a principal regime and its
dual image regimes share the same dominant control parameter x and the same auxiliary
control parameter τ, though their mathematical expressions depend on a specific regime.

Throughout this study, if the chosen auxiliary control parameter τ is fixed, then we
shall drop τ in the Hamiltonian H(x, τ) and fidelity mechanical-state functions to keep the
notation simple unless otherwise stated.

2.2. A Fidelity Mechanical System and Its Environment

For a quantum many-body system described by a Hamiltonian H(x), if we treat x as a
parameter varying with time t, then the time evolution is subject to the time-dependent
Schrödinger equation, which is invariant under the time-reversal symmetry operation. In
particular, as the adiabatic theorem [83] tells, if x slowly varies, then the system remains in
a ground state if it is initially in a ground state, unless a critical point is crossed. We remark
that an adiabatic shortcut to drive through a critical point for a quantum many-body system
is possible, with an original idea from transitionless quantum driving [84], as discussed
in Ref. [85]. However, everyday experience teaches us that we remember the past but not
the future. This so-called psychological/computational arrow of time distinguishes the
past from the future (for a brief summary about arrows of time, cf. Appendix D and for
a list of arrows of time, see, e.g., [86]). A fundamental issue is to understand the ensuing
consequences resulted from information storage, i.e., recording information encoded in
the past states in media. As it turns out, information storage is a key ingredient in fidelity
mechanics.

An outside observer, as an information processor, is equipped with a quantum copier
tailored to a collection of mutually orthogonal states generated via a time evolution. Note
that the no-cloning theorem does not rule out the possibility for copying a set of mutually
orthogonal states (cf. Appendix E for more details about the no-cloning, no-deleting,
and no-hiding theorems). For a (translation-invariant) quantum many-body system, the
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orthogonality follows from the translational invariance, combining with the fact that
any quantum state may be represented in terms of a matrix-product state in one spatial
dimension and a projected-entangled pair state in two and higher spatial dimensions, as
long as the bond dimension is large enough [39–41,46–48]. In fact, as shown in [28], this is
valid for any two translation-invariant states in the thermodynamic limit. Physically, this is
related to the fact that more degrees of freedom are involved in a quantum system, more
distinguishable its states are–a point relevant to the observation that “more is different” [87].
This enables us to turn quantum states at different instants, which arise from a time
evolution, into quantum states at the same instant, recorded in media, via quantum copying.
This is in sharp contrast to the case when one considers a quantum few-body system. For
the latter, it is impossible to set up such a quantum copier. In a sense, one may regard time
itself as a fictitious information eraser, which constantly deletes quantum states from a
system during a quantum evolution. For quantum many-body systems, the states might
be recovered from the environment, according to the no-cloning theorem and the no-
hiding theorem (cf. Appendix E), since the states generated from a quantum evolution are
orthogonal if the thermodynamic limit is approached, which makes them distinguishable.
In contrast, for quantum few-body systems, the states generated from a quantum evolution
are not orthogonal, and thus are not reliably distinguishable.

Now, we are ready to define a fidelity mechanical system and its environment. A
fidelity mechanical system is defined to be the current state stored in a medium. An
environment consists of the past states, which are stored in other media, and any possible
states yet to occur in the future, which are simply left blank in media. The present lies
exactly at the intersection of the past and the future. A pictorial representation for a fidelity
mechanical system and its environment is presented in Figure 4.

Figure 4. A fidelity mechanical system and its environment. A fidelity mechanical system is defined
to be the current state stored in a medium. An environment consists of past states, which are stored
in other media, and any possible states yet to occur in the future, which are simply left blank in
media. Here, the current state, the past states, and the future states are associated with a quantum
many-body system described by the Hamiltonian H(x), with x being a dominant control parameter,
meaning that the ground-state energy density e(x) is monotonic with x and the range of x is finite.
The present lies exactly at the intersection of the past and the future. Note that an outside observer,
as an information processor, is equipped with a quantum copier tailored to a collection of mutually
orthogonal states generated via a time evolution. Thus, a certain amount of information is extractable
by comparing the current state with the past states, both of which are stored in media.

Now, we turn to a description of a state for a given fidelity mechanical system. For
this purpose, we introduce a quantum mechanical equivalent of the relaxation time scale in
thermodynamics [88], which tells how much time a non-equilibrium state needs to adjust
to an equilibrium state. From the adiabatic theorem, one knows that as long as the inverse
of the gap is small enough, a quantum system starting its evolution from one ground state
remains in another ground state. However, if it is driven at finite rate, then it will be excited.
In fact, the inverse of the gap acts as a quantum mechanical equivalent of the relaxation
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time scale. Here, we remark that a relaxation time scale has been introduced to account
for the Kibble-Zurek mechanism [89–92] describing the non-equilibrium dynamics and the
formation of topological defects in a quantum many-body system, which is driven through
a continuous QPT at finite rate [93–95]. Therefore, it is plausible to regard an adiabatic
evolution as an analogue of a quasi-static process in thermodynamics. In fact, a fidelity
mechanical system, with the current state stored in a medium being a ground state, is in
equilibrium with its environment, with all the past states being ground states. Accordingly,
a fidelity mechanical system, with the current state stored in a medium being a low-lying
state, takes at least as much time as required by a quantum mechanical equivalent of the
relaxation time scale in order to return to an equilibrium state with its environment. This
allows us to define basic state functions, e.g., fidelity entropy, fidelity temperature, and
fidelity internal energy, for a fidelity mechanical system.

2.3. Fidelity Entropy, Fidelity Temperature, and Fidelity Internal Energy: Continuous Quantum
Phase Transitions

For a given fidelity mechanical system, which is in equilibrium with its environment,
an important question is to quantify what amount of information may be recovered from
the environment due to information storage that makes information encoded in the past
states available. Here, it is proper to clarify what type of information we are trying to extract.
In fact, we may categorize information into two different types: (i) information encoded in
a given state, which may be quantified in terms of, e.g., entanglement entropy [60,96,97]. In
this case, only one state is concerned, with quantum correlations at different spatial locations
involved. Thus, this type of information is spatial; (ii) information extractable by comparing
the current state with the past states, both of which are stored in media. Thus, different
states at different temporal instants are involved. Therefore, this type of information is
temporal. In fidelity mechanics, we solely deal with information of the second type.

For a continuous QPT, fidelity entropy S(x) is defined to characterize the uncertainty
accumulated from a critical point xc to x

S(x) = −2
∫ x

xc
ln d(x, y)dy + S0. (9)

Here, d(x, y) is the ground-state fidelity per lattice site for two ground states |ψ(x)〉 and
|ψ(y)〉, and S0 is an additive constant, representing residual fidelity entropy at a critical point.
Fidelity entropy S(x) quantifies the amount of information that is extractable from comparing
the current state at x with the stored states at y in the past. Actually, there is an interpretation
for the first term in the definition of fidelity entropy S(x) in terms of Shannon entropy [36], if
one regards the squared fidelity between two quantum states as a probability.

We assume that e(x) is always negative for any x (also cf. Appendix F, if e(x) is
always positive for any x). Given fidelity entropy S(x), we need to define, in a consistent
manner, fidelity internal energy U(x) and fidelity temperature T(x). Indeed, we define
fidelity temperature T(x) as T(x) = ∂U(x)/∂S(x), which implies that no fidelity work is
involved when x is varied. This amounts to stipulating a rule that separates an increment
of fidelity internal energy ∆U(x) into an increment of fidelity heat ∆Q(x) and an increment
of fidelity work ∆W(x), with ∆Q(x) = T(x)∆S(x). As defined, fidelity temperature is
associated with a variation of a chosen dominant control parameter, whereas fidelity work
is associated with a variation of an auxiliary control parameter. Here, we remark that we
simply denote fidelity temperature by T(x), without concern about any confusion with
physical temperature T, which is zero for QPTs. However, we note that, even at a finite
temperature T, fidelity temperature T(x) may also be defined to quantify fluctuations (cf.
Appendix F).

Suppose the Hamiltonian H(x) is defined by the Hamiltonian density h(x) acting
locally on the Hilbert space for a translation-invariant quantum many-body system (for an
extension to a non-translation-invariant quantum many-body system, cf. Appendix F). With
the translational invariance in mind, we have 〈ψ(y)|h(x)|ψ(x)〉 = e(x)〈ψ(y)|ψ(x)〉, with
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e(x) being the ground-state energy density. Given that 〈ψ(y)|ψ(x)〉 scales exponentially
with N, it is reasonable to postulate that the dependence of fidelity internal energy U(x)
on the ground-state energy density e(x) should be logarithmic. Hence, we define fidelity
internal energy U(x) as follows:

U(x) = ∓ ln (
e(x)
e(xc)

)V(x) + U0, (10)

where V(x) is a quantity as a function of x that has yet to be determined consistently, and
U0 is an additive constant. Here, ∓ is introduced to ensure that V(x) is positive: −/+ cor-
responds to e(x) that is monotonically increasing/decreasing with x, respectively. Through-
out this study, a statement that a function g(x) is monotonically increasing/decreasing
with x should be understood in the sense that it monotonically increases/decreases as x
increases. Here, g(x) represents any function of x. We remark that e(x)/e(xc) is monotoni-
cally decreasing with x, if e(x) is monotonically increasing with x, whereas e(x)/e(xc) is
monotonically increasing with x, if e(x) is monotonically decreasing with x. It is proper
to remark that fidelity entropy S(x) and fidelity internal energy U(x), as defined, should
be understood as fidelity entropy per lattice site and fidelity internal energy per lattice
site, respectively.

Given two undefined quantities V(x) and fidelity temperature T(x), we really need
another constraint. As it turns out, such a constraint occurs in the guise of the analogue of
Landauer’s principle at zero temperature: a certain amount of fidelity work needs to be
performed to erase any information at zero temperature, due to quantum fluctuations. Log-
ically, the internal consistency ascertains that the minimum fidelity work to be performed
to erase one bit of information must be w(x) = ∓T(x) ln 2, with T(x) being fidelity temper-
ature quantifying quantum fluctuations and −/+ corresponding to increasing/decreasing
e(x) with x, respectively.

In Section 2.5, a key relation between fidelity temperature T(x) and V(x) is established
from the analogue of Landauer’s principle at zero temperature

T(x) = −∂V(x)
∂x

≡ −Vx(x). (11)

Here, V(x) must be monotonically decreasing with x in order to guarantee that fidelity
temperature T(x) is always positive. Combining this relation with the definition of fidelity
temperature T(x):

T(x) =
∂U(x)/∂x
∂S(x)/∂x

, (12)

we have the following

T(x) = ∓ (ln (e(x)/e(xc)))xV(x) + ln e(x)/e(xc)Vx(x)
Sx(x)

. (13)

Here, Sx(x) ≡ ∂S(x)/∂x and (ln (e(x)/e(xc)))x ≡ ∂ln (e(x)/e(xc))/∂x. This implies
the following:

Vx(x) = α(x) V(x), (14)

where α(x) is defined as follows

α(x) = ± (ln (e(x)/e(xc)))x

Sx(x)∓ ln (e(x)/e(xc))
. (15)

Here, α(x) is always negative for any x, consistent with the fact that V(x) monoton-
ically decreases with x. We emphasize that α(x) is singular when a critical point xc is
approached (cf. Appendix H for a scaling analysis). Therefore, Equation (14) is a singular
first-order differential equation. It plays a fundamental role in fidelity mechanics. In fact,
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once it is solved, we will be able to determine fidelity internal energy U(x) and fidelity
temperature T(x).

2.4. Fidelity Entropy, Fidelity Temperature, and Fidelity Internal Energy: Discontinuous Quantum
Phase Transitions

For discontinuous QPTs, some modifications are needed. For a quantum many-body
system undergoing a first-order QPT at a transition point xd, fidelity entropy S(x) is
defined as follows:

S(x) = −2
∫ x

xd

ln d(x, y)dy + S0, (16)

where S0 is residual fidelity entropy at a discontinuous QPT point xd. However, in order to
retain consistency with the fact that fidelity temperature T(x) is finite at a discontinuous
QPT point xd, an additional parameter κ is introduced in fidelity internal energy U(x)

U(x) = ∓[ln κ + ln (
e(x)
e(xd)

)]V(x) + U0. (17)

Here, V(x) > 0 is an undetermined function of x, U0 is an additive constant, and −/+
corresponds to monotonically increasing/decreasing e(x) with x, respectively. Note that
fidelity temperature T(x) is again determined by T(x) = −Vx, since the same argument
still applies to discontinuous QPTs. In fact, V(x) must be monotonically decreasing with
x, in order to guarantee positive fidelity temperature T(x). Combining the definition of
fidelity temperature T(x) = ∂U(x)/∂S(x) = ∂U(x)/∂x/∂S(x)/∂x with T(x) = −Vx(x),
we have the following:

Vx(x) = αd(x) V(x), (18)

where αd(x) is defined as follows

αd(x) = ± (ln e(x)/e(xd))x
Sx(x)∓ (ln κ + ln (e(x)/e(xd)))

. (19)

Note that, in contrast to continuous QPTs, αd(x) is regular when a transition point
xd is approached. Therefore, Equation (18) is a regular first-order differential equation.
Once it is solved, we will be able to determine fidelity internal energy U(x) and fidelity
temperature T(x).

2.5. Relation between an Unknown Function V(x) and Fidelity Temperature T(x)

Now we turn to the relation between an unknown function V(x) and fidelity tem-
perature T(x), which has been exploited to derive differential equations for V(x) in the
preceding subsections.

Consider a quantum many-body system described by the Hamiltonian H(x), with x
being a dominant control parameter. The analogue of Landauer’s principle at zero tem-
perature states that, in a fidelity mechanical system, to erase one bit of information at zero
temperature, we need to perform the minimum fidelity work, w(x) = ∓T(x) ln 2, which
quantifies the computational costs involved. Here, T(x) characterizes quantum fluctua-
tions at zero temperature, and −/+ corresponds to monotonically increasing/decreasing
ground-state energy density e(x) with x, respectively. Our task is to establish a relationship
between an unknown function V(x) and fidelity temperature T(x).

Assume that the Hamiltonian H(x) is chosen to ensure that the ground-state energy
density e(x) is negative. We prepare a composite system consisting of two identical copies.
That is, the two copies share an identical Hamiltonian, but they are expressed in terms of
different degrees of freedom (Hd(x) and Hu(x)); then, one bit of information is encoded for
each value of x. Therefore, the composite Hamiltonian Hc(x) is Hc(x) = Hu(x) + Hd(x). If
we denote the ground-state energy density by e(x) for Hu(x) and Hd(x), then the ground-
state energy density ec(x) for the composite Hamiltonian Hc(x) is ec(x) = 2 e(x).

To proceed further, we distinguish two cases:
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(A) For a single-copy system, if the ground-state energy density e(x) monotonically
decreases from a critical point xc to x, then fidelity internal energy U(x) takes the
following form: U(x) = ln (e(x)/e(xc))V(x)+U0, with U0 being an additive constant,
and V(x) being positive. For a composite system consisting of two identical copies,
fidelity mechanical-state functions remain the same as a single-copy system. This is
illustrated in Figure 5i. Now, one copy is deleted from a composite fidelity mechanical
system for a value of a dominant control parameter between x and x +∆x. To perform
the deletion, a certain amount of fidelity work, quantifying the computational costs,
∆U(x) ∆W(x) = T(x) ln 2 ∆ x, needs to be performed, as required by the analogue of
Landauer’s principle at zero temperature, to compensate for the increment of fidelity
internal energy ∆U(x), as illustrated in Figure 5ii

∆(ln
e(x)

2e(xc)
V(x)) = T(x)∆S(x) + ∆W(x). (20)

As the last step, which is illustrated in Figure 5iii, the information about the retained
copy is removed from the current state media and recorded in the information storage
media. This amounts to extracting one bit of information for each value of a dominant
control parameter between x and x + ∆x, thus leading to a change in fidelity entropy:
∆S(x)→ ∆S(x)− ln 2∆x

∆(ln
e(x)
e(xc)

V(x)) = T(x)∆(S(x)− ln 2 x) + ∆W(x). (21)

That is, T(x) is required to be related with V(x) as follows

T(x) = −∆V(x)
∆x

. (22)

If ∆x → 0, then we have the following

T(x) = −Vx(x). (23)

(B) For a single-copy system, if the ground-state energy density e(x) monotonically
increases from a critical point xc to x, then fidelity internal energy U(x) takes the
following form: U(x) = − ln (e(x)/e(xc))V(x) + U0, with U0 being an additive
constant, and V(x) being positive. For a composite system consisting of two identical
copies, fidelity mechanical-state functions remain the same as a single-copy system.
This is illustrated in Figure 5i. Now, one copy is deleted from a composite fidelity
mechanical system for a value of a dominant control parameter between x and x +
∆x. To perform this deletion, a certain amount of fidelity work, quantifying the
computational costs, ∆U(x) ∆W(x) = −T(x) ln 2 ∆ x needs to be performed, as
required by the analogue of Landauer’s principle at zero temperature, to compensate
for the increment of fidelity internal energy ∆U(x), as illustrated in Figure 5ii:

− ∆(ln
e(x)

2e(xc)
V(x)) = T(x)∆S(x) + ∆W(x). (24)

As the last step, which is illustrated in Figure 5iii, the information about the retained
copy is removed from the current state media and recorded in the information storage
media. This amounts to extracting one bit of information for each value of a dominant
control parameter between x and x +∆x, thus leading to a change in fidelity entropy—
∆S(x)→ ∆S(x) + ln 2∆x:

− ∆(ln
e(x)
e(xc)

V(x)) = T(x)∆(S(x) + ln 2 x) + ∆W(x). (25)
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That is, T(x) is required to be related with V(x) as follows

T(x) = −∆V(x)
∆x

. (26)

If ∆x → 0, then we have the following

T(x) = −Vx(x). (27)

Figure 5. (i) A composite fidelity mechanical system consisting of two identical copies. Fidelity
mechanical-state functions remain the same as a single-copy system. (ii) One copy is deleted from a
composite fidelity mechanical system for a value of a dominant control parameter between x and
x + ∆x. To perform the deletion, a certain amount of fidelity work, quantifying the computational
costs, ∆W needs to be performed, as required by the analogue of Landauer’s principle at zero
temperature. (iii) The information about the retained copy is removed from the current state media
and recorded in the information storage media.

2.6. A Contribution to Fidelity Entropy from Rescaling in the Ground-State Energy Density

For a quantum many-body system, the ground-state phase diagram exhibits distinct
phases, each of which in turn is divided into different regimes as a result of the presence of
characteristic lines. If the system admits dualities, then some regimes are dual in nature
relative to each other. The implication for this fact is that one only needs to introduce
a dominant control parameter x and an auxiliary control parameter τ in a few chosen
regimes—the so-called principal regimes, with all the other regimes, dual relative to one
of the principal regimes, being referred to as their dual image regimes under duality
transformations. Occasionally, extra efforts have to be made to choose a proper dominant
control parameter x, since the ground-state energy density e(x, τ) must be monotonic as
a function of x for a fixed τ, or the range of x must be finite. That is, performing a re-
parametrization operation in the Hamiltonian, H(x1, x2)→ Hω(x, τ), is necessary to ensure
the existence of a dominant control parameter x, where ω labels distinct principal regimes,
and x and τ are functions of x1 and x2. In fact, there are two different types of rescaling
operations: One originates from duality and the other originates from re-parametrization.
Indeed, sometimes, a re-parametrization operation in the Hamiltonian is introduced to
retain consistency with dualities if dualities only exist on a characteristic line in the control
parameter space.

A re-parametrization operation in the Hamiltonian results in the introduction of
a multiplying factor mω(x, τ) > 0 such that the ground-state energy density e(x1, x2)
becomes eω(x, τ): e(x1, x2) = mω(x, τ) eω(x, τ). Here, eω(x, τ) and mω(x, τ) must be
monotonic as a function of x for a fixed τ, and there should be an x0 such that k(x0, τ) =
1. In particular, if a multiplying factor mω(x, τ) is simply equal to 1, then such a re-
parametrization operation is trivial, with its meaning to be explained below. On the other
hand, duality arises from a unitary transformation: H(x1, x2) = k′(x′1, x′2)UH(x′1, x′2)U

†,
with U being a unitary transformation and k′(x′1, x′2) > 0 being a function of x′1 and x′2.
This implies that the ground-state energy density e(x1, x2) becomes e(x′1, x′2): e(x1, x2) =
k(x′1, x′2)e(x′1, x′2). For convenience, we introduce k(x1, x2) ≡ k′(x′1, x′2). However, there
exists a special type of duality transformations with k(x1, x2) being equal to 1, which we
refer to as a symmetric transformation. A detailed discussion about a duality transformation
and its role in fidelity mechanics is deferred to Section 3.
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There is a marked difference between the two types of rescaling operations, as demon-
strated in Figure 6: For a re-parametrization operation, (x, τ) and (x1, x2) represent two
different ways for parametrizing the coupling parameters for the same Hamiltonian, repre-
senting the same point in the control parameter space. In contrast, a duality transformation
connects two different points (x1, x2) and (x′1, x′2), located in two dual regimes in the
control parameter space. As a convention, we always assign (x′1, x′2) to represent a point
in a principal regime, labelled as ω. Thus, (x1, x2) represents an image point of (x′1, x′2)
in a dual image regime, labelled as α. Hence, we are able to introduce a dominant con-
trol parameter x and an auxiliary control parameter τ in the principal regime ω. That is,
a one-to-one correspondence (x′1, x′2) ⇔ (x, τ) is established in the principal regime ω,
which may be regarded as a re-parametrization operation in the Hamiltonian H(x′1, x′2),
with H(x′1, x′2) = Hω(x, τ) and eω(x′1, x′2) = eω(x, τ). Here, we have assumed that the
re-parametrization in the Hamiltonian H(x′1, x′2) is trivial, when x and τ are chosen in
the principal regime ω. However, this is not necessarily true. That is, it is possible to
perform both types of rescaling operations in a non-principal regime. For the sake of sim-
plicity, we restrict our considerations to a situation in which a re-parametrization operation
in the Hamiltonian H(x′1, x′2) is trivial when x and τ are chosen, since the extension is
straightforward. By compiling everything, we have Hϕ(x1, x2) = kϕω(x, τ)UHω(x, τ)U†

and eϕ(x1, x2) = kϕω(x, τ)eω(x, τ). Here, kϕω(x, τ) is introduced via kϕω(x, τ) ≡ k′(x′1, x′2),
if x′1 and x′2 are regarded as functions of x and τ, respectively.

(x′1, x
′
2)(x1, x2)(x1, x2) (x, τ )

Duality

(b)

e(x1, x2) = k′(x′
1, x

′
2)e(x

′
1, x

′
2)

Re−parametrization

e(x1, x2) = mω(x, τ)eω(x, τ)

(a)

Figure 6. (a) A re-parametrization operation in the Hamiltonian H(x1, x2) is performed, which
induces rescaling in the ground-state energy density e(x1, x2): e(x1, x2) = mω(x, τ) eω(x, τ). Here,
eω(x, τ) and mω(x, τ) must be monotonic as a function of x for a fixed τ, and there should
be an x0 such that k(x0, τ) = 1. (b) Duality arises from a unitary transformation: H(x1, x2)

= k′(x′1, x′2)UH(x′1, x′2)U
†, with U being a unitary transformation and k′(x′1, x′2) > 0 being a func-

tion of x′1 and x′2. This induces rescaling in the ground-state energy density e(x1, x2): e(x1, x2) =

k(x′1, x′2)e(x′1, x′2). For convenience, we introduce k(x1, x2) ≡ k′(x′1, x′2). There is a marked difference
between the two types of rescaling operations: For a re-parametrization operation, (x, τ) and (x1, x2)

represent two different ways of re-parametrization for the same Hamiltonian, representing the same
point in the control parameter space, in contrast to a duality transformation, which connects two
different points, denoted as (x1, x2) and (x′1, x′2), in the control parameter space.

In addition, encountering a situation that a duality transformation only exists on a
dual line in a principal regime is common. Then, this dual line may be divided into two
different parts that are dual relative to each other. Similarly to a principal regime, one may
define a principal part with its dual part being a non-principal part. With this in mind, our
discussion is also applicable to a principal part on a dual line.

As a convention, we introduce “ω” to label the Hamiltonian and the ground-state
energy density in distinct principal regimes: Hω(x, τ) and eω(x, τ), with a dominant control
parameter x and an auxiliary control parameter τ. Therefore, fidelity entropy Sω(x, τ),
fidelity temperature Tω(x, τ), and fidelity internal energy Uω(x, τ) for the Hamiltonian
Hω(x, τ) follow from our discussions above, with replacements e(x) → eω(x, τ) and
V(x)→ Vω(x, τ). For continuous QPTs, we have the following:

Sω(x, τ) = −2
∫ x

xc
ln dω(x, τ; y, τ)dy + Sω

0 (τ), (28)

Tω(x, τ) = −Vω
x (x, τ), (29)
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and

Uω(x, τ) = ∓ ln
eω(x, τ)

eω(xc, τ)
Vω(x, τ) + Uω

0 (τ), (30)

where
Vω

x (x, τ) = αω(x, τ) Vω(x, τ), (31)

with

αω(x, τ) = ± ln (eω(x, τ)/eω(xc, τ))x
Sω

x (x, τ)∓ ln eω(x, τ)/eω(xc, τ)
. (32)

For discontinuous QPTs, we have the following:

Sω(x, τ) = −2
∫ x

xd

ln dω(x, τ; y, τ)dy + Sω
0 (τ), (33)

Tω(x, τ) = −Vω
x (x, τ), (34)

and

Uω(x, τ) = ∓(ln κ + ln
eω(x, τ)

eω(xd, τ)
)Vω(x, τ) + Uω

0 (τ), (35)

where
Vω

x (x, τ) = αω(x, τ) Vω(x, τ), (36)

with

αω(x, τ) = ± ln (eω(x, τ)/eω(xd, τ))x
Sω

x (x, τ)∓ (ln κ + ln (eω(x, τ)/eω(xd, τ)))
. (37)

That is, an auxiliary control parameter τ, which has been dropped off for brevity, is
reinserted into our formalism presented in Section 2.6.

Now, we are ready to introduce scaling entropy Sω
σ (x, τ) for a principal regime, la-

belled as ω, due to a re-parametrization operation, or scaling entropy Sϕω
σ (x, τ) for a dual

regime, labelled as ϕ, due to a duality transformation. Physically, the presence of a multi-
plying factor mω(x, τ) or kϕω(x, τ), arising from a re-parametrization operation or a duality
transformation, amounts to a variation of an energy scale, which undergoes updating in
the information storage media, as x varies for a fixed τ. Therefore, it induces a fidelity
heat exchange between a fidelity mechanical system and its environment, implying that
information is recorded concerning an energy scale. This makes a contribution to fidelity
entropy, with the variation of scaling entropy Sω

σ (x, τ) or Sϕω
σ (x, τ) being proportional

to ∆mω(x, τ)/mω(x, τ) or ∆kϕω(x, τ)/kϕω(x, τ), respectively. The latter represents uncer-
tainties due to variations in an energy scale. Here, we remark that the variation in an
energy scale needs to be recorded in the information storage media, thus requiring the
performance of a certain amount of fidelity work, quantifying the computational costs,
to compensate for a variation of scaling entropy Sω

σ (x, τ) or Sϕω
σ (x, τ), according to the

analogue of Landauer’s principle at zero temperature.
For a re-parametrization operation in the Hamiltonian, we have e(x1, x2) = mω(x, τ)

eω(x, τ). Then, Sω
σ (x, τ) is defined as Sω

σ (x, τ) ≡ ± ln mω(x, τ), with the signs ± deter-
mined to retain consistency with the analogue of Landauer’s principle at zero temperature.
As a result, fidelity entropy Sω

f (x, τ) consists of two parts: Sω
f (x, τ) = Sω(x, τ) + Sω

σ (x, τ),
where Sω(x, τ) is the contribution to fidelity entropy from the ground-state fidelity per
lattice site. Once fidelity entropy Sω

f (x, τ) is determined, fidelity entropy Sω
f (x1, x2) follows,

since it takes the same value as Sω
f (x, τ). That is, Sω

f (x1, x2) ≡ Sω
f (x, τ), when we move

from x and τ to x1 and x2, meaning that x and τ are regarded as functions of x1 and x2. This
is due to the fact that (x1, x2) and (x, τ) label the same point in a principal regime under
a re-parametrization operation. We remark that if a multiplying factor mω(x, τ) is equal
to 1, then scaling entropy Sω

σ (x, τ) vanishes. This explains why such a re-parametrization
operation is trivial.
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For a duality transformation connecting a principal regime, labelled as ω, to a dual
image regime, labelled as ϕ, we have Sϕω

σ (x, τ) ≡ ± ln kϕω(x, τ), with sign ± that is
determined to retain consistency with the analogue of Landauer’s principle at zero tem-
perature. As a result, scaling entropy Sϕ

σ (x, τ) in a dual image regime, labelled as ϕ,
consists of two parts as contributions from two types of rescaling operations—Sϕ

σ (x, τ) =
Sω

σ (x, τ) + Sϕω
σ (x, τ)—with Sω

σ (x, τ) denoting scaling entropy from a re-parametrization
operation in a principal regime, labelled as ω, and Sϕω

σ (x, τ) denoting scaling entropy from
a duality transformation connecting a principal regime, labelled as ω, to a dual image
regime, labelled as ϕ, if both a re-parametrization operation in a principal regime and a
duality transformation connecting a principal regime to a dual image regime are present.

However, it is a bit involved to determine the signs ±. Mathematically, a duality
transformation is induced from a (discrete) group, e.g., Z2 or S3, depending on a specific
model under investigation. For a Z2 group, there is only one generator; thus, there is no
ambiguity to define a primary duality transformation. In contrast, for a duality transfor-
mation induced from the symmetric group S3, ambiguities arise. For the models under
investigation, we only need to consider the situation in which there is a subgroup Z+

2 that
induces a symmetric transformation. However, the subgroup Z+

2 is not normal; therefore,
we have to cope with a left or right coset. That is, when a modulo operation is performed on
subgroup Z+

2 , there are still two nontrivial elements in the left or right coset, each of which
generates a primary duality transformation in the sense that it is impossible for a primary
duality transformation to be decomposed into two other primary duality transformations.

Needless to say, a choice of two primary duality transformations depends not only
on the subgroup Z+

2 but also on our choice of a dominant control parameter x and an
auxiliary control parameter τ, which in turn depends on what regime we choose as a
principal regime. Once the choice is made, we may then perform one primary duality
transformation that connects a principal regime, labelled as ω, with the first dual image
regime, labelled as ϕ, such that the signs in this dual image regime are determined: +/−
corresponds to eω(x, τ) that is monotonically increasing/decreasing with x for a fixed τ in
a principal regime. Here, it is proper to make a generic remark that, in principle, one only
needs to determine the sign ± from one single point in this dual image regime, since the
discreteness of the values of the sign guarantees that the sign remains to be identical in the
entire dual image regime. Therefore, restricting our consideration to the characteristic lines
in a principal regime or its first dual image regime is legitimate as far as the determination
of the sign is concerned. As a convention, we exploit “ω” to label a principal regime, with
its first dual image regime and the second dual image regime being labelled as “ϕ” and
“$”, respectively, if dualities are induced from the symmetric group S3.

To proceed, we distinguish two distinct situations. First, a principal regime, labelled as
ω, with the ground-state energy density being monotonically increasing/decreasing on one
of its characteristic lines, shares a characteristic line with its first dual image regime, labelled
as ϕ, with the ground-state energy density being monotonically decreasing/increasing
on one of its characteristic lines, respectively. Two possibilities arise: (i) The ground-state
energy density is not monotonic on the shared characteristic line. Then it is necessary to
perform a re-parametrization operation on this characteristic line to ensure that the rescaled
ground-state energy density is monotonically increasing/decreasing with a chosen domi-
nant control parameter x, thus ensuring that the monotonicity is consistent in the principal
regime. Meanwhile, an alternative re-parametrization operation is needed to ensure that
the rescaled ground-state energy density is monotonically decreasing/increasing with the
same dominant control parameter x, thus ensuring that the monotonicity is consistent in
the first dual image regime. (ii) The shared characteristic line is a factorizing-field line, on
which the rescaled ground-state energy density is a constant, after a re-parametrization
operation is performed. As it turns out, the extent of the second dual image regime is not
finite for the first situation. Hence, one may perform the first primary duality transfor-
mation to connect the principal regime, labelled as ω, with the first dual image regime,
labelled as ϕ, and the second primary duality transformation to connect the first dual image
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regime, labelled as ϕ, with the second dual image regime, labelled as $, as if the first dual
image regime, labelled as ϕ, was a principal regime. Hence, the signs of scaling entropy
in the first and second dual image regimes are solely determined from the monotonicities
of their respective (rescaled) ground-state energy densities with the respective dominant
control parameters on their characteristic lines, according to the analogue of Landauer’s
principle at zero temperature. That is, if the (rescaled) ground-state energy densities are
simultaneously increasing or decreasing with their respective dominant control parame-
ters on the characteristic lines in a principal regime, then a plus or minus sign arises in
the first dual image regime, respectively. The same procedure may be repeated for the
second primary duality transformation connecting the first dual image regime and the
second dual image regime, as if the first dual image regime, labelled as ϕ, was a principal
regime. Second, the extent of the control parameters (x1, x2) is finite and the monotonicity
of the ground-state energy density with a dominant control parameter x is consistent on
the two characteristic lines in a principal regime, labelled as ω. Then, one may perform
the first primary duality transformation to connect the principal regime, labelled as ω,
with the first dual image regime, labelled as ϕ. Hence, the sign of scaling entropy in the
first dual image regime is determined from the monotonicity of the ground-state energy
density with the chosen dominant control parameters on the characteristic lines in the
principal regime, according to the analogue of Landauer’s principle at zero temperature.
However, the extent of control parameters (x1, x2) is not finite or the monotonicity of the
ground-state energy density with a dominant control parameter x is not consistent on
the two characteristic lines in its first dual image regime, labelled as ϕ. Then, we have
to return to the principal regime, labelled as ω, and perform the second primary duality
transformation to connect the principal regime with the second dual image regime, such
that the sign of scaling entropy in the second dual image regime is determined, according
to the analogue of Landauer’s principle at zero temperature. In the first situation, the signs
± from the two primary duality transformations are not necessarily the same, since the
sign ± in the first dual image regime is determined from the monotonicity of the (rescaled)
ground-state energy density on the characteristic lines in the principal regime, labelled as
ω, and the sign ± in the second dual image regime is determined from the monotonicity
of the (rescaled) ground-state energy density on the characteristic lines in the first dual
image regime, labelled as ϕ. In the second situation, the signs ± from the two primary
duality transformations must be identical, since both signs ± are determined from the
monotonicity of the ground-state energy density with a dominant control parameter x on
the characteristic lines in the principal regime, labelled as ω.

In practice, this leads to a rule of thumb that scaling entropy Sω
σ (x, τ), Sϕω

σ (x, τ),
S$ω

σ (x, τ), or S$ϕ
σ (x, τ) monotonically increases with a dominant control parameter x for

a fixed τ, since a principal regime and its dual image regimes share the same dominant
control parameter x and the same auxiliary control parameter τ, though their mathematical
expressions depend on a specific regime.

A supplementary rule is needed if the (rescaled) ground-state energy density is a
constant, since the analogue of Landauer’s principle at zero temperature does not point
to a specific sign. In this case, the signs are determined to ensure that scaling entropy
Sω

σ (x, τ), Sϕω
σ (x, τ), S$ω

σ (x, τ), or S$ϕ
σ (x, τ) monotonically increases with a dominant control

parameter x for a fixed τ. In fact, this supplementary rule is not independent from the
analogue of Landauer’s principle at zero temperature, since it is the only choice that is
consistent with the rule of thumb.

A few remarks are in order. First, we have assumed that only two characteristic lines
are involved in a given regime in the above discussion. This is not necessarily the case,
since more than two characteristic lines are allowed in a regime. However, our discussion
still applies, with the only change being that the monotonicity of the (rescaled) ground-state
energy density with a dominant control parameter x is consistent on all characteristic lines
in a given regime. Second, a soft line, as a peculiar type of characteristic line, is special in
the sense that any two regimes separated by a soft line must share the same sign since the
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values of the signs are discrete, but a soft line may be continuously deformed. Therefore,
one may treat the two regimes separated by a soft line as a composite regime as far as
the determination of the signs is concerned. With this fact in mind, a principal composite
regime shares a self-dual line with its first dual image composite regime, and the first dual
image composite regime shares a self-dual line with the second dual image composite
regime, for the models under investigation, if dualities are induced from the symmetric
group S3. Third, the discreteness of the values of the signs guarantees that the signs do
not vary with a varying fictitious parameter σ connecting different choices of a dominant
control parameter x and an auxiliary control parameter τ, which will be introduced in
Section 4. Fourth, if the ground-state energy density is not monotonic on a characteristic
line in a given regime, then it is always possible to perform a re-parametrization operation
on this characteristic line such that the rescaled ground-state energy density monotonically
increases or decreases with a properly chosen dominant control parameter x depending
on a choice of a multiplying factor mω(x). We stress that such a choice is not unique,
thus resulting in different fidelity mechanical-state functions. However, the underlying
physics remains the same as far as the locations of both stable and unstable fixed points are
concerned (cf. Section 4). Fifth, not all regimes, dual relative to each other under a duality
transformation induced from the symmetric group S3, are on the same footing, meaning
that a regime may not be qualified as a principal regime. This happens if the monotonicity
is not consistent for the ground-state energy densities with the chosen dominant control
parameters on two characteristic lines, or if a one-to-one correspondence between the
auxiliary control parameter in a regime and the dominant control parameter on one of
its characteristic lines is not retained after a duality transformation induced from Z2 is
performed, if duality transformations induced from both Z2 and S3 are involved. Sixth,
when duality transformations, induced from Z2 and S3, occur simultaneously in a specific
model, we should first treat those induced from S3. Once the signs for the regimes dual
relative to each other under a duality transformation induced from S3 are determined,
one may treat them as a composite regime to determine the signs for the dual image
regimes under a duality transformation induced from Z2. Alternatively, one may focus on a
principal regime and resort to the commutativity between a duality transformation induced
from S3 and a duality transformation induced from Z2, to produce the same signs. Here,
it is crucial to choose a proper principal regime that retains a one-to-one correspondence
between an auxiliary control parameter in its dual image regime and a dominant control
parameter on one of its characteristic lines under a duality transformation induced from Z2.
As it turns out, the rule of thumb is still valid in this generic case. Last but not least, our
discussion about scaling entropy is also applicable to a dual image part, which is connected
with a principal part via a duality transformation on a dual line.

Illustrative examples may be found in Appendix G for the quantum spin-1/2 XYZ
model, the quantum spin-1 XYZ model and the spin-1/2 Kitaev model on a
honeycomb lattice.

2.7. Shifts in Fidelity Temperature and Fidelity Internal Energy

Assume that fidelity entropy is determined in a principal part on a characteristic
line and in a principal regime, with a proper choice of a dominant control parameter x
and an auxiliary control parameter τ. Then, in order to determine fidelity temperature
and fidelity internal energy, we need to solve a singular first-order differential equation,
Equation (14), for continuous QPTs and a regular first-order differential equation,
Equation (18), for discontinuous QPTs. This results in an integration constant Vω

0 (τ)
that has yet to be determined. Once this is performed, both fidelity temperature Tω(x, τ)
and fidelity internal energy Uω(x, τ) follow, with an additive constant Uω

0 (τ) that has yet
to be determined.

On the other hand, it is necessary to introduce a shift in fidelity temperature Tω(x, τ)
→ Tω(x, τ) − Tω

0 (τ), which in turn induces a shift in fidelity internal energy Uω(x, τ)
→ Uω(x, τ) − Tω

0 (τ)Sω(x, τ). This is due to the fact that fidelity temperature must be
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zero for an unentangled (factorized) state, since fidelity temperature is introduced to
quantify quantum fluctuations. In addition, fidelity temperature must diverge, given strong
quantum fluctuations present in a ground-state wave function, at a critical point. In fact,
the divergence of fidelity temperature at a critical point is guaranteed from an observation
that αω(x, τ) is singular when x approaches xc for a fixed τ (for a scaling analysis of fidelity
entropy in the vicinity of a critical point/transition point, cf. Appendix H). In other words,
a shift in fidelity temperature, accompanied by a shift in fidelity internal energy, emerges
as a result of the internal logical consistency in fidelity mechanics.

A few remarks are in order. First, a shift in fidelity temperature Tq(x)→ Tq(x)− Tq
0 ,

accompanied by a shift in fidelity internal energy Uq(x)− Tq
0 Sq(x), needs to be carried

out for a principal part, labelled as q, on a characteristic line. Note that there is no need
to introduce an auxiliary control parameter τ for a characteristic line. Therefore, when
we refer to our prescription for a principal part on a characteristic line, it is proper to
use mathematical equations from Equations (9)–(19). Second, a shift in fidelity temper-
ature Tω(x, τ) → Tω(x, τ) − Tω

0 (τ), accompanied by a shift in fidelity internal energy
Uω(x, τ)→ Uω(x, τ)− Tω

0 (τ)Sω(x, τ), needs to be carried out for a principal regime, with
a proper choice of x and τ. Therefore, when we refer to our prescription for a principal
regime, it is proper to use mathematical equations from Equations (28)–(37). Third, T0
simply represents fidelity temperature at a characteristic point, evaluated from a dominant
control parameter on a characteristic line originating from a chosen point on a line of critical
points. Fourth, fidelity temperature is zero for an unentangled (factorized) state, and fidelity
internal energy must be a constant for a factorizing-field line. Fifth, both fidelity temper-
ature and fidelity internal energy are left intact if a duality transformation is performed,
since they are determined solely from a choice of a dominant control parameter x.

2.8. Piecing Together All Regimes: The Continuity Requirements

Up until now, we have focused on a dominant control parameter x for a quantum
many-body system described by the Hamiltonian Hω(x, τ) in a principal regime, labelled
as ω. Now we turn to an auxiliary control parameter τ, which plays an important role,
when we piece together all regimes. This leads to the continuity requirements for fidelity
mechanical-state functions. Here, we stress that all regimes include principal regimes and
non-principal regimes, since a duality transformation connects a principal regime with its
dual image regimes—non-principal regimes—in the control parameter space.

2.8.1. The Continuity Requirements for Fidelity Entropy: A Characteristic Point, a
Characteristic Line, and a Principal Regime

Consider a principal regime, with a proper choice of a dominant control parameter x
and an auxiliary control parameter τ. Then, fidelity entropy follows from definition (28).
Suppose the principal regime is enclosed by the boundaries consisting of a line of critical
points, with one endpoint being a multi-critical point and the other a characteristic point,
and two characteristic lines: One originates from the multi-critical point, and the other
originates from the characteristic point on the line of critical points. Note that the two
characteristic lines meet each other at another characteristic point away from the line of
critical points. Once a proper choice of a dominant control parameter x is made in a
principal part on a characteristic line, we are able to determine fidelity entropy according
to definition (9). Since fidelity entropy is relative, in a sense that it is only determined up to
an additive constant, one may set the residual fidelity entropy to zero at a chosen critical
point. One preferred choice is the characteristic point located on the line of critical points,
meaning that fidelity entropy is zero at this characteristic point. Then, fidelity entropy on
the characteristic line originating from this characteristic point is determined, according to
definition (9). With this in mind, fidelity entropy on a characteristic line originating from
a multi-critical point follows from the continuity requirement for fidelity entropy at the
characteristic point away from the line of critical points. In particular, the residual fidelity
entropy at the multi-critical point is determined. As such, one may determine the residual
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fidelity entropy on the line of critical points from the continuity requirement for fidelity
entropy on the characteristic line originating from a multi-critical point. In other words,
fidelity entropy is determined in this principal regime.

Once this is performed, we move to an adjacent principal regime and repeat the
procedure to determine the residual fidelity entropy on a line of critical points in this
principal regime. The procedure is repeated until all lines of critical points are exhausted.

This ensures continuity for fidelity entropy on the boundaries between any two prin-
cipal regimes or a principal regime and its dual image regime in the control parameter
space. Note that fidelity entropy may not be single-valued at a characteristic point or on a
characteristic line, which will be discussed in Section 6.

2.8.2. The Continuity Requirements for Fidelity Temperature and Fidelity Internal Energy:
A Characteristic Line

Let us now discuss fidelity temperature and fidelity internal energy for continuous
QPTs in a principal part, labelled as k, on a characteristic line originating from a multi-
critical point. The latter itself appears to be an endpoint on a line of critical points. Here,
k labels different principal parts on characteristic lines for a given model. A shift in
fidelity temperature Tk(x)→ Tk(x)− Tk

0 is performed to ensure that fidelity temperature
is at zero or minimum at a characteristic point, which is an intersection point between
two characteristic lines depending on whether the ground-state wave function is in an
unentangled (factorized) state or an entangled state. This in turn induces a shift in fidelity
internal energy Uk(x)→ Uk(x)− Tk

0 S(x), where Tk
0 represents fidelity temperature at the

characteristic point evaluated from the multi-critical point, with x being a dominant control
parameter on the characteristic line.

2.8.3. The Continuity Requirements for Fidelity Temperature and Fidelity Internal Energy:
A Principal Regime

We turn to fidelity temperature and fidelity internal energy for continuous QPTs in
a principal regime. Suppose that we solved a singular first-order differential equation,
Equation (14), with x being a chosen dominant control parameter in the principal regime.
This results in an integration constant Vω

0 (τ).
In order to ensure that the continuity requirement for fidelity temperature is satisfied,

a shift in fidelity temperature Tω(x, τ) → Tω(x, τ)− Tω
0 (τ) is performed, accompanied

by a shift in fidelity internal energy Uω(x, τ) → Uω(x, τ)− Tω
0 (τ)Sω(x, τ). Generically,

Tω
0 (τ) ≡ Tω

m (τ)− Tω
t , where Tω

m (τ) represents fidelity temperature at a chosen point on a
characteristic line originating from a multi-critical point, evaluated from a dominant control
parameter x in this principal regime, whereas Tω

t represents fidelity temperature at the
same point, which is determined from a dominant control parameter x on this characteristic
line itself. We emphasize that the chosen point is now parametrized as (x1, x2) in the control
parameter space, (x, τ) in a principal regime, and x in a principal part on a characteristic
line. A convenient method for addressing this ambiguity is to choose τ to label the chosen
point on a characteristic line originating from a multi-critical point, when the continuity
requirements for fidelity temperature and fidelity internal energy in a principal regime
is implemented. To implement this, establishing a relation between the auxiliary control
parameter τ in the principal regime and the dominant control parameter in the principal
part on the characteristic line is necessary, which is a one-to-one correspondence.

Once this is performed, an additive constant Uω
0 (τ) in fidelity internal energy and an

integration constant Vω
0 (τ) are determined from the continuity requirements for fidelity

temperature Tω(x, τ) and fidelity internal energy Uω(x, τ) on a characteristic line originat-
ing from a multi-critical point, with an extra condition that fidelity internal energy Uω(x, τ)
is zero at a critical point. This extra condition will be justified in the next Subsection.

After shifts in fidelity temperature and fidelity internal energy are implemented, and
Vω

0 (τ) and Uω
0 (τ) are determined, we are able to arrive at the final results for fidelity

temperature Tω
f (x, τ) and fidelity internal energy Uω

f (x, τ). We introduce Tω
f (x1, x2) ≡
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Tω
f (x, τ) and Uω

f (x1, x2) ≡ Uω
f (x, τ) when we move from x and τ to x1 and x2, meaning

that x and τ are regarded as functions of x1 and x2, respectively.

2.8.4. The Continuity Requirements for Fidelity Temperature and Fidelity Internal Energy:
Discontinuous Phase Transitions

The above discussion also applies to discontinuous QPTs, with a modification that an
additive constant Uω

0 (τ) in fidelity internal energy, an integration constant Vω
0 (τ), and an

extra parameter κ are determined from the continuity requirements for fidelity temperature
and fidelity internal energy at a transition point xd on a line of discontinuous QPT points,
which ends at an isolated critical point. Here, the line of the discontinuous QPT points
itself is a part of a symmetric line, with the symmetry group being discrete. With this
fact in mind, we remark that a line of discontinuous QPT points results from SSB. That
is, there is a continuous QPT at a critical point xc, due to SSB, on the symmetric line with
a discrete symmetry group. In other words, this continuous QPT at a critical point xc is
protected by the discrete symmetry group. Away from the characteristic line, the model
under investigation does not enjoy any symmetry except for a characteristic line, which
either ends or is located at infinity.

2.8.5. Piecing Together Principal Regimes and Non-Principal Regimes (If Any)

Once fidelity mechanical-state functions in all the principal regimes as well as on
the characteristic lines are determined, we are able to determine fidelity mechanical-state
functions in all non-principal regimes as dual image regimes by taking into account the
contribution from scaling entropies arising from re-parametrization operations or dualities.
This allows us to piece together all regimes to visualize fidelity mechanical-state functions
in the entire control parameter space.

Specific examples to illustrate how our prescription is implemented for quantum
many-body systems may be found in Section 7 for the quantum spin-1/2 XY model, in
Section 8 for the transverse-field quantum Ising model in a longitudinal field, in Section 9
for the quantum spin-1/2 XYZ model, in Section 10 for the quantum spin-1/2 XXZ model
in a magnetic field, in Section 11 for the quantum spin-1 XYZ model, and in Section 12 for
the spin-1/2 Kitaev model on a honeycomb lattice.

2.9. Generic Remarks

We are able to draw some consequences from our argument above, combining the
discussions about duality in Section 3, about an interior point of view vs exterior point
of view in Section 6 and about fidelity flows in Section 13. First, the residual fidelity
entropy S0 depends on a specific choice of a dominant control parameter x in a principal
regime; thus, it does not reflect information encoded in the ground-state wave function
at a critical point. That is, it is extrinsic in the sense that it is impossible to determine it
from the Hamiltonian itself at a critical point. Actually, this observation leads us to an
interior point of view vs. an exterior point of view in Section 6. Loosely speaking, it also
makes sense to speak of the residual fidelity entropy in a principal part or a principal
regime, though it is defined at a critical point. Second, there are lower and upper bounds
for fidelity internal energy U(x), although this statement is only valid for fidelity internal
energy, determined from a specific Hamiltonian with the ground-state energy density
being negative. This means that the Hamiltonian is in a canonical form with respect to
a specific definition of duality (cf. Section 3). This is due to the fact that the range of a
dominant control parameter x is finite. As a convention, we always choose the lower bound
to be zero. However, as discussed in Section 3, for a Hamiltonian with the ground-state
energy density changing its sign, fidelity internal energy diverges when the ground-state
energy density is zero. Third, at a critical point, fidelity internal energy U(x) must be
zero, thus leading to the requirement that U0 = T0 S0. Physically, this is a consequence
of the fact that, at a critical point, it is impossible to extract any relevant information
by discarding irrelevant information, since any relevant information is covered up by
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irrelevant information. Mathematically, at a critical point, fidelity internal energy becomes
U0 − T0 S0, which has to satisfy U0 − T0 S0 ≥ 0, due to the convention that the lower
bound is zero. Indeed, if it takes a positive value, then it is impossible to guarantee that
fidelity internal energy U(x) monotonically increases with x. That is, the internal logical
consistency demands that fidelity internal energy U(x) must be zero at a critical point.
Fourth, for a given quantum many-body system, fidelity internal energy U(x) takes the
same value at all stable fixed points. This reflects the fact that the Hamiltonians are unitarily
equivalent at all stable fixed points. Fifth, fidelity temperature is zero on a factorizing-field
line given that no quantum fluctuations are present.

As mentioned, two characteristic lines intersect with each other at a characteristic
point in the control parameter space. Such a characteristic point may occur on or away
from a line of critical points. If it occurs away from a line of critical points, then it is
identified as a stable or metastable fixed point from an exterior point of view; if it appears
on a line of critical points, then it is identified as a stable fixed point from an interior
point of view, as follows from our discussion about fidelity flows in Section 13: A stable
fixed point is characterized by a zero-fidelity temperature and (local) maximal fidelity
entropy; a metastable fixed point is characterized by the minimum fidelity temperature
and (local) maximal fidelity entropy. Instead, any critical point, located on a line of critical
points, is identified as an unstable fixed point from an exterior point of view. On the other
hand, a multi-critical/multi-transition point, located at one endpoint of a line of critical
points, is identified as an unstable fixed point from an interior point of view, characterized
in terms of divergent fidelity temperature, as a result of the fact that α(x), defined in
Equation (15), diverges at such a multi-critical/multi-transition point. Here, we remark that
a characteristic point at infinity is labelled in terms of the two original coupling parameters,
with one of them being infinite in value. As it turns out, keeping the other finite coupling
parameters in labelling a characteristic point at infinity is necessary given that the symmetry
group varies with the two coupling parameters.

Note that different choices are allowed for a dominant control parameter x in a
principal regime. However, different choices lead to different fidelity mechanical-state
functions. Therefore, one may raise a concern whether or not it is possible to extract any
sensible physics from our formalism. This concern has been addressed in Section 4. As
argued, any two different sets of fidelity entropy, fidelity temperature, and fidelity internal
energy resulting from two different choices are related to each other via introducing a
fictitious parameter σ. Actually, information encoded in σ arising from different choices
of a dominant control parameter for a given regime is irrelevant in the sense that both
stable and unstable fixed points remain the same. Physically, this is due to the fact that the
constraints imposed by symmetries, dualities and factorizing fields are rigid, meaning that
there is no flexibility in choosing a dominant control parameter x on such a characteristic
line, although it is still allowed to perform a re-parametrization operation in the ground-
state energy density on a characteristic line subject to the condition that, for any two
re-parametrization operations, a dominant control parameter from one re-parametrization
operation must be monotonically increasing with that from the other re-parametrization
operation and vice versa. Although this does change fidelity mechanical-state functions, it
does not change where fidelity temperature diverges or becomes zero and does not change
where fidelity entropy takes a (local) maximum. In practice, we may take advantage of
this freedom to properly choose a dominant control parameter, x, such that the numerical
simulation is more efficient when we exploit a tensor network algorithm [37–41,46–48] to
simulate quantum many-body systems. As an illustrative example, we choose a dominant
control parameter x in different ways for the quantum spin-1/2 and spin-1 XYZ models to
demonstrate different features in various aspects.

We emphasize that, once fidelity mechanical-state functions are determined in all
principal regimes and their symmetric or dual image regimes, we have to transform back
to the original coupling parameters, x1 and x2, according to a one-to-one correspondence
between (x1, x2) and (x, τ). As a convention, we use a subscript f to indicate fidelity
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mechanical-state functions, with the original coupling parameters as their arguments, for
a specific quantum many-body system. Note that the subscript, f , is also exploited to
indicate the final outcome for fidelity mechanical-state functions, with a dominant control
parameter x and an auxiliary control parameter τ as their arguments.

3. A Shift Operation in the Hamiltonian: Duality and a Canonical Form of
the Hamiltonian

Given that ground-state energy density e(x1, x2) is involved in our formalism, an
important question remains: What form of the Hamiltonian should be chosen given the
Hamiltonian is mathematically determined up to a constant multiplying factor and an addi-
tive constant? As is well known, for a given Hamiltonian H(x1, x2), the physics itself does
not change under two operations: One is a constant multiplying operation and the other
is a shift operation, although Hamiltonian H(x1, x2) becomes H∗(x1, x2) = gH(x1, x2) + b,
with g > 0 and b being real numbers. The operations in the Hamiltonian H(x1, x2) induce a
change in the ground-state energy density e(x1, x2): e∗(x1, x2) = ge(x1, x2) + b. Therefore,
our question may be reshaped as follows. What is a canonical form of the Hamiltonian H
in fidelity mechanics? The answer rests on a well-known notion: duality.

Generically, duality is nothing but a unitary mapping between quantum Hamiltonians
that preserves the quasi-local character of their interaction terms (see, e.g., [3,76]). Mathe-
matically, this corresponds to H(x1, x2) = k′(x′1, x′2)UH′(x′1, x′2)U

†, where H′(x′1, x′2) is the
Hamiltonian unitarily equivalent to H(x1, x2), U is a unitary operator, and k′(x′1, x′2) > 0.
Dualities are of special interest, which are unitary mappings conserving the form of Hamil-
tonian operator H(x1, x2). That is, H(x1, x2) = k′(x′1, x′2)UH(x′1, x′2)U

†, with x′1 and x′2
being functions of x1 and x2. In this study, we only refer to this form of unitary map-
ping as dualities. In other words, duality is one of the two types of rescaling operations
in the Hamiltonian, with the only difference that duality always involves a nontrivial
unitary transformation. A prototypical example is the Kramers–Wannier duality for the
transverse-field quantum Ising model [3,76]. Physically, this duality allows us to relate the
weak-coupling regime to the strong-coupling regime.

It is important to note that duality leaves no room for the Hamiltonian H∗(x1, x2)
but a constant multiplying factor. That is, for a fixed g, there is only one value of b such
that duality exists in the corresponding Hamiltonian. Therefore, one may choose a spe-
cific form of the Hamiltonian H among equivalent Hamiltonians, related via H∗(x1, x2)
= gH(x1, x2) + b, up to a constant multiplying factor. This form is a canonical form
of the Hamiltonian in fidelity mechanics, meaning that it only makes sense to adopt
the ground-state energy density e(x1, x2) from a canonical form of the Hamiltonian in
Equations (15) and (19) to determine fidelity mechanical-state functions. We remark that,
generically, duality is lacking in a given Hamiltonian. However, we are still able to define
a canonical form in such a case; there are three ways to do so. First, for a Hamiltonian
depending on at least one coupling parameter, we may find a special case that hosts duality,
thus enabling us to determine a specific value of b, as is the case for the quantum spin-1/2
XY model. For this model, the transverse-field quantum Ising model as a special case
does host duality. Second, for a Hamiltonian without any coupling parameter (except
for a constant multiplying factor as an energy scale), we may introduce more coupling
constants by embedding a given Hamiltonian into a more general Hamiltonian with more
than two coupling parameters and try to see if there is any special case that can host duality.
This happens to the quantum spin-1/2 XXX model and the quantum spin-1/2 XXZ model,
which may be extended to the quantum spin-1/2 XYZ model. The latter hosts duality, as
discussed in Appendix C. Third, an established canonical form of a given Hamiltonian
may be exploited to justify a canonical form of a related Hamiltonian, which reduces to
the given Hamiltonian in some limit. This happens to the t-J model, as it reduces to the
quantum spin-1/2 XXX model at half filling.

We stress that the presence of a constant multiplying factor does not change fidelity
entropy S f (x1, x2) (up to an additive constant), fidelity temperature Tf (x1, x2), and fi-
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delity internal energy U f (x1, x2) as long as it is kept constant. In contrast, extra attention
needs to be paid to the shift operation, H∗(x1, x2) = H(x1, x2) + b. Suppose H(x1, x2)
is in a canonical form, then, generically, we have e(x1, x2) < 0. Thus, fidelity entropy
S f (x1, x2), fidelity temperature Tf (x1, x2), and fidelity internal energy U f (x1, x2) follow
accordingly, with V(x1, x2) determined from the singular first-order differential equa-
tion, Equation (14), for continuous QPTs and the regular first-order differential equation,
Equation (18), for discontinuous QPTs. Therefore, we focus on a shift operation in the
Hamiltonian, H∗(x1, x2) = H(x1, x2) + b, which induces a change in the ground-state
energy density e(x1, x2): e∗(x1, x2) = e(x1, x2) + b.

Our discussion up until this point leaves an impression that a canonical form of a
given Hamiltonian seems to occupy a unique position in fidelity mechanics. However,
this is not true, since the definition of a canonical form of the Hamiltonian depends on the
definition of duality, which in turn depends on a shift operation in the Hamiltonian.

To see this point, we assume H(x1, x2) is in a canonical form. Our definition for
duality, which has been adopted, is conventional (see, e.g., [3]). If the definition of duality
is modified, then a canonical form of the Hamiltonian follows. Suppose the definition of
duality is modified to be H∗(x1, x2) = k′(x′1, x′2)UH∗(x′1, x′2)U

† + µ(x′1, x′2), with an extra
parameter µ(x′1, x′2). The task is to find out a proper µ(x′1, x′2) to ensure that H∗(x) is in a
canonical form according to this modified definition for duality. As it turns out, we have
µ(x′1, x′2) = b(1− k′(x′1, x′2)).

Following our prescription in Section 2, fidelity entropy S∗f (x1, x2), fidelity temperature
T∗f (x1, x2), and fidelity internal energy U∗f (x1, x2) are equally well-defined as long as
e∗(x1, x2) is negative. Here, we have introduced a superscript, ∗, to indicate the dependence
of fidelity mechanical-state functions on b. Given that ground-state wave functions remain
the same, we have S∗f (x1, x2) = S f (x1, x2). However, fidelity temperature T∗f (x1, x2) and
fidelity internal energy U∗f (x1, x2) depend on b. Here, we have retained the same choice of
a dominant control parameter, x, in a given regime.

Physically, the dependence of both fidelity temperature T∗f (x1, x2) and fidelity internal
energy U∗f (x1, x2) on b simply means that information about b is updated in the information
storage media as b varies. As a consequence, a certain amount of fidelity work W∗f (x1, x2)

is required to compensate for changes in both fidelity temperature T∗f (x1, x2) and fidelity
internal energy U∗f (x1, x2):

W∗f (x1, x2) =
∫

(dU∗f (x1, x2)− T∗f (x1, x2)dS∗f (x1, x2)) = U∗f (x1, x2)−U f (x1, x2), (38)

since fidelity entropy S∗f (x1, x2) remains the same during the shift operation.
This means that fidelity mechanical-state functions depend on a canonical form of the

Hamiltonian, which in turn depend on the definition of duality. Therefore, what really
matters in fidelity mechanics is not the absolute values of fidelity mechanical-state functions.
Instead, the underlying physics is fully captured by fidelity flows, introduced in Section 13.
That is, we are only concerned about where stable and unstable fixed points are located
in the control parameter space, which are identified as characteristic points and critical
points, respectively, in fidelity mechanics. Since a characteristic point appears to be an
intersection point between characteristic lines, the constraints imposed by symmetries,
dualities, and factorizing fields are rigid in the sense that stable fixed points remain the
same for any different definitions of a canonical form of the Hamiltonian, resulting from
different definitions of duality given that all characteristic lines remain the same as a shift
operation in the Hamiltonian is performed. In addition, unstable fixed points also remain
the same since the ground- state phase diagram does not change, as a shift operation in
the Hamiltonian is performed. Indeed, the behaviors of fidelity mechanical-state functions
at stable and unstable fixed points never change: At a stable fixed point, fidelity entropy
S∗f (x1, x2) reaches its (local) maximum, fidelity temperature T∗f (x1, x2) is zero, and fidelity
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internal energy U∗f (x1, x2) takes the maximum value; at an unstable fixed point, fidelity
entropy S∗f (x1, x2) becomes the residual fidelity entropy, fidelity temperature T∗f (x1, x2)

diverges, and fidelity internal energy U∗f (x1, x2) is zero. This implies that a canonical form
of the Hamiltonian, as defined, does not occupy any unique position in fidelity mechanics.

In passing, we remark that duality is ubiquitous for quantum many-body systems,
as shown in Appendix C, respectively, for the quantum spin-s XYZ model and for the
spin-1/2 Kitaev model on a honeycomb lattice.

4. A Fictitious Parameter σ Connecting Different Choices for a Dominant Control
Parameter in a Principal Regime

In a principal regime, there are many different choices of a dominant control parameter
x, as long as such a choice is consistent with the rigid constraints imposed by symmetries,
dualities, and factorizing fields. Different choices result in different fidelity mechanical-
state functions. Therefore, two points need to be addressed: first, it is necessary to connect
different choices of a dominant control parameter x in a given principal regime; second,
different choices of a dominant control parameter x should not change where stable and
unstable fixed points are located.

Let us start from the first point. Suppose that we have made two different choices of a
dominant control parameter x in a given principal regime: One yields fidelity mechanical-
state functions U0, S0, and T0, and the other yields U1, S1, and T1. Then, we may introduce
a fictitious parameter σ ranging from 0 to 1. Now, it is legitimate to resort to a new set of
fidelity mechanical-state functions Uσ, Sσ, and Tσ, which are some smooth functions of
σ such that Uσ, Sσ, and Tσ interpolate between U0, S0, T0, and U1, S1, T1 when σ varies
from 0 to 1. This amounts to stating that we may smoothly deform one choice to the
other, as depicted in Figure 7. Therefore, we are able to connect one choice to the other by
performing a certain amount of fidelity work W01:

W01 =
∫

(dU − TσdS) = ∆U − Ta∆S, (39)

where ∆U = U1 −U0, ∆S = S1 − S0, and Ta may be determined from the mean value theo-
rem for a definite integral. Needless to say, whether fidelity work needs to be performed,
W01, depends on how we deform our choices into each other. Suppose that T0 < T1, then
we have T0 < Ta < T1. By simply establishing Ta = T0 or T1, we may estimate an upper
bound and a lower bound for the amount of fidelity work, quantifying the computational
costs, which needs to be performed.

Figure 7. A fictitious parameter σ connecting different choices of a dominant control parameter x in a
principal regime.

Now, we turn to the second point. Recall that a choice of a dominant control parameter
x has to be subject to the constraints imposed by symmetries, dualities, and factorizing fields.
The constraints are rigid in the sense that such a fictitious parameter σ does not exist on any
characteristic line. In other words, there is no flexibility in choosing a dominant control
parameter x on a characteristic line, arising from symmetries, dualities and factorizing
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fields, apart from a re-parametrization operation. The latter is subject to the condition
that for any two choices connected via a re-parametrization operation, one must be a
monotonically increasing function of the other and vice versa. However, this does not
change where fidelity temperature diverges or becomes zero and does not change where
fidelity entropy takes a (local) maximum. Therefore, both stable and unstable fixed points
remain the same for any different choices. In this sense, information encoded in a fictitious
parameter σ arising from different choices of a dominant control parameter x in a principal
regime is irrelevant.

5. Fidelity Mechanical-State Functions under a Shift Operation in the Hamiltonian
with Respect to a Reference Benchmark

We assume that a dominant control parameter x has been chosen. As a convention, x
ranges from a critical point xc to its value at a point on a characteristic line: x+. Suppose that
the ground-state energy density e(x) monotonically decreases with x and is always negative.
Then, fidelity internal energy U(x), fidelity entropy S(x), and fidelity temperature T(x) are
well-defined, which simply follow from our prescription in Section 2. Now, we perform a
shift in the Hamiltonian H: H → Hb = H + b, with b being a positive constant. Note that
we have introduced subscript b to replace superscript ∗ in the preceding Section, since we
move from (x1, x2) to (x, τ), with τ being dropped off for the sake of brevity. Hence, the
ground-state energy density e(x) becomes eb(x) = e(x) + b. As b increases, one encounters
three distinct regimes for b, as shown in Figure 8. First, eb(x) remains negative for any
x. Second, eb(x) is positive for x < xr and negative for x > xr, with xr being a unique
solution to an algebraic equation eb(x) = 0: eb(xr) = 0. Third, eb(x) is always positive for
any x. As it turns out, the change from one regime to another may be characterized as a
“phase transition” in fidelity mechanics. That is, two successive fidelity mechanical phase
transitions occur when b varies.

0 x
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c x
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Figure 8. The shifted ground-state energy density eb(x) as a function of a dominant control parameter
x, with x ranging from xc at a critical point to its value at a point on a characteristic line: x+. Here,
eb(x) = e(x) + b, as a result of a shift in the Hamiltonian H(x)→ Hb(x) = H(x) + b, with e(x) being
the ground-state energy density for the Hamiltonian H(x). It is necessary to distinguish three distinct
regimes: (i) eb(x) is always negative for any x; (ii) eb(x) changes its sign at xr: eb(xr) = 0; (iii) eb(x) is
always positive for any x. Here, we assume that the ground-state energy density e(x) monotonically
decreases with x.

For this purpose, let us elaborate on the first regime, when eb(x) remains negative for
any x. Obviously, we are allowed to define fidelity mechanical-state functions for any value
of b in this regime, as follows from the prescription in Section 2. As a result, both fidelity
temperature and fidelity internal energy depend on b, although fidelity entropy remains the
same up to an additive constant, since ground-state wave functions remain the same under
the shift. This vividly illustrates the fact that fidelity mechanical-state functions depend not
only on our choices of a dominant control parameter x (cf. Section 4) but also on a canonical
form of the Hamiltonian, which in turn is related to the definition of duality (cf. Section 3).
As argued there, any difference arising from either distinct choices of a dominant control
parameter x or modified definitions of a canonical form of the Hamiltonian is irrelevant, as
far as stable and unstable fixed points are concerned. As a consequence, one may choose
any value of b in this regime to define fidelity mechanical-state functions.

Therefore, a question arises concerning what amount of fidelity work needs to be
performed when b varies from 0 to a nonzero value, if we adopt fidelity internal energy
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U(x), fidelity entropy S(x), and fidelity temperature T(x) for b = 0 as our reference
benchmark. Physically, this means that information about an energy scale at the reference
benchmark b = 0, recorded in the information storage media, is never updated, as b varies,
although information about the variation of an energy scale is also recorded. This renders
it possible to make a comparison between b 6= 0 and b = 0. When b = 0, we have the
following

∆U(x) = T(x)∆S(x). (40)

Here, we remark that the explicit expressions for fidelity internal energy U(x), fidelity
entropy S(x), and fidelity temperature T(x) have been presented in Section 2. For conve-
nience, we reproduce them here: fidelity internal energy U(x) = ln(e(x)/e(xc))V(x) + U0,
with U0 being an additive constant, and fidelity entropy S(x) = −2

∫ x
xc

ln d(x, y)dy + S0,
with S0 being an additive constant. Since the ground-state wave functions remain the
same under the shift, fidelity entropy, S(x), is left intact: Sb(x) = S(x). In addition, since
a dominant control parameter x remains the same and an energy scale at the reference
benchmark b = 0 is retained, fidelity temperature, T(x), is also left intact: Tb(x) = T(x). In
contrast, fidelity internal energy U(x) undergoes a change: U(x) → Ub(x), where Ub(x)
takes the form Ub(x) = ln(eb(x)/eb(xc))V(x) + U0. Here, we assume that an energy scale
eb(xc) has been adopted for a nonzero value of b. Combining with Equation (40), we have
the following

∆Ub(x) = Tb(x)∆Sb(x) + ∆Wb(x). (41)

Here, ∆Wb(x) denotes fidelity work that needs to be performed, with Wb(x) =
[ln(eb(x)/e(x))− ln(eb(xc)/e(xc))]V(x).

In order to compare with our reference benchmark b = 0, we have to return to the
original energy scale e(xc) instead of eb(xc), thus leading to an increment of fidelity entropy:
− ln(eb(xc)/e(xc))∆x. That is, fidelity entropy Sb(x) entails a change due to the fact that
different energy scales are exploited when b varies: |e(xc)| for b = 0 and |eb(xc)| for nonzero
b. This variation in energy scales amounts to information erasure (cf. Section 2). As such,
fidelity entropy Sb(x) becomes the following:

Sb(x) = −2
∫ x

xc
ln d(x, y)dy− ln(eb(xc)/e(xc))∆x + S0, (42)

whereas fidelity internal energy Ub(x) becomes the following

Ub(x) = ln
eb(x)
e(xc)

V(x) + U0. (43)

It follows that fidelity internal energy Ub(x) and, thus, fidelity work Wb(x) diverges
if eb(xc) → 0, as observed in Equation (43). This is anticipated, since this amounts to
extracting information about a value of b to ensure that eb(xc) = 0. More precisely, the
amount of fidelity work that needs to be performed depends on the accuracies that we
are trying to achieve. If the error scales as N−ζ , the amount of fidelity work needed to
be performed scales as ln N. If the error scales as exp(−ηN), the amount of fidelity work
needed to be performed scales as N. Here, N is an integer, and ζ and η are positive
real numbers. In fact, this is consistent with the analogue of Landauer’s principle at
zero temperature (cf. Section 2), since ln N and N bits of information are recorded in the
information storage media, when the error scales as N−µ or exp(−νN), respectively.

Now we turn to the second regime. We expect that fidelity temperature T(x) and
fidelity entropy S(x) are left intact, Tb(x) = T(x) and Sb(x) = S(x), but fidelity internal
energy U(x) undergoes a change: U(x) → Ub(x). However, extra complications arise,
since eb(x) changes sign in this regime. A choice for Ub(x), consistent with the analogue
of Landauer’s principle at zero temperature (cf. Section 2), takes the following Ub(x)
= ∓ ln(|eb(x)|/|eb(xc)|)V(x) + U0. Here, the sign − is taken for x ∈ (xc, xr), in which
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eb(x) is positive, and the sign + is taken for x ∈ (xr, x+), in which eb(x) is negative. As a
consequence, Wb(x) takes the following form

Wb(x) =


[− ln

eb(x)
eb(xc)

− ln
e(x)
e(xc)

]V(x), x ∈ (xc, xr);

[ln
|eb(x)|
eb(xc)

− ln
e(x)
e(xc)

]V(x), x ∈ (xr, x+).
(44)

In order to compare with our reference benchmark b = 0, we have to return back to
the original energy scale e(xc) instead of eb(xc), thus leading to a change in fidelity entropy
S(x): S(x) → Sb(x) due to the fact that different energy scales are exploited as b varies:
|e(xc)| for b = 0 and eb(xc) for nonzero b. We have the following

Sb(x) =


− 2

∫ x

xc
ln d(x, y)dy + ln eb(xc) + ln |e(xc)|+ S0, x ∈ (xc, xr);

− 2
∫ x

xc
ln d(x, y)dy− ln eb(xc) + ln |e(xc)|+ S0, x ∈ (xr, x+).

(45)

Accordingly, fidelity internal energy Ub(x) becomes the following

Ub(x) =

{
− [ln eb(x) + ln |e(xc)|]V(x) + U0, x ∈ (xc, xr);

[ln |eb(x)| − ln |e(xc)|]V(x) + U0, x ∈ (xr, x+).
(46)

It follows that the amount of fidelity work needed to be performed depends on the
accuracies that we are trying to achieve in locating a solution xr to an algebraic equation
e(x) + b = 0. More precisely, if the error scales as N−ζ , the amount of fidelity work needed
to be performed scales as ln N. If the error scales as exp(−ηN), the amount of fidelity work
needed to be performed scales as N.

The third regime is similar to the first regime, with the difference being that eb(x)
remains positive for any x. Fidelity temperature T(x) and fidelity entropy S(x) are left
intact: Tb(x) = T(x) and Sb(x) = S(x). However, fidelity internal energy U(x) undergoes
a change: U(x)→ Ub(x). Following the argument in Appendix F, fidelity internal energy
Ub(x) takes the following form: Ub(x) = − ln(eb(x)/eb(xc))V(x) + U0. As a consequence,
we have Wb(x) = [− ln(eb(x)/eb(xc))− ln(e(x)/e(xc))]V(x).

In order to compare with our reference benchmark b = 0, we have to return to the
original energy scale e(xc) instead of eb(xc), thus leading to a change in fidelity entropy
S(x): S(x)→ Sb(x) due to the fact that different energy scales are exploited when b varies:
|e(xc)| for b = 0 and eb(xc) for nonzero b. That is, fidelity entropy Sb(x) becomes the
following

Sb(x) = −2
∫ x

xc
ln d(x, y)dy + ln eb(xc) + ln |e(xc)|+ S0. (47)

Accordingly, fidelity internal energy Ub(x) becomes the following

Ub(x) = −[ln eb(x) + ln |e(xc)|]V(x) + U0. (48)

The same argument also works if the ground-state energy density e(x) monotonically
increases with x and is always negative.

We remark that our discussion about the amount of fidelity work that needs to be
performed to achieve a preset accuracy leads to the supposition that fidelity work might be
exploited to quantify computational costs in solving a mathematical problem.

Now, we are ready to justify our assumption about the ground-state energy density
e(x) that it is negative for all x, which was discussed in Section 2. For a given Hamiltonian
H(x), if e(x) is not always negative, then it should be shifted to ensure that it is negative.
Hence, fidelity entropy, fidelity temperature, and fidelity internal energy can be determined
following from our formalism in Section 2. As argued in Section 3, we are able to assign
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the shifted Hamiltonian to be a canonical form of the Hamiltonian according to a specific
definition of duality. In order to shift it back to the original Hamiltonian, we resort to our
discussions above in case (ii) or case (iii): if e(x) changes its sign, then it is case (ii); if e(x)
is positive for all x, then it is case (iii). This allows the determination of fidelity internal
energy, with fidelity entropy being subject to a change due to different energy scales as
b varies, and with fidelity temperature being left intact. Therefore, our assumption that
e(x) is negative for all x, made in Section 2, does not prevent us from investigating any
quantum many-body system in fidelity mechanics.

6. A Characterization of Quantum Phase Transitions and Quantum States of Matter in
Fidelity Mechanics

As already mentioned in Section 6, when we piece together all regimes through
continuity requirements to visualize fidelity mechanical-state functions in the entire control
parameter space, a question arises regarding whether or not fidelity mechanical-state
functions are single-valued, which is relevant to the characterization of QPTs and quantum
states of matter in fidelity mechanics. In practice, fidelity mechanical-state functions are
first determined for a principal part on a characteristic line, and then an extension is carried
out to a principal regime, which accommodates a line of critical points as a boundary.
Recall that a principal regime always accommodates an isolated critical point, a line of
discontinuous QPT points ending at an isolated critical point or a line of critical points,
which acts as a boundary for a given principal regime. However, for our purpose, we only
need to focus on a principal regime involving a line of critical points, given that fidelity
mechanical-state functions are always single-valued, if a principal regime only involves an
isolated critical point or a line of discontinuous QPT points ending at an isolated critical
point, as follows from our prescriptions for a characteristic line and for a principal regime
in Section 2.

Among the nineteen principal regimes, there are fourteen principal regimes that
involve a line of critical points. We remark that, generically, it is necessary to include their
image regimes under a symmetric or duality transformation to form a full ground-state
phase diagram. In fact, a typical scenario for a complete line of critical points emerges when
one principal regime is adjacent to another principal regime or a non-principal regime,
which is either symmetrical or dual in nature relative to the principal regime. As it turns
out, there are eight distinct scenarios for a complete line of critical points for quantum
many-body systems under investigation, which fall into the three categories, as listed
in Figure 9. Here, by a complete line of critical points, we mean a line of critical points,
which ends at two transition points or at two characteristic points or at one transition
point and one characteristic point. Note that it is straightforward to extend this notion to
a high-dimensional object, if quantum many-body systems with more than two control
parameters are considered.

Our task is to characterize distinct types of QPTs by conducting an investigation
into the behaviors of fidelity mechanical-state functions at QPT points, which act as the
endpoints of a complete line of critical points. This leads us to an interior point of view vs.
an exterior point of view, introduced in the next subsection. In addition, a cycle, formed
from a complete line of critical points with its symmetric or dual images, also plays an
important role in characterizing quantum states of matter. To this end, one needs to focus
on the behaviors of fidelity entropy on a characteristic line or at a characteristic point,
located inside a cycle. For the six illustrative models, three cycles emerge, as shown in
Figure 10: one for the quantum spin-1 XYZ model and the other two for the spin-1/2 Kitaev
model on a honeycomb lattice.
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Figure 9. For all six illustrative models, there are eight scenarios for a complete line of critical points
that admit an interior point of view and an exterior point of view simultaneously, which in turn fall
into the three categories. They are labelled as I-1, I-2, I-3, II-1, II-2, III-1, III-2, and III-3. Here, Jz is
set to be an energy scale: Jz = 1 in scenario I-3 and scenario III-3, and c denotes central charge. A
complete line of critical points or a principal part on a complete line of critical points is depicted as a
solid line; a critical/transition point, located at an endpoint, is depicted as a solid dot; a characteristic
point is depicted as an empty dot; a symmetric or dual image part on a complete line is depicted
as a dash line. In particular, a dash-dot line emanating from an endpoint on a complete line was
used to indicate an analogue of the Hawking radiation, and an arrow on a complete line indicates
a possible choice of a dominant control parameter x. In addition,“SD”, “PT”, “KT”, “S”, “C”, “IC”,
“FM”, “TPT”, “U(1)”, and “S3” represent a self-dual point, a PT transition point, a KT transition point,
a symmetric point, a phase transition point from a gapped Z2 spin liquid phase to a gapped Z2 spin
liquid phase, an IC transition point, an FM transition point, a TPT point, a U(1)-symmetric point,
and an S3-symmetric point, respectively. We remark that, for scenario I-1, there is a critical point with
central charge c = 1, labelled as “G”, which is located at infinity, as indicated by an arrow. Here, PT,
KT, IC, FM and TPT are the shorthands for Pokrovsky–Talapov, Kosterlitz–Thouless, intermediate
case, ferromagnetic and topological phase transition, respectively.

6.1. An Interior Point of View vs. an Exterior Point of View

The similarity between a critical point and a black hole arises from the observation
that both are relevant to singularities: Critical points result from a singularity in the control
parameter space, whereas black holes result from a singularity in space-time. This is even
valid for an isolated critical point, which acts as an endpoint on a line of discontinuous
QPT points. However, a complete line of critical points appears to be more relevant in this
regard. In fact, one may bring this analogy one step further.

As is well-known, it is impossible to communicate between two observers, with one
located inside a black hole and the other located outside a black hole, except for the so-
called Hawking radiation [98,99]. Although a complete line of critical points is itself not
necessarily a characteristic line, our prescription for a principal part on a characteristic line
still applies. If a characteristic line consists of two parts that are symmetrical or dual to one
another, then we only need to work out our prescription for a principal part, with fidelity
mechanical-state functions on the other part—a symmetric or dual image part—simply
deduced from a symmetric or duality transformation. As a consequence, we encounter
two sets of fidelity mechanical-state functions on a complete line of critical points: One set
arises when our prescription for a characteristic line is implemented for a principal part
on a complete line of critical points, and the other set arises when our prescription for a
principal regime is implemented for a principal regime, with a principal part on a complete
line of critical points as its boundary. In other words, the subtleties concerning the single
valuedness of fidelity mechanical-state functions originate from two distinct viewpoints:
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an interior point of view vs. an exterior point of view. This is analogous to a black hole,
with the event horizon separating the interior and the exterior regions of a black hole.
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Figure 10. Three types of cycles are formed from a few complete lines of critical points, some of which
are symmetrical or dual relative to each other. (a) A cycle is formed from the three complete lines of
critical points in scenario I-2, which are dual relative to each other. Here, a KT transition point, with
central charge being c = 1, is located at each of the three intersection points between two of the three
complete lines of critical points. Note that central charge c is equal to 1/2 at an interior point on the
cycle away from the three KT transition point, and a U(1)-symmetric point is located at the middle
on each of the three complete lines of critical points. (b) A cycle is formed from the three complete
lines of critical points in scenario I-3, which are symmetrical or dual relative to each other. (c) A
cycle is formed from the two complete lines of critical points in scenario I-3, which are symmetrical
relative to each other under a symmetric transformation: Jx ↔ −Jx and Jy ↔ −Jy, together with
their counterparts when Jx becomes −Jx, with Jy left intact. Here, a complete line of critical points
is depicted as a solid line; a critical point located at the endpoints of a critical line is depicted as a
solid dot; a characteristic point is depicted as an empty dot; a characteristic line is depicted as a dash
line, with an arrow indicating a choice of a dominant control parameter x on a principal part and
its dual images. In addition, “KT”, “S”, “C”, “SU(2)”, “S3”, and “U(1)” represent a KT transition
point, a symmetric point, a phase transition point from a gapped Z2 spin liquid phase to a gapped Z2

spin liquid phase, an SU(2)-symmetric point, an S3-symmetric point, and a U(1)-symmetric point,
respectively. In addition, there is a phase transition from a gapless Z2 spin liquid phase to a gapped
Z2 spin liquid phase at an interior point on a complete line of critical points. For the spin-1/2 Kitaev
model on a honeycomb lattice, we set Jz as an energy scale: Jz = 1. Then, a critical point, dual in
nature relative to two transition points labelled as C, is located at infinity, when Jx and Jy, which are
proportional to each other, are infinite in value, as indicated in terms of an arrow.

It is remarkable to observe that, in some cases, one may turn the two distinct view-
points into two distinct perspectives, both of which only concern an exterior point of view.
This is due to the fact that, if a complete line of critical points itself is located on, but it is
only a part of, a symmetric line, then a QPT occurs at an endpoint. Such a QPT point is
protected by the symmetry group on this symmetric line, in addition to a possible discrete
symmetry group. That amounts to stating that one is able to speak of an interior point of
view vs. an exterior point of view with respect to the symmetric line itself: the interior and
the exterior are separated by such a QPT point, which acts as an endpoint on the complete
line of critical points. In certain circumstances, fidelity mechanical-state functions from
an interior point of view match that from an exterior point of view at such a QPT point,
as a result of the continuity requirements for fidelity mechanical-state functions, if one is
restricted to the symmetric line. In other words, it is possible to access information encoded
in the interior of a complete line of critical points from the exterior if one is restricted to the
symmetric line itself. This is more or less analogous to the Hawking radiation [98,99].

Therefore, we have to deal with two distinct perspectives from an exterior point of
view on a symmetric line, if an analogue of the Hawking radiation occurs on a symmetric
line, which in turn accommodates a complete line of critical points, with its extent being
finite. In fact, this happens for the five scenarios in the second and third categories, and it
is indicated in terms of a dash-dot line emanating from an endpoint, representing a QPT
point, on a complete line in Figure 9. For the six illustrative models, a QPT point involved
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is a PT transition point, an FM transition point, a KT transition point, an IC transition point,
and a TPT transition point. Note that a PT transition point, an FM transition point, a KT
transition point, and an IC transition point separate a line of critical points from a gapped
part on a U(1)-symmetric line for scenario II-1, scenario II-2, scenario III-1, and scenario
III-2, and a TPT transition point separates a line of critical points from a gapped part on the
Z2-symmetric line for scenario III-3, respectively. However, the two perspectives do not
necessarily match with each other, as detailed in the next subsection. As it turns out, this
offers a novel characterization of QPT points in fidelity mechanics.

Here, it is proper to stress that it only makes sense to speak of an interior point of view
vs. an exterior point of view with respect to an isolated critical point, a complete line of
critical points or a two-dimensional critical regime, since both are relative. For example, an
interior point of view with respect to a two-dimensional critical regime is simultaneously
an exterior point of view with respect to a complete line of critical points located on its
boundary, which forms a cycle, together with its symmetric or dual images.

6.2. A Characterization of Quantum Phase Transitions in Fidelity Mechanics

In this subsection, we elaborate on the behaviors of fidelity mechanical-state functions
on a complete line of critical points.

To begin with, let us make it clear that fidelity mechanical-state functions from an
interior point of view at any point away from the endpoints on a complete line of critical
points always do not match those from an exterior point of view, as follows from our
prescriptions for a characteristic line and for a principal regime in Section 2. Therefore, we
only need to focus on the endpoints on a complete line of critical points. Here, we remark
that fidelity mechanical-state functions from an exterior point of view at the endpoints
are defined as a limit of those from our prescription for a principal regime, when the
endpoints are approached along a complete line of critical points, and fidelity mechanical-
state functions from an interior point of view at the endpoints follow from our prescription
for a principal part on a characteristic line.

The first category contains three scenarios, as shown in Figure 9. Here, a complete
line of critical points, labelled as I-1, ends at one PT transition point and at one critical
point with central charge c = 1 at infinity. This scenario emerges, when a principal regime,
labelled as II, and a principal regime, labelled as III, are adjacent to each other, or a principal
regime, labelled as IV, and a principal regime, labelled as V, are adjacent to each other for
the quantum spin-1/2 XY model (cf. Section 2). Here, central charge c is equal to 1/2 on
the complete line of critical points away from the two endpoints, which are labelled as “PT”
and “G”, respectively, although it only makes sense to speak of a PT transition when it
is approached along the U(1)-symmetric line (γ = 0). A complete line of critical points,
labelled as I-2, ends at two KT transition points, with the U(1)-symmetric point in the
middle. This scenario emerges when a principal regime, labelled as I, is adjacent to its dual
image, or a principal regime, labelled as III, is adjacent to its dual image (cf. Section 2). It
appears as the line of the Ising critical points for the quantum spin-1 XYZ model (5). Here,
central charge c is equal to 1/2 at an interior point on a complete line of critical points, and
central charge c is equal to 1 at the endpoints, labelled as “KT”, although it only makes
sense to speak of a KT transition when it is approached along the U(1)-symmetric line:
γ = 0 and its dual images. A complete line of critical points, labelled as I-3, ends at two
transition points, with a Z2-symmetric point in the middle. This scenario emerges, when
a principal regime, labelled as I, is adjacent to its symmetric image, or a principal regime,
labelled as II, is adjacent to its symmetric image (cf. Section 2). It appears as the line of
the TPT transition points for the spin-1/2 Kitaev model on a honeycomb lattice (6). The
transition points, labelled as C, describe a QPT from a gapped Z2 spin liquid to a gapped
Z2 spin liquid in contrast to a TPT transition point at an interior point on the complete
line of critical points, which describes a QPT from a gapped Z2 spin liquid to a gapless Z2
spin liquid.
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A commonality among the three scenarios is that a complete line of critical points,
together with a symmetric or dual image, either extends to a characteristic point located
at infinity, as it happens in scenario I-1, or forms a cycle, as it happens in scenario I-2 and
scenario I-3. As a consequence, our prescriptions imply that, according to our convention,
fidelity internal energy is zero at the endpoints from an exterior point of view and from an
interior point of view. Therefore, fidelity internal energy is single-valued at the endpoints.
Fidelity temperatures diverge at endpoints from an exterior point of view and from an
interior point of view, although fidelity temperature from an interior point of view is
finite at any point away from the endpoints on a complete line and even become zero at
a self-dual or a symmetric point, labelled as “SD” or “S” in Figure 9. Although fidelity
entropy from an interior point of view does not match that from an exterior point of view,
at any point away from the endpoints on a complete line of critical points, it is always
possible to adjust an additive constant at a self-dual or a symmetric point, labelled as “SD”
or “S”, to ensure that fidelity entropy from an interior point of view matches that from
an exterior point of view at the endpoints. That is, fidelity entropy is single-valued at the
endpoints, labelled as “PT”, “KT”, and “C”, and it diverges at the endpoint, labelled as “G”,
located at infinity. That is, it becomes minus infinity due to the presence of scaling entropy.

The second category contains two scenarios, as shown in Figure 9. A complete line of
critical points, labelled as II-1, ends at two PT transition points, with a Z2-symmetric point
in the middle. This scenario emerges when a principal regime, labelled as I, is adjacent to
its symmetric image (cf. Section 2). It appears as the line of the Gaussian critical points
for the quantum spin-1/2 XY model (1). Here, the transition points, labelled as “PT”,
represent PT transitions protected by the symmetry group U(1). A complete line of critical
points, labelled as II-2, ends at one PT transition point and one IC transition point. This
scenario emerges as a vertical line, with a fixed value of ∆, in the two-dimensional critical
XY regime—a principal regime—labelled as III for the quantum spin-1/2 XXZ model in a
magnetic field (cf. Section 2). We remark that this principal regime involves a line of the PT
transition points and a line of the IC transition points, which meet each other at infinity,
with the two-dimensional critical XY regime in between.

A commonality among the two scenarios is that a complete line of critical points itself
results from the level crossings due to the fact that the model Hamiltonian, i.e., Equation (1)
when γ = 0 or Equation (4), is split into two commuting parts, since ∑ σz

i is conserved. As
a consequence, the ground-state fidelity per lattice site vanishes; therefore, no dominant
control parameter x is, by definition, available. Hence, it does not make sense to speak
of fidelity mechanical-state functions from an interior point of view for scenario II-1 and
scenario II-2. However, this does not mean that it is impossible to determine fidelity
mechanical-state functions for a critical point located on such a complete line of critical
points. Instead, we have to embed it into the two-dimensional critical XY regime and choose
a dominant control parameter x to avoid the level crossings such that the ground-state
fidelity per lattice site does not vanish. This leads us to scenario III-1 and scenario III-2 in
the third category. Indeed, the difference between the two scenarios in the second category
and the two scenarios, i.e., scenario III-1 and scenario III-2, in the third category lies in the
fact that the model Hamiltonian at one point commutes with the model Hamiltonian at
another point on a complete line in scenario II-1 and scenario II-2, with their difference
being proportional to ∑ σz

i , but that is not true for scenario III-1 and scenario III-2, although
all four complete lines lie in the two-dimensional critical XY regime, with the symmetry
group being U(1). In other words, it is necessary to combine scenario II-1 and scenario II-2
with scenario III-2 to determine fidelity mechanical-state functions at the endpoints. For
this purpose, it is convenient to make a distinction between two types of U(1)-symmetric
lines. We refer to a U(1)-symmetric line in scenario II-1 and scenario II-2 as a commuting
U(1)-symmetric line in order to distinguish from a non-commuting U(1)-symmetric line in
scenario III-1 and scenario III-2.

A complete line of critical points in the two scenarios is located on a symmetric line—
the commuting U(1)-symmetric line. Here, we stress that, for a critical point on a complete
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line in scenario II-1 and scenario II-2, an interior point of view comes from scenario III-2, as
already argued above. That is, two perspectives from an exterior point of view are involved
for scenario II-1 and scenario II-2, combined with scenario III-2: The first perspective is
restricted to the commuting U(1)-symmetric line, and the second perspective requires
an introduction of the quantum spin-1/2 XYZ model in an external magnetic field such
that the quantum spin-1/2 XXZ model in an external magnetic field itself becomes a two-
dimensional U(1) characteristic plane, into which both a commuting U(1)-symmetric line
and a non-commuting U(1)-symmetric line are embedded. We stress that a commuting
U(1)-symmetric line may be regarded as a characteristic line on this two-dimensional
U(1) characteristic plane due to the commutativity mentioned above in contrast to a non-
commuting U(1)-symmetric line, which is generically not a characteristic line, if one is
restricted to this two-dimensional U(1) characteristic plane, unless it involves an additional
discrete symmetry group. Indeed, it occurs on the non-commuting U(1)-symmetric line
in scenario III-1—the dihedral symmetry group Z2 × Z2, generated from any two of the
three π-rotations around the x-, y- and z-axes, and the symmetry group Z2, generated from
the time-reversal symmetry operation. However, such a discrete symmetry group does not
occur for the non-commuting U(1)-symmetric line in scenario III-2.

We remark that an exterior point of view with respect to a complete line of critical
points in scenario II-1 and scenario II-2 is part of an exterior point of view with respect to
the two-dimensional critical XY regime for the quantum spin-1/2 XXZ model in a magnetic
field (4). Recall that the quantum spin-1/2 XYZ model in a magnetic field accommodates a
factorizing-field cone surface [77–82], which divides a given phase into three-dimensional
principal regimes if symmetries and dualities are taken into account. That is, we have to
cope with a three-dimensional principal regime, with one dominant control parameter x
and two auxiliary control parameters τ1 and τ2.

We turn to fidelity mechanical-state functions at an endpoint, labelled as “PT”, for
scenario II-1 and scenario II-2 and at an endpoint labelled as “IC” for scenario II-2. For
an endpoint, labelled as “PT”, fidelity internal energy from the first perspective takes the
maximum value, but it is zero from the second perspective according to our convention.
Fidelity temperature is zero from the first perspective, but it diverges from the second
perspective. Meanwhile, fidelity entropy from the first perspective may be adjusted to be
identical to that of the second perspective, since the commuting U(1)-symmetric line ends
at a characteristic point located at infinity. Indeed, fidelity entropy diverges due to the
presence of scaling entropy at the characteristic point. For the endpoint labelled as “IC”,
fidelity internal energy is zero, according to our convention, whereas fidelity temperature
diverges from an exterior point of view. Meanwhile, fidelity entropy at an IC transition
point may be determined from that at a PT transition point from an exterior point of view.
However, no interior point of view is available for scenario II-2, as already argued above.
Instead, a combination with scenario III-2 is necessary to capture the full picture for fidelity
mechanical-state functions at an IC transition point, as is performed below. This will also
clarify why no analogue of the Hawking radiation occurs at an IC transition point.

The third category contains three scenarios, as shown in Figure 9. A complete line of
critical points, labelled as III-1, ends at one FM transition point and one KT transition point
(cf. Section 2). This scenario emerges when a principal regime, labelled as I, is adjacent to
a principal regime, labelled as II, for the quantum spin-1/2 XYZ model (3), or it emerges
when a principal regime labelled as II is adjacent to a principal regime, labelled as IV, for
the quantum spin-1 XYZ model (5). It appears as a line of the Gaussian critical points. Note
that the complete line acts as one principal part, since no characteristic point exists between
the KT transition point and the FM transition point. Here, a subtlety arises as to whether
or not we should regard the point (0, 0) as a characteristic point, since it is located on the
semi-self-dual line (∆ = 0) intersecting with the U(1)-symmetric line (γ = 0). However,
we stress that the duality transformation involved maps the complete line of critical points
to a critical point located at infinity. In other words, the point (0, 0) is featureless on the
complete line. That is, the point (0, 0) is not a characteristic point from an interior point of
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view, although it is a characteristic point from an exterior point of view. Here, we recall that
a characteristic point is defined to be an intersection point between two characteristic lines.
Actually, there are two types of characteristic points: one type is located on a line of critical
points, and the other type is away from a line of critical points. This is due to the fact that a
line of critical points may be located on a symmetric or dual line. Occasionally, subtlety
arises for the first type of characteristic points, since it only makes sense to recognize them
from an exterior point of view. That is, it may happen that such a characteristic point from
an exterior point of view is not a characteristic point anymore from an interior point of view.
In addition, for the quantum spin-1 XYZ model, we are unable to locate the KT transition
point exactly. If it is located at the origin, then the complete line constitutes a boundary
in a principal regime, labelled as II, since a principal regime, labelled as IV, vanishes. A
complete line of critical points, labelled as III-2, ends at one PT transition point and one IC
transition point. This scenario emerges as a horizontal line, with a value of h being fixed,
in a principal regime, labelled as III, for the quantum spin-1/2 XXZ model in a magnetic
field (4) (cf. Section 2). It appears as a horizontal line of the Gaussian critical points. A
complete line of critical points, labelled as III-3, ends at one TPT transition point and one
S3-symmetric point. This scenario emerges, as a boundary in a principal regime, labelled
as II, for the spin-1/2 Kitaev model on a honeycomb lattice (6) (cf. Section 2). It appears
as a typical line representing the TPT transition points between the gapped and gapless
spin liquids. In order to evaluate fidelity mechanical-state functions from an exterior point
of view with respect to the complete line of critical points in scenario III-3, it is necessary
to extend to the two-dimensional critical regime, representing a gapless Z2 spin liquid—a
principal regime, labelled as II, into which the complete line of critical points is embedded
as a boundary. The situation is similar to scenario II-2 and scenario III-2. That is, we have
to cope with a three-dimensional principal regime, with one dominant control parameter x
and two auxiliary control parameters τ1 and τ2. In other words, we have to introduce an
extra coupling parameter. One way to perform this is to consider the spin-1/2 Kitaev model
on a honeycomb lattice coupled to an external magnetic field along the [111]-axis [100,101],
with this principal regime located on a Z2-symmetric plane. The advantage to consider
this coupling parameter is that the field couples the spins in a symmetric way, in a sense
that the field does not prefer any particular bond labelled as the x-bonds, y-bonds, and
z-bonds. That is, the S3-symmetric point is extended to an S3-symmetric line. A numerical
simulation has been performed for this S3-symmetric line in terms of the infinite density
matrix renormalization group (iDMRG) algorithm [101], which reveals two successive QPTs
at finite field strengths, depending on the sign of the Kitaev exchange coupling parameters:
the (non-Abelian) gapless Z2 spin liquid at low fields, an intermediate regime only present
for the AF Kitaev exchange, and a field-polarized phase at large fields.

A commonality among the three scenarios is that a complete line of critical points is
located on a symmetric line: the non-commuting U(1)-symmetric line for scenario III-1
and scenario III-2 and the Z2-symmetric line for scenario III-3, with a possible additional
discrete symmetry group; the dihedral symmetry group Z2 × Z2 and the symmetry group
Z2 for scenario III-1 and scenario III-3, but none for scenario III-2, respectively.

We are now ready to describe the behaviors of fidelity mechanical-state functions at a
QPT point as follows.

At the PT transition point, the situation is a bit cumbersome since it involves either
scenario II-1 and scenario III-2 or scenario II-2 and scenario III-2 simultaneously. Fidelity
internal energy is the maximum and fidelity temperature is zero from the first perspective,
according to scenario II-1 or scenario II-2, and fidelity internal energy is zero and fidelity
temperature diverges from the second perspective, according to scenario III-2. Meanwhile,
fidelity entropy from the first perspective, according to scenario II-1 or scenario II-2, may
be adjusted to be identical to that from the second perspective, according to scenario III-2.
Hence, fidelity entropy is single-valued.

At the FM transition point, fidelity internal energy from the first perspective is at the
maximum, but it is zero from the second perspective. Fidelity temperature is zero from the
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first perspective, but it diverges from the second perspective. In contrast, fidelity entropy
from the first perspective may be adjusted to be identical to that from the second perspective,
since a characteristic point is located at infinity, ∆ = −∞, on the non-commuting U(1)-
symmetric line. Indeed, fidelity entropy diverges at the characteristic point due to the
presence of scaling entropy. Hence, fidelity entropy is single-valued at the FM transition
point. Physically, this is consistent with the fact that an FM transition point accommodates
highly degenerate and highly entangled ground states arising from SSB with one type-B
GM, which are scale-invariant [102] (cf. Appendix I).

At the KT transition point, fidelity internal energy is zero and fidelity temperature
diverges from both the first perspective and the second perspective. However, it is impos-
sible to adjust fidelity entropy from the first perspective to be identical to that from the
second perspective. Therefore, fidelity entropy is double-valued at the KT transition point.

At the IC transition point, fidelity internal energy is zero and fidelity temperature
diverges from both an exterior point of view and an interior point of view, according to
scenario III-2. However, it is impossible to adjust fidelity entropy from an interior point of
view to be identical to that from an exterior point of view, and so fidelity entropy is double-
valued at the IC transition point, if it is approached from inside the two-dimensional critical
XY regime. In addition, fidelity mechanical-state functions remain the same as those for
the quantum spin-1/2 XXZ model (3), with the same value of ∆, if an IC transition point is
approached along a vertical line inside the AF phase—the commuting U(1)-symmetric line.
As a consequence, fidelity entropy is triple-valued at an IC transition point. We remark that
fidelity temperature is nonzero at an IC transition point, if it is approached along a vertical
line inside the AF phase.

At the TPT transition point, fidelity internal energy is zero and fidelity temperature
diverges from both the first perspective and the second perspective. In contrast, fidelity
entropy is double-valued at the transition point, which is labelled as TPT. That is, fidelity
entropy from the first perspective does not match that from the second perspective at the
TPT transition point. In addition, fidelity internal energy is the maximum and fidelity
temperature is zero at the S3-symmetric point, labelled as S3.

We are led to a remarkable observation that an analogue of the Hawking radiation
occurs if and only if fidelity temperature, which is zero or diverges from an interior point
of view at a QPT point, matches that from an exterior point of view when it is approached
along a symmetric line. Here, a QPT point acts as an endpoint on a complete line of
critical points, and an extra distinct feature is necessary if a symmetric line itself lies in a
symmetric plane, as exemplified in the non-commuting U(1)-symmetric line for scenario
III-1. Physically, this originates from the fact that fidelity temperature is zero at a stable
fixed point and diverges at an unstable fixed point. This observation may be regarded as a
criterion for the occurrence of an analogue of the Hawking radiation at a QPT point.

According to our criterion, an analogue of the Hawking radiation occurs at the end-
points labelled as “FM” and “KT” for scenario III-1, at the endpoint, labelled as “PT” for
scenario III-2, and at the endpoint, labelled as “TPT” for scenario III-3 in the sense that
it is possible to access information encoded in the interior of a complete line of critical
points from the exterior, if one is restricted to a symmetric line itself. However, no analogue
of the Hawking radiation occurs at the endpoint, labelled as “IC” in scenario III-2, since
fidelity temperature is nonzero but finite when it is approached along the commuting
U(1)-symmetric line in contrast to other cases. Here, we stress that an analogue of the
Hawking radiation at the endpoint labelled as “PT” for scenario III-2 is restricted to the
vertical line, with the value of ∆ being fixed. Indeed, this is nothing but an analogue of the
Hawking radiation in scenario II-2.

Now, we are in a position to characterize distinct types of QPTs in fidelity mechanics.
Generically speaking, if one is not able to discard the double-valuedness of fidelity entropy
at a QPT point, then it must be characterized as topological. As a consequence, the KT
transitions and TPT transitions are topological. In contrast, the PT transitions and FM
transitions are not topological. In particular, the IC transitions are peculiar in the sense
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that fidelity entropy is double-valued, as follows from scenario III-2, if it is approached
along a horizontal line inside the two-dimensional critical XY regime. However, fidelity
entropy is single-valued, as follows from scenario II-2, if it is approached along a vertical
line inside the AF phase. This reflects the fact that an IC transition interpolates between the
KT transitions and PT transitions.

In addition, there are peculiarities in the characterization of the PT transitions, FM tran-
sitions, and IC transitions in fidelity mechanics. For the PT transitions and FM transitions,
fidelity internal energy ranges from zero to the maximum and fidelity temperature ranges
from zero to infinity. However, there is a marked difference between a PT transition point
and an FM transition point: The ground state is nondegenerate for the former, whereas
ground states are highly degenerate for the latter. For the IC transitions, fidelity internal
energy ranges from zero to a finite value, which is less than the maximum, and fidelity
temperature ranges from a nonzero value to infinity.

Actually, our argument unveils an important role of the dihedral symmetry group
Z2 × Z2 and the time-reversal symmetry group Z2 in characterizing the FM transitions
and the KT transitions in fidelity mechanics. In fact, both the FM transitions and the KT
transitions are protected by the dihedral symmetry group Z2 × Z2 and the time-reversal
symmetry group Z2 in addition to the symmetry group U(1) on the non-commuting U(1)-
symmetric line. Once a term, such as ∑ σz

i , is introduced into the model Hamiltonian,
both symmetry groups are explicitly broken. Hence, the FM transitions and KT transitions
are turned into the PT transitions and IC transitions, respectively. In this sense, one may
regard the PT transitions and IC transitions as variants of the FM transitions and KT
transitions when the dihedral symmetry and the time-reversal symmetry are explicitly
broken, respectively. In other words, the PT transitions are to the FM transitions as the IC
transitions are to the KT transitions. The same reasoning also applies to the TPT transitions.
In fact, the presence of an external magnetic field along the [111]-axis explicitly breaks the
dihedral symmetry group Z2 × Z2 and the time-reversal symmetry group Z2, in contrast
to the Hamiltonian for the spin-1/2 Kitaev model on a honeycomb lattice (6). As a result,
the first of the two successive QPTs, unveiled in [101], is the variant of the TPT transitions,
when the dihedral symmetry group Z2 × Z2 and the time-reversal symmetry group Z2 are
explicitly broken.

This fact is echoed in conventional characterizations. Indeed, the FM transitions arise
from SSB, with one type-B GM, when SU(2) is spontaneously broken to U(1). Hence, the
ground-state subspace accommodates both the highest weight state and the lowest weight
state, which are symmetrical with respect to the time-reversal symmetry operation. That is,
the time-reversal symmetry group Z2 is broken spontaneously at the FM transition point.
Therefore, if the time-reversal symmetry group Z2 is explicitly broken, then either the
highest weight state or the lowest weight state is selected as a ground state depending on
the sign of the longitudinal field strength h. Since both the highest and the lowest weight
states are unentangled factorized ground states, they may be characterized as a trivial
scale-invariant state. Actually, the entanglement entropy is simply zero, which is consistent
with the fact that the number of the type-A GMs is zero according to the Mermin–Wagner–
Coleman theorem [103,104], and the number of the type-B GMs is zero, as follows from the
counting rule [105,106]. This is due to the fact that at least two broken generators are needed
for one type-B GM according to the counting rule. Hence, the number of type-B GMs must
be zero if the symmetry group is U(1) (cf. Appendix I for more details). In addition, there is
an emergent symmetry group Z2 generated by the time-reversal symmetry operation in the
AF phase for the quantum spin-1/2 XXZ model in a magnetic field (4) if the longitudinal
field strength h is nonzero. This means that the time-reversal symmetry is recovered in
the two-fold degenerate ground-state subspace, although the model Hamiltonian is not
invariant under the time-reversal symmetry operation. The same argument also applies for
the dihedral symmetry group Z2 × Z2. As a consequence, the entire AF phase is controlled
by the KT transition point, instead of a line of the IC transition points. This explains why
no analogue of the Hawking radiation arises at an IC transition point. If an IC transition
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point is approached along a vertical line inside the AF phase, then the correlation length
remains finite or, equivalently, the entanglement entropy is finite, which is consistent with
the observation that fidelity temperature is finite in our characterization.

Therefore, a smoking-gun signature is unveiled for distinct types of QPTs in fidelity
mechanics. In this sense, a characterization of QPTs in the context of fidelity mechanics
elaborates on different scenarios for a complete line of critical points, which manifest
themselves in the ground-state phase diagram for a quantum many-body system.

As a sideline, we mention that a shift in fidelity temperature is performed to ensure
that it is zero or minimum at a characteristic point. This requires the existence of a nonlocal
unitary transformation that turns a highly entangled ground-state wave function at this
point into an unentangled (factorized) state. In fact, the same nonlocal unitary transforma-
tion needs to be performed for any ground-state wave function at any interior point on
a complete line of critical points such that our evaluation of the ground-state fidelity per
lattice site remains intact. As a result, we even do not need to know the explicit form of the
nonlocal unitary transformation in order to evaluate fidelity mechanical-state functions
from an interior point of view. Physically, this amounts to stating that ground-state wave
functions at all stable fixed points are unitarily equivalent, regardless of symmetry-breaking
orders or topological orders given that fidelity temperatures are zero and fidelity internal
energies take the maximum values at all stable fixed points. The only difference between
symmetry-breaking orders or topological orders is reflected in the fact that such a unitary
transformation is local or nonlocal. A specific point at which a unitary transformation needs
to be performed is located at the self-dual point for scenario I-1, the U(1)-symmetric point
for scenario I-2, the Z2-symmetric point for scenario I-3, the FM point for scenario III-1, the
PT point for scenario III-2, and the S3-symmetric point for scenario III-3, respectively.

However, extra care must be exercised since there is a singularity at an FM transition
point, an IC transition, and a PT transition point when they are approached along a
complete line of critical points. The singularities arise because the two limiting procedures
do not commute [107]: one is the thermodynamic limit N → ∞ and the other is the
limiting procedure representing how such a transition point is approached along a line of
critical points.

6.3. A Characterization of Topological Quantum States of Matter in Fidelity Mechanics

It is natural to expect that the behaviors of fidelity entropy at a characteristic point
or on a characteristic line play a crucial role in the characterization of quantum states of
matter. An important observation is that a characteristic point located at infinity leads to an
unentangled factorized ground state. That is, it results in a trivial stable fixed point, given
that a characteristic point may be identified as either a stable fixed point or a metastable
fixed point. Hence, it is crucial to track a characteristic point, which is located inside a
cycle, as exemplified in Figure 10 for the quantum spin-1 XYZ model and the spin-1/2
Kitaev model on a honeycomb lattice. This is due to the fact that a nontrivial entangled
ground state only occurs at a characteristic point, which must not be located at infinity.
Indeed, the emergence of a cycle implies either the multiple-valuedness of fidelity entropy
at a characteristic point or the double-valuedness of fidelity entropy on a characteristic
line, both of which are located inside a cycle. Generically, if one is not able to discard the
multi-valuedness of fidelity entropy at a characteristic point or the double-valuedness of
fidelity entropy on a characteristic line in a given phase, then it must be a topologically
ordered phase.

This happens in three situations for the six models under investigation when a cycle is
formed from a few complete lines of critical points, some of which are symmetrical or dual
relative to each other, as demonstrated in Figure 10. Specifically, for the quantum spin-1
XYZ model, a cycle is formed from the three complete lines of critical points in scenario I-2,
which are dual in nature relative to each other. Here, a KT transition point, with central
charge being c = 1, is located at each of the three intersection points between two of the
three complete lines of critical points. Note that central charge c is equal to 1/2 at an interior
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point on the cycle away from the three KT transition points, and a U(1)-symmetric point is
located at the middle on each of the three complete lines of critical points. As it turns out,
fidelity entropy is double-valued on the U(1) characteristic line in the Haldane phase (cf.
Section 11). For the spin-1/2 Kitaev model on a honeycomb lattice, there are two cycles:
One cycle is formed from the three complete lines of critical points in scenario I-3, which
are dual to each other, and the other is formed from the two complete lines of critical points
in scenario I-3, which are symmetrical to each other under a symmetric transformation:
Jx ↔ −Jx, and Jy ↔ −Jy, together with their counterparts when Jx becomes −Jx, with Jy
left intact. We stress that a critical point, dual to two symmetric QPT points, labelled as
C, is located at infinity, when Jx and Jy, proportional to each other, are infinite in value,
as indicated in terms of an arrow in Figure 10b. This transition is from a gapped Z2 spin
liquid to a gapped Z2 spin liquid, in contrast to a phase transition, labelled as TPT, from a
gapless Z2 spin liquid phase to a gapped Z2 spin liquid phase at an interior point on the
cycle. As it turns out, fidelity entropy is multiple-valued at the S3 characteristic point or
the U(1) characteristic point (cf. Section 12).

We emphasize that the double-valuedness of fidelity entropy on a characteristic line
may be turned into the multiple-valuedness of fidelity entropy at a characteristic point
via a smooth deformation of a dominant control parameter x and an auxiliary control
parameter τ, and vice versa. Therefore, there is no essential difference between the two
situations. We anticipate that more patterns for such a cycle show up in other quantum
many-body systems (cf. Section 14). Here, by topological, we mean that fidelity entropy
is not single-valued either at a QPT point or at a (meta)stable fixed point in the control
parameter space. That is, the topological nature directly concerns the control parameter
space—a novel feature that is not reflected in the conventional characterization. We stress
that its possible ramifications for the conventional classifications of QPTs and quantum
states of matter remain to be elaborated.

However, as far as the six illustrative models are concerned, our characterization of
both topological QPTs and topological quantum states of matter in fidelity mechanics is
consistent with the conventional classifications. A typical example is the conventional topo-
logical QPT–KT transitions, which appear also to be topological in the control parameter
space. This will be illustrated in Sections 9–11, when we discuss fidelity mechanical-state
functions for the quantum spin-1/2 XXZ model in an external magnetic field, the quan-
tum spin-1/2 XYZ model, and the quantum spin-1 XYZ model. In addition, the SPT
phases [108–112], the SPt phases [113,114], and the gapless and gapped Z2 spin liquids [31]
appear to be topological in the control parameter space. As it turns out, a nonlocal order
parameter is essential for characterizing a topologically ordered state (cf. Appendix J
about the bond-centered nonlocal order parameter for the SPT phases and the site-centered
nonlocal order parameter for the SPt phases). This will be illustrated in Sections 11 and 12,
when we discuss fidelity mechanical-state functions for the quantum spin-1 XYZ model
and the spin-1/2 Kitaev model on a honeycomb lattice in fidelity mechanics. Here, we
remark that the Haldane phase for the quantum spin-s XYZ model is topological as a result
of our characterization in the control parameter space. This is consistent with the original
characterization by Haldane [65,66], who developed the nonlinear σ model approach to
the spin-s AF Heisenberg model. In this approach, there is no essential difference between
even integer s and odd integer s. In contrast, recent developments unveiled an intriguing
difference between the two cases. Indeed, the Haldane phase for the spin-2 AF Heisen-
berg model is argued to be adiabatically connected to the large-D phase [115]—a typical
example for the SPt phases [113], in contrast to the spin-1 case. One might take advantage
of this argument to justify that the SPt phases are topological, although they are trivial in
cohomological classifications [108–111] in contrast to the SPT phases.
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7. Quantum Spin-1/2 XY Model—A Typical Example for Continuous Quantum
Phase Transitions

The model Hamiltonian (1) is in a canonical form, which is exactly solvable [116–118],
with its ground-state phase diagram shown in Figure 11. For γ 6= 0, the Hamiltonian (1)
possesses a Z2 symmetry group, defined by σx

i ↔ −σx
i , σ

y
i ↔ −σ

y
i and σz

i ↔ σz
i . For γ = 0,

the symmetry group becomes U(1). In addition, a U(1) symmetry occurs at two isolated
points, λ = 0 and γ = ±1, as well as at a critical point when γ is infinite in value and at a
characteristic point when λ is infinite in value.

The ground-state phase diagram may be read off from the singularities exhibited in
the ground-state fidelity per lattice site (cf. Appendix A for the transverse-field quantum
Ising model as a special case). The system undergoes QPTs, when the two lines of critical
points (λ = 1 with γ 6= 0, and γ = 0 with −1 < λ < 1) are crossed in the thermodynamic
limit. For a fixed γ, the model is driven to cross a critical point at λ = 1 from an ordered
FM phase to a disordered paramagnetic (PM) phase, which is a QPT belonging to the
Ising universality class and characterized in terms of central charge c = 1/2 in conformal
field theories. Specifically, for γ > 0 (γ < 0), when λ ∈ (−1, 1), the system is in the FM
order along the x (y) direction, which is labelled as FMx/FMy in Figure 11. For a fixed
λ ∈ (−1, 1), the system is driven through a Gaussian critical point at γ = 0, with central
charge c = 1. For γ = 0, a PT transition from a critical phase to a fully polarized phase
occurs at λ = ±1, protected by the symmetry group U(1). Note that, at two multi-critical
points (±1, 0), denoted as A and B in Figure 11, dynamic critical exponent z is z = 2. Hence,
the underlying field theories are not conformally invariant. As follows from our argument
in Appendix I, the PT transition point is categorized as a trivial example for scale-invariant
states, with the block entanglement entropy S(n) being zero when it is approached along
the U(1)-symmetric line (γ = 0), thus implying that the fractal dimension d f is zero. Here,
we stress that the transition points (±1, 0), labelled as PT, do not necessarily mean a PT
transition point unless they are approached along the U(1)-symmetric line (γ = 0).

The Hamiltonian (1) exhibits dualities for γ = 1 and λ = 0. If γ = 1, it becomes the
transverse-field quantum Ising model, which enjoys the Kramers–Wannier dualities [3,76].
If λ = 0, a duality transformation emerges between the two regimes, γ > 1 and 0 < γ < 1,
implying that the model is critical, with central charge c = 1, when γ is infinite in value.
More details may be found in Appendix K.

An interesting feature of the Hamiltonian (1) is the disordered circle: λ2 + γ2 = 1,
characterized by the fact that ground states on the circle are factorized states [77–82]. As
demonstrated in Ref. [59], the model on the disordered circle is unitarily equivalent to a
spin-1/2 model with three-body interactions, for which its ground states are expressed in
terms of matrix-product states with the bond dimension χ being equal to two. Therefore,
we have to treat the transition points at (±1, 0) as an exotic QPT given that the ground-state
energy density e(λ, γ) is a constant on the disordered circle. In addition, there is a marked
difference between the regimes inside and outside the disordered circle, away from the
vertical axis λ = 0. Indeed, as claimed [119], long-range entanglement-driven orders exist
in the disordered regime. However, we stress that the same order must also exist on the
dual line (λ = 0 with γ ≥ 1) due to the presence of dualities between λ = 0 with γ ≥ 1
and λ = 0 with 0 < γ ≤ 1.



Entropy 2022, 24, 1306 46 of 157

Ising transition

PM PM

1

0

Gaussian

transition
A
1

B

PM

-1
y

FM

x
FM

PM

y

1
22

-1

Figure 11. Ground-state phase diagram for the quantum spin-1/2 XY model. There is a marked
difference between the regimes inside and outside the disordered circle. Indeed, as claimed [119], a
long-range entanglement-driven order exists inside the disordered circle. However, we stress that
the same order must also exist on the dual line (λ = 0 with γ ≥ 1) due to the presence of dualities
between λ = 0 with γ ≥ 1 and λ = 0 with γ ≤ 1.

We may restrict ourselves to the region, defined by λ ≥ 0 and γ ≥ 0, since the
Hamiltonian (1) is symmetrical with respect to γ ↔ −γ and λ ↔ −λ. Meanwhile, the
consideration of the dualities and factorizing fields allows us to separate the entire region
with γ > 0 and λ > 0 into five principal regimes (cf. Section 2): (I) the regime inside
the disordered circle, with 0 < λ < 1 and 0 < γ <

√
1− λ2; (II) the regime outside the

disordered circle, with 0 < λ < 1 and
√

1− λ2 < γ < 1; (III) the regime with 0 < λ < 1
and γ > 1; (IV) the regime with λ > 1 and 0 < γ < 1; (V) the regime with λ > 1 and γ > 1.

In each regime, we may choose a dominant control parameter x as long as such
a choice is consistent with the constraints imposed by the symmetry groups, dualities,
and factorizing fields, meaning that any choice has to respect all the boundaries between
different regimes subject to a re-parametrization operation. Here, our choice is as follows: (1)
for regime I, a dominant control parameter x was chosen to be γ, starting from γ = γc = 0
up to the disordered circle, and an auxiliary control parameter τ is chosen to be λ; (2) for
regime II or regime III, a dominant control parameter x was chosen to be 1− λ, starting
from λ = λc = 1 up to the disordered circle or λ = 0, and an auxiliary control parameter τ
is chosen to be γ; (3) for regime IV or regime V, a dominant control parameter x was chosen
to be 1− 1/λ starting from λ = λc = 1 up to λ = ∞, and an auxiliary control parameter τ
is chosen to be γ. This choice was made to retain consistency with the Kramers–Wannier
duality for the transverse-field quantum Ising model.

It is numerically confirmed that fidelity entropy S(λ, γ) scales as γν+1 near the line
of the Gaussian critical points: γ = 0 with −1 < λ < 1, and scales as |1− λ|ν+1 near the
line of the Ising critical points: λ = 1 with γ 6= 0. Here, ν is the critical exponent for the
correlation length. In both cases, we have ν = 1 (cf. Appendix H).

Once a dominant control parameter x and an auxiliary control parameter τ are chosen,
fidelity entropy S f (λ, γ) from an exterior point of view may be determined straightfor-
wardly in the five principal regimes as well as on the characteristic lines, which appear
as the boundaries between different principal regimes. Accordingly, fidelity temperature
Tf (λ, γ) and fidelity internal energy U f (λ, γ) are determined by solving a singular first-
order differential equation for V(x, τ). The explicit expressions for fidelity entropy S f (λ, γ),
fidelity temperature Tf (λ, γ), and fidelity internal energy U f (λ, γ) may be derived, fol-
lowing our prescription in Section 2 (also cf. scenario I-1 and scenario II-1 in Section 6).
The details are presented in Appendix K. As a result, we plot fidelity entropy S f (λ, γ),
fidelity temperature Tf (λ, γ), and fidelity internal energy U f (λ, γ) as a function of λ and γ
in Figure 12a–c, respectively. Here, a contribution to fidelity entropy from rescaling due to
dualities has been taken into account.
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(a) (b) (c)

Figure 12. Fidelity entropy S f (λ, γ), fidelity temperature Tf (λ, γ), and fidelity internal energy
U f (λ, γ) for the quantum spin-1/2 XY model. Here, we restrict ourselves to the region λ ≥ 0 and
γ ≥ 0 due to the symmetry of the Hamiltonian (1) with respect to γ↔ −γ and λ↔ −λ. (a) Fidelity
entropy S f (λ, γ) exhibits singularities on two dual lines (γ = 1 and λ = 0), and on the disordered
circle: λ2 + γ2 = 1, in addition to two lines of critical points at γ = 0 with 0 < λ < 1 and λ = 1 with
γ 6= 0. One might view such singularities as “phase transitions” in fidelity mechanics. Note also
that fidelity entropy S f (λ, γ) reaches its local maximum at (0, 1). (b) Fidelity temperature Tf (λ, γ)

diverges at two lines of critical points (γ = 0 with 0 < λ < 1 and λ = 1 with γ 6= 0), but it is zero on
the disordered circle: λ2 + γ2 = 1, as well as at a characteristic point, representing a factorizing field
when λ is infinite in value. (c) Fidelity internal energy U f (λ, γ) takes the same value at all stable
fixed points and on the disordered circle: λ2 + γ2 = 1, including a characteristic point at infinity
representing a factorizing field when λ is infinite in value.

In addition to unstable fixed points, which are identified as critical points, there
are three stable fixed points, identified as characteristic points located at (0, 1), (∞, 1),
and (∞, 0). Note that, at an unstable fixed point, fidelity temperature Tf (λ, γ) diverges,
indicating strong quantum fluctuations, whereas at a stable fixed point, fidelity temperature
Tf (λ, γ) is zero, indicating the absence of quantum fluctuations. This also happens on
the disordered circle: λ2 + γ2 = 1, with a factorized state as a ground state. That is, a
factorizing-field line features zero-fidelity temperature in fidelity mechanics. However, at
the PT transition point (1, 0), fidelity temperature Tf (λ, γ) is not well-defined, and fidelity
internal energy U f (λ, γ) ranges from 0 to the maximum. In fact, fidelity temperature
Tf (λ, γ) takes any value, ranging from 0 to ∞, depending on how it is approached, since
all fidelity isothermal lines, defined as a line with the same constant values of fidelity
temperature, converge at the PT transition point (cf. scenario I-1, scenario II-1, and scenario
III-2 in Section 6). This bears a resemblance to a previous result [120] that entanglement
entropy is not well-defined at the PT transition point (1, 0); its value depends on how the
PT transition point (1, 0) is approached.

We remark that, apart from QPTs detected through singularities in the ground-state
fidelity per lattice site, fidelity mechanical-state functions exhibit singularities on the
two dual lines (γ = 1 and λ = 0) and on the disordered circle: λ2 + γ2 = 1. Note
that the dual line (γ = 1) consists of a principal part and its dual image part, and the
dual line (λ = 0) consists of a principal part and its dual image part in addition to the
disordered circle. One might view such singularities as “phase transitions” in fidelity
mechanics. This interpretation resolves a confusing point raised in [119]; as claimed, long-
range entanglement-driven orders exist inside the disordered circle, suggesting that a QPT
occurs on the disordered circle. However, the same long-range entanglement-driven order
also exists on the dual line (λ = 0 with γ ≥ 1) due to the presence of duality between λ = 0
with γ ≥ 1 and λ = 0 with 0 < γ ≤ 1. This indicates that no QPT occurs on the disordered
circle. Otherwise, QPTs should also occur on the dual line (λ = 0 with γ ≥ 1).

We have to bear in mind that there are different choices of a dominant control param-
eter x in each regime yielding different fidelity mechanical-state functions. However, a
connection exists between different choices, as discussed in Section 4. A crucial point is that
both stable and unstable fixed points remain the same regardless of choices of a dominant
control parameter x in a given regime.

Now we turn to fidelity mechanical-state functions on the two lines of critical points
from an interior point of view: one is the line of the Gaussian critical points (γ = 0 with
−1 < λ < 1), and the other is the line of the Ising critical points (λ = 1 with γ 6= 0).
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For the line of the Gaussian critical points (γ = 0 with −1 < λ < 1), no dominant
control parameter x is available, since the ground-state fidelity per lattice site d(λ1, λ2)
is simply zero, reflecting the fact that this line of critical points originates from the level
crossings due to the presence of a U(1) generator, ∑i σz

i , commuting with the Hamiltonian
(1) when γ = 0. As a result, any two ground states with different values of λ are orthogonal
to each other (cf. scenario II-1 in Section 6). Instead, we have to embed the line of the
Gaussian critical points (γ = 0 with −1 < λ < 1) into the two-dimensional critical
XY regime for the quantum spin-1/2 XXZ model in a magnetic field (4), to determine
fidelity mechanical-state functions on the line of the Gaussian critical points (γ = 0 with
−1 < λ < 1) (cf. scenario III-2 in Section 6). As a consequence, fidelity entropy S f (λ, 0),
fidelity temperature Tf (λ, 0), and fidelity internal energy U f (λ, 0) as a function of λ are
determined, with their numerical simulation results for λ = 0, λ = 0.25, λ = 0.45, and
λ = 1 when γ = 0 being plotted in Figure 13a–c, respectively. This indicates that fidelity
entropy S f (λ, 0) and fidelity internal energy U f (λ, 0) are not monotonic, although fidelity
temperature Tf (λ, 0) seems to be monotonic as λ varies. However, we remark that the
iTEBD algorithm is exploited to simulate the model (4) in the two-dimensional critical XY
regime, with the bond dimension χ being only up to χ = 60. Therefore, the results are less
reliable, with a typical relative error for fidelity internal energy being around 5%.
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Figure 13. Fidelity entropy S f (λ, 0), fidelity temperature Tf (λ, 0), and fidelity internal energy
U f (λ, 0) for the quantum spin-1/2 XY model from an interior point of view on the line of the
Gaussian critical points (γ = 0 with 0 < λ < 1). This follows from an interior point of view in
the two-dimensional critical XY regime for the quantum spin-1/2 XXZ model in a magnetic field
(cf. scenario III-2 in Section 6). We remark that dot lines are only a guide for eye, with empty dots
indicating our simulation results for λ = 0, 0.25, 0.45, and 1. Here, the iTEBD algorithm is exploited
to simulate the quantum spin-1/2 XXZ model in a magnetic field, with the bond dimension χ up to
χ = 60. (a) Fidelity entropy S f (λ, 0) is not monotonic as λ varies. (b) Fidelity temperature Tf (λ, 0) is
monotonic as λ varies. (c) Fidelity internal energy U f (λ, 0) is not monotonic as λ varies.

As for the line of the Ising critical points (λ = 1 with γ 6= 0), central charge c is 1 when
γ is infinite in value, and c is 1/2 when γ is finite and non-zero. The line of the Ising critical
points (λ = 1 with γ 6= 0) may be divided into two principal parts: One is from γ = ∞
to γ = 1, and the other is from γ = 0 to γ = 1, since the self-dual point (1, 1) acts as a
characteristic point. Given the extent of γ is not finite in the principal part from ∞ to 1, a
re-parametrization operation in the ground-state energy density e(λ, γ), as a function of γ,
for a fixed λ = 1, is necessary. Once this is performed, evaluating fidelity entropy S f (1, γ),
fidelity temperature Tf (1, γ), and fidelity internal energy U f (1, γ), as a function of γ, in
the two principal parts is straightforward, with γ from ∞ to 1 and from 0 to 1, respectively.
Mathematical details about their explicit expressions are presented in Appendix K. Here,
we stress that shifts in fidelity temperature and fidelity internal energy are performed
to ensure that fidelity temperature Tf (1, γ) is zero at the characteristic point (1, 1). This
amounts to performing a nonlocal unitary transformation to remove entanglement from the
ground-state wave function at the characteristic point (1, 1), turning it into an unentangled
(factorized) state. Note that it is necessary to perform this nonlocal unitary transformation
for all ground states on the line of the Ising critical points (λ = 1 with γ 6= 0) in order to
evaluate fidelity entropy S f (1, γ) (cf. scenario I-1 in Section 6). We plot fidelity entropy
S f (1, γ), fidelity temperature Tf (1, γ), and fidelity internal energy U f (1, γ) as a function of
γ in Figure 14a–c, respectively. As it turns out, fidelity entropy S f (1, γ) is single-valued at
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the transition point (1, 0), labelled as PT. In fact, fidelity mechanical state functions from an
interior point of view do not match that from an exterior point of view only if γ is nonzero
and finite, when λ = 1.
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Figure 14. Fidelity entropy S f (1, γ), fidelity temperature Tf (1, γ), and fidelity internal energy
U f (1, γ) for the quantum spin-1/2 XY model from an interior point of view on the line of the Ising
critical points (λ = 1 with γ 6= 0). (a) Fidelity entropy S f (1, γ) monotonically increases when γ varies
from γ = 0 to γ = 1 and from γ = ∞ to γ = 1, and it reaches its maximum at the characteristic point
(1, 1). (b) Fidelity temperature Tf (1, γ) diverges at (1, 0) and (1, ∞), but it is zero at the characteristic
point (1, 1). (c) Fidelity internal energy U f (1, γ) monotonically increases when γ varies from γ = 0 to
γ = 1 and from γ = ∞ to γ = 1, and it reaches its maximum at the characteristic point (1, 1).

The single-valuedness of fidelity entropy at the PT transition point implies that it is not
topological, consistent with the conventional characterization. We remark that an analogue
of the Hawking radiation occurs at the PT transition point since fidelity temperature from
an interior point of view is zero, which matches that from an exterior point of view when it
is approached from the commuting U(1)-symmetric line (cf. Section 6).

8. Transverse-Field Quantum Ising Model in a Longitudinal Field—A Typical Example
for Discontinuous Quantum Phase Transitions

The model Hamiltonian (2) is in a canonical form. When h = 0, the Hamiltonian (2)
becomes the transverse-field quantum Ising model and possesses Z2 symmetry. It exhibits
a second-order QPT at λc = 1, characterized by the Z2 symmetry-breaking order for λ < 1.
When h 6= 0 and λ 6= 0, no symmetry exists in the Hamiltonian. However, a U(1) symmetry
occurs when λ = 0, as well as when λ or h is infinite in value, or λ and h, proportional to
each other, are infinite in value, with a factorized state as a ground state.

As shown in Figure 15, the ground-state phase diagram is simple: There exists a line
of discontinuous QPT points (h = 0 with 0 ≤ λ < 1), which ends at the critical point (1, 0).
The discontinuous QPTs occur from a phase with spin polarization in −x to a phase with
spin polarization in x when h changes its sign. As already mentioned, duality occurs in
the transverse-field quantum Ising model. In addition, the Hamiltonian (2) is symmetrical
with respect to h ↔ −h. Taking symmetries and dualities into account, we may divide
the control parameter space into two principal regimes (cf. Section 2): regime I, defined
as 0 ≤ λ < 1 and h ≥ 0, and regime II, defined as λ ≥ 1 and h ≥ 0. Here, we remark that
there are two principal regimes and three characteristic lines: one Z2-symmetric line, one
U(1)-symmetric line, and one soft line, together with factorizing fields located at infinity
when h is infinite in value or when λ and h are infinite in value in proportionality, with the
characteristic lines being the boundaries of the two principal regimes.

h

a critical point

discontinuous

QPTs

a soft line

0
1

a critical point

with c=1/2

Figure 15. Ground-state phase diagram for the transverse-field quantum Ising model in a longitudinal
field, with λ ≥ 0 and h ≥ 0. Here, a solid line represents a line of discontinuous QPT points (h = 0
with 0 ≤ λ < 1), which ends at a critical point (1, 0), and a dash line indicates a soft line. The
discontinuous QPTs occur from a phase with spin polarization in−x to a phase with spin polarization
in x, when h changes its sign.



Entropy 2022, 24, 1306 50 of 157

For the transverse-field quantum Ising model in a longitudinal field, we resort to
the iTEBD algorithm [46–48] to generate the ground-state wave functions, with the bond
dimension χ = 60. It is numerically confirmed that fidelity entropy S(r, θ) scales as r3/2

near the critical point (1, 0) for θ 6= 0 and as r2 for θ = 0. This is consistent with the fact
that the critical exponent ν for the correlation length is ν = 1/2 for θ 6= 0 and ν = 1 for
θ = 0 (cf. Appendix H).

In regime I, a dominant control parameter x is chosen to be x = h/(1 + h), start-
ing from h = 0 up to h = ∞, and an auxiliary control parameter τ is chosen to be
τ = λ ∈ (0, 1). Here, a re-parametrization operation in the ground-state energy den-
sity e(λ, h): e(λ, h) = mI(x, τ)eI(x, τ), with mI(x, τ) = 1/(1− x), is performed to ensure
that eI(x, τ) is monotonic with x. In regime II, a dominant control parameter x is chosen
to be x =

√
(λ− 1)2 + h2/(1 +

√
(λ− 1)2 + h2), starting from the point (1, 0) up to the

point (∞, ∞), and an auxiliary control parameter τ is chosen to be τ = arctan h/(λ− 1) ∈
(0, π/2). Here, a re-parametrization operation in the ground-state energy density e(λ, h):
e(λ, h) = mII(x, τ) eII(x, τ), with mII(x, τ) = 1/(1− x), is performed to ensure that eII(x, τ)
is monotonic with x. This choice is consistent with the Kramers–Wannier duality when
τ = 0.

Once a dominant control parameter x and an auxiliary control parameter τ are chosen,
fidelity entropy S f (λ, h) may be determined straightforwardly in the two principal regimes
as well as on the characteristic lines, which appear as the boundaries between the two
principal regimes or their symmetric image regimes. Accordingly, fidelity temperature
Tf (λ, γ) and fidelity internal energy U f (λ, γ) are determined by solving a singular or
regular first-order differential equation for V(x, τ). The explicit expressions for fidelity
entropy S f (λ, h), fidelity temperature Tf (λ, h), and fidelity internal energy U f (λ, h) may
be derived, following from our prescription in Section 2. The details are presented in
Appendix L.

We plot fidelity entropy S f (λ, h), fidelity temperature Tf (λ, h), and fidelity internal
energy U f (λ, h) as a function of λ and h in Figure 16. Here, a contribution to fidelity
entropy from a re-parametrization operation has been taken into account. Fidelity entropy
S f (λ, h) reaches a local maximum when λ = 1 and reaches the maximum when λ = 0,
if scaling entropy ln(1 + |h|) is excluded. This is consistent with the existence of stable
fixed points at (0, 0), (0, ∞), (∞, 0), and (1, ∞), which are seen as characteristic points in the
control parameter space. We remark that (1, ∞) should be identified with (0, ∞), although
the existence of soft line (λ = 1) might be related to a well-known fact that, at nonzero h, a
massive excitation spectrum involves eight massive particles, which shows a deep relation
with the algebraic structure represented by the exceptional Lie algebra E8, as predicted
in perturbed conformal field theories [121]. The existence of stable fixed points (0, 0) and
(∞, 0) is protected by the Z2 symmetry when h = 0, whereas the existence of stable fixed
point (0, ∞) may be interpreted as a consequence of the variation of the symmetry group
with λ: U(1) for λ = 0. Fidelity temperature Tf (λ, h) diverges at the critical point (1, 0)
and reaches zero at stable fixed points, as well as when λ or h is infinite in value or λ and h,
proportional to each other, are infinite in value.

We remark that, in addition to the critical point (1, 0) and the line of discontinuous
QPT points (h = 0 with 0 ≤ λ < 1), detected through singularities in the ground-state
fidelity per lattice site, fidelity mechanical-state functions exhibit singularities on the dual
line (h = 0), the U(1)-symmetric line (λ = 0) and the soft line (λ = 1). One might view such
singularities as “phase transitions” in fidelity mechanics. Note that singularities on the
dual line (h = 0) arise from duality and should be attributed to the Z2 symmetry, whereas
singularities on λ = 1 reflects the fact that spins point towards the +x direction for λ < 1
when h is infinite in value and towards other directions for λ > 1 when λ and h are infinite
in value and in proportionality. Thus, it is different from characteristic lines arising from
symmetries, dualities, and factorizing fields (cf. Section 4). Furthermore, fidelity internal
energy U f (λ, h) takes the same maximum value at all stable fixed points, as well as at
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factorizing fields, when λ or h is infinite in value or λ and h, proportional to each other, are
infinite in value.
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Figure 16. Fidelity entropy S f (λ, h), fidelity temperature Tf (λ, h), and fidelity internal energy
U f (λ, h) as a function of λ and h for the transverse-field quantum Ising model in a longitudinal
field, with λ ≥ 0 and h ≥ 0. (a) There exist two singular lines (h = 0 and λ = 1), in fidelity entropy
S f (λ, h). Note that singularities on the dual line (h = 0) arise from duality and should be attributed
to the Z2 symmetry, whereas singularities on λ = 1 reflects the fact that spins point towards the +x
direction for 0 ≤ λ < 1 when h is infinite in value and towards other directions for λ > 1 when λ

and h, proportional to each other, are infinite in value. (b) Fidelity temperature Tf (λ, h) diverges at
the critical point (1, 0) but vanishes when λ or h is infinite in value or λ and h, proportional to each
other, are infinite in value. (c) Fidelity internal energy U f (λ, h) takes the maximum at all stable fixed
points, as well as at factorizing fields, when λ or h is infinite in value or λ and h, proportional to each
other, are infinite in value.

The Hamiltonian (2) does not entail an interior point of view for a complete line of
critical points. Instead, it hosts a line of discontinuous QPT points, ending at an isolated
critical point. As it turns out, the critical point (1, 0) is not topological since fidelity entropy
S f (λ, h) is single-valued.

9. Quantum Spin-1/2 XYZ Model—A Typical Example for Dualities

The model Hamiltonian (3) is in a canonical form, which is exactly solvable by means
of the Bethe ansatz via its equivalence to the eight-vertex model [122–126]. Its ground-state
phase diagram is shown in Figure 17. There are four different phases, labelled as AFx, AFy,
AFz, and FMz, representing an AF phase in the x direction, an AF phase in the y direction,
an AF phase in the z direction, and an FM phase in the z direction, respectively. In addition,
there are five lines of critical points, depicted as five solid lines in Figure 17. For γ = 0,
a line of critical points exists between −1 < ∆ ≤ 1, which is the critical XY phase, with
central charge c = 1. The KT transition point is located at ∆ = 1 and γ = 0, protected by
a U(1) symmetry, from the critical XY phase to the AFz phase for ∆ > 1. For γ 6= 0, four
lines of critical points exist, two of which are γ = −1 + ∆ with ∆ ≥ 1 and γ = −1− ∆
with ∆ < −1 that are symmetrical to γ = 1− ∆ with ∆ ≥ 1 and γ = 1 + ∆ with ∆ < −1,
respectively. They represent dual images of the critical XY regime, located on γ = 0, with
−1 < ∆ ≤ 1. Note that, along the U(1)-symmetric lines (γ = −1 + ∆ and γ = 1− ∆), the
KT transitions occur at ∆ = 1, protected by a U(1) symmetry, from a critical phase to the
AFy phase and the AFx phase for ∆ < 1, respectively. When ∆ is minus infinite in value, it
yields a factorized ground state in the FMz phase. When ∆ is plus infinite in value, it yields
a factorized ground state in the AFz phase. In addition, γ = 1 + ∆ and γ = −1− ∆, with
∆ > −1, represent two factorizing-field lines [119]. Moreover, a critical point, with central
charge c = 1, occurs when γ is infinite in value for any fixed ∆.

The Hamiltonian (3) possesses the dihedral symmetry group Z2 × Z2, generated from
any two of the three π-rotations around the x-, y- and z-axes, e.g., the x- and z-axes:
σx

i ↔ σx
i , σ

y
i ↔ −σ

y
i and σz

i ↔ −σz
i and σx

i ↔ −σx
i , σ

y
i ↔ −σ

y
i and σz

i ↔ σz
i , respectively.

In addition to γ = 0, there are four U(1)-symmetric lines, which are located at γ = 1− ∆,
γ = 1 + ∆, γ = −1 + ∆, and γ = −1− ∆. Meanwhile, a U(1) symmetry occurs when |∆|
or |γ| is infinite in value. Furthermore, a SU(2) symmetry emerges at the two characteristic
points (±1, 0) and their dual image points.
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As demonstrated in Appendix C, there are five dualities for the Hamiltonian (3) arising
from the symmetric group S3 with respect to x, y, and z, thus leading to five symmetric
or self-dual lines, which are identical to five U(1)-symmetric lines in addition to three
semi-self-dual lines located at γ = ±1 and ∆ = 0.

Figure 17. Ground-state phase diagram for the quantum spin-1/2 XYZ model. There are four
different phases, labelled as AFx, AFy, AFz, and FMz, representing an AF phase in the x direction,
an AF phase in the y direction, an AF phase in the z direction, and an FM phase in the z direction,
respectively. Solid lines (γ = 0 with −1 < ∆ ≤ 1, γ = 1 + ∆ with ∆ < −1, γ = 1− ∆ with ∆ ≥ 1,
γ = −1− ∆ with ∆ < −1, and γ = −1 + ∆ with ∆ ≥ 1), denote its phase boundaries between
different phases. In particular, FM points are located at (−1, 0) and its dual images and the KT
transition point are located at (1, 0) and its dual image. In addition, factorizing fields occur on two
lines: γ = 1 + ∆ and γ = −1− ∆, with ∆ > −1, as well as when |∆| is infinite in value. Moreover, a
critical point at infinity occurs when |γ| is infinite in value.

The Hamiltonian (3) is symmetrical with respect to γ ↔ −γ. Therefore, we may
restrict ourselves to the region γ ≥ 0. Taking into account the symmetries, dualities, and
factorizing fields [77–79], we may divide the region γ ≥ 0 into twelve different regimes,
with five lines defined by γ = 1 and γ = ±1± ∆ as the boundaries. The twelve regimes are
separated into two groups, with six regimes in each group that are dual in nature relative
to each other. As shown in Section 2, regime I, regime III, regime V, regime VII, regime
IX, and regime XI are dual relative to each other, whereas regime II, regime IV, regime VI,
regime VIII, regime X, and regime XII are dual relative to each other. Therefore, there are
only two principal regimes, which represent the physics underlying the quantum spin-1/2
XYZ model. Here, we chose regime I and regime II as the two principal regimes.

A choice of a dominant control parameter x and an auxiliary control parameter τ has
been made for each of the two principal regimes (cf. Section 2). In regime I and regime II, we
chose a dominant control parameter x to be x = γ and an auxiliary control parameter τ to
be τ = ∆. In regime I, γ ranges from γ = γc, with γc = 0, to a point on the U(1)-symmetric
line: γ = 1− ∆, for a fixed ∆ ∈ (0, 1). In regime II, γ ranges from γ = γc, with γc = 0, to
a point on the U(1)-symmetric line: γ = 1 + ∆, for a fixed ∆ ∈ (−1, 0). However, other
choices are possible, as long as such a choice is consistent with the constraints imposed by
the symmetries, dualities, and factorizing fields (cf. Section 4).

It is numerically confirmed that fidelity entropy S(∆, γ) scales as γν(∆)+1 near the
line of the Gaussian critical points (γ = 0 with −1 < ∆ ≤ 1). Here, ν(∆) is the critical
exponent for the correlation length, which varies with ∆. This is consistent with the fact
that the transition belongs to the Gaussian universality class (cf. Appendix H). Note that
the iTEBD algorithm is exploited to generate the ground-state wave functions, with the
bond dimension χ = 60.

Once a dominant control parameter x and an auxiliary control parameter τ are chosen
in regime I and regime II, fidelity entropy S f (∆, γ) may be determined straightforwardly
in the two principal regimes as well as on the characteristic lines, which appear as the
boundaries between the two principal regimes or their dual image regimes. Accordingly,
fidelity temperature Tf (∆, γ) and fidelity internal energy U f (∆, γ) are determined by
solving a singular first-order differential equation for V(x, τ). Then, fidelity mechanical-
state functions in the non-principal regimes, which are dual image regimes, simply follow
from their respective dualities to regime I and regime II. However, the ground-state energy
density e(∆, γ) is not monotonic on the U(1)-symmetric line (γ = 1− ∆ with 0 ≤ ∆ ≤ 1).
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Therefore, it is necessary to perform a re-parametrization operation in the ground-state
energy density e(∆, 1−∆): e(∆, 1−∆) = mii(x)eii(x), with x = 1−∆/(2−∆) and mii(x) =
2/(1+ x). In addition, there is an alternative choice for a re-parametrization operation in the
ground-state energy density e(∆, 1− ∆): e(∆, 1− ∆) = mii

A(x)eii
A(x), with mii

A(x) = 1/(2−
x). The explicit expressions for fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ),
and fidelity internal energy U f (∆, γ) may be derived following from our prescription in
Section 2 (also cf. scenario III-1 in Section 6). The details are presented in Appendix M.

A contour plot is depicted in Figure 18a for fidelity entropy S f (∆, γ) in the control
parameter space, with γ ≥ 0. Here, a contribution to fidelity entropy from rescaling in the
ground-state energy density, due to a re-parametrization operation and dualities, has been
taken into account (cf. Appendix G). Fidelity entropy S f (∆, γ) takes a local maximum at
the U(1)-symmetric point (0, 1) and its dual images. Fidelity temperature Tf (∆, γ) and
fidelity internal energy U f (∆, γ) are shown as contour plots in Figure 18b,c, respectively. As
observed, fidelity temperature Tf (∆, γ) diverges at the three lines of the Gaussian critical
points: γ = 0 with −1 < ∆ ≤ 1, γ = −1 + ∆ with ∆ ≥ 1, and γ = −1− ∆ with ∆ < −1
and vanishes on the factorizing-field line (γ = 1 + ∆ with ∆ > −1), in addition to two
characteristic lines at infinity when |∆| is infinite in value. We remark that there are five
stable fixed points, identified as characteristic points (away from the three lines of the
Gaussian critical points), in the region γ ≥ 0: (0, 1), (±∞, 0), and (±∞, 1).

(a) (b) (c)

Figure 18. Fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal energy
U f (∆, γ) for the quantum spin-1/2 XYZ model, with γ ≥ 0, from an exterior point of view. (a) Fidelity
entropy S f (∆, γ) exhibits a local maximum at a stable fixed point (1, 0). Singularities occur on the
three lines of the Gaussian critical points: γ = 0 with −1 < ∆ ≤ 1, γ = −1 + ∆ with ∆ ≥ 1, and
γ = −1− ∆ with ∆ < −1, on the factorizing-field line (γ = 1 + ∆ with ∆ > −1), and on the three
characteristic lines: One is a U(1)-symmetric and self-dual line (γ = 1− ∆ with ∆ ≤ 1) and the other
two are semi-self-dual lines (γ = 1 and ∆ = 0). (b) Fidelity temperature Tf (∆, γ) diverges at the
three lines of the Gaussian critical points: γ = 0 with −1 < ∆ ≤ 1, γ = −1 + ∆ with ∆ ≥ 1, and
γ = −1− ∆ with ∆ < −1; it is zero on the factorizing-field line (γ = 1 + ∆ with ∆ > −1), as well as
when |∆| is infinite in value. (c) Fidelity internal energy U f (∆, γ) takes the same maximum value
at all stable fixed points ((0, 1), (±∞, 0), and (±∞, 1)); on the factorizing-field line (γ = 1 + ∆ with
∆ > −1; and at factorizing fields when |∆| is infinite in value. Note that at the FM transition point (−1,
0), fidelity temperature Tf , and fidelity internal energy U f are not well-defined; fidelity temperature
Tf ranges from 0 to infinity and fidelity internal energy U f ranges from 0 to the maximum depending
on how the FM transition point (−1, 0) is approached.

Fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal energy
U f (∆, γ) exhibit singular behaviors on the three lines of the Gaussian critical points:
γ = 0 with −1 < ∆ ≤ 1, γ = −1 + ∆ with ∆ ≥ 1, and γ = −1− ∆ with ∆ < −1; on
the factorizing-field line (γ = 1 + ∆ with ∆ > −1); and on the three characteristic lines:
one is the U(1)-symmetric and self-dual line (γ = 1− ∆ with ∆ ≤ 1), and the other two
are semi-self-dual lines (γ = 1 and ∆ = 0). This singular behavior may be recognized as
“phase transitions” in fidelity mechanics. In addition, fidelity internal energy U f (∆, γ) takes
the same maximum value at all stable fixed points (0, 1), (±∞, 0), and (±∞, 1), as well
as on the factorizing-field line. Physically, this amounts to stating that ground-state wave
functions at all stable fixed points are unitarily equivalent. Note that at the FM transition
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point (−1, 0), fidelity temperature Tf and fidelity internal energy U f are not well-defined;
fidelity temperature Tf ranges from 0 to infinity and fidelity internal energy U f ranges from
0 to the maximum depending on how the FM transition point (−1, 0) is approached. This is
similar to the PT transition point for the quantum spin-1/2 XY model. However, the ground
states are highly degenerate at the FM transition point (−1, 0), whereas the ground state at
the PT transition point is non-degenerate. It is worth mentioning that this characterization
of the FM transition point is consistent with the fact that, at the FM transition point (−1, 0),
the Hamiltonian (3) admits highly degenerate and highly entangled ground states, which
arise from SSB with one type-B GM when SU(2) is spontaneously broken to U(1) [102].
As it turns out, the ground states are scale-invariant, with the fractal dimension d f being
identified as the number NB of type-B GMs: d f = NB = 1 (also cf. Appendix I).

We turn to fidelity mechanical-state functions on the three lines of the Gaussian critical
points from an interior point of view: γ = 0 with−1 < ∆ ≤ 1, γ = −1+ ∆ with ∆ ≥ 1, and
γ = −1− ∆ with ∆ < −1. Since the three lines of the Gaussian critical points are dual
relative to each other, we only need to consider the line of the Gaussian critical points
(γ = 0 with −1 < ∆ ≤ 1)—a complete line of critical points (cf. scenario III-1 in Section 6).

Since no characteristic points exist between the two endpoints from an interior point
of view, there is only one principal part. Once a dominant control parameter x is chosen in
this principal part, evaluating fidelity entropy S f (∆, 0) with −1 < ∆ ≤ 1 is straightforward.
Then, fidelity temperature Tf (∆, 0) and fidelity internal energy U f (∆, 0), as a function of ∆,
with −1 < ∆ ≤ 1, follow from solving a singular first-order differential equation for V(x).
Mathematical details about their explicit expressions are presented in Appendix M.

We plot fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal
energy U f (∆, 0), from an interior point of view, as a function of ∆, with −1 < ∆ ≤ 1, in
Figure 19a–c, respectively: (a) Fidelity entropy S f (∆, 0) monotonically increases when ∆
varies from ∆ = 1 to ∆ = −1, and it reaches its maximum at the FM transition point (−1,
0); (b) fidelity temperature Tf (∆, 0) diverges at the KT transition point (1, 0), but it is zero at
the FM transition point (−1, 0); (c) fidelity internal energy U f (∆, 0) monotonically increases
when ∆ varies from ∆ = 1 to ∆ = −1, and it reaches its maximum at the FM transition
point (−1, 0).

According to our prescription, shifts in fidelity temperature and fidelity internal energy
are performed to ensure that Tf (∆, 0) is zero and U f (∆, 0) is the maximum at the FM
transition point (−1, 0). This demands the existence of a nonlocal unitary transformation
that turns a highly entangled ground-state wave function at this transition point into
an unentangled (factorized) state, as discussed in Section 6. Physically, this amounts to
stating that ground-state wave functions at all stable fixed points are unitarily equivalent.
Meanwhile, at the FM transition point, a singularity arises from the fact that the two limiting
procedures do not commute [107]: one is the thermodynamic limit N → ∞ and the other is
the limiting procedure representing how such a transition point is approached along the
complete line of critical points.

The single valuedness of fidelity entropy at the FM transition point implies that it is
not topological, consistent with the conventional characterization. In contrast, the double
valuedness of fidelity entropy at the KT transition point implies that it is topological in
our characterization (cf. scenario III-1 in Section 6). We remark that an analogue of the
Hawking radiation occurs at the FM transition point and the KT transition point. Indeed,
fidelity temperature from an interior point of view is zero at the FM transition point and
diverges at the KT transition point, matching that from an exterior point of view when they
are approached along the non-commuting U(1)-symmetric line.
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Figure 19. Fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal energy
U f (∆, 0) on the complete line of critical points (γ = 0 with −1 < ∆ < 1) for the quantum spin-1/2
XYZ model from an interior point of view. (a) Fidelity entropy S f (∆, 0) monotonically increases
when ∆ varies from ∆ = 1 to ∆ = −1, and reaches its maximum at the FM transition point (−1, 0).
(b) Fidelity temperature Tf (∆, 0) diverges at the KT transition point (1, 0), but it is zero at the FM
transition point (−1, 0). (c) Fidelity internal energy U f (∆, 0) monotonically increases when ∆ varies
from ∆ = 1 to ∆ = −1, and it reaches its maximum at the FM transition point (−1, 0). Note that
fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal energy U f (∆, 0) at (−1, 0)
from an interior point of view only match those at (−1, 0) from an exterior point of view. Therefore,
fidelity entropy S f (∆, γ) is double-valued at the KT transition point (1, 0). Hence, a KT transition is
topological in our characterization, consistent with the conventional classification.

10. Quantum Spin-1/2 XXZ Model in a Magnetic Field—An Intermediate Case
between the Kosterlitz–Thouless Transitions and the Pokrovsky–Talapov Transitions

The model Hamiltonian (4) is in a canonical form, which is exactly solvable by means
of the Bethe ansatz [127–132], with its ground-state phase diagram shown in Figure 20.
There are four phases, labelled as AF, FM−, FM+, and XY, representing an AF phase, an
FM phase with all spin down, an FM phase with all spin up, and a critical XY phase with
central charge c = 1, respectively. We may restrict ourselves to the region h ≥ 0, since the
Hamiltonian (4) is symmetrical with respect to h↔ −h: σx

i ↔ σ
y
i and σz

i ↔ −σz
i . There are

two lines of QPT points: One is a line of the PT transition points, defined by hp = 1 + ∆p,
and the other is a (curved) line of the IC transition points, defined by hc = φ(∆c), with
∆c > 1. The latter has been worked out exactly [128], which is reproduced in Figure 20.
Meanwhile, the consideration of the two lines of QPT points and the Z2-symmetric line
leads us to separate the entire region h ≥ 0 into four principal regimes: regime I, regime II,
regime III, and regime IV.

−1 10
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−1 ∆

FM−

FM+

XY AF

h(a)
Tf (∆, h) =∞

h

−1 10

1

−1 ∆
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Tf (∆, h) = 0
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Figure 20. (a) Ground-state phase diagram for the quantum spin-1/2 XXZ model in a magnetic field.
Note that the model is symmetrical with respect to h↔ −h: Sx

i ↔ Sy
i and Sz

i ↔ −Sz
i . There are four

phases labelled as AF, FM−, FM+, and XY representing an AF phase, an FM phase with all spin down,
an FM phase with all spin up, and the critical XY phase with central charge c = 1, respectively. Here,
the phase boundary between the critical XY phase and the AF phase asymptotically approaches a line
of the PT transition points between the FM−/FM+ phase and the critical XY phase for h > 0/h < 0,
respectively. In particular, the FM transition point is located at (−1, 0) and the KT transition point is
located at (1, 0). (b) Fidelity temperature Tf (∆, h) for the quantum spin-1/2 XXZ model in a magnetic
field. In the phases FM− and FM+, it is zero; in the critical XY phase, it diverges; in the AF phase, it
takes the same value as fidelity temperature TXYZ

f (∆, 0) for the quantum spin-1/2 XYZ model when
∆ > 1. Here, the (curved) line of the IC transition points is reproduced from the exact result by means
of the Bethe ansatz [128].

A choice of a dominant control parameter x and an auxiliary control parameter τ has
been made for each of the four principal regimes (cf. Section 2). In regime I, a dominant
control parameter x was chosen to be x =

√
(∆ + 1)2 + h2/(1 +

√
(∆ + 1)2 + h2), starting

from the point (−1, 0) up to the point (−∞, −∞), and an auxiliary control parameter τ was
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chosen to be τ = arctan(h/(∆+ 1)) ∈ (π/2, π]. Here, a re-parametrization operation in the
ground-state energy density e(∆, h): e(∆, h) = mI(x, τ) eI(x, τ), with mI(x, τ) = (2 sin τ −
cos τ)x/(1− x) + 1, is performed to ensure that eI(x, τ) is a constant: eI(x, τ) = −1. In
regime II, a dominant control parameter x was chosen to be x = 1− 1/(h− ∆), starting
from h = ∆ + 1 up to h = ∞, and an auxiliary control parameter τ was chosen to be
τ = ∆ ∈ [−1, ∞). Here, a re-parametrization operation in the ground-state energy density
e(∆, h): e(∆, h) = mII(x, τ) eII(x, τ), with mII(x, τ) = τ + 2/(1− x), is performed to ensure
that eII(x, τ) is a constant: eII(x, τ) = −1. In regime III, a dominant control parameter x
was chosen to be x = −∆, starting from ∆ = ∆c up to ∆ = h− 1, and an auxiliary control
parameter τ was chosen to be τ = h ∈ (0, ∞), with ∆c being a QPT point on the line of the
IC transition points, for a fixed τ. Here, a re-parametrization operation in the ground-state
energy density e(∆, h): e(∆, h) = mIII(x, τ) eIII(x, τ), with mIII(x, τ) = 1/(∆c + x + 1), is
performed to ensure that eIII(x, τ) is monotonic with x for a fixed τ. Here, (∆c, hc) denotes
an IC transition point. In regime IV, a dominant control parameter x was chosen to be
x = hc − h, starting from h = hc up to h = 0, and an auxiliary control parameter τ was
chosen to be τ = ∆ ∈ (1, ∞).

Once a dominant control parameter x is chosen, fidelity entropy S f (∆, h) may be de-
termined straightforwardly. Accordingly, fidelity temperature Tf (∆, h) and fidelity internal
energy U f (∆, h) are determined by solving a singular first-order differential equation for
V(∆, h). In the four principal regimes as well as on the characteristic lines as the boundaries
between different principal regimes, the explicit expressions for fidelity entropy S f (∆, h),
fidelity temperature Tf (∆, h), and fidelity internal energy U f (∆, h) may be derived, fol-
lowing from our prescription in Section 2 (also cf. scenario III-1 and scenario III-2 in
Section 6).

In the entire FM− and FM+ phases, up to the phase boundary between the FM phases
and the XY phase, the ground state remains the same: a spin-polarized state with all spins
down for h > 0 and a spin-polarized state with all spins up for h < 0. The two states coexist
when h = 0. Therefore, there is a discontinuous QPT if the transition line (h = 0) is crossed,
where the Z2 symmetry, defined by σx

i ↔ σ
y
i and σz

i ↔ −σz
i , is spontaneously broken.

As shown in Figure 20, the soft line (∆ = −1) divides the FM− phase into two distinct
principal regimes: regime I and regime II. For the chosen dominant control parameter
x and auxiliary control parameter τ, the ground-state energy density is a constant, i.e.,
eI(x, τ) = eII(x, τ) = −1. Therefore, fidelity entropy S f (∆, h) only includes a contribution
from scaling entropy, which takes the following form: Sσ(∆, h) = ln(2h− ∆). Then, fidelity
temperature Tf (∆, h) is zero, and fidelity internal energy U f (∆, h) is the maximum.

In the critical XY phase, fidelity temperature Tf (∆, h) diverges from an exterior point
of view, indicating strong quantum fluctuations. Fidelity internal energy is, by convention,
zero, and the only contribution to fidelity entropy is the residual fidelity entropy S0. Since
the residual fidelity entropy is extrinsic in nature, it is only determined if the model is
embedded into a more general model, such as the quantum XYZ model in a magnetic field
(cf. scenario II-2 and scenario III-2 in Section 6), which accommodates a factorizing-field
cone surface, on which the ground states are unentangled (factorized) states [77–79]. At the
boundary between the FM− phase and the XY phase, PT transitions occur when ∆ > −1.
Hence, fidelity temperature Tf (∆, h) is not well-defined, ranging from 0 to ∞, and fidelity
internal energy U f (∆, h) ranges from 0 to the maximum. In addition, the FM transition
point appears to be a multi-critical point, located at (−1, 0). Indeed, fidelity temperature
Tf (∆, h) ranges from 0 to ∞, and fidelity internal energy U f (∆, h) ranges from 0 to the
maximum at the FM transition point (cf. Section 9).

In the AF phase, the ground-state wave functions do not depend on h. Hence, fidelity
entropy S f (∆, h), fidelity temperature Tf (∆, h), and fidelity internal energy Tf (∆, h) do
not depend on h. That is, we only need to determine fidelity entropy S f (∆, 0), fidelity
temperature Tf (∆, 0), and fidelity internal energy U f (∆, 0) on the non-commuting U(1)-
symmetric line (h = 0 with ∆ > 1). Note that the symmetry group Zσ

2 × Zτ
2 /Zστ

2 is
spontaneously broken on the non-commuting U(1)-symmetric line (h = 0 with ∆ > 1).
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Here, Zτ
2 is generated from a one-site translation, Zσ

2 is generated from the local unitary
operation, defined by σx

i ↔ σ
y
i and σz

i ↔ −σz
i , and Zστ

2 is generated from the combined
operation στ. In contrast, only the symmetry group Zτ

2 is spontaneously broken, when
h 6= 0. Therefore, the non-commuting U(1)-symmetric line (h = 0 with ∆ > 1) is peculiar
in the AF phase: fidelity mechanical-state functions for h = 0 with ∆ > 1 are identical to
those for the quantum spin-1/2 XYZ model, when γ = 0 with ∆ > 1, which have been
evaluated in Section 9. Hence, we have S f (∆, 0) = SXYZ

f (∆, 0), Tf (∆, 0) = TXYZ
f (∆, 0), and

U f (∆, 0) = UXYZ
f (∆, 0). We stress that there is an emergent symmetry group Z2 generated by

the time-reversal symmetry operation, and an emergent dihedral symmetry group Z2 × Z2
in the AF phase if the longitudinal field strength h is nonzero. In fact, the time-reversal
symmetry and the dihedral symmetry are recovered in the twofold degenerate ground
states, although the model Hamiltonian (4) itself is not invariant. This is in sharp contrast
to the AFz phase for the quantum spin-1/2 XYZ model, when γ is nonzero. Physically, this
results from the fact that the quantum spin-1/2 XXZ model in a magnetic field constitutes
a U(1)-symmetric plane and the quantum spin-1/2 XYZ model constitutes a dual plane,
when they are embedded into the quantum spin-1/2 XYZ model in a magnetic field. In
fact, the entire AF phase is controlled by the KT transition point, located at (1, 0), instead of
a line of the IC transition points.

Mathematical details about the explicit expressions for fidelity entropy S f (∆, h), fi-
delity temperature Tf (∆, h), and fidelity internal energy U f (∆, h) are presented in Ap-
pendix N. We plot fidelity entropy S f (∆, h), fidelity temperature Tf (∆, h), and fidelity
internal energy U f (∆, h) for h = 0.25, 0.45, and 1, from an interior point of view, as a
function of ∆ with h− 1 < ∆ ≤ ∆c in Figure 21a–c, respectively.

Now we are ready to discuss the line of the IC transition points—the phase boundary
between the XY phase and the AF phase. Along this line, fidelity temperature Tf (∆c, hc)
monotonically decreases from ∞ at ∆c = 1 to zero at ∆c = ∞. Therefore, at an IC transition
point, (∆c, hc), fidelity temperature is not well-defined for ∆c > 1, ranging from TXYZ

f (∆c, 0)
to ∞. That is, an IC transition interpolates between the KT transitions and the PT transitions,
which represents a new universality class. As pointed out in Section 6, the presence of
∑ σz

i in the Hamiltonian (4) explicitly breaks the dihedral symmetry group Z2 × Z2 and the
time-reversal symmetry group Z2. Hence, the IC transition may be regarded as a variant
of the KT transition when the dihedral symmetry group Z2 × Z2 and the time-reversal
symmetry group Z2 are explicitly broken, similarly to the observation that the PT transition
may be regarded as a variant of the FM transition (cf. Section 6).

As follows from our discussion about the quantum spin-1/2 XY model (cf. Section 7),
no dominant control parameter x is defined on the line of critical points (∆ = 0 with
−1 < h < 1). Since this line of critical points results from the level crossings, implying
that any two different ground states are orthogonal to each other. The same argument
is applicable to any vertical line of critical points, with ∆ being fixed, inside the critical
XY regime—the two-dimensional critical XY regime (cf. scenario II-2 in Section 6). In
contrast, a dominant control parameter x is well-defined on a horizontal line of critical
points, with h being fixed, inside the two-dimensional critical XY regime (cf. scenario III-2
in Section 6). Actually, this choice is consistent with that for the complete line of critical
points (cf. scenario III-1) for the quantum spin-1/2 XYZ model, when γ = 0. That is,
an interior point of view for the two-dimensional critical XY regime, or equivalently, an
exterior point of view for the line of the IC transition points, implies that, for any horizontal
line, with h being fixed to be hc, an IC transition point at ∆c is topological, since fidelity
entropy is double-valued, when it is approached from inside the two-dimensional critical
XY regime, similarly to the KT transitions. In contrast, an IC transition point at ∆c and hc
is not topological, since fidelity entropy is single-valued when it is approached vertically
from inside the AF phase, similarly to the PT transitions. Therefore, fidelity entropy is
triple-valued at an IC transition point (cf. Section 6).

We remark that an analogue of the Hawking radiation occurs at the FM transition
point and the KT transition point. Indeed, fidelity temperature from an interior point of
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view is zero at the FM transition point and diverges at the KT transition point, matching
that from an exterior point of view, when they are approached along the non-commuting
U(1)-symmetric line, as already discussed in Section 9. In contrast, no analogue of the
Hawking radiation occurs at the IC transition point, since fidelity temperature is nonzero
but finite, when it is approached along the commuting U(1)-symmetric line inside the AF
phase (cf. scenario III-2 in Section 6). Indeed, a dominant control parameter x in the two-
dimensional critical XY regime does not extend to the AF phase, and a dominant control
parameter x in the AF phase does not extend to the two-dimensional critical XY regime.
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Figure 21. Fidelity entropy S f (∆, h), fidelity temperature Tf (∆, h), and fidelity internal energy
U f (∆, h) for the quantum spin-1/2 XXZ model in a magnetic field from an interior point of view
with respect to the two-dimensional critical XY regime. Here, we have chosen h = 0.25, 0.45,
and 1. (a) Fidelity entropy S f (∆, h) monotonically increases when ∆ varies from the IC transition
points (1.80, 0.25), (2.08, 0.45), and (2.75, 1) to the PT transition points (−0.75, 0.25), (−0.55, 0.45),
and (0,1) and reaches its maximum at the PT transition points: (−0.75, 0.25), (−0.55, 0.45), and
(0,1), respectively. (b) Fidelity temperature Tf (∆, h) diverges at the IC transition points (1.80, 0.25),
(2.08, 0.45), and (2.75, 1), but it is zero at the PT transition points (−0.75, 0.25), (−0.55, 0.45), and (0,1),
respectively. (c) Fidelity internal energy U f (∆, h) monotonically increases from zero to the maximum,
when ∆ varies from the IC transition points (1.80, 0.25), (2.08, 0.45), and (2.75, 1) to the PT transition
points (−0.75, 0.25), (−0.55, 0.45), and (0,1), respectively.

11. Quantum Spin-1 XYZ Model—A Typical Example for the Symmetry-Protected
Topological Phases

The model Hamiltonian (5) is in a canonical form, which is not exactly solvable. Hence,
we resort to the iTEBD algorithm to map out the ground-state phase diagram, as shown in
Figure 22. In addition to the four distinct symmetry-breaking ordered phases AFx, AFy,
AFz, and Fz, the Haldane phase, a typical example for the SPT phases, emerges in the
vicinity of the SU(2)-symmetric point (1, 0) and its dual image points, as anticipated from
the mapping to the nonlinear σ model [65,66]. Here, AFx, AFy, AFz, and Fz represent an
AF phase in the x direction, an AF phase in the y direction, an AF phase in the z direction,
and an FM phase in the z direction, respectively.

The Hamiltonian (5) possesses the dihedral symmetry group Z2 × Z2, generated from
any two of the three π-rotations around the x-, y- and z-axes, e.g., the x- and z-axes:
Sx

i ↔ Sx
i , Sy

i ↔ −Sy
i and Sz

i ↔ −Sz
i and Sx

i ↔ −Sx
i , Sy

i ↔ −Sy
i and Sz

i ↔ Sz
i , respectively.

As demonstrated in Appendix C, there are five dualities for the Hamiltonian (5) arising
from the symmetric group S3 with respect to x, y, and z, thus leading to five symmetric or
self-dual lines that are identical to five U(1)-symmetric lines in addition to three semi-self-
dual lines located at γ = ±1 and ∆ = 0. In addition to γ = 0, there are four U(1)-symmetric
lines, which are located at γ = 1−∆, γ = 1+ ∆, γ = −1+ ∆, and γ = −1−∆. Meanwhile,
a U(1) symmetry occurs when |∆| or |γ| is infinite in value. Furthermore, a SU(2) symmetry
emerges at the two characteristic points (±1, 0) and their dual image points.

The SU(2)-symmetric point, located at (1, 0), is adiabatically connected to the Affleck–
Kennedy–Lieb–Tasaki (AKLT) model, which admits an exact solution in terms of the valence
bond solid [133,134]. Note that the AKLT model is a special case of the spin-1 bilinear–
biquadratic model (also cf. Appendix O), which itself attracts much attention [135–158]. In
addition, the so-called string order parameter [159] is introduced to characterize this exotic
phase—a typical example for the SPT phases [108–111]. A recent development in characteriz-
ing an SPT phase is to exploit the so-called bond-centered non-local order parameter [112]
(also cf. Appendix J). It is found that there is a hidden Z2 × Z2 symmetry-breaking order in
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the Haldane phase [160,161], which results in a four-fold degenerate ground states after a
non-local unitary transformation is performed.
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Figure 22. Ground-state phase diagram for the quantum spin-1 XYZ model, with γ ≥ 0. In addition
to distinct symmetry-breaking ordered phase, labelled as AFx, AFy, AFz, and FMz, the Haldane
phase—a typical example for the SPT phases—emerges in the two dual regions, located in the vicinity
of the SU(2)-symmetric point (1, 0) and its dual image point at infinity. Here, AFx, AFy, AFz, and
Fz represent an AF phase in the x direction, an AF phase in the y direction, an AF phase in the z
direction, and an FM phase in the z direction, respectively. Here, we restrict ourselves to the region:
γ ≥ 0, due to the symmetry of the Hamiltonian (5) with respect to γ→ −γ. The solid lines denote
the phase boundaries between the distinct phases. In particular, the FM transition points are located
at (−1, 0) and its dual images, and the KT transition points are located at (0, 0) and its dual images.
The U(1)-symmetric line (γ = 1 + ∆ with ∆ > −1), is a factorizing-field line in addition to other
U(1)-symmetric lines: γ = 0, γ = −1 + ∆, γ = −1− ∆, and γ = 1− ∆. Inset: A magnification of the
Haldane phase, when 0 ≤ γ ≤ 1.

The Hamiltonian (5) is symmetrical with respect to γ ↔ −γ. Therefore, we may
restrict ourselves to the region γ ≥ 0. Taking into account the symmetries, dualities,
factorizing fields [77–79] and a soft line, we may divide the entire region γ ≥ 0 into twenty-
four different regimes. The twenty-four regimes fall into four groups, with six regimes in
each group being dual to each other (cf. Section 2): regime I, regime V, regime IX, regime
XIII, regime XVII, and regime XXI are dual to each other; regime II, regime VI, regime X,
regime XIV, regime XVIII, and regime XXII are dual to each other; regime III, regime VII,
regime XI, regime XV, regime XIX, and regime XXIII are dual to each other, whereas regime
IV, regime VIII, regime XII, regime XVI, regime XX, and regime XXIV are dual to each
other. Therefore, there are only four principal regimes representing the physics underlying
the quantum spin-1 XYZ model.

We chose regime I (0 < ∆ < ∆c0 and 0 < γ < 1), regime II (−1 < ∆ < 0 and
0 < γ < 1+ ∆), regime III (0 < ∆ < 1 and ∆c1 < γ < 1−∆c0), and regime IV (0 < ∆ < ∆c1
and 0 < γ < 1−∆c1) as the four principal regimes. Here, ∆c1 denotes the critical value of ∆
for a KT transition from the critical XY phase to the Haldane phase on the U(1)-symmetric
line (γ = 0), as follows from our numerical simulation in terms of the iTEBD algorithm. For
the bond dimension χ = 60, we have ∆c0 ≈ 0.915 and ∆c1 ≈ 0.29. Note that, on the U(1)-
symmetric line (γ = 0), the KT transition point shifts towards (0, 0) as the bond dimension
χ increases. In fact, when χ = 300, ∆c1 ≈ 0.11. However, there is no compelling evidence
to demonstrate that ∆c1 becomes zero exactly. This observation is consistent with [162,163].
A point to be mentioned is that if ∆c1 becomes zero exactly, then the principal regime IV
becomes a numerical artifact arising from the finiteness of the bond dimension χ. Here,
we stress that a regime arising from the finiteness of the bond dimension χ, as a numerical
artifact, is quite common as a result of the tensor network simulations [158]. In any case,
whether or not principal regime IV arises from the finiteness of the bond dimension χ does
not affect our discussion about fidelity mechanical-state functions.

A choice of a dominant control parameter x and an auxiliary control parameter τ has
been made for each of the four principal regimes (cf. Section 2). In regime I, a dominant
control parameter x was chosen to be x = ∆c/(2−∆c)−∆/(2−∆), starting from the point
(∆c, τ − ∆c), up to (0, τ), and an auxiliary control parameter τ was chosen to be τ = γ + ∆,
ranging from ∆c1 to 1. Here, a re-parametrization operation in the ground-state energy
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density e(∆, τ − ∆): e(∆, γ) = mI(x, τ)eI(x, τ), with mI(x, τ) = (∆c/(2− ∆c) + 1)/(x + 1),
is performed to ensure that eI(x, τ) monotonically decreases with x. Here, (∆c, τ − ∆c)
denotes the Ising transition point between the Haldane phase and the AFx phase, which is
located on the straight line (γ = τ − ∆) for a fixed τ ∈ [∆c1, 1]. In regime II, a dominant
control parameter x was chosen to be x = γ, starting from γ = 0 up to γ = 1 + ∆, and
an auxiliary control parameter τ was chosen to be τ = ∆ ∈ (−1, 0). In regime III, a
dominant control parameter x was chosen to be x = ∆/(2− ∆)− ∆c/(2− ∆c), starting
from (∆c, τ − ∆c) up to (τ, 0), and an auxiliary control parameter τ was chosen to be
τ = γ + ∆, ranging from ∆c1 to 1. In regime IV, a dominant control parameter x was
chosen to be x = (γ + ∆)/(2− γ− ∆)− ∆/(2− ∆) and an auxiliary control parameter
τ was chosen to be τ = γ + ∆. A Gaussian transition occurs at xc = 0, for a fixed τ.
Here, a re-parametrization operation in the ground-state energy density e(∆, γ): e(∆, γ) =
mIV(x, τ)eIV(x, τ), with mIV(x, τ) = (τ/(2− τ) + 1)/(x + 1), is performed to ensure that
mIV(x, τ) and eIV(x, τ) monotonically decreases with x, for a fixed τ ∈ (0, ∆c1]. However,
other choices are possible, as long as such a choice is consistent with the constraints imposed
by the symmetries, dualities, and factorizing fields (cf. Section 4).

It is numerically confirmed that fidelity entropy S(∆, γ) scales as γν(∆)+1 near the
line of the Gaussian critical points (γ = 0 with −1 < ∆ ≤ ∆c1). Here, ν(∆) is the critical
exponent for the correlation length, which varies with ∆. This is consistent with the fact
that the transition belongs to the Gaussian universality class (cf. Appendix H). In addition,
fidelity entropy S(x, τ) scales as x2 near the line of critical points between the Haldane
phase and the AFx phase, indicating that the critical exponent ν is ν = 1, consistent with
the fact that the transition belongs to the Ising universality class (cf. Appendix H).

If a dominant control parameter x and an auxiliary control parameter τ are chosen
in regime I, regime II, regime III and regime IV, then fidelity entropy S f (∆, γ) may be
determined straightforwardly in the four principal regimes as well as on the characteristic
lines, which appear as the boundaries between the four principal regimes or their dual
image regimes. Accordingly, fidelity temperature Tf (∆, γ) and fidelity internal energy
U f (∆, γ) are determined by solving a singular first-order differential equation for V(x, τ).
Then, fidelity mechanical-state functions in the non-principal regimes, which are dual image
regimes, simply follow from their respective dualities to regime I, regime II, regime III, and
regime IV. However, the ground-state energy density e(∆, γ) is not monotonic along the
characteristic line (γ = 1− ∆ with ∆c0 ≤ ∆ ≤ 1), which is a principal part. In the principal
part (γ = 1− ∆ with ∆c0 ≤ ∆ ≤ 1), a dominant control parameter x is chosen to be x =
∆c0/(2−∆c0)−∆/(2−∆), starting from the transition point (∆c0, 1−∆c0) up to the U(1)-
symmetric point (0, 1). Here, a re-parametrization operation in the ground-state energy
density e(∆, 1− ∆): e(∆, 1− ∆) = mii(x)eii(x), with mii(x) = (∆c0/(2− ∆c0) + 1)/(x + 1),
is performed to ensure that eii(x) is monotonic with x. In addition, there is an alternative
choice for a re-parametrization operation in the ground-state energy density e(∆, 1− ∆):
e(∆, 1−∆) = mii

A(x)eii
A(x), with mii

A(x) = (2−∆c0)/(2− 2x+∆c0x). Note that ∆c0 denotes
the Ising transition point between the Haldane phase and the AFx phase on the U(1)-
symmetric line (γ = 1− ∆ with 0 < ∆ < 1).

The explicit expressions for fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ),
and fidelity internal energy U f (∆, γ) may be derived, following from our prescription in
Section 2 (also cf. scenario III-1 in Section 6). The details are presented in Appendix O.

A contour plot is depicted in Figure 23a–c for fidelity entropy S f (∆, γ), fidelity tem-
perature Tf (∆, γ), and fidelity internal energy U f (∆, γ) in the control parameter space for
γ ≥ 0. Here, a contribution to fidelity entropy from rescaling in the ground-state energy
density, due to a re-parametrization operation and dualities, has been taken into account
(cf. Appendix G). Fidelity entropy S f (∆, γ) takes a local maximum at the U(1)-symmetric
point (0, 1) and its dual images. Fidelity temperature Tf (∆, γ) diverges at the lines of the
Gaussian critical points (γ = 0 with −1 < ∆ ≤ ∆c1), and its dual images and the lines
of the Ising critical points, which appear as the phase boundaries in the Haldane phases,
and vanishes on the factorizing-field line (γ = 1 + ∆ with ∆ > −1), in addition to the
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two characteristic lines at infinity—∆ = ±∞. We remark that there are seven stable fixed
points, identified as the characteristic points in the region γ ≥ 0; the U(1)-symmetric point:
(0, 1); and its dual images and one metastable fixed point at the SU(2)-symmetric point
(1, 0) and its dual images. Fidelity entropy takes double values on the non-commuting
U(1)-symmetric line (γ = 0) in the Haldane phase, reflecting the fact that the Haldane
phase is topological in the control parameter space (cf. scenario I-2 and the first type of
cycle in Section 6).
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Figure 23. Fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal energy
U f (∆, γ) for the quantum spin-1 XYZ model, with γ ≥ 0. (a) Fidelity entropy S f (∆, γ) exhibits a local
maximum at a stable fixed point (1, 0). Singularities occur on the three lines of the Gaussian critical
points: γ = 0 with −1 < ∆ ≤ ∆c1 and its dual images, with central charge c = 1, and on the lines of
the Ising critical points in addition to the factorizing-field line: γ = 1 + ∆ with ∆ > −1 and the two
U(1)-symmetric lines: γ = 1− ∆ with ∆ ≤ 1 and γ = 1. (b) Fidelity temperature Tf (∆, γ) diverges
at the three lines of the Gaussian critical points: γ = 0 with −1 < ∆ ≤ ∆c1 and its dual images, with
central charge c = 1 and at the lines of the Ising critical points. It is zero on the factorizing-field line:
γ = 1 + ∆ with ∆ > −1 and at the factorizing fields, when |∆| is infinite in value. (c) Fidelity internal
energy U f (∆, γ) takes the maximum value at all stable fixed point; (0, 1), (±∞, 0), and (±∞, 1); on
the factorizing-field line: γ = 1 + ∆ with ∆ > −1; and at the factorizing fields, when |∆| is infinite in
value. Here, ∆c1 ≈ 0.29 and ∆c2 ≈ 1.55 follow from our numerical simulation by means of the iTEBD
algorithm, with the bond dimension χ = 60.

Fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal energy
U f (∆, γ) exhibit singular behaviors on the lines of the Gaussian critical points (γ = 0 with
−1 < ∆ ≤ ∆c1) and its dual images at the phase boundaries in the Haldane phases and on
the U(1)-symmetric line (γ = 1 + ∆ with ∆ > −1), which is also a factorizing-field line and
on the two U(1)-symmetric lines: γ = 1− ∆ with ∆ ≤ 1 and γ = 1, which are self-dual.
This singular behavior may be recognized as “phase transitions” in fidelity mechanics.
In addition, fidelity internal energy U f (∆, γ) takes the same maximum value at all stable
fixed points, as well as on the factorizing-field line. Note that at the FM transition point
(−1, 0), fidelity temperature Tf and fidelity internal energy U f are not well-defined; fidelity
temperature Tf ranges from 0 to infinity and fidelity internal energy U f ranges from 0 to
the maximum depending on how the FM transition point (−1, 0) is approached. This is
exactly the same as the FM transition point for the quantum spin-1/2 XYZ model. In fact,
the Hamiltonian (5) at this transition point admits highly degenerate and highly entangled
ground states, which arise from SSB with one type-B GM when SU(2) is spontaneously
broken to U(1) [102]. As it turns out, the ground states are scale-invariant, with the fractal
dimension d f being identified as the number NB of type-B GMs: d f = NB = 1 (also cf.
Appendix I).

We turn to fidelity mechanical-state functions on the three lines of critical points from
an interior point of view: γ = 0 with −1 < ∆ ≤ ∆c1 and its dual images. Given they
are dual relative to each other, we only need to consider the line of critical points (γ = 0
with −1 < ∆ ≤ ∆c1). This is a complete line of critical points, labelled as scenario III-1
in Section 6. Since no characteristic point exists between the two endpoints, there is only
one principal part (cf. Section 9). Once a dominant control parameter x is chosen in this
principal part, evaluating fidelity entropy S f (∆, 0), as a function of ∆, with −1 < ∆ ≤ ∆c1,
is straightforward. Then, fidelity temperature Tf (∆, 0) and fidelity internal energy U f (∆, 0),
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follow from solving a singular first-order differential equation for V(x). Mathematical
details about their explicit expressions are presented in Appendix O.

We plot fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal
energy U f (∆, 0) as a function of ∆, with −1 < ∆ ≤ ∆c1, in Figure 24a–c, respectively, from
an interior point of view. (a) Fidelity entropy S f (∆, 0) monotonically increases when ∆
varies from ∆ = ∆c1 to ∆ = −1 and reaches its maximum at the FM transition point (−1, 0).
(b) Fidelity temperature Tf (∆, 0) diverges at the KT transition point (∆c1, 0), but it is zero
at the FM transition point (−1, 0). (c) Fidelity internal energy U f (∆, 0) monotonically
increases when ∆ varies from ∆ = ∆c1 to ∆ = −1 and reaches its maximum at the FM
transition point (−1, 0).

In addition, we stress that, according to our prescription, shifts in fidelity temperature
and fidelity internal energy are performed to ensure that Tf (∆, 0) is zero and U f (∆, 0) is
the maximum at the FM transition point (−1, 0). This demands the existence of a nonlocal
unitary transformation that turns a highly entangled ground-state wave function at this
transition point into an unentangled (factorized) state, as discussed in Section 6. Physically,
this amounts to stating that ground-state wave functions at all stable fixed points are
unitarily equivalent. Meanwhile, at the FM transition point, a singularity arises from the
fact that the two limiting procedures do not commute [107]: one is the thermodynamic
limit N → ∞ and the other is the limiting procedure representing how such a transition
point is approached along the complete line of critical points.

In principle, one may carry out a detailed analysis of fidelity mechanical-state functions
on the cycle, i.e., the boundaries enclosing the Haldane phases, as shown in Figure 10a.
However, our numerical simulation is not accurate enough to locate phase boundaries,
which makes it less reliable when evaluating fidelity entropy. Instead, a heuristic physical
argument implies that fidelity entropy is singled-valued at the QPT point (∆c1, 0), labelled
as KT, and its dual images. Meanwhile, fidelity mechanical-state functions from an interior
point of view do not match those from an exterior point of view (with respect to the
complete line of critical points) for any interior point (cf. scenario I-2 in Section 6).

The single-valuedness of fidelity entropy at the FM transition point implies that it is
not topological, consistent with the conventional characterization. In contrast, the double-
valuedness of fidelity entropy at the KT transition point implies that it is topological in
our characterization (cf. scenario III-1 in Section 6). We remark that an analogue of the
Hawking radiation occurs at the FM transition point and the KT transition point, according
to the criterion in Section 6. Indeed, fidelity temperature from an interior point of view
is zero at the FM transition point and diverges at the KT transition point, matching those
from an exterior point of view, when they are approached along the non-commuting
U(1)-symmetric line.

−1 −0.5 0

−0.76

−0.72

−0.68

∆

S
f

∆
c1

(a)

−1 −0.5 0
10

−5

10
0

10
5

∆

T
f

∆
c1

(b)

−1 −0.5 0
4

6

8
x 10

−4

∆

U
f

∆
c1

(c)

Figure 24. Fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal energy
U f (∆, 0) on the complete line of the Gaussian critical points (γ = 0 with −1 < ∆ < ∆c1) for the
quantum spin-1 XYZ model. (a) Fidelity entropy S f (∆, 0) monotonically increases from ∆ = ∆c1

to ∆ = −1 and reaches its maximum at the FM transition point (−1, 0). (b) Fidelity temperature
Tf (∆, 0) diverges at the KT transition point (∆c1, 0), but it is zero at the FM transition point (−1, 0).
(c) Fidelity internal energy U f (∆, 0) monotonically increases and reaches its maximum at the FM
transition point (−1, 0). Fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal
energy U f (∆, 0) at the FM transition point (−1, 0) are identified as those from an exterior point of
view. Here, ∆c1 ≈ 0.29 follow from our numerical simulation by means of the iTEBD algorithm, with
the bond dimension χ = 60.
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12. The Spin-1/2 Kitaev Model on a Honeycomb Lattice—A Typical Example for
Topologically Ordered States

The model Hamiltonian (6) is in a canonical form. The structure of the spin-1/2 Kitaev
model on a honeycomb lattice, with filled and unfilled circles indicating two sublattices,
and the interactions on the three distinct types of the bonds, x-type, y-type, and z-type,
are shown in Figure 25a,b. Its simplicity makes it likely to be the first model in which
topologically ordered states are realized on an optical lattice [164].

y
x

y

zz

(a) (b)

Gapped

(c)

Figure 25. (a) The structure of the spin-1/2 Kitaev model on a honeycomb lattice, with filled and
unfilled circles indicating two sublattices. (b) The interactions on the three distinct types of the
bonds: x-type, y-type, and z-type. (c) Ground-state phase diagram for the spin-1/2 Kitaev model on
a honeycomb lattice. It consists of nine distinct phases: five gapped Z2 quantum spin liquid phases
and four gapless Z2 quantum spin liquid phases.

Set Jz = 1; we may use H(Jx, Jy) to denote the Hamiltonian for brevity. The Hamil-
tonian (6) is exactly solvable [31,33]. This allows us to map out the ground-state phase
diagram, as shown in Figure 25c. We note that the Hamiltonian (6) consists of four distinct
phases, three gapped Z2 quantum spin liquid phases and one gapless Z2 quantum spin
liquid phase, if we restrict ourselves to the following region: Jx ≥ 0 and Jy ≥ 0 [31].
For the gapless Z2 quantum spin liquid, its ground state is spin-disordered and supports
the emergent gapless excitations represented by Majorana fermions [31], whereas for the
gapped Z2 quantum spin liquid, spin correlations are short-ranged and confined to the
nearest-neighbor pairs [32,33].

The Hamiltonian H(Jx, Jy) is symmetrical with respect to Jx ↔ Jy under a local unitary
transformation, σx

i ↔ σ
y
i and σz

i ↔ −σz
i , with two additional dualities arising from the

symmetric group S3 with respect to x, y, and z. It possesses the dihedral symmetry group
Z2 × Z2, generated from any two of the three π-rotations around the x-, y- and z-axes, e.g.,
the x- and z-axes: σx

i ↔ σx
i , σ

y
i ↔ −σ

y
i and σz

i ↔ −σz
i and σx

i ↔ −σx
i , σ

y
i ↔ −σ

y
i and

σz
i ↔ σz

i , respectively.
The symmetries and dualities are discussed in detail for the region, defined by Jx ≥ 0

and Jy ≥ 0, in Appendix C. Taking the symmetries and dualities into account, we may
divide the region, defined by Jx ≥ 0 and Jy ≥ 0, into twelve distinct regimes (cf. Section 2),
with the Z2-symmetric line (Jx = Jy) and the two self-dual lines being located at Jx = 1
and Jy = 1, respectively, together with the three lines of critical points (Jy = 1− Jx with
0 ≤ Jx ≤ 1, Jy = 1 + Jx with Jx ≥ 0, and Jy = −1 + Jx with Jx ≥ 1) [165,166]. The twelve
regimes are separated into two groups, with six regimes in each group being dual to each
other. As shown in Section 2, the first group includes regime I, regime III, regime V, regime
VII, regime IX, and regime XI, whereas the second group includes regime II, regime IV,
regime VI, regime VIII, regime X, and regime XII. Therefore, there are only two principal
regimes representing the physics underlying the spin-1/2 Kitaev model on a honeycomb
lattice. Here, we chose regime I (0 < Jx < 1/2 and Jx < Jy < 1 − Jx) and regime II
(0 < Jx < 1, 1− Jx < Jy < 1 and Jy > Jx) as the two principal regimes. Then, all the other
regimes are symmetric or dual image regimes. In addition, the characteristic points, as an
intersection of any two characteristic lines, are identified to be located at the S3-symmetric
point (1, 1) and at the U(1)-symmetric point (0, 0) and its dual image points.

A choice of a dominant control parameter x and an auxiliary control parameter τ has
been made for each of the two principal regimes (cf. Section 2). In regime I, a dominant
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control parameter x was chosen to be x =
√

J2
x + J2

y(1− Jx− Jy)/(Jx + Jy), starting from the

critical point (Jx/(Jx + Jy), Jy/(Jx + Jy)) up to the U(1)-symmetric point (0, 0), and an aux-
iliary control parameter τ was chosen to be τ = Jy/Jx ∈ (1, ∞). Here, a re-parametrization
operation in the ground-state energy density e(Jx, Jy) is performed, which turns out to be
trivial: e(Jx, Jy) = eI(x, τ). In regime II, a dominant control parameter x was chosen to

be x =
√
(Jx − 1)2 + (Jy − 1)2(Jx + Jy − 1)/(2− Jx − Jy), starting from the critical point

((Jy − 1)/(Jx + Jy − 2), (Jx − 1)/(Jx + Jy − 2)) up to the S3-symmetric point (1, 1), and
an auxiliary control parameter τ was chosen to be τ = (Jy − 1)/(Jx − 1) ∈ (0, 1). Here,
a re-parametrization operation in the ground-state energy density e(Jx, Jy) is performed,
which turns out to be trivial: e(Jx, Jy) = eII(x, τ).

It is numerically confirmed that fidelity entropy S(x, τ) scales as x5/2 near the line
of critical points: Jy = 1− Jx with 0 ≤ Jx ≤ 1, consistent with the fact that d = 2, m = 1,
ν‖ = 1/2, and ν⊥ = 1. Here, ν‖ and ν⊥ stand for the critical exponent for the correlation
length in two perpendicular directions, with m and d−m being the effective dimensions,
respectively (cf. Appendix H).

Once a dominant control parameter x and an auxiliary control parameter τ are cho-
sen in regime I and regime II, evaluating fidelity entropy S f (Jx, Jy), fidelity temperature
Tf (Jx, Jy), and fidelity internal energy U f (Jx, Jy) is straightforward in each principal regime.
Mathematical details for their explicit expressions are demonstrated in Appendix P. In
addition, fidelity entropy S f (Jx, Jy), fidelity temperature Tf (Jx, Jy), and fidelity internal en-
ergy U f (Jx, Jy) in the symmetric or dual image regimes simply follow from their respective
symmetric or duality transformations to regime I and regime II, respectively.

A contour plot is depicted in Figure 26a–c for fidelity entropy S f (Jx, Jy), fidelity
temperature Tf (Jx, Jy), and fidelity internal energy U f (Jx, Jy) in the control parameter
space, with Jx ≥ 0 and Jy ≥ 0, respectively. Here, a contribution to fidelity entropy
from rescaling in the ground-state energy density, due to dualities, has been taken into
account (cf. Appendix G). Fidelity entropy S f (Jx, Jy) takes a local maximum at the S3-
symmetric point (1, 1) and at the U(1)-symmetric point (0, 0) and its dual image points;
fidelity temperature Tf (Jx, Jy) diverges at the three lines of critical points (Jy = 1− Jx with
0 ≤ Jx ≤ 1, Jy = 1 + Jx with Jx ≥ 0, and Jy = −1 + Jx with Jx ≥ 1), and vanishes at the
U(1)-symmetric point (0, 0) and its dual image points, and at the S3-symmetric point
(1, 1). The four characteristic (symmetric) points are identified as four stable fixed points
in the region, defined by Jx ≥ 0 and Jy ≥ 0, at which fidelity internal energy U f (Jx, Jy)
takes the same maximum value. Here, a non-local unitary transformation is needed,
which is performed to remove entanglement from the ground-state wave function at the
S3 symmetric point (1, 1) or at the U(1) symmetric point (0, 0) and its dual image points,
in order to turn it into an unentangled (factorized) state. In our choice, fidelity entropy
S f (Jx, Jy) at the U(1)-symmetric point (0, 0) is single-valued; then, it is multiple-valued
at the S3-symmetric point (1, 1). However, there is an alternative choice: fidelity entropy
S f (Jx, Jy) at the S3-symmetric point (1, 1) is single-valued; then, it is multiple-valued at the
U(1)-symmetric point (0, 0). Therefore, both the gapped and gapless spin liquid phases
are topological, consistent with the emergence of the two cycles, as shown in Figure 10b
and c, respectively (cf. scenario III-3 in Section 6).
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(a) (b) (c)

Figure 26. Fidelity entropy S f (Jx, Jy), fidelity temperature Tf (Jx, Jy) and fidelity internal energy
U f (Jx, Jy) for the spin-1/2 Kitaev model on a honeycomb lattice in the region Jx ≥ 0 and Jy ≥ 0.
(a) Fidelity entropy S f (Jx, Jy) takes a local maximum at the U(1)-symmetric point (0, 0) and the
S3-symmetric point (1, 1). Singularities occur on the three lines of critical points (Jy = 1− Jx with
0 ≤ Jx ≤ 1, Jy = 1 + Jx with Jx ≥ 0, and Jy = −1 + Jx with Jx > 1), and on the Z2-symmetric
lines, which are also self-dual: Jx = 1, Jy = 1, and Jx = Jy. QPTs on the three lines of critical points,
apart from (0, 1) and its dual images, are topological, reflected in the fact that fidelity entropy
is double-valued. (b) Fidelity temperature Tf (Jx, Jy) diverges at the three lines of critical points
(Jy = 1− Jx with 0 ≤ Jx ≤ 1, Jy = 1 + Jx with Jx ≥ 0, and Jy = −1 + Jx with Jx > 0), and is zero at
the U(1)-symmetric point (0, 0) and the S3-symmetric point (1, 1) and their symmetric or dual image
points. (c) Fidelity internal energy U f (Jx, Jy) takes the maximum value at the S3-symmetric point
(1, 1) and the U(1)-symmetric point (0, 0) and its dual image points.

In addition, fidelity entropy S f (Jx, Jy), fidelity temperature Tf (Jx, Jy), and fidelity
internal energy U f (Jx, Jy) exhibit singular behaviors on the six lines, defined by Jx = 1,
Jy = 1, Jy = Jx, Jy = 1− Jx, and Jy = ±1 + Jx, among which three are the lines of critical
points (Jy = 1− Jx with 0 ≤ Jx ≤ 1, Jy = 1 + Jx with Jx ≥ 0, and Jy = −1 + Jx with Jx > 1)
and the other three lines (Jx = 1, Jy = 1, and Jy = Jx) represent self-dual lines. This singular
behavior may be recognized as “phase transitions” in fidelity mechanics.

Note that our discussion about fidelity mechanical-state functions in the gapless spin
liquid phase may be regarded as an exterior point of view with respect to the complete
lines of critical points, located on the boundary between the gapped and gapless spin liquid
phases or an interior point of view with respect to the two-dimensional gapless phase
(cf. Section 6).

The explicit expressions for fidelity entropy S f (Jx, 1− Jx), fidelity temperature Tf (Jx,
1− Jx), and fidelity internal energy U f (Jx, 1− Jx) on the line of critical points (Jy = 1− Jx
with 0 ≤ Jx ≤ 1/2) from an interior point of view are presented in Appendix P. We
plot fidelity entropy S f (Jx, 1− Jx), fidelity temperature Tf (Jx, 1− Jx), and fidelity internal
energy U f (Jx, 1− Jx) as a function of Jx, with 0 ≤ Jx ≤ 1/2, in Figure 27a–c, respectively.
(a) Fidelity entropy S f (Jx, 1− Jx) monotonically increases when x varies from Jx = 0 to
Jx = 1/2 and reaches its maximum at the Z2-symmetric point (1/2, 1/2). (b) Fidelity
temperature Tf (Jx, 1 − Jx) diverges at Jx = 0, representing the QPT point (0, 1), but
it is zero at the Z2-symmetric point (1/2, 1/2). (c) Fidelity internal energy U f (Jx, 1− Jx)
monotonically increases when Jx varies from Jx = 0 to Jx = 1/2, and it reaches its maximum
at the Z2-symmetric point (1/2, 1/2).

Fidelity entropy S f (Jx, Jy) is double-valued on the three lines of critical points (Jy =
1− Jx with 0 ≤ Jx ≤ 1, Jy = 1 + Jx with Jx ≥ 0, and Jy = −1 + Jx with Jx ≥ 1), apart
from (0, 1) and its dual images (cf. scenario III-3 in Section 6). The double-valuedness of
fidelity entropy implies that the TPT transitions are topological in the control parameter
space, consistent with the conventional classification [165,166]. Here, we remark that
more extensive numerical simulations are necessary to evaluate fidelity mechanical-state
functions from an exterior point of view with respect to the complete line of critical points
in scenario III-3. For this purpose, introducing an extra coupling parameter is necessary,
such as an external magnetic field along the [111]-axis [100,101]. The presence of this term
explicitly breaks the dihedral symmetry group Z2 × Z2 and the time-reversal symmetry
group Z2. As a consequence, a TPT transition point is turned into its variant when the
dihedral symmetry group Z2×Z2 and the symmetry group Z2 are explicitly broken. Indeed,
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two successive QPTs at finite field strengths are unveiled for the AF Kitaev exchange on
the S3-symmetric line in Ref. [101].
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Figure 27. Fidelity entropy S f (Jx, 1− Jx), fidelity temperature Tf (Jx, 1− Jx), and fidelity internal
energy U f (Jx, 1− Jx) as a function of Jx, for the spin-1/2 Kitaev model on a honeycomb lattice on the
line of critical points: Jy = 1− Jx with 0 < Jx < 1/2. (a) Fidelity entropy S f (Jx, 1− Jx) monotonically
increases when x varies from Jx = 0 to Jx = 1/2, and it reaches its maximum at the Z2-symmetric
point (1/2, 1/2). (b) Fidelity temperature Tf (Jx, 1− Jx) diverges at Jx = 0, representing the QPT point
(0, 1), but it is zero at the Z2-symmetric point (1/2, 1/2). (c) Fidelity internal energy U f (Jx, 1− Jx)

monotonically increases when Jx varies from Jx = 0 to Jx = 1/2, and it reaches its maximum at the
Z2-symmetric point (1/2, 1/2).

We remark that an analogue of the Hawking radiation occurs at the TPT transition
point. Indeed, fidelity temperature from an interior point of view, which diverges at the
TPT transition point, matches that from an exterior point of view, when it is approached
along the Z2-symmetric line in the gapped Z2 spin liquid phase (cf. Section 6).

13. Analogues of the Four Thermodynamic Laws, Fidelity Flows and Miscellanea
13.1. Analogues of the Four Thermodynamic Laws

Let us now address whether or not there are any formal similarities between QPTs
and black holes, which has been raised as the first question in Section 1. The answer
is affirmative. As shown in Table 1, there is a dictionary that translates each notion in
one theory to its counterparts in other theories, among fidelity mechanics, black hole
thermodynamics [167] and standard thermodynamics [88]. We remark that, in Table 1, the
analogues of the four thermodynamic laws in fidelity mechanics are stated in terms of a
dominant control parameter x and an auxiliary control parameter τ. We emphasize that
although fidelity entropy, fidelity temperature, and fidelity internal energy are defined for
a fixed τ, both x and τ should be regarded as a varying parameter in the formulation of the
analogues of the four thermodynamic laws. In particular, they are only defined for each
principal regime, respectively, in contrast to the original coupling parameters.

In fact, it is more convenient to formulate the analogues of the four thermodynamic
laws in fidelity mechanics in terms of the original coupling parameters x1 and x2, given
that there is a one-to-one correspondence between (x1, x2) and (x, τ):

(i) Zeroth law—for a given fidelity mechanical system, which is in equilibrium with its
environment, fidelity temperature Tf (x1, x2) quantifies quantum fluctuations.

(ii) First law—fidelity internal energy may be transferred from a fidelity mechanical sys-
tem, as fidelity work or fidelity heat (defined via fidelity entropy), to its environment
or vice versa. Mathematically, we have dU f (x1, x2) = Tf (x1, x2)dS f (x1, x2)
+d̄W f (x1, x2).

(iii) Second law—the total fidelity entropy of a fidelity mechanical system and its envi-
ronment never decreases. Physically, this amounts to stating that the information gain
we are able to recover from the environment never exceeds information loss incurred due to
information erasure in a fidelity mechanical system. Mathematically, we have ∆S f (x1, x2)
+∆Se

f (x1, x2) ≥ 0. Generically, ∆S f (x1, x2) ≥ 0 and ∆Se
f (x1, x2) ≤ 0. Therefore,

q(x1, x2) ≤ 1, with q(x1, x2) being defined by ∆Se
f (x1, x2) = −q(x1, x2)∆S f (x1, x2).

(iv) Third law—for a fidelity mechanical system, fidelity entropy S f (x1, x2) approaches
a (local) maximum and fidelity temperature Tf (x1, x2) approaches zero, as a stable
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fixed point is approached. However, the probability for accessing a stable fixed point
is zero.

Table 1. A dictionary for thermodynamics, black hole mechanics, and fidelity mechanics. Here,
SBH is the Bekenstein–Hawking entropy, A is the horizon area, `p is the Plank length, E is the
energy, κ is the surface gravity, Ω is the angular velocity, J is the angular momentum, Φ is the
electrostatic potential, and Q is the electric charge. In fidelity mechanics, fidelity internal energy
U(x, τ) is defined as U(x, τ) = ∓ ln(e(x, τ)/e(xc, τ))V + U0(τ), where x is a dominant control
parameter, e(x, τ) is the ground-state energy density, U0(τ) is an additive constant, and V(x, τ)

is an unknown function of x and τ determined from a singular first-order differential equation,
Equation (14), with fidelity temperature T(x, τ) = −Vx(x, τ) quantifying quantum fluctuations. Here,
a dominant control parameter x and an auxiliary control parameter τ are introduced via a one-to-one
correspondence between (x1, x2) and (x, τ), and −/+ in fidelity internal energy U(x, τ) corresponds
to a monotonically increasing/decreasing e(x, τ) with x, respectively. For the sake of brevity, we
only list a contribution to fidelity entropy from the ground-state fidelity per lattice site, although
it also contains a contribution from scaling entropy if a re-parametrization operation or a duality
transformation is involved for a specific model.

Thermodynamics Black Hole Thermodynamics Fidelity Mechanics

Temperature T Surface gravity κ Fidelity temperature T(x, τ)
dU = TdS +d̄W dE = κ

8π dA + ΩdJ + ΦdQ dU(x, τ) = T(x, τ)dS(x, τ) +d̄W(x, τ)
S = k ln Z SBH = κA

4`2
p

S(x, τ) = −2
∫ x

xc
ln d(x, τ; y, τ)dy + S0(τ)

Increasing monotonically Increasing monotonically Increasing monotonically

Probability for T = 0 is zero Probability for κ = 0 is zero Probability for getting access to a stable
fixed point is zero

Equilibrium states Static black holes Ground states
Non-equilibrium states Dynamic black holes Low-lying states

Quasi-static Slowly evolving Adiabatic

13.2. Fidelity Flows as an Alternative Form of RG Flows

In real space RG theories, a number of high-energy degrees of freedom are discarded
during the construction of an effective Hamiltonian. This results in a reduction in the num-
ber of degrees of freedom, leading to an apparent irreversibility and causing complications
around this issue. However, fidelity mechanics offers us new insights into our understand-
ing of the irreversibility of RG flows. This is achieved by introducing an alternative form of
RG flows—fidelity flows.

A fidelity mechanical system, which is in equilibrium with its environment, is unstable
under a random perturbation. That is, it is spontaneous for such a fidelity mechanical
system to flow away. Therefore, a trajectory is traversed in the parameter space, along
which we formally treat x1 and x2 as a function of time t: x1 = x1(t), x2 = x2(t). Then
there is a quantum state ψ(t) attached to a point (x1(t), x2(t)) on the trajectory, accord-
ing to the (time-dependent) Schrödinger equation, with a time-dependent Hamiltonian
H(x1(t), x2(t)). Apparently, there are two possibilities given that fidelity heat capacity
C f (x1, x2) = Tf (x1, x2)∆S f (x1, x2)/∆Tf (x1, x2) < 0 is generically negative: (i) If fidelity
temperature Tf (x1, x2) decreases, then fidelity entropy S f (x1, x2) increases due to informa-
tion erasure; (ii) if fidelity temperature Tf (x1, x2) increases, then fidelity entropy S f (x1, x2)
decreases due to information gain. However, the second possibility is forbidden: If it
happened, then the future would be remembered, in contradiction to the psychologi-
cal/computational arrow (cf. Appendix D). Therefore, fidelity entropy S f (x1, x2) mono-
tonically increases and fidelity temperature Tf (x1, x2) monotonically decreases along a
trajectory. Although such an evolution is time-reversal invariant in quantum mechanics,
a corresponding evolution in fidelity mechanics is, generically, irreversible, due to infor-
mation loss. Here, it is proper to remark that, in contrast to quantum mechanics, there are
no equations of motion in fidelity mechanics, a situation exactly the same as in thermody-
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namics. As a consequence, irreversibility is stronger than time-reversal non-invariance in
fidelity mechanics. In other words, t, as a microscopic time, appears in the Schrödinger
equation. However, a macroscopic time emerges in a fidelity mechanical system. That is,
an arrow of time emerges, resulting from information storage via recording information
encoded in the past states in media—a key ingredient in a fidelity mechanical system (cf.
Appendix D for a definition of both microscopic and macroscopic time). Here, we note that,
for a generic trajectory traversed by a fidelity mechanical system in the control parameter
space, the past states, recorded in media, differ from the past states that really occurred.
Actually, the past states, recorded in media, are subject to changes as time passes. This is a
consequence of the fact that an increment in fidelity internal energy is separated into an
increment in fidelity heat and an increment in fidelity work. However, only the increment in
fidelity heat due to an increment in fidelity entropy is attributed to changes in information
storage. Physically, this is plausible, given the fact that difference between the past states
recorded in media and the past states that really occurred may be attributed to a difference
in the same type of irrelevant information encoded in ground-state wave functions in the
same regime. This implies that such a trajectory never crosses any boundary between
different regimes even in the same phase.

We define such a trajectory traversed by a fidelity mechanical system in the control
parameter space as a fidelity flow. As argued, fidelity flows are irreversible. Following from
the second law, fidelity entropy S f (x1, x2) monotonically increases and fidelity temperature
Tf (x1, x2) monotonically decreases along any fidelity flow: it starts from a point close to an
unstable fixed point and ends at a point close to a stable fixed point in the parameter space,
with fidelity temperature Tf (x1, x2) being divergent at an unstable fixed point and fidelity
entropy being a (local) maximum and fidelity temperature being zero at a stable fixed point.
Here, we emphasize that, only in this sense, does it make sense to speak of fidelity flows
from an unstable fixed point to a stable fixed point. This offers us a characterization of both
unstable and stable fixed points in the context of fidelity mechanics.

Fidelity flows, as defined above, may be regarded as an idealized form of RG flows
in real space RG theories. Indeed, an effective Hamiltonian may be kept in the same form
as the original Hamiltonian, if any irrelevant coupling constants are ignored. In addition,
relevant information encoded in ground states is retained and irrelevant information
encoded in ground states is discarded during the construction of an effective Hamiltonian,
according to a prescribed criterion (cf. Appendix A for the notions of irrelevant and relevant
information). Note that different real space RG schemes adopt different criteria, according
to which high-energy degrees of freedom are distinguished from low-energy degrees of
freedom. We stress that both fidelity flows and RG flows are not unique. Indeed, fidelity
flows depend on the choices of a dominant control parameter, whereas RG flows depend
on the choices of a criterion to distinguish high energy degrees of freedom from low-energy
degrees of freedom. In this sense, there is a correspondence between fidelity flows and
RG flows in real space RG theories. Hence, the irreversibility of RG flows in real space RG
theories is a manifestation of the second law in fidelity mechanics. This answers the second
question concerning the irreversibility of RG flows from an unstable fixed point to a stable
fixed point, as raised in Section 1.

However, we emphasize that there is a subtle difference between RG flows in real
space RG theories and RG flows in Zamolodchikov’s c-theorem: The former only concern
discarding a certain type of irrelevant information in a given regime; thus, they never cross
any boundary between different regimes. In contrast, the latter involve different critical
points due to the existence of a monotonically decreasing c-function interpolating between
the values of central charge c for the ultraviolet and infrared conformal field theories [52,53].
Therefore, it is necessary to extend the current definition of fidelity flows to accommodate
this type of RG flows in fidelity mechanics. In this aspect, a brief discussion is presented in
Appendix Q, for fidelity flows mimicking real-space RG flows and fidelity flows mimicking
Zamolodchikov RG flows, with the quantum spin-1/2 XY model as an illustrative example.
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This elaborates on the necessity to make a distinction between real-space RG flows and
Zamolodchikov RG flows.

In Figure 28, we sketch typical fidelity flows for the six illustrative models.

(a) For the quantum spin-1/2 XY model (λ ≥ 0 and γ ≥ 0), two stable fixed points are
identified for the Ising universality class at (0, 1) and (∞, 1), which is protected by
the Z2 symmetry, and one stable fixed point for the PT universality class at (∞, 0),
which is protected by the U(1) symmetry. For the Ising universality class, a U(1)
symmetry emerges at (0, 1) and (∞, 1), in addition to the Z2 symmetry, whereas for the
PT universality class, a Z2 symmetry, defined by σx

2i ↔ −σx
2i, σ

y
2i ↔ −σ

y
2i, σz

2i ↔ σz
2i

and σx
2i+1 ↔ σx

2i+1, σ
y
2i+1 ↔ σ

y
2i+1, σz

2i+1 ↔ σz
2i+1, emerges at (∞, 0), in addition to

the U(1) symmetry. Generically, it is the emergence of such an extra symmetry at a
stable fixed point that justifies why it is not accessible. On the other hand, given two
lines of critical points belonging to two different universality classes, we interpret the
disordered circle as a separation line between two different types of fidelity flows,
with one type of fidelity flows starting from unstable fixed points with central charge
c = 1, and the other type of fidelity flows starting from unstable fixed points with
central charge c = 1/2. Note that both types of fidelity flows end at the same stable
fixed point (0, 1), at which fidelity entropy S(λ, γ) reaches a local maximum. From
an interior point of view, no fidelity flow exists on the line of the Gaussian critical
points (γ = 0 with −1 < λ < 1), reflecting the fact that this line of critical points
originates from the level crossings; thus, the ground-state fidelity per lattice site is
zero. On the Ising line of critical points (λ = 1 with γ > 0), central charge c is 1 when
γ is infinite in value, and c is 1/2, when γ is finite and non-zero. Therefore, fidelity
flows start from (1, ∞) to (1, 1) and from (1, 0) to (1, 1).

(b) For the transverse-field quantum Ising model in a longitudinal field (h ≥ 0), two
stable fixed points (0, 0) and (∞, 0) are identified for the Ising universality class, which
is protected by the Z2 symmetry, and one stable fixed point (1, ∞) is identified for
the Ising universality class without any symmetry, corresponding to the Hamiltonian
with λ 6= 0 and h 6= 0. In addition, there is one stable fixed point (0, ∞) protected
by the U(1) symmetry when λ = 0. Indeed, (1, ∞) should be identified with (0, ∞).
Note that an extra U(1) symmetry emerges at stable fixed points (0, 0), (∞, 0), and
(1, ∞), and an extra Z2 symmetry, defined by σx
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This justifies why a stable fixed point is not accessible.
(c) For the quantum spin-1/2 XYZ model (γ ≥ 0), three stable fixed points are identified

for the Gaussian universality class at (0, 1) and (±∞, 1), and two stable fixed points
are identified for the KT universality class at (0, 1) and (∞, 0). In addition, a stable
fixed point (-∞, 0) originates from the FM transition point at (−1, 0). Both the KT
and FM transitions are protected by the U(1) symmetry as well as the dihedral
symmetry group Z2 × Z2 and the time-reversal symmetry group Z2. The fact that (∞,
1) and (∞, 0) represent two different stable fixed points may be understood from both
symmetry-breaking order and RG flows. In fact, a Zσ

2 × Zτ
2 symmetry exists on the

line (γ = 0 with ∆ > 1), where Zσ
2 is generated by σ: σx

i ↔ σ
y
i and σz
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i , and
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2 is generated by the one-site translation τ: σα
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only two-fold degeneracies exist, with each degenerate ground state invariant under
the combined action σ τ, which generates another Zστ

2 . Thus, the symmetry group,
which is spontaneously broken, is Zσ

2 × Zτ
2 /Zστ

2 . This is different from the cases with
non-zero γ, in which the spontaneously broken symmetry group is Zτ

2 . This also
matches an observation that, for γ = 0, there is a U(1) symmetry, which protects the
KT transition. Once γ becomes nonzero, the U(1) symmetry is lost, and a continuous
QPT changes from the KT universality class to the Gaussian universality class. In
addition, it is the emergence of an extra symmetry at a stable fixed point, such as
a U(1) symmetry at (0, 1) and (±∞, 1), and a Z2 symmetry, defined by σx
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justifies why a stable fixed point is not accessible. From an interior point of view,
fidelity flows exist on the line of the Gaussian critical points (γ = 0 with −1 < ∆ < 1),
starting from (1, 0), and ending at (−1, 0); on the line of the Gaussian critical points
(γ = −1 + ∆ with γ > 0), starting from (∞, ∞) and ending at (1, 0); on the line of the
Gaussian critical points (γ = −1− ∆ with γ > 0), starting from (−1, 0) and ending at
(∞, ∞).

(d) For the quantum spin-1/2 XXZ model in a magnetic field, two stable fixed points (0,
∞) and (−∞, 0) are identified for the PT universality class; one stable fixed point (-∞,
0) originates from the FM transition point (−1, 0) and one stable fixed point (∞, 0)
is identified for the KT universality class, protected by the U(1) symmetry, as well
as the dihedral symmetry group Z2 × Z2 and the time-reversal symmetry group Z2.
From an interior point of view, fidelity flows exist in the XY critical regime, starting
from an IC transition point on the phase boundary between the XY phase and the
AF phase and ending at the line of the PT transition points (h = 1 + ∆ with ∆ > −1),
in contrast to the chosen dominant control parameter x, which is in parallel to the
horizontal axis, with h fixed. This is because any two ground states with different
values of h for a given ∆ in the XY critical regime are orthogonal to each other due to
the level crossings.

(e) For the quantum spin-1 XYZ model (γ ≥ 0), three stable fixed points (0, 1) and (±∞, 1)
are identified for the Gaussian universality class; one metastable fixed point (1, 0) is
identified for the KT universality class, one stable fixed point (−∞, 0) is identified for
the FM transition point (−1, 0), both of which are protected by the U(1) symmetry, as
well as the dihedral symmetry group Z2 × Z2 and the time-reversal symmetry group
Z2, and two stable fixed points (0, 1) and (∞, 0) and one metastable fixed point (1, 0)
are identified for the Ising universality class. Note that, for a stable or metastable
fixed point, its symmetric or dual images also constitutes a stable or metastable fixed
point. From an interior point of view, fidelity flows exist on the line of the Gaussian
critical points: γ = 0 with −1 < ∆ < ∆c1, starting from (∆c1, 0) and ending at the FM
transition point (−1, 0). Here, ∆c1 is the KT transition from the critical XY phase to
the Haldane phase on the U(1)-symmetric line (γ = 0). This also happens on the dual
image lines. In addition, fidelity flows exist on the phase boundaries between the
Haldane phase and the Z2 symmetry-breaking ordered AF phases.

(f) For the spin-1/2 Kitaev model on a honeycomb lattice (Jx > 0 and Jy > 0), in
addition to three stable fixed points (0, 0), (0, ∞), and (∞, 0), (1, ∞) and (∞, 1) are
also identified as stable fixed points in the gapped phases due to the variation of
the symmetry group, although (1, ∞) and (∞, 1) may be identified with (0, ∞) and
(∞, 0). One stable fixed point (1, 1) is identified in the gapless Z2 spin liquid phase.
From an interior point of view, fidelity flows exist on the boundaries between the
gapless Z2 spin liquid phase and the gapped Z2 spin liquid phase: Jy = 1− Jx with
0 ≤ Jx ≤ 1 and its dual image lines. For Jy = 1− Jx with 0 ≤ Jx ≤ 1, fidelity flows
start from the transition points (0, 1) and (1, 0) and end at the Z2-symmetric point
(1/2, 1/2).
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Figure 28. Typical fidelity flows for the six fundamental models. (a) For the quantum spin-1/2
XY model, two stable fixed points are identified for the Ising universality class at (0, 1) and (∞, 1),
which is protected by the Z2 symmetry, and one stable fixed point for the PT universality class at
(∞, 0), which is protected by the U(1) symmetry. On the line of the Ising critical points (λ = 1 with
γ > 0), fidelity flows start from γ = ∞ and γ = 0, respectively, and end at γ = 1. (b) For the
transverse-field quantum Ising model in a longitudinal field, two stable fixed points are identified at
(0, 0) and (∞, 0) for the Ising universality class, which is protected by the Z2 symmetry, and one stable
fixed point is identified at (1, ∞) for the Ising universality class without any symmetry, when λ 6= 0
and h 6= 0. In addition, there is one stable fixed point (0, ∞) protected by the U(1) symmetry when
λ = 0. Indeed, (1, ∞) should be identified with (0, ∞). (c) For the quantum spin-1/2 XYZ model,
three stable fixed points are identified at (0, 1) and (±∞, 1) for the Gaussian universality class, and
two stable fixed points are identified at (0, 1) and (∞, 0) for the KT universality class. In addition,
a stable fixed point (-∞, 0) originates from the FM universality class (−1, 0). Both the KT and FM
transitions are protected by the U(1) symmetry as well as the dihedral symmetry group Z2 × Z2 and
the time-reversal symmetry group Z2. A fidelity flow exists on the line of the Gaussian critical points
(γ = 0 with −1 < ∆ < 1), which starts from (1, 0) and ends at (−1, 0). This also happens on its dual
lines. (d) For the quantum spin-1/2 XXZ model in a magnetic field, two stable fixed points (0, ∞) and
(−∞, 0) are identified for the PT universality class, one stable fixed point (−∞, 0) originates from the
FM transition point (−1, 0), and one stable fixed point ( ∞, 0) is identified for the KT universality
class. Both the KT and FM transitions are protected by the U(1) symmetry as well as the dihedral
symmetry group Z2 × Z2 and the time-reversal symmetry group Z2. From an interior point of view,
fidelity flows exist along a horizontal line in the XY critical regime, due to the level crossings. (e) For
the quantum spin-1 XYZ model (γ ≥ 0), three stable fixed points (0, 1) and (±∞, 1) are identified for
the Gaussian universality class, one metastable fixed point (1, 0) is identified for the KT transition
point (∆c1, 0), one stable fixed point (−∞, 0) is identified for the FM transition point (−1, 0), both of
which are protected by the U(1) symmetry, as well as the dihedral symmetry group Z2 × Z2 and the
time-reversal symmetry group Z2, and two stable fixed points (0, 1) and (∞ 0) and one metastable
fixed point (1, 0) are identified for the Ising universality class. Note that, for a stable or metastable
fixed point, its symmetric or dual images also constitute a stable or metastable fixed point. Fidelity
flows exist on the line of the Gaussian critical points: γ = 0 with−1 < ∆ < ∆c1, starting from (∆c1, 0)
and ending at the FM transition point (−1, 0). Here, ∆c1 is the KT transition from the critical XY
phase to the Haldane phase on the U(1)-symmetric line (γ = 0). This also happens on the dual image
lines. (f) For the spin-1/2 Kitaev model on a honeycomb lattice (Jx > 0, Jy > 0), in addition to three
stable fixed points (0, 0), (0, ∞), and (∞, 0), (1, ∞) and (∞, 1) are also identified as stable fixed
points in the gapped Z2 spin liquid phases due to the variation of the symmetry group, although
(1, ∞) and (∞, 1) may be identified with (0, ∞) and (∞, 0), respectively. One stable fixed point
(1, 1) is identified in the gapless Z2 spin liquid phase. From an interior point of view, fidelity flows
exist on the boundaries between the gapless Z2 spin liquid phase and the gapped Z2 spin liquid
phase: Jy = 1− Jx with 0 ≤ Jx ≤ 1 and its dual image lines. For Jy = 1− Jx with 0 ≤ Jx ≤ 1, fidelity
flows start from the transition points (0, 1) and (1, 0) and end at the Z2-symmetric point (1/2, 1/2).
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13.3. Miscellanea

Up until this point, we have mainly focused on the first two questions raised in
Section 1 regarding similarities between critical points and black holes and the intrinsic
irreversibility along RG flows. Here, we briefly address remaining questions.

In our formulation of fidelity mechanics, the analogue of Landauer’s principle at
zero temperature has been assumed to keep internal logical consistency (cf. Section 2),
which states that in a fidelity mechanical system, to erase one bit of information at zero
temperature, we need to perform the minimum fidelity work w(x): w(x) = ±T(x) ln 2.
Here, T(x) characterizes quantum fluctuations at zero temperature, and +/− corresponds
to increasing/decreasing e(x) with x, respectively. This answers the third question raised
in Section 1.

The fourth question concerns an observation that, during the construction of an
effective Hamiltonian along any RG flow, an unlimited number of irrelevant coupling
constants proliferate. In practice, this prevents access to a stable fixed point. According
to fidelity mechanics, this simply follows from the third law in fidelity mechanics. In
fact, the third law may be rephrased as follows. It is impossible to completely erase irrelevant
information encoded in ground-state wave functions at any given regime. Indeed, at a stable
fixed point, there exists a singularity in fidelity mechanical-state functions for all models
under investigation. In addition, such inaccessibility is also reflected in the conventional
Landauer’s SSB theory, since an extra symmetry always emerges at a stable fixed point, as
discussed in the preceding subsection.

In our opinion, the traditional definition based on a singularity in the ground-state
energy density is under-descriptive, since it fails to signal QPTS in many quantum many-
body systems [59]. Moreover, if one defines QPTs as a singularity in any physical quantities,
then such a definition is over-descriptive. In fact, according to this definition, factorizing
fields would be mistakenly treated as QPTs. In contrast, the ground-state fidelity per lattice
site offers us a proper means to detect QPTs, regardless of internal order arising from
symmetry-breaking order and/or topological order (cf. Appendix A). Hence, a singularity
in the ground-state fidelity per lattice site is a proper criterion to define QPTs, thus offering
us an answer to the fifth question raised in Section 1.

Therefore, fidelity mechanics offers a systematic framework to investigate QPTs in
quantum many-body systems. It not only provides a characterization of unstable fixed
points and stable fixed points but also clarifies in what sense a quantum many-body system
flows from an unstable fixed point to a stable fixed point in the control parameter space
by erasing irrelevant information encoded in ground-state wave functions along a fidelity
flow. In Table 2, we list basic notions in fidelity mechanics, with their counterparts in the
conventional theories of local-order parameters and RG flows.

Table 2. Fidelity mechanics offers a systematic framework to investigate quantum critical phenomena.
Here, we list basic notions in fidelity mechanics, with their counterparts in conventional theories of
local-order parameters and RG flows.

Orders and Fluctuations Renormalization Group Fidelity Mechanics

Orders Low-energy degrees of freedom Relevant information
Fluctuations High-energy degrees of freedom Irrelevant information

Local-order parameters Effective Hamiltonians Fidelity mechanical quantities
Transition points Unstable fixed points Divergent fidelity temperature

Ordered (disordered) states Stable fixed points Zero fidelity temperature
and maximal fidelity entropy

Not available RG flows Fidelity flows

Fidelity mechanics might also offer a novel perspective for understanding a long-
standing mystery in physics: why should the thermodynamic, psychological/computational
and cosmological arrows of time align with each other? Before proceeding, let us empha-
size that the viewpoints expressed below should be regarded as speculative in nature in
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an attempt to present fidelity mechanics as a tentative theory to describe the psychologi-
cal/computational arrow of time.

As discussed in Appendix D, only for a macroscopic time does it make sense to speak of
an arrow of time. In fact, for any macroscopic time, there must exist a physical process that
can, in principle, serve as a clock to track and record it. Therefore, one may single out the
psychological/computational arrow of time as a master arrow of time. Then, it is necessary
to develop a systematic theory to describe the psychological/computational arrow of time.
In fact, the psychological/computational arrow of time is to fidelity mechanics as the
thermodynamical arrow of time is to thermodynamics. The fact that both entropy and
fidelity entropy are monotonically increasing underlies why the thermodynamic arrow of
time aligns with the psychological/computational arrow of time. As for the cosmological
arrow of time, we examine the universe from a fidelity mechanical perspective. Since
the universe itself is a perfect example of naturally occurring physical systems that act as
memories or records, it is a fidelity mechanical system. Here, we point out that, although
fidelity mechanics is formalized for QPTs at zero temperature, it may be extended to finite
temperature, as briefly discussed in Appendix F. However, a peculiar feature arises when
one treats the universe as a fidelity mechanical system: There is no outside observer. That
is, the universe itself is its own observer. Nevertheless, in contrast to classical and quantum
mechanics, cosmology is a historical science [168]. As we have learned from cosmology, the
universe may be traced back to a big bang by different thresholds, such as the formation
of solar systems, the formation of galaxies, the formation of stars, the formation of atoms,
and the formation of subatomic particles. One may attribute these thresholds to dynamic
phase transitions at different time scales during the evolution of the universe. Then, at
each scale, macroscopic time emerges, associated with a non-equilibrium physical process
that can, in principle, serve as a clock. However, if one traces back further, the universe is
so hot and so dense that it dissolves entirely into fluctuations at the Planck scale, with no
regular oscillations left; thus, no clock is available. As such, any macroscopic time ceases
to exist, but a microscopic time remains due to fluctuations. Therefore, in the universe,
fidelity entropy monotonically increases, and so entropy also monotonically increases. If
one interprets dark energy as a result of Landauer’s principle [169–172], then the universe
has kept expanding since the big bang. A possible interpretation for dark matter is that
the analogue of Landauer’s principle at zero temperature is responsible for dark matter,
given the fact that galaxies are traces from quantum fluctuations in the early universe.
In this sense, one may speculate that the cosmological arrow of time results from the
psychological/computational arrow of time.

14. Outlook

A natural question concerns whether or not fidelity mechanics may provide any in-
sight into our search for the classifications of quantum states of matter and QPTs. Given
that characteristic lines, including the duality lines, the symmetric lines, and the factorizing-
field lines, impose rigid constraints on fidelity flows, we expect that, for a given quantum
many-body system under investigation, it is of paramount importance to elaborate on
its characteristic lines in the control parameter space. Since the quantum spin-s XYZ
model, a typical model exhibiting dualities, occupies a prominent place in conceptual
developments in a diversity of research areas [35,65,66,125,173,174], it is natural to investi-
gate a class of quantum many-body systems—an anisotropic extension of the staggered
SU(3) spin-1 biquadratic model. The latter itself is a special case of the SU(2) spin-1
bilinear–biquadratic model—a model under extensive investigations, both analytically
and numerically [135–158]. In our opinion, a full understanding of the underlying physics
behind the SU(2) spin-1 bilinear–biquadratic model at a few selected points is still lack-
ing [158]. The motivation to investigate an anisotropic extension of the staggered SU(3)
spin-1 biquadratic model lies in the fact that it enjoys duality transformations arising from
the underlying symmetric group S3 with respect to x, y, and z, in exactly the same way as
the quantum spin-1/2 XYZ model.
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The Hamiltonian of the anisotropic extension of the spin-1 AF biquadratic model [114]
takes the following form

HAF(Jx, Jy, Jz) = −∑
j
(JxSx

j Sx
j+1 + JySy

j Sy
j+1 + JzSz

j Sz
j+1)

2. (49)

Here, Sx
j , Sy

j , and Sz
j are the spin-1 matrices at a lattice site j, and Jx, Jy, and Jz denote

coupling parameters describing anisotropic interactions. The model (49) is symmetrical
under a unitary transformation: Sx

j → (−1)jSx
j , Sy

j → (−1)jSy
j , Sz

j → Sz
j , accompanied

by Jx → Jx, Jy → Jy and Jz → −Jz, or its counterpart under a cyclic permutation with
respect to x, y and z. Therefore, we may restrict our discussion to the region: both Jx/Jz
and Jy/Jz are non-negative. It enjoys distinct symmetry groups with varying coupling
parameters: a symmetry group U(1)×U(1) in the entire region, generated by any two
of the three generators Kxy, Kyz, and Kzx, with Kxy = ∑j(−1)j+1[(Sx

j )
2 − (Sy

j )
2], Kyz =

∑j(−1)j+1[(Sy
j )

2 − (Sz
j )

2], and Kzx = ∑j(−1)j+1[(Sz
j )

2 − (Sx
j )

2], respectively. It enlarges
to a symmetry group SU(2) × U(1) on the three characteristic lines: Jx = Jy, Jy = Jz,
and Jz = Jx. Specifically, a symmetry group SU(2)x,yz on the characteristic line: Jy = Jz is
generated from Σx = ∑j Sx

j /2, Σy = Kyz/2 and Σz = ∑j(−1)j+1(Sy
j Sz

j + Sz
j Sy

j )/2, satisfying
[Σλ, Σµ] = iελµνΣν, where ελµν is a completely antisymmetric tensor, with εxyz = 1, and
λ, µ, ν = x, y, z. The generators of a symmetry group SU(2)z,xy on the characteristic line
(Jx = Jy) and a symmetry group SU(2)y,zx on the characteristic line (Jz = Jx) follow from a
cyclic permutation with respect to x, y, and z. Therefore, a symmetry group SU(3) emerges
at the isotropic point Jx = Jy = Jz, where the model Hamiltonian (49) becomes the SU(3)
spin-1 biquadratic model.

In addition, the Hamiltonian (49) is subject to duality transformations, which are
induced from the symmetric group S3, consisting of the permutations with respect to
x, y and z, which is exactly the same as that for the quantum spin-1/2 XYZ model (cf.
Appendix C). Characterized by the dualities and symmetries, the entire control parameter
region is partitioned into six different sub-regions, as shown in Figure 29a, which are dual
relative to each other. Because of the various symmetries and dualities, we only need
to focus on the phases in one of the six sub-regions—a principal sub-region—which is
chosen to be sub-region I. Here, we remark that, after the ground-state phase diagram is
determined, a sub-region may be further divided into more than one regime, if a phase
boundary does not coincide with a dual line. This greatly reduces the resources it needs
to unveil the underlying physics behind the model. As shown in Figure 29b, the ground-
state phase diagram accommodates four distinct phases: three SPt phases [113] and one
dimerized SSB phase. The former are characterized by means of the site-centered non-
local order parameter K = (Kx, Ky, Kz), which is defined in Appendix J, and the latter is
characterized by means of the dimerized local-order parameter D, where D = (Dx, Dy, Dz),
with Dα = 〈Sα

j Sα
j+1 − Sα

j+1Sα
j+2〉, for α = x, y, and z. Here, K = (Kx, Ky, Kz) is (1,−1,−1),

(−1,−1, 1), and (−1, 1,−1) in the three distinct SPt phases, respectively. The simulation
result for the dimerized local order parameter D is presented in Ref. [114].

An interesting feature, as seen from the ground-state phase diagram in Figure 29b, is
the emergence of a cycle, similarly to the quantum spin-1 XYZ model. The difference is
that a symmetry-breaking ordered phase—the dimerized phase, instead of the Haldane
phase—is enclosed inside the cycle. This strongly suggests that it is impossible to adiabati-
cally connect the dimerized phase with an unentangled (factorized) state. This deserves
further investigation.

For the FM anisotropic spin-1 biquadratic model, the Hamiltonian HF(Jx, Jy, Jz) takes
the following form

HF(Jx, Jy, Jz) = ∑
j
(JxSx

j Sx
j+1 + JySy

j Sy
j+1 + JzSz

j Sz
j+1)

2. (50)
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Since there is only a sign difference between the FM and AF cases, it follows that the
dualities and symmetries are identical. This implies that the FM anisotropic spin-1 biquadratic
model share the same six sub-regions as the AF anisotropic spin-1 biquadratic model, as
shown in Figure 29a. One may choose sub-region I as a principal sub-region. Therefore, we
only need to focus on the principal sub-region in order to map out the ground-state phase
diagram in terms of the iTEBD algorithm [46–48].

zy JJ /

II

I

1

1
0

VI

1

III

IV

V

JJ /

V

zx JJ /

(a)
zy JJ /

K =(1, 1, 1)

1

1
0

K =( 1,1, 1)

1

K ( 1 1 1)K =( 1, 1,1)

D

JJ / zx JJ /

(b)
zy JJ /

ySPt

zyLL

xCF1

yzLL

SPt

xzLL

yCF

zSPt

0
1

0

xyLL

zCFz

yxLL

xSPt

LL zxLL

y

JJ / zx JJ /

(c)

Figure 29. (a) The six sub-regions in the control parameter space for the AF spin-1 anisotropic
biquadratic model, which are dual relative to each other, if we restrict to the region: Jx/Jz ≥ 0 and
Jy/Jz ≥ 0. Here, sub-region I is chosen to be a principal sub-region. (b) A sketch of the ground-
state phase diagram for the spin-1 AF anisotropic biquadratic model (49): three distinct SPt phases,
characterized by the site-centered non-local order parameter K = (Kx, Ky, Kz), and a dimerized phase,
characterized by a local order parameter D = (Dx, Dy, Dz). The inset shows a magnification of the
tiny dimerized phase. Note that both the horizontal and vertical axes are shown in a scale defined
by arctan(Jx/Jz) and arctan(Jy/Jz), respectively. Here, K = (Kx, Ky, Kz) is (1,−1,−1), (−1,−1, 1),
and (−1, 1,−1) in the three distinct SPt phases, respectively. (c) A sketch of the ground-state phase
diagram for the spin-1 FM anisotropic biquadratic model, which is adapted from [175]. We restrict our
attention to the region, defined by Jx/Jz ≥ 0 and Jy/Jz ≥ 0, due to a symmetric consideration. Here,
a solid line indicates a phase transition line. The model (50) accommodates twelve distinct phases:
three CF phases labelled as CFx, CFy and CFz, six LL phases labelled as LLxy, LLyz, LLzx, LLyx,
LLxz and LLzy, and three SPt phases labelled as SPtx, SPty, and SPtz, respectively. Note that both
horizontal and vertical axes are in a scale defined by arctan(Jx/Jz) and arctan(Jy/Jz), respectively.

The ground-state phase diagram is sketched in Figure 29c, which is adapted from [175].
The model (50) accommodates twelve distinct phases: three coexisting fractal (CF) phases,
labelled as CFx, CFy, and CFz; six Luttinger liquid (LL) phases, labelled as LLxy, LLyz, LLzx,
LLyx, LLxz, and LLzy; and three SPt phases, labelled as SPtx, SPty, and SPtz. As it turns out,
a novel universality class arises from instabilities of the LL phases towards the CF phases.
In addition, QPTs between the LL phases and the SPt phases are identified to be in the KT
universality class.

A remarkable fact is that an exotic quantum state of matter—the CF phase, featuring
highly degenerate ground states—occurs on the characteristic line (Jy = Jz), with the
ground-state energy density being equal to J2

x . Such a phase also occurs on Jz = Jx and
Jx = Jy, with the ground-state energy density being equal to J2

y and J2
z , respectively. Note

that the symmetry group SU(2)×U(1) emerges on the characteristic lines (Jy = Jz, Jz = Jx,
and Jx = Jy). Therefore, a sequence of degenerate ground states appear as a result of SSB
from SU(2)×U(1) to U(1)×U(1) [102,175]. As it turns out, two symmetry generators are
broken, implying that there is one type-B GM [105,106,176–184], according to the counting
rule for the GMs [105,106]. That is, the number of the type-B GMs NB is equal to one. Here,
we emphasize that SSB with type-B GMs survives in one-dimensional quantum many-
body systems, in contrast to SSB with type-A GMs. The latter is forbidden in one spatial
dimension, as a result of the Mermin–Wagner–Coleman theorem [103,104,185]. In Ref. [102],
it is argued that degenerate ground states in the CF phase are scale-invariant but not
conformally invariant, reflected in self-similarities underlying a fractal. This is consistent
with a previous field-theoretic description for a logarithmic scaling behavior of the block
entanglement entropy with the block size, with the prefactor in front of the logarithmic-
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scaling function being half the fractal dimension d f [186,187] (see also [188,189]). As a
result, the identification of the fractal dimension d f with the number of the type-B GMs NB
is made: d f = NB [102]. Further developments in the characterization of scale-invariant
states arising from SSB with type-B GMs are currently underway, particularly for the
Hamiltonian (50) when Jx = Jy = Jz.

As it turns out, the duality transformations, arising from the symmetric group S3, plays
a crucial role, together with the symmetric lines and the factorizing fields, in characterizing
the underlying physics behind the model (50). A universal logarithmic scaling behavior
of the block entanglement entropy is summarized in Appendix I for scale-invariant states
arising from SSB with type-B GMs, which is not only relevant to our characterization of the
CF phase but also to the FM phase transitions in the quantum spin-1/2 XYZ model and the
quantum spin-1 XYZ model.

An interesting feature, as observed from the ground-state phase diagram in Figure 29c,
is the emergence of a cycle consisting of two complete lines of critical points in contrast to
cycles for the quantum spin-1 XYZ model and the spin-1/2 Kitaev model on a honeycomb
lattice. Here, an SPt phase is enclosed inside the cycle.

A point to be mentioned is that the Hamiltonians (49) and (50) are an anisotropic
extension of a spin-1 pure biquadratic model, which itself is a physical realization in terms
of the spin-1 matrices for a representation of the Temperley-Lieb algebra [190,191]. The
latter is an intriguing topic in mathematics due to its relevance to the Jones polynomial in
knot theory [192–195]. On the other hand, the Temperley–Lieb algebra is closely related
with the Yang–Baxter equation—the foundation for exactly solvable quantum many-body
systems [125–127]. In fact, there are many exactly solvable models that are known to be a
representation of the Temperley–Lieb algebra [196,197].

The discussion above illustrates that a characteristic line, together with a complete
line of critical points, which are identified as a key ingredient in fidelity mechanics, are
fundamental in characterizing quantum critical phenomena.

15. Conclusions

In this study, fidelity mechanics has been formalized as a systematic framework to
investigate QPTs in quantum many-body systems. Fidelity temperature has been intro-
duced to properly quantify quantum fluctuations, which, together with fidelity entropy
and fidelity internal energy, constitute three basic state functions in fidelity mechanics, thus
enabling us in formulating analogues of the four thermodynamic laws and Landauer’s
principle at zero temperature. It is the notion of information storage that makes it possible
to address a novel aspect of quantum information—information extractable by comparing
the current state with the past states, both of which are stored in media. In fact, for a
given fidelity mechanical system, we are able to quantify what amount of information
may be recovered, due to information storage, in terms of fidelity entropy. In addition, the
importance of duality in fidelity mechanics has been clarified. Indeed, it plays a defining
role in the determination of a canonical form of the Hamiltonian for quantum many-body
systems in fidelity mechanics. Fidelity flows have been defined, which are irreversible
if information stored in the information storage media leaks into the environment, as
follows from the second law in fidelity mechanics. On the other hand, fidelity flows may
be interpreted as an alternative form of RG flows and allow us to characterize both stable
and unstable fixed points: divergent fidelity temperature for unstable fixed points and
zero-fidelity temperature and maximal fidelity entropy for stable fixed points.

Fidelity mechanics characterizes quantum critical phenomena arising not only from
symmetry-breaking orders but also from topological orders. A detailed analysis of fidelity
mechanical-state functions has been presented for six fundamental models: the quantum XY
model, the transverse-field quantum Ising model in a longitudinal field, the quantum spin-
1/2 XYZ model, the quantum spin-1/2 XXZ model in a magnetic field, the quantum spin-1
XYZ model, and the spin-1/2 Kitaev model on a honeycomb lattice. With the exception of
the quantum spin-1/2 XY model and the spin-1/2 Kitaev model on a honeycomb lattice
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that are exactly solvable, an extensive simulation of quantum many-body systems in terms
of the tensor network algorithms in the matrix-product state representation has been
performed. Rich physics has been unveiled even for these well-studied models.

First, for the quantum spin-1/2 XY model, we resolved a confusing point raised
in Ref. [119]; as claimed, the so-called long-range entanglement-driven order exists in
the disordered regime, suggesting that a QPT occurs on disordered circle λ2 + γ2 = 1.
However, the same long-range entanglement-driven order also exists for γ ≥ 1 at λ = 0
due to the presence of duality between γ ≥ 1 and γ ≤ 1 at λ = 0. In our opinion, no
QPT occurs on the disordered circle, but a fidelity mechanical “phase transition” does
occur, since fidelity mechanical-state functions exhibit singularities on the disordered circle,
which has been interpreted as a separation line between two different types of fidelity
flows, with one type of fidelity flows starting from an unstable fixed point with central
charge c = 1 and the other type of fidelity flows starting from an unstable fixed point with
central charge c = 1/2. Both types of fidelity flows end at the same stable fixed point (0, 1),
at which fidelity entropy S f (λ, γ) reaches its local maximum. Another remarkable feature
is that fidelity temperature Tf (λ, γ) is zero on the disordered circle, as it should be, since
no quantum fluctuations exist in a factorized state. However, at the PT transition point
(1, 0), fidelity temperature Tf (λ, γ) is not well-defined. In fact, it takes any value ranging
from 0 to ∞, depending on how it is approached. This bears a resemblance to a previous
result [120] that entanglement entropy is not well-defined at the PT transition point (1, 0);
its value depends on how the PT transition point (1, 0) is approached. Second, for the
transverse-field quantum Ising model in a longitudinal field, there are stable fixed points at
(0, 0), (0, ∞), (∞, 0), and (1, ∞). The existence of stable fixed points (0, 0) and (∞, 0)
is protected by the Z2 symmetry when h = 0, whereas the existence of stable fixed points
(0, ∞) and (1, ∞) may be interpreted as a consequence of the variation of the symmetry
group with λ: U(1) for λ = 0 and none for λ 6= 0, when h 6= 0. In particular, the presence
of a stable fixed point at (1, ∞) might also be related to a well-known fact that, at λ = 1 but
nonzero h, a massive excitation spectrum involves eight massive particles, which shows a
deep relation with E8 algebraic structure [121]. Third, for the quantum spin-1/2 XYZ model,
five different dualities were identified, which enable us to reproduce the ground-state phase
diagram. Fourth, for the quantum spin-1/2 XXZ model in a magnetic field, at the phase
boundary between the XY phase and the AF phase, fidelity temperature Tf (∆, h) is not
well-defined, ranging from a finite value to ∞. That is, an IC transition interpolates between
a KT transition and a PT transition, which represents a new universality class. Fifth, the
Haldane phase [65,66], as a nontrivial example for the SPT phases, is discussed for the
quantum spin-1 XYZ model. It is found that fidelity entropy Tf (∆, γ) is double-valued on
the U(1)-symmetric line (γ = 0) in the Haldane phase, reflecting its topological nature in
the control parameter space. Sixth, the spin-1/2 Kitaev model on a honeycomb lattice is
discussed as a typical example for topologically ordered states, with the topological nature
reflected in the fact that fidelity entropy Tf (Jx, Jy) is multiple-valued at the S3-symmetric
point (1, 1) or at the U(1)-symmetric point (0, 0) and its dual image points.

As a consequence, fidelity mechanics offers us a means to characterize QPTs and
quantum states of matter. Specifically, if one is not able to discard the double valuedness of
fidelity entropy at a QPT point, then it is a topological QPT; if one is not able to discard the
double valuedness of fidelity entropy on a symmetric line or the multiple-valuedness of
fidelity entropy at a characteristic point, then it is a topological quantum state of matter.
This characterization appears to be consistent with the conventional classifications, as our
illustrative examples demonstrated. In addition, our characterization offers a smoking-gun
signature for the PT transitions, the FM transitions, the KT transitions, the IC transitions,
and the TPT transitions from a novel perspective in fidelity mechanics.

We remark that quantum many-body systems, investigated in this study as illustrative
examples, are translation-invariant. However, it is possible to extend to non-translation-
invariant quantum many-body systems. For this purpose, it is necessary to make some
modifications in the definitions of fidelity mechanical-state functions. Specifically, the
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ground-state fidelity per lattice site is an average, and the ground-state energy density is
a geometric average over the entire system, which are briefly discussed in Appendix F.
In addition, an extension of fidelity mechanics to finite temperature is also addressed in
Appendix F. Moreover, we only focus on spin systems in this study, but our formalism does
work also for bosonic and fermionic systems, given that the definition of the ground-state
fidelity per lattice site is independent of the types of quantum many-body systems. The
only difference is that one has to develop graded tensor network algorithms to simulate a
quantum many-body system consisting of fermions [42–45].

Fidelity flows always start from a point close to an unstable fixed point and end at a
point close to a stable fixed point and never cross any characteristic lines, which act as a
boundary between distinct regimes in the control parameter space regardless of symmetry-
breaking and/or topological order. In particular, the variants of the Hamiltonian at all
stable fixed points are unitarily equivalent, irrespective of a symmetry-breaking ordered
phase or a topologically ordered phase involved. The only difference between a symmetry-
breaking ordered phase or a topologically ordered phase lies in the fact that the unitary
operator involved is local for symmetry-breaking order and non-local for topological
order. This is consistent with a heuristic argument that, for quantum many-body systems,
ground-state wave functions may be represented in terms of the multi-scale entanglement
renormalization ansatz [198–200], with a top tensor being an unentangled (factorized) state
for a symmetry-breaking ordered state and with a top tensor being an entangled state
(characterized by a non-local unitary operator) for a topologically ordered state.

Fidelity mechanics has been formalized as an analogue of black hole thermodynamics.
In addition to the formal similarity discussed in the main text, they share one more common
feature: Both fidelity heat capacity in fidelity mechanics and heat capacity in black hole
thermodynamics are negative. Nevertheless, the formal similarity between critical points
and black holes, as unveiled, is not surprising in the sense that both QPTs and black holes
share singularities as their key ingredients. For a line of critical points, we were able to
bring this similarity one step further, thus leading to an analogue of the Hawking radiation
in fidelity mechanics.

Moreover, a brief speculative discussion has been presented, justifying why the ther-
modynamic, psychological/computational, and cosmological arrows of time should align
with each other in the context of fidelity mechanics, with the psychological/computational
arrow of time being singled out as a master arrow of time. In this sense, fidelity mechanics
may be regarded as a tentative theory for describing the psychological/computational
arrow of time.
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Appendix A. Relevant and Irrelevant Information via the Ground-State Fidelity per
Lattice Site

Fidelity, a basic notion in quantum information science, is a measure of the similarity
between two quantum states |ψ(x)〉 and |ψ(y)〉. Mathematically, it is defined as the abso-
lute value of the overlap between two pure states F(x, y) = |〈ψ(y)|ψ(x)〉|. It should be
emphasized that, as a convention, we use x and y to denote two different values of the same
control parameter.

For quantum many-body systems, two ground states are always distinguishable
(orthogonal) in the thermodynamic limit. As such, the fidelity between these two states
vanishes. For a large but finite lattice size N, fidelity FN(x, y) scales as dN(x, y), with
d(x, y) being a scaling parameter. Physically, d(x, y) may be interpreted as the ground-
state fidelity per lattice site: d(x, y) = limN→∞ F1/N

N (x, y), which is well-defined even in
the thermodynamic limit. The ground-state fidelity per lattice site d(x, y) enjoys some
properties inherited from fidelity FN(x, y): (i) symmetry under interchange d(x, y) =
d(y, x); (ii) normalization d(x, x) = 1; (iii) range 0 ≤ d(x, y) ≤ 1.

Figure A1. A cartoon picture to illustrate the notions of relevant and irrelevant information in fidelity
mechanics. Here, information encoded in bare bodies is relevant, whereas information encoded in
hats, clothes, and shoes is irrelevant. RG flows flowing from an unstable fixed point xc to two stable
fixed points x− and x+ are also depicted to justify that notions of irrelevant and relevant information
are introduced as counterparts of high-energy degrees of freedom and low-energy degrees of freedom
in real-space RG theories. We remark that irrelevant information originating from the same unstable
fixed point is identical, but relevant information at the two stable fixed points is different.

As demonstrated in Refs. [26–28], QPTs may be detected through singularities exhib-
ited in the ground-state fidelity per lattice site d regardless of the internal order arising
from symmetry-breaking and/or topological orders. Such a singularity is reflected as a
pinch point. Generically, a pinch point is defined as an intersection point between two
singular lines [26]. The reason why the ground-state fidelity per lattice site d(x, y) may be
used to signal QPTs is due to the fact that it distinguishes relevant information from irrelevant
information encoded in ground-state wave functions for a quantum many-body system.
Here, relevant information is defined to be a counterpart of orders in Landau’s SSB theory.
That is, any information encoded in a ground-state wave function corresponding to an
ordered (disordered) state is relevant. In contrast, irrelevant information is defined to be a
counterpart of fluctuations in Landau’s SSB theory. Therefore, any information encoded
in a ground-state wave function that makes it deviate from a ground-state wave function
at an ordered (disordered) state is irrelevant. A remarkable fact is that such a deviation
may be quantified by the ground-state fidelity per lattice site. In this scenario, a critical
point is simply characterized as follows. At a critical point, relevant information is covered up
by irrelevant information. In addition to Landau’s SSB theory, RG flows may also be used
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to justify the introduction of irrelevant and relevant information as counterparts of the
high-energy degrees of freedom and low-energy degrees of freedom in the context of the
fidelity approach to QPTs (see a cartoon picture in Figure A1).

Two typical examples are the quantum spin-1/2 XY model (1) and the spin-1/2 Kitaev
model on a honeycomb lattice (6). The former exhibits a continuous QPT arising from SSB
and the latter exhibits a topological QPT.

The Hamiltonian (1) for the quantum spin-1/2 XY model may be diagonalized by
means of the Jordan–Wigner transformation [201], the Fourier transformation, and the
Bogoliubov transformation [202]. In the thermodynamic limit N → ∞, the logarithmic
function ln d(λ, γ; µ, δ) of the ground-state fidelity per lattice site d(λ, γ; µ, δ) takes the
following form:

ln d(λ, γ; µ, δ) =
1

2π

∫ π

0
dα lnF (λ, γ; µ, δ; α), (A1)

where F (λ, γ; µ, δ; α) = cos[ϑ(λ, γ; α)− ϑ(µ, δ; α)]/2, with cos ϑ(λ, γ; α) = (cos α− λ)/√
(cos α− λ)2 + γ2 sin2 α.

The spin-1/2 Kitaev model on a honeycomb lattice may also be diagonalized [33,203,204]
by means of the Jordan–Wigner transformation [201], the Fourier transformation, and the
Bogoliubov transformation [202]. In the thermodynamic limit N → ∞, the logarithmic
function ln d(~J; ~K) of the ground-state fidelity per lattice site d(~J; ~K) becomes the following:

ln d(~J; ~K) =
1

4π2

∫
ln(u∗~k (

~J)u~k(~K) + v∗~k (
~J)v~k(~K))d(

~k), (A2)

where ~J = (Jx, Jy, Jz), ~K = (Kx, Ky, Kz), ~k = (kx, ky), |u~k(~J)|2 = 1/2(1 + ε~k(
~J)/E~k(~J))

and |v~k(~J)|2 = 1/2(1− ε~k(
~J)/E~k(~J)), with the quasiparticle excitation energy E~k (~J) =√

ε2
~k
(~J) + ∆2

~k
(~J) [33] given ε~k(

~J) = 2(Jz − Jx cos kx − Jy cos ky) and ∆~k(
~J) = 2(Jx sin kx+

Jy sin ky).
For the quantum spin-1/2 XY model, we restrict ourselves to a special case—the

transverse-field quantum Ising model, with γ = 1. As shown in Figure A2, the critical
point λc = 1 is reflected as a pinch point (1, 1) in the fidelity surface [26,27].
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Figure A2. Ground-state fidelity per lattice site d(λ, µ) is shown as a function of λ and µ for the
transverse-field quantum Ising model, which exhibits a pinch point at (1, 1). A pinch point is defined
to be an intersection point between two singular lines (λ = 1 and µ = 1).

For the spin-1/2 Kitaev model on a honeycomb lattice, we choose Jx or Jz as a control
parameter. A critical point at Jxc = 1 is reflected as a pinch point in the fidelity surface
at (1, 1) for fixed Jy = Ky = Jz = Kz = 1/2 and a critical point at Jzc = 1 is reflected as a
pinch point in the fidelity surface at (1, 1) for fixed Jx = Kx = Jy = Ky = 1/2, as shown in
Figure A3a,b, respectively [29]. We emphasize that the two plots are essentially the same
due to the symmetry under permutations: (x, y, z)↔ (y, z, x)↔ (z, x, y).



Entropy 2022, 24, 1306 81 of 157

0
1

2

0

1

2

−0.2

−0.1

0.0

K
x

J
x

d
(J

x
,K

x
) Pinch

point

(a)

0
1

2

0

1

2

−0.2

−0.1

0.0

K
z

J
z

d
(J

z
,K

z
) Pinch

point

(b)

Figure A3. (a) Ground-state fidelity per lattice site d(Jx, Kx) is shown as a function of Jx and Kx, with
Jy = Ky = Jz = Kz = 1/2, for the spin-1/2 Kitaev model on a honeycomb lattice. It exhibits a pinch
point at (1, 1). (b) Ground-state fidelity per lattice site d(Jz, Kz) is shown as a function of Jz and Kz,
with Jx = Kx = Jy = Ky = 1/2, for the spin-1/2 Kitaev model on a honeycomb lattice. It exhibits a
pinch point at (1, 1). Here, d(Jx, Kx) and d(Jz, Kz) are plotted in the logarithmic scale.

Other developments related to the ground-state fidelity per lattice site include a
bifurcation point [26–30,49,50,73–75] arising from SSB, with a symmetry group being
discrete, and a catastrophe point [30,75] arising from pseudo SSB, with a continuous
symmetry group, due to the finiteness of the bond dimension during a simulation of
quantum many-body systems in the matrix-product state representation. The latter is
attributed to a numerical artifact to retain consistency with the Mermin–Wagner–Coleman
theorem [103]. However, a catastrophic point is recognized as a smoking-gun signature of
the essential singularities associated with, e.g., the KT transitions [30,75].

Here, we emphasize that the definition of the ground-state fidelity per lattice site, as
recalled here, is only exploited to detect pinch points, signaling QPTs. For this purpose,
there is no need to introduce dominant and auxiliary control parameters. In fact, it is
legitimate to keep one of the coupling parameters identical for the sake of simplicity, and
so it may be dropped from the arguments. As a result, only two variables are left. In
contrast, it is necessary to introduce both dominant and auxiliary control parameters to
define fidelity mechanical-state functions, as was performed in Section 2.

Appendix B. Ground-State Fidelity and Geometric Entanglement from Tensor
Networks: Matrix-Product States

In this Appendix, we describe an efficient method for evaluating the ground-state
fidelity per lattice site and geometric entanglement for quantum many-body systems in the
context of tensor network representations. Here, we restrict ourselves to matrix-product
states, which is suitable for quantum many-body systems in one spatial dimension.

Appendix B.1. The Infinite Time-Evolving Block Decimation Algorithm

We briefly recall the iTEBD algorithm [46–48]. The algorithm is based on a matrix-
product state representation for a ground-state wave function to simulate infinite-size
translation-invariant quantum many-body systems in one spatial dimension.

Consider a quantum many-body system described by the Hamiltonian H:

H = ∑
i

hi,i+1, (A3)

where hi,i+1 is the Hamiltonian density describing the nearest-neighbor interactions. A
two-site translation-invariant ground-state wave function takes the following form

|ψ〉 = ∑
s
(. . . Γs2i−1

A λAΓs2i
B λBΓs2i+1

A λAΓs2i+2
B λB . . .)| . . . s2i−1s2is2i+1s2i+2 . . .〉. (A4)

Here, s is a physical index, ΓA and ΓB are three-index tensors on odd and even
sites, and λA and λB are χ× χ singular value diagonal matrices on odd and even bonds,
respectively. If a random matrix-product state |ψ0〉 in the form of (A4) is chosen as an initial
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state, then the imaginary time evolution yields |ψτ〉 at imaginary time τ, which takes the
following form

|ψτ〉 =
exp(−Hτ)|ψ0〉
‖ exp(−Hτ)|ψ0〉‖

. (A5)

If τ → ∞, then a matrix-product state representation of a ground-state wave function
is projected as long as the initial state is not orthogonal to the genuine ground state. The
algorithm is efficient, with the computational costs being proportional to χ3.

The imaginary time-evolution operator exp(−Hτ) for τ → ∞ is implemented by the
operator exp(−Hδτ) over a time slice δτ, where τ = Mδτ, with δτ → 0 and M → ∞.
When δτ is infinitesimal, the evolution operator exp(−Hδτ) may be decomposed into a
sequence of the two-site gates Ui,i+1 = exp(−hi,i+1δτ), as a result of the Trotter–Suzuki
decomposition. The two-site translational invariance of the Hamiltonian allows us to
consider two different types of the two-site gates Ue and Uo corresponding to even and odd
sites, where Ue = exp(−h2i,2i+1δτ) and Uo = exp(−h2i+1,2iδτ), respectively. A peculiar
feature of such a decomposition is that all two-site gates in Ue and Uo are commutative
with each other. Therefore, the problem to implement the imaginary time evolution reduces
to absorb a two-site gate acting on a matrix-product state. This is achieved in terms of the
singular value decomposition, as described in Figure A4. Following the procedure, ΓA, λA,
ΓB, and λB are updated to Γ′A, λ′A, Γ′B, and λ′B via absorbing a two-site gate Ui,i+1 into a
matrix-product state representation. In practice, the initial imaginary time slice δτ may
be set as, e.g., 10−1, and then gradually decrease to a relatively small value. During the
simulation, ΓA, λA, ΓB, and λB are updated repeatedly until the singular value diagonal
matrices λA and λB converge up to a preset accuracy.

)(ii
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'

A
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A BB

)(v ~
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~

V

Figure A4. The procedure to update three-index tensors ΓA and ΓB and two singular-value diagonal
matrices λA and λB via absorbing a two-site gate Ui,i+1. (i) A two-site gate Ui,i+1 is applied onto
a matrix-product state, represented in terms of ΓA, λA, ΓB, and λB. (ii) A four-index tensor Θ is
formed by contracting the tensors ΓA, λA, ΓB, and λB with the two-site gate Ui,i+1. (iii) Reshape
the four-index tensor into a matrix M. (iv) A singular value decomposition is performed for the
matrix M, which yields U, V, and S. The latter is formed from the χ largest singular values of M due
to truncation. That is, λA is updated to S. (v) Reshape two matrices U and V into two three-index
tensors Ũ and Ṽ. (vi) Recover the singular value diagonal matrix λB; thus, ΓA and ΓB are updated to
Γ′A and Γ′B, respectively.

(i) (ii)

Figure A5. The expectation value of a two-site operator 〈Oi,i+1〉 for a two-site translation-invariant
matrix-product state. (i) The expectation value of a two-site operator 〈OAB〉 is computed by con-
tracting tensors ΓA, ΓB, Γ∗A, Γ∗B, λA, λB, and a two-site operator OAB. (ii) The expectation value of
two-site operator 〈OBA〉 is computed by contracting tensors ΓA, ΓB, Γ∗A, Γ∗B, λA, λB, and a two-site
operator OBA.

Once a matrix-product state representation for a ground-state wave function is gen-
erated, one may compute the expectation value of any two-site operators OAB and OBA
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by contracting the tensors, as described in Figure A5i,ii, respectively. Specifically, for
OAB = OBA ≡ hi,i+1, it yields the ground-state energy density e = (eAB + eBA)/2, where
eAB and eBA represent the expectation values of the Hamiltonian density hi,i+1 on the even
and odd bonds by contracting the tensors in Figure A5i,ii, respectively.

Appendix B.2. Ground-State Fidelity per Lattice Site

A ground-state wave function |ψ〉, generated from the iTEBD algorithm [46–48], is
translation-invariant under a two-site shift. Then, one only needs two three-index tensors
ΓA and ΓB and two singular-value diagonal matrices λA and λB to represent a ground-state
wave function |ψ〉, as shown in Figure A6. Here, three-index tensors ΓA and ΓB are labelled
by one physical index s and two bond indices α and β, and λA and λB are real and diagonal
matrices. Note that the physical index s runs over 1, . . . , d, and each bond index takes
1, . . . , χ, with d being the physical dimension, and χ being the bond dimension.

(i) (ii) (iii)

Figure A6. (i) A three-index tensor ΓA is labelled by two bond indices, denoted as α and β, and
one physical index s, and λA is a singular value diagonal matrix taking nonzero values only when
two bond indices α and β are the same. (ii) A two-site translation-invariant matrix-product state
representation for a ground-state wave function |ψ〉, consisting of alternating copies of the tensors ΓA,
λA, ΓB, and λB, with each tensor connected through two bond indices. (iii) A matrix-product state
representation for the ground-state fidelity between |ψ(x)〉 and |ψ(y)〉. The former is represented by
ΓA, λA, ΓB, and λB, and the latter is represented by ΛA, µA, ΛB, and µB, respectively. Here, E is the
transfer matrix.

Hence, for two ground states, |ψ(x)〉 and |ψ(y)〉, the ground-state fidelity F(x, y)
between |ψ(x)〉 and |ψ(y)〉 is represented as a tensor network, with E being a transfer
matrix, which is shown in Figure A6iii. Here, |ψ(x)〉 is represented by ΓA, λA, ΓB, and
λB, and |ψ(y)〉 is represented by tensors ΛA, µA, ΛB, and µB, respectively. Therefore, the
ground-state fidelity per lattice site d(x, y) is, by definition, nothing but the square root of
the dominant eigenvalue λmax(x, y) of the transfer matrix E: d(x, y) =

√
λmax(x, y).

Appendix B.3. Geometric Entanglement

Geometric entanglement has been introduced as a measure of multi-partite entangle-
ment present in a quantum state [205]. It may be used as an indicator to identify factorized
states given that it must vanish for any unentangled states [70,71]. Therefore, it provides
a means to numerically locate a factorizing-field line (if any) for a quantum many-body
system—one type of the characteristic lines in fidelity mechanics.

For a pure quantum state |ψ〉 with N parties, geometric entanglement E(|ψ〉) takes
the form E(|ψ〉) = −2 log2 Λmax, where Λmax is the maximum fidelity between |ψ〉 and all
possible separable (unentangled) and normalized states |φ〉

Λmax = max|φ〉 |〈ψ|φ〉|. (A6)

Physically, this amounts to identifying the closest separable (unentangled) state to
|ψ〉. Then, geometric entanglement per party EN(|ψ〉) is defined as EN(|ψ〉) = N−1E(|ψ〉).
Equivalently, we have EN(|ψ〉) = −2 log2 λmax

N , where λmax
N is the maximum fidelity per

party, which is defined as λmax
N = Λ

1
N
max.

For a quantum many-body system, one may introduce the ground-state geometric
entanglement per unit cell EN(|ψ〉), which is well-defined even in the thermodynamic
limit. Our aim is to find an efficient way to compute the maximum fidelity between a
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ground-state wave function |ψ〉 and all possible separable (unentangled) and normalized
states |φ〉 in the context of tensor networks.

A crucial step in evaluating the geometric entanglement per unit cell is how to maxi-
mize |〈φ|ψ〉| over all the possible separable states |φ〉. In this regard, a gradient-directed
method turns out to be efficient. Specifically, consider a two-site translation-invariant
matrix-product state, represented in terms of three-index tensors Ao and Ae, as shown in
Figure A7i,ii. Then, the closest separable state may be represented in terms of one-index
tensors Bo and Be, as shown in Figure A7i,iii. Here, subscripts o and e represent odd
and even sites, respectively. In Figure A7iv, we introduce the transfer matrix E〈φ|ψ〉 for
the fidelity between a ground-state wave function |ψ〉 and a separable state |φ〉, which is
constructed from two three-index tensors, Ao and Ae, and two one-index tensors, B∗o and
B∗e . In Figure A7v, we introduce the transfer matrix E〈ψ|ψ〉 for the norm of a ground-state
wave function |ψ〉, which is constructed from two three-index tensors, Ao and Ae, together
with their conjugates. In Figure A7vi, we introduce the transfer matrix E〈φ|φ〉 for the norm
of a separable state |φ〉, which is constructed from two one-index tensors, Bo and Be, to-
gether with their conjugates. Then, the fidelity per unit cell λ between a ground-state wave
function |ψ〉 and a separable state |φ〉 takes the following form:

λ =
|η〈φ|ψ〉|√

η〈ψ|ψ〉η〈φ|φ〉
, (A7)

where η〈φ|ψ〉, η〈ψ|ψ〉, and η〈φ|φ〉 are the dominant eigenvalues of the transfer matrices E〈φ|ψ〉,
E〈ψ|ψ〉, and E〈φ|φ〉 for the matrix-product state representations of 〈φ|ψ〉, 〈ψ|ψ〉, and 〈φ|φ〉,
respectively. For a normalized |ψ〉, we have η〈ψ|ψ〉 = 1.

(i) (ii) (iii)

(iv) (v) (vi)

Figure A7. (i) A three-index tensor A and a one-index tensor B. Here, s is the physical index, α and
β are the inner bond indices. (ii) A matrix-product state representation for a ground-state wave
function |ψ〉. Here, two three-index tensors Ao and Ae are attached to odd and even sites, respectively.
(iii) A matrix-product state representation for a separable state |φ〉. Here, two one-index tensors Bo

and Be are attached to odd and even sites, respectively. (iv) The fidelity between a ground-state wave
function |ψ〉 and a separable state |φ〉. The transfer matrix E〈φ|ψ〉 is constructed from the tensors Ao,
Ae, B∗o , and B∗e . (v) The norm for a ground-state wave function |ψ〉, where the transfer matrix E〈ψ|ψ〉
is constructed from Ao, Ae, and their conjugates. (vi) The norm for a separable state |φ〉, where the
transfer matrix E〈φ|φ〉 is constructed from Bo, Be, and their conjugates.

We then proceed to compute the geometric entanglement per unit cell, which involves
the optimization over all separable states. For brevity, we define F = λ2. The optimiza-
tion amounts to computing the logarithmic derivative of F with respect to B∗, which is
expressed as follows

G ≡ ∂ ln F
∂B∗

=
1

η〈φ|ψ〉

∂η〈φ|ψ〉
∂B∗

− 1
η〈φ|φ〉

∂η〈φ|φ〉
∂B∗

. (A8)
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Here, B∗ is either B∗o or B∗e . The problem, therefore, reduces to the computation of G in
the context of tensor network representations. Once G is determined, we update the real
and imaginary parts of Bs separately

<(Bs) = <(Bs) + δ<(Gs),

=(Bs) = =(Bs) + δ=(Gs).

Here, δ ∈ [0, 1) is the step size, which is tuned to be decreasing during the optimization
process. In addition, we need to normalize the real and imaginary parts of the gradient G
such that their respective largest entry remains to be unity. If λ converges, then the closest
separable state |φ〉 is achieved. Therefore, the ground-state geometric entanglement per
unit cell for a ground-state wave function |ψ〉 follows.

The argument, presented for the matrix-product states in this Appendix, may be
extended to the projected-entangled pair states [39–41] and the graded projected-entangled
pair states [42,43] suitable for representing ground-state wave functions for quantum
many-body systems in two and higher spatial dimensions [28].

Appendix C. Dualities for the Quantum Spin-s XYZ Model and the Spin-1/2 Kitaev
Model on a Honeycomb Lattice

In this Appendix, we present duality transformations for both the quantum spin-s
XYZ model and the spin-1/2 Kitaev model on a honeycomb lattice, which are induced
from the symmetric group S3 generated from the permutations with respect to x, y, and z.

Appendix C.1. The Quantum Spin-s XYZ Model

In order to treat the quantum spin-1/2 and spin-1 XYZ models on the same footing,
as a special case of the quantum spin-s XYZ model, we introduce the spin-1/2 operators
Sα

i = 1/2 σα
i (α = x, y, and z). For the quantum spin-s XYZ model, the Hamiltonian takes

the same form as Equation (5). There are five different dualities [206]:

(1) The Hamiltonian H(∆, γ) for γ ≥ 1 is dual relative to the Hamiltonian H(∆′, γ′) for
0 < γ′ ≤ 1 under a local unitary transformation U0: Sx

2i → Sx
2i, Sy

2i → Sy
2i, Sz

2i → Sz
2i,

Sx
2i+1 → Sx

2i+1, Sy
2i+1 → −Sy

2i+1 and Sz
2i+1 → −Sz

2i+1: H(∆, γ) = k(∆, γ)U0H(∆′, γ′)
U†

0 , with ∆′ = −∆/γ, γ′ = 1/γ, and k(∆, γ) = γ. The Hamiltonian is self-dual when
∆ = 0 and γ = 1.

(2) Under a local unitary transformation U1: Sx
i → −Sx

i , Sy
i → Sz

i , Sz
i → Sy

i , we have
H(∆, γ) = k(∆, γ)U1H(∆′, γ′)U†

1 , with ∆′ = (2− 2γ)/(1+γ+∆), γ′ = (1+γ−∆)/
(1 + γ + ∆), and k(∆, γ) = (1 + γ + ∆)/2. The Hamiltonian on the line (γ = 1− ∆) is
self-dual.

(3) Under a local unitary transformation U2: Sx
2i → −Sx

2i, Sy
2i → −Sz

2i, Sz
2i → −Sy

2i, Sx
2i+1

→ −Sx
2i+1, Sy

2i+1 → Sz
2i+1 and Sz

2i+1 → Sy
2i+1, we have H(∆, γ) = k(∆, γ)U2H(∆′, γ′)

U†
2 , with ∆′ = (2γ− 2)/(1 + γ− ∆), γ′ = (γ + ∆ + 1)/(1 + γ− ∆), and k(∆, γ)

= (1 + γ− ∆)/2. The Hamiltonian on the line (γ = 1 + ∆) is self-dual.
(4) Under a local unitary transformation U3: Sx

i → Sz
i , Sy

i → −Sy
i , Sz

i → Sx
i , we have

H(∆, γ) = k(∆, γ)U3H(∆′, γ′)U†
3 , with ∆′ = (2+ 2γ)/(1−γ+∆), γ′ = (γ+∆− 1)/

(1− γ + ∆), and k(∆, γ) = (1− γ + ∆)/2. The Hamiltonian on the line (γ = −1 + ∆)
is self-dual.

(5) Under a local unitary transformation U4: Sx
2i → −Sz

2i, Sy
2i → −Sy

2i, Sz
2i → −Sx

2i, Sx
2i+1

→ Sz
2i+1, Sy

2i+1 → −Sy
2i+1 and Sz

2i+1 → Sx
2i+1, we have H(∆, γ) = k(∆, γ)U4H(∆′, γ′)

U†
4 , with ∆′ = (2γ + 2)/(γ + ∆− 1), γ′ = (−1 + γ− ∆)/(1− γ− ∆), and k(∆, γ)

= (1− γ− ∆)/2. The Hamiltonian on the line (γ = −1− ∆) is self-dual.

Here, we point out that the symmetries of the Hamiltonian (3) under the permutations
with respect to x, y, and z have been discussed in Ref. [125], although they are not treated
as dualities.
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In addition, dualities discussed for the quantum spin-s XYZ model in one spatial
dimension may be extended to the quantum XYZ model with arbitrary spin s on a bipartite
lattice in any spatial dimensions. Moreover, it is also possible to extend to the quantum
XYZ model with arbitrary spin s on a non-bipartite lattice in any spatial dimensions, with
the quantum spin-1/2 XYZ model on a triangular lattice as an illustrative example.

Appendix C.2. The Spin-1/2 Kitaev Model on a Honeycomb Lattice

The spin-1/2 Kitaev model on a honeycomb lattice is described by the Hamiltonian (6).
Here, we set Jz = 1 for brevity. Then, the Hamiltonian (6) is denoted as H(Jx, Jy).

The Hamiltonian H(Jx, Jy) (6) is symmetrical with respect to two symmetric transforma-
tions:

(a) A local unitary transformation U0: Jx → Jy, Jy → Jx, σx
i → σ

y
i , σ

y
i → σx

i , and
σz

i → −σz
i , accompanied by the lattice symmetry between the x-bonds and the y-

bonds.
(b) A local unitary transformation V0:, Jx → −Jy, Jy → −Jx, σx

2i → −σ
y
2i, σ

y
2i → −σx

2i,
σz

2i → −σz
2i, σx

2i+1 → σ
y
2i+1, σ

y
2i+1 → σx

2i+1, and σz
2i+1 → −σz

2i+1, accompanied by the
lattice symmetry between the x-bonds and the y-bonds.

The Hamiltonian H(Jx, Jy) exhibits four duality transformations:

(1) The Hamiltonian H(Jx, Jy) is dual to the Hamiltonian H(J′x, J′y) under a local unitary
transformation U1: σx

i → −σx
i , σ

y
i → σz

i , σz
i → σ

y
i , accompanied by the lattice

symmetry between the y-bonds and the z-bonds, H(Jx, Jy) = k′(J′x, J′y)U1H′(J′x, J′y)U†
1 ,

with Jx = J′x/J′y, Jy = 1/J′y, and k′(J′x, J′y) = 1/J′y. The Hamiltonian is self-dual when
Jy = 1.

(2) The Hamiltonian H(Jx, Jy) is dual to the Hamiltonian H′(J′x, J′y) under a local trans-
formation U2: σx

i → σz
i , σ

y
i → −σ

y
i , σz

i → σx
i , accompanied by the lattice symmetry

between the x-bonds and the z-bonds, H(Jx, Jy) = k′(J′x, J′y)U2H′(J′x, J′y)U†
2 , with

Jx = 1/J′x, Jy = J′y/J′x, and k′(J′x, J′y) = 1/J′x. The Hamiltonian is self-dual when
Jx = 1.

(3) For Jy < 0, the Hamiltonian H(Jx, Jy) is dual to the Hamiltonian H′(J′x, J′y) under
a local transformation U3: σx

2i → −σx
2i, σ

y
2i → −σz

2i, σz
2i → −σ

y
2i, σx

2i+1 → −σx
2i+1,

σ
y
2i+1 → σz

2i+1 and σz
2i+1 → σ

y
2i+1, accompanied by the lattice symmetry between

the y-bonds and the z-bonds, H(Jx, Jy) = k′(J′x, J′y)U3H′(J′x, J′y)U†
3 , with Jx = −J′x/J′y,

Jy = 1/J′y, and k′(J′x, J′y) = −1/J′y. The Hamiltonian is self-dual when Jy = −1.
(4) For Jx < 0, the Hamiltonian H(Jx, Jy) is dual to the Hamiltonian H′(J′x, J′y) under

a local transformation U4: σx
2i → −σz

2i, σ
y
2i → −σ

y
2i, σz

2i → −σx
2i, σx

2i+1 → σz
2i+1,

σ
y
2i+1 → −σ

y
2i+1 and σz

2i+1 → σx
2i+1, accompanied by the lattice symmetry between

the x-bonds and the z-bonds, H(Jx, Jy) = k′(J′x, J′y)U4H′(J′x, J′y)U†
4 , with Jx = 1/J′x,

Jy = −J′y/J′x, and k′(J′x, J′y) = −1/J′x. The Hamiltonian is self-dual when Jx = −1.

Appendix D. Thermodynamic Arrow of Time, Psychological/Computational Arrow of
Time, and Cosmological Arrow of Time

There are at least three arrows of time: the thermodynamic arrow of time, the psy-
chological arrow of time, and the cosmological arrow of time. Actually, ten arrows of time
have been listed in Ref. [86]. It remains to be controversial whether or not there is a single
arrow of time, which governs all physical processes.

As our everyday experience shows, we remember the past but not the future. This
defines the psychological arrow of time. The psychological arrow of time may be rephrased
as the computational arrow of time, if cognitive processes are regarded as computational.
However, how do we distinguish the future from the past given the interchangeability of
past and future with respect to the laws of microscopic physics? One possible answer is that
the observed asymmetry of past and future arises from the second law of thermodynamics,
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which states that the entropy of an isolated thermodynamic system increases monotonically.
This defines the thermodynamic arrow of time. The cosmological arrow of time arises
from the observation that the universe has been expanding since the big bang. In some
sense, the present is an idealized point between the past and the future. Many efforts
have been made in an attempt to understand why the thermodynamic arrow of time, the
psychological/computational arrow of time, and the cosmological arrow of time should
align with each other (see, e.g., Hawking [207], Wolpert [208], Hartle [209] and Mlodinow
and Brun [210]).

However, time-reversal invariance and reversibility are not the same but indepen-
dent from each other [211]. Indeed, time-reversal invariance is a property of a dynamical
equation, such as the Schrödinger equation, thus involving a set of its solutions, whereas
reversibility is a property of one single solution of the dynamical equation. Therefore, a
plausible resolution to the apparent contradiction between the interchangeability of past
and future with respect to the laws of microscopic physics and the irreversibility of phys-
ical processes observed in macroscopic phenomena is based on a conceptual distinction
between microscopic time and macroscopic time [212]: Under the time-reversal symmetry
operation, the former is symmetrical, but the latter is asymmetrical. In this sense, the mys-
tery regarding arrows of time solely concerns macroscopic time. In addition, microscopic
time always exists due to quantum fluctuations arising from the uncertainty principle,
whereas macroscopic time may be absent in certain circumstances.

According to Mlodinov and Brun [210], the key to unlock this mystery lies in the
presence of a physical system that can function as a memory or a record in the sense of
preserving a record of the state of some other system. In our opinion, it is information
storage involved in a memory or record that is a key ingredient underlying the arrows
of time, including the thermodynamic arrow of time, the psychological/computational
arrow of time, and the cosmological arrow of time. This is due to the fact that, for any
macroscopic time, there must exist a physical process that can, in principle, serve as
a clock to track and record it. With this observation in mind, we may single out the
psychological/computational arrow of time as the master arrow of time.

However, no systematic theoretical description is available for the psychological/
computational arrow of time, in contrast to the thermodynamic arrow of time and the
cosmological arrow of time. Actually, not only is the notion of entropy available to measure
degree of disorder in a thermodynamic system but also the entire machinery based on
thermodynamics offers a full description of physical properties of the system. There is
also a plethora of theories on the big bang to describe different scenarios for the cosmo-
logical arrow of time. In this aspect, fidelity mechanics may be regarded as an attempt
to understand the psychological/computational arrow of time in the context of quantum
many-body systems and in a sense a specific physical meaning has been attached to the
present, the past, and the future via information storage.

Appendix E. Three Theorems in Quantum Information Science

We recall three theorems in quantum information science: the no-cloning theorem, the
no-deleting theorem, and the no-hiding theorem.

(a) No-cloning theorem: It is impossible to create an identical copy of an arbitrary unknown
quantum state. The theorem was first articulated in Refs. [213,214]. It has profound
implications in quantum information processing. Mathematically, the no-cloning
theorem states that for an arbitrary normalized state |ψ〉A on a system A and an
arbitrary normalized state |e〉B on a system B, there is no unitary operator U satisfying
U|ψ〉A|e〉B = exp iα|ψ〉A|ψ〉B, with α depending on |ψ〉 and |e〉.

(b) No-deleting theorem: It appears as time-reversed and so is dual to the no-cloning
theorem. Given two copies of some arbitrary quantum state, it is impossible to
delete one of the copies [215]. Mathematically, suppose |ψ〉 is an unknown quantum
state in a Hilbert space. Then, there is no linear isometric transformation U such that
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U|ψ〉A|ψ〉B|A〉C = |ψ〉A|0〉B|A′〉C, with the final state of the ancilla being independent
of |ψ〉.

(c) No-hiding theorem: If information is missing from a given system due to interaction
with the environment, then it is simply residing somewhere else. In other words, the
missing information cannot be hidden in the correlations between a system and its environment.
It was formalized in Ref. [216] and experimentally confirmed in Ref. [217].

The theorems follow from the linearity of quantum mechanics. In fact, the principle of
superposition states that when two evolving states solve the Schrödinger equation, any
linear combination of the two is also a solution. As a corollary, perfect copying can be
achieved only when states involved are mutually orthogonal to each other [218]. That is,
for a collection of mutually orthogonal states, it is possible to set up a quantum copier
exclusively tailored to this set of mutually orthogonal states.

Appendix F. Three Extensions

Appendix F.1. Fidelity Internal Energy U(x), Fidelity Entropy S(x), and Fidelity Temperature
T(x) When the Ground-State Energy Density e(x) Is Always Positive

In Section 2, when fidelity internal energy U(x) was introduced, we required that the
ground-state energy density e(x) always be negative for any x. This is not necessary. In
fact, it is legitimate to define fidelity internal energy U(x), if e(x) > 0 for any x. Specifically,
we have the following:

U(x) = ± ln (
e(x)
e(xc)

)V(x) + U0, (A9)

with U0 being an additive constants. Here, +/− corresponds to a monotonically increas-
ing/decreasing e(x) with x, respectively, and V(x) is a positive-valued function V(x)
satisfying a singular first-order differential equation:

Vx(x) = α(x) V(x), (A10)

where α(x) is defined to be the following

α(x) = ∓ (ln (e(x)/e(xc)))x

Sx(x)± ln (e(x)/e(xc))
. (A11)

We emphasize that α(x) is always negative, thus guaranteeing that V(x) monoton-
ically decreases with x. Meanwhile, fidelity entropy S(x) and fidelity temperature T(x)
are left intact: S(x) = −2

∫ x
xc

ln d(x, y)dy + S0, with S0 being an additive constant, and
T(x) = −Vx(x).

Appendix F.2. Fidelity Entropy, Fidelity Temperature, and Fidelity Internal Energy for
Non-Translation-Invariant Quantum Many-Body Systems

Recall that the ground-state fidelity between the two non-translation-invariant ground
states |ψ(x)〉 and |ψ(y)〉 takes the form F(x, y) = |〈ψ(x)|ψ(y)〉| and scales exponentially
with the system size N: F(x, y) = [da(x, y)]N , with da(x, y) being the ground-state fidelity
per lattice site (see Appendix A for the definition, which is valid for both translation-
invariant and non-translation-invariant systems). Here, the ground-state fidelity per lattice
site da(x, y) is understood as an average over the entire system for the non-translation-
invariant quantum many-body systems, in contrast to that for translation-invariant quan-
tum many-body systems. In addition, if we assume that ej(x) is negative for all j, then the
average ground-state energy density ea(x) is, up to a possible sign, defined as a geometric
average

ea(x) = ± N
√

e1(x)e2(x)...eN(x). (A12)

Here, it takes a plus sign “+” if N is odd and a minus sign “-” if N is even, and ej(x)
is the ground-state energy density at the j-th lattice site. Physically, this is due to the fact
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that, for a translation-invariant quantum many-body system, as argued in Section 2, a
logarithmic function ln e(x) in the definition of fidelity internal energy (10) appears as
an integral of a relative uncertainty ∆e(x)/e(x), whereas for a non-translation-invariant
system, one may anticipate that the relative uncertainty ∆e(x)/e(x) is replaced by the
average relative uncertainty, i.e., ∑j ∆ej(x)/ej(x) divided by the system size N. As a result,
the geometric average ea(x) appears in the definition of fidelity internal energy.

With the above remarks in mind, fidelity internal energy U f (x), fidelity tempera-
ture Tf (x), and fidelity entropy S f (x) are determined as follows:

U f (x) = ± ln
ea(x)
ea(xc)

Va(x) + U0, (A13)

Tf (x) = −∂Va(x)
∂x

, (A14)

and
S f (x) = −2

∫ x

xc
ln da(x, y)dy + S0, (A15)

respectively. Here, +/− corresponds to a monotonically decreasing/increasing ea(x)
with x, when ea(x) is assumed to be negative for any x, and S0 and U0 are additive
constants. Note that Va(x), as a positive-valued function of x, satisfies the following
first-order differential equation:

∂Va(x)
∂x

= αa(x) Va(x), (A16)

where αa(x) is defined to be the following

αa(x) = ∓ (ln (ea(x)/ea(xc)))x

Sx(x)± ln (ea(x)/ea(xc))
. (A17)

Here, αa(x) is always negative, thus guaranteeing that Va(x) monotonically decreases
with x.

That is, they take exactly the same form as their counterparts for translation-invariant
quantum many-body systems when ej(x) are negative for all j. The same argument works
if ej(x) are positive for all j, similarly to the translation-invariant systems, as discussed
in the preceding subsection. The situation becomes more complicated if not all ej(x) are
negative. Generically, there are N roots, as solutions to the algebraic equations ej(x)+ b = 0,
j = 1, 2, . . . , N, for a non-translation-invariant system. Hence, it is necessary to extend
the approach developed in Section 5 for translation-invariant systems. Physically, the
total amount of fidelity work needed to be performed in order to access N roots scales
with N linearly in contrast to the case for a translation-invariant system, in which fidelity
work needed to be performed to access one root, as a solution to the algebraic equation
e(x) + b = 0, does not scale with N (cf. Section 5).

To justify our choice for the geometric average ea(x), we remark that if the arithmetic
average ē(x) is chosen in the definition of fidelity internal energy, then there is only one root
of the algebraic equation ē(x)+ b = 0. Fidelity work is needed to be performed to access the
root, and it does not scale with N, similarly to the case for a translation-invariant system.
Here, the arithmetic average ē(x) is defined as ē(x) = (e1(x) + e2(x) + . . . + eN(x)/N.
However, the root of the algebraic equation ē(x) + b = 0 is shifted away from any roots of
the set of the algebraic equations ej(x) + b = 0, j = 1, 2, . . . , N.

Physically, the adoption of arithmetic average simply means that an information pro-
cessor is only concerned about the behaviors of the (arithmetically) averaged ground-state
energy density ē(x), with the uncertainty being defined by ∆ē(x)/ē(x) = (∆e1(x) + ∆e2(x)
+ . . . + ∆eN(x))/(Nē(x)), whereas the adoption of the geometric average means that an
information processor is concerned with uncertainty ∆ej(x)/ej(x) on each local bond at



Entropy 2022, 24, 1306 90 of 157

the lattice site j; thus, the uncertainty involved is [∆e1(x)/e1(x) + ∆e2(x)/e2(x)
+ . . . + ∆eN(x)/eN(x)]/N. In our opinion, the geometric average offers much more infor-
mation, and it is consistent with everyday experience gained from a simulation of quantum
many-body system on computers. This quantifies an observation that the computational
costs to solve a non-translation-invariant system are, generally speaking, higher.

In principle, it is possible to develop tensor network algorithms to perform efficient nu-
merical simulations for non-translation-invariant quantum many-body systems. In this regard,
a few powerful tensor network algorithms are available in the literature [39–41,219–222].

Appendix F.3. Fidelity Entropy, Fidelity Temperature, and Fidelity Internal Energy at
Finite Temperature

Here, we briefly describe an extension of fidelity mechanics to finite temperature when
a quantum many-body system is at an equilibrium state, described in terms of a quantum
mixed state ρN(x), with x being a dominant control parameter. Here, the dependence of
ρN(x) on an auxiliary control parameter τ is neglected.

At finite temperature, the thermal state fidelity FN(x, y), between two quantum mixed
states ρN(x) and ρN(y), takes the following form

FN(x, y) = Tr

√√
ρN(x)ρN(y)

√
ρN(x). (A18)

The thermal state fidelity per lattice site d(x, y) is defined as d(x, y) = limN→∞
FN(x, y)1/N , with N being the system size. As it turns out, d(x, y) is well-defined in
the thermodynamic limit. In this case, the free energy density f (x) plays the same role as
the ground-state energy density e(x) at zero temperature.

Suppose a quantum many-body system undergoes a thermal phase transition at
critical temperature Tc. Then, temperature T is a control parameter in addition to the
other control parameters, which appear to be the coupling parameters in the Hamiltonian.
Since the dependence of fidelity mechanical-state functions on the coupling parameters has
been extensively discussed in Section 2, we focus on the situation that a dominant control
parameter x is chosen to be relevant to T. If 0 < T < Tc, one may choose x = T. If T > Tc,
one may choose x = T/(1 + T).

With this fact in mind, fidelity internal energy U f (x), fidelity temperature Tf (x), and
fidelity entropy S f (x) are defined as follows:

U f (x) = ± ln( f (x)/ f (xc))V(x) + U0, (A19)

Tf (x) = −Vx(x), (A20)

and
S f (x) = −2

∫ x

xc
ln d(x, y)dy + S0, (A21)

where V(x) is determined from a singular first-order differential equation

Vx(x) = α(x)V(x), (A22)

with

α(x) = ∓ (ln ( f (x)/ f (xc)))x

Sx(x)± ln ( f (x)/ f (xc))
. (A23)

Here, +/− corresponds a monotonically decreasing/increasing f (x) with x, assuming
that f (x) is negative for any x.

In order to efficiently evaluate fidelity mechanical-state functions at finite temperature,
it is necessary to develop finite-temperature tensor network algorithms [223–225]. In
fact, the thermal-state fidelity per lattice site has been introduced to signal thermal phase
transitions for quantum many-body systems at finite temperature [225].
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Appendix G. Scaling Entropy

In this Appendix, we focus on scaling entropy in non-principal regimes, which are
dual relative to a given principal regime for the quantum spin-1/2 XYZ model, the quantum
spin-1 XYZ model, and the spin-1/2 Kitaev model on a honeycomb lattice, according to a
prescription described in Section 2 about scaling entropy. Since the contribution to fidelity
entropy from the ground-state fidelity per lattice site is the same for all dual regimes, the
continuity requirement for fidelity entropy reduces to that for scaling entropy. Here, we
remark that a principal part and its dual image parts share the same dominant control
parameter x, although its mathematical expression depends on a specific part.

Appendix G.1. The Quantum Spin-1/2 XYZ Model

For the quantum spin-1/2 XYZ model, with γ ≥ 0, there are twelve regimes that are
separated into two groups, with six regimes in each group that are dual to each other:
Regime I, regime III, regime V, regime VII, regime IX, and regime XI are dual to each other,
whereas regime II, regime IV, regime VI, regime VIII, regime X, and regime XII are dual
to each other. Here, we chose regime I and regime II as the two principal regimes. As
it turns out, the duality transformations are induced from the symmetric group S3 with
respect to x, y, and z and from the cyclic group Z2 generated from a local unitary operation:
σx

2i → σx
2i, σ

y
2i → σ

y
2i, σz

2i → σz
2i, σx

2i+1 → σx
2i+1, σ

y
2i+1 → −σ

y
2i+1, and σz

2i+1 → −σz
2i+1. In

the (∆, γ) plane, subgroup Z+
2 , generated from an exchange between x and y, induces a

symmetric transformation with γ ↔ −γ. Therefore, we need to consider a left or right
coset that induces two primary duality transformations induced from S3, with regime I,
regime III, and regime V in one group and regime II, regime IV, and regime VI in the other
group. First, regime I and regime III share the self-dual line (γ = 1− ∆ with 0 < ∆ < 1),
on which the ground-state energy density is not monotonic, although it is monotonic with
x on the semi-self-dual line (∆ = 0), with x = γ in regime I and on the semi-self-dual line
(γ = 1 with 0 < ∆ < 2), with x = (2− ∆)/(2 + ∆) in regime III. Thus, it is necessary to
perform a re-parametrization operation on the self-dual line (γ = 1− ∆ with 0 < ∆ < 1).
Note that the extent of the control parameters (∆, γ) is finite in regime III, but it is not finite
in regime V. Therefore, according to our discussions in Section 2, regime I, regime III, and
regime V constitute an example for the first situation. Then, we consider the group that
consists of regime II, regime IV, and regime VI. Here, regime II and regime IV share the
factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0), on which the ground-state energy
density is a constant after a re-parametrization operation, although it is monotonic with
x on the semi-self-dual line (∆ = 0 with 0 < γ < 1), with x = γ in regime II and on the
semi-self-dual line (γ = 1 with −2 < ∆ < 0), with x = (2 + ∆)/(2− ∆) in regime IV,
respectively. Note that the extent of the control parameters (∆, γ) is finite in regime IV, but
it is not finite in regime VI. Therefore, according to our discussions in Section 2, regime II,
regime IV, and regime VI constitute an example for the first situation.

Specifically, one primary duality transformation connects regime I with regime III,
and the other connects regime III with regime V. First, let us determine scaling entropy
SI

σ(x, τ) with the chosen dominant control parameter x and auxiliary control parameter
τ in regime I (cf. Section 9). Since the ground state energy density e(∆, 1 − ∆) is not
monotonic on the U(1)-symmetric line (γ = 1− ∆ with 0 ≤ ∆ ≤ 1), labelled as ii, it is
necessary to perform a re-parametrization operation in the ground state energy density
e(∆, 1 − ∆) (cf. Appendix M): e(∆, 1 − ∆) = m(x)e(x), with x = 1 − ∆/(2 − ∆) and
m(x) = 2/(1 + x). As such, the rescaled ground-state energy density e(x) after the re-
parametrization operation monotonically decreases with x on the self-dual line (γ = 1− ∆
with 0 ≤ ∆ ≤ 1). Hence, a contribution to scaling entropy Sii

σ(x) on the self-dual line
(γ = 1− ∆ with 0 ≤ ∆ ≤ 1), arising from a multiplying factor m(x), takes a minus sign
to retain consistency with the analogue of the Landauer’s principle at zero temperature.
Given a one-to-one correspondence between the auxiliary control parameter τ in regime I
and the dominant control parameter x on the self-dual line (γ = 1− ∆ with 0 ≤ ∆ ≤ 1),
this re-parametrization operation induces a contribution to scaling entropy SI

σ(x, τ) in
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regime I (cf. Appendix M): SI
σ(x, τ) = − ln mI(x, τ), with mI(x, τ) = 1 + τ/(4 − 3τ),

as a result of the continuity requirement for scaling entropy. Second, since the ground-
state energy density e(x) on the semi-self-dual line (∆ = 0 with 0 ≤ γ ≤ 1), labelled
as iii, in regime I monotonically decreases with the chosen dominant control parameter
x, with x = γ, a contribution to scaling entropy SIII

σ (x, τ) takes a minus sign to retain
consistency with the analogue of the Landauer’s principle at zero temperature. That is,
SIII

σ (x, τ) = SI
σ(x, τ) + SIII I

σ (x, τ), where SIII I
σ (x, τ) = − ln kIII I(x, τ), with kIII I(x, τ) being

a multiplying factor kIII I(x, τ) = 2/(1+ x + τ). Third, the ground-state energy density e(x)
on the semi-self-dual line (γ = 1 with 0 ≤ ∆ ≤ 2) in regime III, with x = (2− ∆)/(2 + ∆),
which is the dual image line of the semi-self-dual line (∆ = 0 with 0 ≤ γ ≤ 1), labelled
as iii, monotonically increases with x. However, as mentioned above, the ground state
energy density e(∆, 1− ∆) is not monotonic on the U(1)-symmetric line (γ = 1− ∆ with
0 ≤ ∆ ≤ 1), labelled as ii. According to our discussions in Section 2, it requires to perform
an alternative re-parametrization operation in the ground state energy density e(∆, 1− ∆):
e(∆, 1− ∆) = mA(x)eA(x), with mA(x) = 1/(2− x), to ensure that the rescaled ground-
state energy density eA(x) monotonically increases with x on the self-dual line (γ = 1− ∆
with 0 ≤ ∆ ≤ 1), labelled as ii. The existence of such an alternative re-parametrization
operation ensures that regime III, as the first dual image regime, may be treated as if
it was a principal regime, as discussed in Section 2. Hence, a contribution to scaling
entropy SV

σ (x, τ) in regime V takes a plus sign to retain consistency with the analogue of
the Landauer’s principle at zero temperature. That is, SV

σ (x, τ) = SIII
σ (x, τ) + SV III

σ (x, τ),
where SV III

σ (x, τ) = ln kV III(x, τ), with kV III(x, τ) being a multiplying factor kV III(x, τ) =
(1 + x + τ)/(1− x + τ).

Similarly, one primary duality transformation connects regime II with regime IV and
the other connects regime IV with regime VI. First, let us determine scaling entropy SII

σ (x, τ),
with the chosen dominant control parameter x and auxiliary control parameter τ in regime
II (cf. Section 9). On the factorizing-field line (γ = 1 + ∆ with −1 ≤ ∆ ≤ 0), labelled as i,
the same factorized state occurs as the ground state function, with the ground-state energy
density e(∆, 1+ ∆) = −(2+ ∆)/2. Here, a re-parametrization operation was performed (cf.
Appendix M): e(∆, 1 + ∆) = m(x)e(x), with x = 1 + ∆ and m(x) = (1 + x)/2, resulting
in the rescaled ground-state energy density e(x) = −1. As such, a contribution to scaling
entropy Si

σ(x) on the factorizing-field line (γ = 1 + ∆ with −1 ≤ ∆ ≤ 0), arising from
a multiplying factor m(x), takes a plus sign, as follows from the supplementary rule,
given that the rescaled ground-state energy density e(x) is a constant. Given a one-to-one
correspondence between the auxiliary control parameter τ in regime II and the dominant
control parameter x on the factorizing-field line (γ = 1 + ∆ with −1 ≤ ∆ ≤ 0), this re-
parametrization operation induces a contribution to scaling entropy SII

σ (x, τ) in regime II
(cf. Appendix M): SII

σ (x, τ) = ln mII(x, τ), with mII(x, τ) = (2 + τ)/2, as a result of the
continuity requirement for scaling entropy. Second, since the ground-state energy density
e(x) monotonically decreases with x on the semi-self-dual line (∆ = 0 with 0 ≤ γ ≤ 1),
labelled as iii, with x = γ, a contribution to scaling entropy SIV

σ (x, τ) in regime II takes
a minus sign to retain consistency with the analogue of the Landauer’s principle at zero
temperature. That is, SIV

σ (x, τ) = SII
σ (x, τ)SIV II

σ (x, τ), where SIV II
σ (x, τ) = − ln kIV II(x, τ),

with kIV II(x, τ) being a multiplying factor kIV II(x, τ) = 2/(1 + x− τ). Third, the ground-
state energy density e(x) monotonically increases with x on the semi-self-dual line (γ = 1
with −2 ≤ ∆ ≤ 0) in regime IV, with x = (2 + ∆)/(2− ∆), which is the dual image line
of the semi-self-dual line (∆ = 0 with 0 ≤ γ ≤ 1), labelled as iii. Hence, a contribution
to scaling entropy SIV

σ (x, τ) in regime IV takes a plus sign to retain consistency with the
analogue of the Landauer’s principle at zero temperature. That is, SVI

σ (x, τ) = SIV
σ (x, τ) +

SVI IV
σ (x, τ), where SVI IV

σ (x, τ) = ln kVI IV(x, τ), with kVI IV(x, τ) being a multiplying factor
kVI IV(x, τ) = (1 + x− τ)/(1− x− τ).

Once Sβ
σ(x, τ) is determined in each of the six regimes for γ < 1, scaling entropy

Sβ
σ(∆, γ) follows, with β = I, II, III, IV, V, and VI. That is, Sβ

σ(∆, γ) ≡ Sβ
σ(x, τ), when we

move from x and τ to ∆ and γ, meaning that x and τ are regarded as functions of ∆ and
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γ. Hence, a contribution to scaling entropy Sβ
σ(∆, γ) (β = VII, VIII, IX, X, XI, and XII)

takes the form Sσ(γ) = − ln γ for γ > 1, as follows from the primary duality transfor-
mation induced by the cyclic group Z2, with a multiplying factor of k(∆, γ) = γ. Here,
a minus sign is chosen to retain consistency with the analogue of the Landauer’s princi-
ple at zero temperature, since the ground-state energy density monotonically decreases
with x on the semi-self dual line (∆ = 0), where x = γ, as γ varies from 0 to 1. We
remark that the same sign also follows from the rule of thumb. Physically, this is consistent
with the fact that all transitions involved belong to the same Gaussian universality class.
Hence, we have SVII

σ (∆, γ) = SI
σ(−∆/γ, 1/γ)− ln γ; SVIII

σ (∆, γ) = SII
σ (−∆/γ, 1/γ)− ln γ;

SIX
σ (∆, γ) = SIII

σ (−∆/γ, 1/γ) − ln γ; SX
σ (∆, γ) = SIV

σ (−∆/γ, 1/γ) − ln γ; SXI
σ (∆, γ) =

SV
σ (−∆/γ, 1/γ)− ln γ; SXII

σ (∆, γ) = SVI
σ (−∆/γ, 1/γ)− ln γ.

Appendix G.2. The Quantum Spin-1 XYZ Model

For the quantum spin-1 XYZ model, with γ ≥ 0, there are twenty four regimes that
are separated into four groups, with six regimes in each group that are dual to each other:
Regime I, regime V, regime IX, regime XIII, regime XVII, and regime XXI are dual to each
other, regime II, regime VI, regime X, regime XIV, regime XVIII, and regime XXII are dual
to each other, regime III, regime VII, regime XI, regime XV, regime XIX, and regime XXIII
are dual to each other, whereas regime IV, regime VIII, regime XII, regime XVI, regime XX,
and regime XXIV are dual to each other. Here, we chose regime I, regime II, regime III, and
regime IV as the four principal regimes. As it turns out, the duality transformations are
induced from the symmetric group S3 with respect to x, y, and z and from the cyclic group
Z2 generated from a local unitary operation: Sx

2i → Sx
2i, Sy

2i → Sy
2i, Sz

2i → Sz
2i, Sx

2i+1 → Sx
2i+1,

Sy
2i+1 → −Sy

2i+1, and Sz
2i+1 → −Sz

2i+1. In the (∆, γ) plane, the subgroup Z+
2 , generated

from an exchange between x and y, induces a symmetric transformation with γ ↔ −γ.
Therefore, we need to consider a left or right coset that induces two primary duality
transformations, with regime I, regime V, and regime IX in one group; regime II, regime VI
and regime X in one group; regime III, regime VII, and regime XI in one group; and regime
IV, regime VIII, and regime XII in one group.

For the first group, regime I and regime V share the self-dual line (γ = 1− ∆ with
0 < ∆ < ∆c0), on which the ground-state energy density is not monotonic, although it is
monotonic with x on the semi-self-dual line (∆ = 0 with ∆c1 < ∆ < 1), with x = γ in regime
I and on the semi-self-dual line (γ = 1 with 0 < ∆ < −2 + 2∆c2), with x = (2− ∆)/(2 + ∆)
in regime V. Here, (∆c0, 1− ∆c0) denotes the Ising critical point between the Haldane phase
and the AFx phase on the self-dual line (γ = 1− ∆ with 0 < ∆ < 1); (∆c1, 0) denotes the
KT transition point between the Haldane phase and the critical XY phase on the U(1)-
symmetric line (γ = 0 with 0 < ∆ < 1); and (∆c2,−1+ ∆c2) denotes the KT transition point
between the Haldane phase and the critical XY phase on the self-dual line (γ = −1+∆ with
1 < ∆ < 2). Thus, it is necessary to perform a re-parametrization operation on the self-dual
line (γ = 1− ∆ with 0 < ∆ < ∆c0). Note that the extent of the control parameters (∆, γ) is
finite in regime V, but it is not finite in regime IX. Therefore, according to our discussions in
Section 2, regime I, regime V, and regime XI constitute an example for the first situation.
For the second group, regime II and regime VI share the factorizing-field line (γ = 1 + ∆
with −1 < ∆ < 0), on which the rescaled ground-state energy density is a constant after a
re-parametrization operation, although it is monotonic with x on the semi-self-dual line
(∆ = 0 with 0 < γ < 1), with x = γ in regime II and on the semi-self-dual line (γ = 1 with
−2 < ∆ < 0), with x = (2 + ∆)/(2− ∆) in regime VI. Note that the extent of the control
parameters (∆, γ) is finite in regime VI, but it is not finite in regime X. Therefore, according
to our discussions in Section 2, regime II, regime VI, and regime X constitute an example
for the first situation. For the third group, regime III and regime VII share the self-dual
line (γ = 1− ∆ with ∆c0 < ∆ < 1), on which the ground-state energy density e(x) is
monotonically decreasing with x = ∆/(2−∆)−∆c0/(2−∆c0), and regime VII and regime
XI share the self-dual line (γ = −1 + ∆ with 1 < ∆ < ∆c2), on which the ground-state
energy density e(x) is monotonically increasing with x = −1 + 2/(1 + γ). In addition,
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the ground-state energy density e(x) is monotonically decreasing on the U(1)-symmetric
line (γ = 0 with ∆c1 < ∆ < 1), with x = ∆− ∆c1 in regime III. That is, the monotonicity
of the ground-state energy density with a dominant control parameter is not consistent
on the two characteristic lines in the first dual image regime, i.e., regime VII. Therefore,
according to our discussions in Section 2, regime III, regime VII, and regime XI constitute
an example for the second situation. For the fourth group, the ground-state energy density
on the characteristic (soft) line (γ = ∆c1 − ∆ with 0 < ∆ < ∆c1) in regime IV and the
ground-state energy density on the characteristic (soft) line (γ = −1 + 2∆c2 − ∆ with
−2 + 2∆c2 < ∆ < ∆c2) in regime VIII are not monotonic, although the ground-state energy
density is monotonic with x on the U(1)-symmetric line (γ = 0 with 0 < ∆ < ∆c1), with x =
∆− ∆c1 in regime IV and on the semi-self dual line (γ = 1 with −2 + 2∆c2 < ∆ < 1), with
x = (2− ∆)/(2 + ∆) in regime VIII. Thus, it is necessary to perform a re-parametrization
operation on the characteristic (soft) line (γ = ∆c1 − ∆ with 0 < ∆ < ∆c1) in regime IV and
on the characteristic (soft) line (γ = −1 + 2∆c2 − ∆ with −2 + 2∆c2 < ∆ < ∆c2) in regime
VIII. Note that the extent of the control parameters (∆, γ) is finite in regime VIII, but it is
not finite in regime XII. Therefore, according to our discussions in Section 2, regime IV,
regime VIII, and regime XII constitute an example for the first situation.

Specifically, for the first group, one primary duality transformation connects regime
I with regime V and the other connects regime V with regime IX. First, let us determine
scaling entropy SI

σ(x, τ), with the chosen dominant control parameter x and auxiliary
control parameter τ in regime I (cf. Section 11). Since the ground state energy density
e(∆, 1− ∆) is not monotonic on the U(1)-symmetric line (γ = 1− ∆ with 0 ≤ ∆ ≤ ∆c0),
labelled as ii, it is necessary to perform a re-parametrization operation in the ground
state energy density e(∆, 1 − ∆) (cf. Appendix O): e(∆, 1 − ∆) = m(x)e(x), with x =
∆c0/(2−∆c0)−∆/(2−∆) and m(x) = (∆c0/(2−∆c0) + 1)/(x + 1). As such, the rescaled
ground-state energy density e(x) after the re-parametrization operation monotonically
decreases with x on the self-dual line (γ = 1− ∆ with 0 ≤ ∆ ≤ ∆c0). A re-parametrization
operation was performed in the ground state energy density eI(∆, γ) (cf. Appendix O) in
regime I: eI(∆, γ) = mI(x, τ)eI(x, τ), with mI(x, τ) = (∆c/(2− ∆c) + 1)/(x + 1), to ensure
that the rescaled ground state energy density eI(x, τ) monotonically decreases with x for
a fixed τ. Hence, a contribution to scaling entropy SI

σ(x, τ) in regime I, arising from a
multiplying factor mI(x, τ), takes a minus sign to retain consistency with the analogue of
the Landauer’s principle at zero temperature. That is, SI

σ(x, τ) = − ln mI(x, τ). Second,
since the ground-state energy density e(x) monotonically decreases with x on the semi-self-
dual line (∆ = 0 with ∆c1 ≤ γ ≤ 1), labelled as vi, with x = γ in regime I, a contribution to
scaling entropy SV

σ (x, τ) takes a minus sign to retain consistency with the analogue of the
Landauer’s principle at zero temperature. That is, SV

σ (x, τ) = SI
σ(x, τ) + SV I

σ (x, τ), where
SV I

σ (x, τ) = − ln kV I(x, τ), with kV I(x, τ) being a multiplying factor kV I(x, τ) = 2/(1+ τ).
Third, the ground-state energy density e(x) monotonically increases with x on the semi-self-
dual line (γ = 1 with 0 ≤ ∆ ≤ −2 + 2∆c2), with x = (2− ∆)/(2 + ∆) in regime V, which
is the dual image line of the semi-self-dual line (∆ = 0 with ∆c1 ≤ γ ≤ 1), labelled as vi.
However, as mentioned above, the ground state energy density e(∆, 1−∆) is not monotonic
on the U(1)-symmetric line (γ = 1 − ∆ with 0 ≤ ∆ ≤ ∆c0), labelled as ii. According
to our discussions in Section 2, it requires to perform an alternative re-parametrization
operation in the ground state energy density e(∆, 1− ∆): e(∆, 1− ∆) = mA(x)eA(x), with
mA(x) = (2−∆c0)/(2− 2x+∆c0x), to ensure that the rescaled ground-state energy density
eA(x) monotonically increases with x on the self-dual line (γ = 1− ∆ with 0 ≤ ∆ ≤ ∆c0),
labelled as ii. The existence of such an alternative re-parametrization operation ensures
that regime V, as the first dual image regime, may be treated as if it was a principal
regime, as discussed in Section 2. Hence, a contribution to scaling entropy SIX

σ (x, τ) takes
a plus sign to retain consistency with the analogue of the Landauer’s principle at zero
temperature. That is, SIX

σ (x, τ) = SV
σ (x, τ) + SIX V

σ (x, τ), where SIX V
σ (x, τ) = ln kIX V(x, τ),

with kIX V(x, τ) being a multiplying factor kIX V(x, τ) = (1 + τ)/(5− 4/(x0 − x + 1)− τ).
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Here, x0 = ∆c/(2− ∆c), with (∆c, τ − ∆c) denoting the Ising critical point between the
Haldane phase and the AFx phase.

Similarly, for the second group, one primary duality transformation connects regime
II with regime IV and the other connects regime IV with regime X. First, let us determine
scaling entropy SII

σ (x, τ), with the chosen dominant control parameter x and auxiliary
control parameter τ in regime II (cf. Section 11). On the factorizing-field line (γ = 1 + ∆
with −1 ≤ ∆ ≤ 0), labelled as iv, the same factorized state occurs as the ground state
function, with the ground-state energy density e(∆, 1 + ∆) = −(2 + ∆)/2. Here, a re-
parametrization operation was performed (cf. Appendix O): e(∆, 1 + ∆) = m(x)e(x), with
x = 1 + ∆ and m(x) = (1 + x)/2, resulting in the rescaled ground-state energy density
e(x) = −1. As such, a contribution to scaling entropy Siv

σ (x) on the factorizing-field
line (γ = 1 + ∆ with −1 ≤ ∆ ≤ 0), arising from a multiplying factor m(x), takes a plus
sign, as follows from the supplementary rule, given that the rescaled ground-state energy
density e(x) is a constant. Given a one-to-one correspondence between the auxiliary control
parameter τ in regime II and the dominant control parameter x on the factorizing-field line
(γ = 1 + ∆ with −1 ≤ ∆ ≤ 0), this re-parametrization operation induces a contribution
to scaling entropy SII

σ (x, τ) in regime II (cf. Appendix O): SII
σ (x, τ) = ln mII(x, τ), with

mII(x, τ) = (2 + τ)/2, as a result of the continuity requirement for scaling entropy. Second,
since the ground-state energy density e(x) monotonically decreases with x on the semi-
self-dual line (∆ = 0 with 0 ≤ γ ≤ 1), with x = γ in regime II, labelled as v, a contribution
to scaling entropy SVI

σ (x, τ) takes a minus sign to retain consistency with the analogue of
the Landauer’s principle at zero temperature. That is, SVI

σ (x, τ) = SII
σ (x, τ) + SVI II

σ (x, τ),
where SVI II

σ (x, τ)− ln kVI II(x, τ), with kVI II(x, τ) being a multiplying factor kVI II(x, τ) =
2/(1 + x− τ). Third, the ground-state energy density e(x) monotonically increases with x
on the semi-self-dual line (γ = 1 with−2 ≤ ∆ ≤ 0), with x = (2+ ∆)/(2−∆) in regime VI,
which is the dual image line of the semi-self-dual line (∆ = 0 with 0 ≤ γ ≤ 1), labelled as
v. Hence, a contribution to scaling entropy SX

σ (x, τ) in regime X takes a plus sign to retain
consistency with the analogue of the Landauer’s principle at zero temperature. That is,
SX

σ (x, τ) = SVI
σ (x, τ) + SX VI

σ (x, τ), where SX VI
σ (x, τ) = ln kX VI(x, τ), with kX VI(x, τ) being

a multiplying factor kX VI(x, τ) = (1 + x− τ)/(1− x− τ).
Similarly, for the third group, one primary duality transformation connects regime

III with regime VII and the other connects regime III with regime XI. First, scaling en-
tropy SIII

σ (x, τ) is equal to 0, with the chosen dominant control parameter x and auxiliary
control parameter τ in regime III (cf. Section 11). Second, since the ground-state en-
ergy density e(x) monotonically decreases with x on the U(1)-symmetric line (γ = 0
with ∆c1 ≤ ∆ ≤ 1), labelled as i, with x = ∆ − ∆c1 and on the U(1)-symmetric line
(γ = 1−∆ with ∆c0 ≤ ∆ ≤ 1), labelled as iii, with x = ∆/(2−∆)−∆c0/(2−∆c0) in regime
III, a contribution to scaling entropy SVII

σ (x, τ) takes a minus sign to retain consistency
with the analogue of the Landauer’s principle at zero temperature. That is, SVII

σ (x, τ) =
SIII

σ (x, τ) + SVII III
σ (x, τ), where SVII III

σ (x, τ) = − ln kVII III(x, τ), with kVII III(x, τ) being a
multiplying factor kVII III(x, τ) = 2/(1 + τ). Third, from the same reasoning as in regime
VII, a contribution to scaling entropy SXI

σ (x, τ) in regime XI takes a minus sign to retain
consistency with the analogue of the Landauer’s principle at zero temperature. That is,
SXI

σ (x, τ) = SIII
σ (x, τ) + SXI III

σ (x, τ), where SXI III
σ (x, τ) = − ln kXI III(x, τ) and kXI III(x, τ)

are multiplying factors kXI III(x, τ) = 2/(5− 4/(x + x0 + 1)− τ). Here, we remark that it
is also legitimate to choose regime XI as a principal regime, with regime VII and regime
III as the first and second dual image regimes, respectively. As a result, contributions to
scaling entropies SVII

σ (x, τ) in regime VII and regime III, arising from multiplying factors
kVII XI(x, τ) and kIII XI(x, τ), respectively, take a plus sign to retain consistency with the
analogue of the Landauer’s principle at zero temperature.

Similarly, for the fourth group, one primary duality transformation connects regime
IV with regime VIII and the other connects regime VIII with regime XII. First, let us
determine scaling entropy SIV

σ (x, τ) with the chosen dominant control parameter x and
auxiliary control parameter τ in regime IV (cf. Section 11). On the characteristic (soft) line
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(γ = ∆c1 − ∆ with 0 ≤ ∆ ≤ ∆c1), labelled as vii, a boundary between regime I and regime
IV, a re-parametrization operation was performed in the ground state energy density
e(∆, ∆c1 − ∆) (cf. Appendix O): e(∆, ∆c1 − ∆) = m(x)e(x), with x = ∆c1/(2 − ∆c1) −
∆/(2− ∆) and m(x) = (∆c1/(2− ∆c1) + 1)/(x + 1). This re-parametrization operation is
induced from the re-parametrization operation with m(x) = (∆c0/(2− ∆c0) + 1)/(x + 1)
on the self-dual line (γ = 1− ∆ with 0 ≤ ∆ ≤ ∆c0), on which the ground state energy
density e(∆, 1−∆) is not monotonic. As such, the rescaled ground-state energy density e(x)
after the re-parametrization operation monotonically decreases with x on the characteristic
(soft) line (γ = ∆c1 − ∆ with 0 ≤ ∆ ≤ ∆c1). The continuity requirement for scaling
entropy demands to perform a re-parametrization operation in the ground state energy
density eIV(∆, γ) (cf. Appendix O) in regime IV: eIV(∆, γ) = mIV(x, τ)eIV(x, τ), with
mIV(x, τ) = (τ/(2− τ) + 1)/(x + 1), which ensures that the ground state energy density
eIII(x, τ) monotonically decreases with x for a fixed τ. Hence, a contribution to scaling
entropy SIV

σ (x, τ) in regime IV, arising from a multiplying factor mIV(x, τ), takes a minus
sign to retain consistency with the analogue of the Landauer’s principle at zero temperature.
That is, SIV

σ (x, τ) = − ln mIV(x, τ). Second, since the ground-state energy density e(x)
monotonically decreases with x on the semi-self-dual line (∆ = 0 with 0 ≤ γ ≤ ∆c1), with
x = γ in regime IV, labelled as viii, a contribution to scaling entropy SVIII

σ (x, τ) takes a minus
sign to retain consistency with the analogue of the Landauer’s principle at zero temperature.
That is, SVIII

σ (x, τ) = SIV
σ (x, τ) + SVIII IV

σ (x, τ), where SVIII IV
σ (x, τ) = − ln kVIII IV(x, τ), with

kVIII IV(x, τ) being a multiplying factor kVIII IV(x, τ) = 2/(1 + τ). Third, the ground-
state energy density e(x) on the self-dual line (γ = 1 with 2∆c2 − 2 ≤ ∆ ≤ 2), with
x = (2− ∆)/(2 + ∆) in regime VIII, which is the dual image line of the semi-self-dual
line (∆ = 0 with 0 ≤ γ ≤ ∆c1), labelled as viii, monotonically increases with x. On
the characteristic (soft) line (γ = −1 + 2∆c2 − ∆ with −2 + 2∆c2 ≤ ∆ ≤ ∆c2), labelled
as ix, a re-parametrization operation is performed in the ground state energy density
e(∆, ∆c1 − ∆): e(∆,−1 + 2∆c2 − ∆) = mA(x)eA(x), with x = ∆c1/(2−∆c1)−(2−2∆c2 +
∆)/(−2+4∆c2−∆) and mA(x) = (2−∆c1)/(2−2x+∆c1x), to ensure that the rescaled
ground-state energy density eA(x) monotonically increases with x. This re-parametrization
operation is induced from the alternative re-parametrization operation, with mA(x) =
(2− ∆c0)/(2− 2x + ∆c0x), on the self-dual line (γ = 1− ∆ with 0 ≤ ∆ ≤ ∆c0), on which
the ground state energy density e(∆, 1 − ∆) is not monotonic. The existence of such
an alternative re-parametrization operation ensures that regime VIII, as the first dual
image regime, may be treated as if it was a principal regime, as discussed in Section 2.
Hence, a contribution to scaling entropy SXII

σ (x, τ) in regime XII takes a plus sign to
retain consistency with the analogue of the Landauer’s principle at zero temperature.
That is, SXII

σ (x, τ) = SVIII
σ (x, τ) + SXII VIII

σ (x, τ), where SXII VIII
σ (x, τ) = ln kXII VIII(x, τ), with

kXII VIII(x, τ) being a multiplying factor kXII VIII(x, τ) = (1 + τ)/(5− 4/(x1 − x + 1)− τ).
Here, x1 = τ/(2− τ).

Alternatively, one may treat regime I and regime IV as a composite regime I+IV, since
they are separated by the soft line (γ = ∆c1 − ∆ with 0 ≤ ∆ ≤ ∆c1), labelled as vi. As a
result of dualities induced from the symmetric group S3, two other composite regimes
emerge as its dual image composite regimes, labelled as V+VIII and IX+XII, respectively.
As such, the principal composite regime I+IV and the first dual image composite regime
V+VIII share the self-dual line (γ = 1− ∆ with 0 ≤ ∆ ≤ ∆c0), and the first dual image
composite regime V+VIII and the second dual image composite regime IX+XII share the
self-dual line (γ = −1 + ∆ with 1 ≤ ∆ ≤ ∆c2). Therefore, according to our discussions
in Section 2, the three composite regimes I+IV, V+VIII and IX+XII constitute an example
for the first situation. As a consequence, regime V and regime VIII share the same minus
sign, whereas regime IX and regime XII share the same plus sign, consistent with the above
discussions.

To ensure the continuity requirement for scaling entropy on the line of the Ising critical
points between the Haldane phase and the AFz phase, SIII

σ (x, τ) is shifted to SIII
σ (x, τ)−

SIII
s (τ), with SIII

s (τ) = SIII
σ (0, τ)− SI

σ(0, τ); SVII
σ (x, τ) is shifted to SVII

σ (x, τ)− SVII
s (τ), with
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SVII
s (τ) = SVII

σ (0, τ) − SV
σ (0, τ); SXI

σ (x, τ) is shifted to SXI
σ (x, τ) − SXI

s (τ), with SXI
s (τ) =

SXI
σ (0, τ)− SIX

σ (0, τ).
Once scaling entropy Sβ

σ(x, τ) is determined in each of the twelve regimes for γ < 1,
scaling entropy Sβ

σ(∆, γ) (β = I, II, III, IV, V, VI, VII, VIII, IX, X, XI, and XII) follows. That
is, Sβ

σ(∆, γ) ≡ Sβ
f (x, τ), when we move from x and τ to ∆ and γ, meaning that x and τ

are regarded as functions of ∆ and γ. Then, scaling entropy Sβ
σ(∆, γ) ( β = XIII, XIV, XV,

XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII and XXIV) follows from the primary duality
transformation induced by the cyclic group Z2, with a multiplying factor k(∆, γ) = γ. As
follows from the rule of thumb, at the exterior of the Haldane phase, scaling entropy takes
the same sign as that on the semi-self dual line (∆ = 0 with γ > 1), which is dual to (∆ = 0
with 0 < γ < 1), whereas in the interior of the Haldane phase, scaling entropy takes the
same sign as that on the U(1)-symmetric line (γ = −1− ∆ with ∆ < −∆c2/(−1 + ∆c2)),
which is dual to the U(1)-symmetric line (γ = −1 + ∆ with 1 < ∆ < ∆c2). That is, a
contribution to scaling entropy Sβ

f (∆, γ), with β = XIII, XIV, XVI, XVII, XVIII, XX, XXI,
XXII, and XXIV, takes the form Sσ(∆, γ) = − ln γ for γ > 1. Here, the minus sign is
chosen to retain consistency with the analogue of Landauer’s principle at zero temperature,
since the ground-state energy density monotonically decreases with x on the semi-self
dual line (∆ = 0), where x was chosen to be γ, as γ varies from 0 to 1. In contrast, a
contribution to scaling entropy Sβ

f (∆, γ), with β = XV, XIX, and XXIII, takes the form
Sσ(∆, γ) = ln γ for γ > 1. Here, the plus sign is chosen to retain consistency with the
analogue of the Landauer’s principle at zero temperature, since the ground-state energy
density e(x) on the U(1)-symmetric line (γ = −1 + ∆ with 1 < ∆ < ∆c2) in regime VII or
regime XI monotonically increases with x, where x was chosen to be −1 + 2/(1 + γ), as
γ varies from −1 + ∆c2 to 0. We remark that regime XI is a proper choice as a principal
regime, as far as the determination of the sign in scaling entropy for the primary duality
transformation induced from the cyclic group Z2 is concerned, as discussed in Section 2.
This is due to the fact that the one-to-one correspondence between the auxiliary control
parameter τ in regime III and the dominant control parameter x, with x = ∆− ∆c1, on
the U(1)-symmetric line (γ = 0 with ∆c1 ≤ ∆ ≤ 1), labelled as i, is not retained after
the primary duality transformation induced from the cyclic group Z2 is performed, in
contrast to the U(1)-symmetric line (γ = −1 + ∆ with 1 < ∆ < ∆c2). Physically, this is
consistent with the fact that two distinct types of the universality classes, the Gaussian
transitions and the KT transitions, are separated by the lines of the Ising critical points.
Hence, we have SXIII

σ (∆, γ) = SI
σ(−∆/γ, 1/γ)− ln γ; SXIV

σ (∆, γ) = SII
σ (−∆/γ, 1/γ)− ln γ;

SXV
σ (∆, γ) = SIII

σ (−∆/γ, 1/γ) + ln γ; SXVI
σ (∆, γ) = SIV

σ (−∆/γ, 1/γ)− ln γ; SXVII
σ (∆, γ) =

SV
σ (−∆/γ, 1/γ)− ln γ; SXVIII

σ (∆, γ) = SVI
σ (−∆/γ, 1/γ)− ln γ; SXIX

σ (∆, γ)
= SVII

σ (−∆/γ, 1/γ) + ln γ; SXX
σ (∆, γ) = SVIII

σ (−∆/γ, 1/γ)− ln γ; SXXI
σ (∆, γ)

= SIX
σ (−∆/γ, 1/γ)− ln γ; SXXII

σ (∆, γ) = SX
σ (−∆/γ, 1/γ)− ln γ; SXXIII

σ (∆, γ)
= SXI

σ (−∆/γ, 1/γ) + ln γ; SXXIV
σ (∆, γ) = SXII

σ (−∆/γ, 1/γ)− ln γ.
To ensure the continuity requirement for scaling entropy, SXV

σ (x, τ) is shifted to
SXV

σ (x, τ)− SXV
s (τ), with SXV

s (τ) = SXV
σ (0, τ)− SXIII

σ (0, τ); SXIX
σ (x, τ) is shifted to SXIX

σ (x, τ)
−SXIX

s (τ), with SXIX
s (τ) = SXIX

σ (0, τ)− SXVII
σ (0, τ); SXXIII

σ (x, τ) is shifted to SXXIII
σ (x, τ)

−SXXIII
s (τ), with SXXIII

s (τ) = SXXIII
σ (0, τ)− SXXI

σ (0, τ), on the line of the Ising critical points
between the Haldane phase and the AFz phase.

Appendix G.3. The Spin-1/2 Kitaev Model on a Honeycomb Lattice

For the spin-1/2 Kitaev model on a honeycomb lattice, there are twelve regimes that
are separated into two groups, with six regimes in each group being dual to each other:
regime I, regime III, regime V, regime VII, regime IX, and regime XI are dual to each other,
whereas regime II, regime IV, regime VI, regime VIII, regime X, and regime XII are dual to
each other. Here, we chose regime I and regime II as the two principal regimes. As it turns
out, duality transformations are induced from the symmetric group S3 with respect to x, y,
and z. In the (Jx, Jy) plane, the subgroup Z+

2 , generated from an exchange between x and y,
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induces a symmetric transformation with Jx ↔ Jy. Therefore, only six regimes need to be
addressed, with regime I, regime III, and regime V being in one group, and with regime
II, regime IV and regime VI being in the other group. Given that the extent of the control
parameters (Jx, Jy) in regime III is not finite, regime I, regime III, and regime V constitute an
example for the second situation, as follows from our discussions in Section 2. In addition,
since the monotonicity of the ground-state energy density on the two characteristic lines in
regime IV is not consistent, regime II, regime IV, and regime VI constitute an example for
the second situation, as follows from our discussions in Section 2.

Specifically, one primary duality transformation connects regime I with regime III
and the other connects regime I with regime V. First, scaling entropy SI

σ(x, τ) is equal
to 0, with the chosen dominant control parameter x and auxiliary control parameter
τ in regime I (cf. Section 12). Second, since the ground-state energy density ei(x) on
the Z2-symmetric line (Jx = 0 with 0 < Jy < 1), labelled as i, monotonically increases
with x = 1 − Jy, and the ground-state energy density eii(x) on the Z2-symmetric line
(Jy = Jx with 0 < Jx < 1/2), labelled as ii, monotonically increases with x = −Jx, a
contribution to scaling entropy SIII

σ (x, τ) takes a plus sign to retain consistency with the
analogue of the Landauer’s principle at zero temperature. That is, SIII

σ (x, τ) = SI
σ(x, τ) +

SIII I
σ (x, τ), where SIII I

σ (x, τ) = ln kIII I(x, τ), with kIII I(x, τ) being a multiplying factor
kIII I(x, τ) = 1/[τ/(τ + 1)− x sin arctan τ]. Third, from the same reasoning as in regime
III, a contribution to scaling entropy SIV

σ (x, τ) in regime V takes a plus sign to retain
consistency with the analogue of the Landauer’s principle at zero temperature. That is,
SV

σ (x, τ) = SI
σ(x, τ) + SV I

σ (x, τ), where SV I
σ (x, τ) = ln kV I(x, τ), with kV I(x, τ) being a

multiplying factor kV I(x, τ) = 1/[1/(τ + 1)− x cos arctan τ], in regime V.
Similarly, one primary duality transformation connects regime II with regime IV and

the other connects regime II with regime VI. First, scaling entropy SII
σ (x, τ) is equal to

0, with the chosen dominant control parameter x and auxiliary control parameter τ in
regime II (cf. Section 12). Second, since the ground-state energy density eiii(x) on the
Z2-symmetric line (Jy = 1 with 0 < Jx < 1), labelled as iii, monotonically decreases with
x = Jx and the ground-state energy density eii(x) on the Z2-symmetric line (Jy = Jx with
1/2 < Jx < 1), labelled as ii, monotonically decreases with x = Jx, a contribution to
scaling entropy SIV

σ (x, τ) takes a minus sign to retain consistency with the analogue of the
Landauer’s principle at zero temperature. That is, SIV

σ (x, τ) = SII
σ (x, τ) + SIV II

σ (x, τ), where
SIV II

σ (x, τ) = − ln kIV II(x, τ), with kIV II(x, τ) being a multiplying factor kIV II(x, τ) =
1/(τ/(τ + 1) + x sin arctan τ). Third, from the same reasoning as in regime IV, a con-
tribution to scaling entropy SVI

σ (x, τ) in regime VI takes a minus sign to retain con-
sistency with the analogue of the Landauer’s principle at zero temperature. That is,
SVI

σ (x, τ) = SII
σ (x, τ) + SVI II

σ (x, τ), where SVI II
σ (x, τ) = − ln kVI II(x, τ), with kVI II(x, τ)

being a multiplying factor kVI II(x, τ) = 1/(1/(τ + 1) + x cos arctan τ).
To ensure the continuity requirement for scaling entropy, SIII

σ (x, τ) is shifted to
SIII

σ (x, τ)− SIII
s (τ), with SIII

s (τ) = SIII
σ (0, τ)− SIV

σ (0, τ), and SV
σ (x, τ) is shifted to

SV
σ (x, τ) − SV

s (τ), with SV
s (τ) = SV

σ (0, τ) − SVI
σ (0, τ), on the line of critical points (Jy =

1 + Jx with Jx > 0).

Appendix H. A Scaling Analysis of Fidelity Entropy S(x) in the Vicinity of a
Critical/Transition Point xc and Beyond

Appendix H.1. A Scaling Analysis of Fidelity Entropy S(x) in the Vicinity of a Critical/Transition
Point xc

Here, we perform a scaling analysis of fidelity entropy S(x) in the vicinity of a criti-
cal/transition point x = xc.

For the sake of simplicity, we denote f (x, y) = ln d(x, y), with d(x, y) being the ground-
state fidelity per lattice site. Then, fidelity entropy S(x) takes the following form:
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S(x) = −2
∫ x

xc
f (x, y)dy + S0. We expand f (x, y) into a Taylor series at y = x. Keeping the

second-order term, we have the following

f (x, y) = f (x, x) +
∂ f (x, y)

∂y
|y=x (y− x) +

1
2

∂2 f (x, y)
∂y2 |y=x (y− x)2 +O((y− x)3). (A24)

Since f (x, x) = 0 and ∂ f (x,y)
∂y |y=x= 0, we have the following

f (x, y) =
1
2

∂2 f (x, y)
∂y2 |y=x (y− x)2 + O((y− x)3). (A25)

Therefore, the leading contribution to fidelity entropy S(x) is from the second-order
(partial) derivative of f (x, y) with respect to y in the vicinity of a critical point x = xc

S(x) = −1
3

∂2 f (x, y)
∂y2 |y=x (x− xc)

3. (A26)

For a quantum many-body system on a d-dimensional lattice with the rotational
invariance, the second-order derivative of f (x, y) with respect to y at y = x is related with
the critical exponent for the correlation length ν [226]

∂2 f (x, y)
∂y2 |y=x∼ (x− xc)

dν−2, (A27)

Therefore, when x is close to a critical point xc, fidelity entropy S(x) scales as follows

S(x) ∼ (x− xc)
dν+1. (A28)

Generically, for a quantum many-body system on a d-dimensional lattice without the
rotational invariance, we need to introduce ν‖ and ν⊥ to denote critical exponents for the
correlation length in the two perpendicular directions, with m and d−m being the effective
dimensions, respectively. Then, we have the following

S(x) ∼ (x− xc)
mν‖+(d−m)ν⊥+1. (A29)

As an illustrative example, we consider the transverse-field quantum Ising model
and the spin-1/2 Kitaev model on a honeycomb lattice. For the transverse-field quantum
Ising model, we have d = 1 and ν = 1. Hence, S(x) ∼ (x− xc)2. For the spin-1/2 Kitaev
model on a honeycomb lattice, we have d = 2, m = 1, ν‖ = 1, and ⊥ = 1/2 [227]. Hence,
S(x) ∼ (x− xc)5/2. Our numerical simulations confirm the predictions from this scaling
analysis.

Appendix H.2. A Scaling Analysis of the Ground-State Energy Density e(λ, γ) Close to a
Gaussian Critical Point for the Quantum Spin-1/2 XY Model

Here, we perform a scaling analysis of the ground-state energy density e(λ, γ) close to
a Gaussian critical point for the quantum spin-1/2 XY model. For this model, Gaussian
phase transitions occur at γ = 0 and −1 < λ < 1. As an exactly solvable model, the
ground-state energy density e(λ, γ) is known to be [116,118]

e(λ, γ) = −1/π
∫ π

0

√
(cos α− λ)2 + (γ sin α)2dα. (A30)
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For the sake of brevity, we denote x ≡ cos α. Then, the second-order derivative of e(λ, γ)
with respect to γ takes the following form

∂2e(λ, γ)

∂γ2 = 1/π
∫ −1

1

√
1− x2√

(x− λ)2 + (γ
√

1− x2)2
dx. (A31)

As it turns out, the integral diverges when x → λ and γ→ 0. To determine its leading
divergent behavior, we divide this integral into four parts, i.e.,

∫ −1
1 =

∫ λ+δ
1 +

∫ λ
λ+δ+

∫ λ−δ
λ +

∫ −1
λ−δ.

Given the first and last parts are regular, we only need to consider the second and third
parts. Since δ→ 0, for these two parts, the integrand in the integral (A31) is simplified into
the following

√
1− x2√

(x− λ)2 + (γ
√

1− x2)2
→

√
1− λ2√

(x− λ)2 + (γ
√

1− λ2)2
. (A32)

Hence, the leading contribution from the second and third parts is as follows

∂2e(λ, γ)

∂γ2 ∼ 2
√

1− λ2

π
ln γ + · · · . (A33)

We have numerically confirmed this scaling analysis.

Appendix I. A Universal Logarithmic Scaling of the Entanglement Entropy S(n) with a
Block Size n for Scale-Invariant States Arising from Spontaneous Symmetry-Breaking
with Type-B Goldstone Modes

In this Appendix, we restrict ourselves in considering quantum many-body systems in
one spatial dimension. As argued in Ref. [102], for a scale-invariant state, the entanglement
entropy S(n) scales logarithmically with a block size n:

S(n) =
NB
2

ln n + S0, (A34)

where NB is the number of the type-B GMs, and S0 is an additive contribution to the
entanglement entropy, which is non-universal. In addition, a field-theoretic approach [186]
predicts the following:

S(n) =
d f

2
ln n + S0, (A35)

with d f being the fractal dimension. Therefore, we are able to identify the fractal dimension
d f with the number of the type-B GMs: d f = NB, for highly degenerate ground states
arising from SSB with a type-B GM.

Historically, the pursuit for a proper classification of the GMs [105,106,176–178,180–184]
culminated in the introduction of the type-A and type-B GMs [105,181], based on a previous
observation made by Nambu [179]. In this classification, the so-called Watanabe–Brauner
matrix [180] plays a crucial role. As a result, when the symmetry group G is spontaneously
broken into H, the counting rule for the GMs may be formulated as follows:

NA + 2NB = NBG, (A36)

where NA is the number of the type-A GMs, and NBG is equal to the dimension of the coset
space G/H. Note that SSB with a type-A GM is forbidden in one spatial dimension, as
a result of the Mermin–Wagner-Coleman theorem [103], whereas SSB with a type-B GM
survives quantum fluctuations even in one spatial dimension.

It seems appropriate to mention that this formalism for scale-invariant states is suit-
able even for PT transitions in a restricted sense, if one only is concerned about the mini-
mum entanglement entropy, although they are usually characterized as a commensurate–
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incommensurate transition in the literature [63,64]. In fact, PT transitions occur as a result
of the level crossings due to the presence of a conserved U(1) generator in the Hamiltonian
(cf. Sections 7 and 10 for an illustrative example). In this sense, PT transitions are protected
by the U(1) symmetry. We remark that the entanglement entropy is not well-defined at a
PT transition point, with its value depending on how the transition point is approached, as
shown in Ref. [120] for the quantum spin-1/2 XY model. Note that the minimum value
is achieved when the PT transition point is approached along the U(1)-symmetric line.
According to the counting rule (A36), both NA = 0 and NB = 0, given NBG = 0. As a
consequence, the entanglement entropy S(n) is simply zero, consistent with the fact that
the non-degenerate ground state is unentangled at a PT transition point. This is in sharp
contrast to the SU(N + 1) FM model and the SU(2) CF phase [102], which feature highly
degenerate and highly entangled ground states arising from SSB with type-B GMs. In other
words, a PT transition point offers a trivial example for scale-invariant states.

A similar argument also applies to the IC transitions, which interpolate between the
KT transitions and PT transitions for the quantum XXZ model in a magnetic field, if one
only concerns about the minimum entanglement entropy. A notable difference between
the IC transitions and the PT transitions is that the ground states at the transition points
are entangled but saturated. Therefore, the scaling relations (A34) and (A35) are still valid,
with d f = NB = 0. In addition, the counting rule (A36) is satisfied, with both NA = 0
and NB = 0, and NBG = 0. Here, we anticipate that the entanglement entropy is also not
well-defined at an IC transition point, with its value depending on how the transition point
is approached. However, such a ground state is not scale-invariant due to the fact that the
minimum entanglement entropy is nonzero.

We remark that highly degenerate and highly entangled ground states arising from
SSB with a type-B GM provide a specific example for scale-invariant quantum states (cf. a
speculation that scale invariance implies conformal invariance [228]).

Appendix J. The Bond-Centered Nonlocal Order Parameter for the
Symmetry-Protected Topological Phases and the Site-Centered Nonlocal Order
Parameter for the Symmetry-Protected Trivial Phases

In this Appendix, we recall the definition of the bond-centered nonlocal order param-
eter for the SPT phases and the definition of the site-centered nonlocal order parameter
for the SPt phases and describe an efficient method for computing them in the context of
tensor network algorithms [39–41,46–48,67–69].

A ground-state wave function |ψ〉, generated from the iTEBD algorithm [46–48] and
the iDMRG algorithm [67–69], is expressed in terms of a matrix-product state representation,
which is invariant under the operation of the two-site translation. The bond-centered non-
local order parameter O2n is defined in terms of the bond-centered inversion I(1,2n), which
is the inversion on a segment from 1 to 2n

O2n ∝ 〈ψ | I(1,2n) | ψ〉. (A37)

A graphical representation of the bond-centered non-local order parameter O2n is
shown in Figure A8i, which is the overlap of a ground-state wave function ψ with its
twisted version, which results from the action of the bond-centered inversion on a segment
from 1 to 2n. Then, the overlap is untwisted by reversing the segment by means of the
unitary transformations UI,A and UI,B, as shown in Figure A8ii. Here, UI,A and UI,B are
unitary transformations, generated from the action of the bond-centered inversion I(1,2n)

on |ψ〉 in a matrix-product state representation: ΓT
I,A = exp iθI,AU†

I,AΓI,AUI,B and ΓT
I,B

= exp iθI,BU†
I,BΓI,BUI,A, with θI,A and θI,B being the phase factors. When n becomes large

enough, we only need to keep the dominant eigenvector of the transfer matrix E, which
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has been defined in Appendix D. For the segment consisting of n bonds of the type A− B,
we have the following

O =
Tr(UT

I,AU†
I,Aλ4

B)

Tr(λ4
B)

. (A38)

For the segment consisting of n bonds of the type B− A, we have the following

O =
Tr(UT

I,BU†
I,Bλ4

A)

Tr(λ4
A)

. (A39)

Figure A8. A graphical representation of the bond-centered nonlocal order parameter O2n (up to a
proportional constant) for a ground-state wave function in a matrix-product state representation with
the two-site translation invariance. (i) The overlap of a ground-state wave function ψ with its twisted
version, which results from the action of the bond-centered inversion on a segment from 1 to 2n.
(ii) The overlap is untwisted by reversing the segment by means of the unitary transformations UI,A

and UI,B. (iii) When n becomes large enough, we only need to keep the dominant eigenvector of the
transfer matrix E. As a consequence, O2n = Tr(UT

I,AU†
I,Aλ4

B)/Tr(λ4
B) for the segment that consists

of n bonds of the type A− B, and O2n = Tr(UT
I,BU†

I,Bλ4
A)/Tr(λ4

A) for the segment that consists of n
bonds of the type B− A.

The site-centered non-local order parameter for the SPt phases is defined through a
combined operation I ∗R of the site-centered inversion symmetry I(1,2n+1) with a π-rotation
around the α-axis in the spin space: Rα(π) = exp(iπ ∑2n+1

j=1 Sα
j ), where Sα denote the spin-s

matrices, with α = x, y, and z [113,114]

K2n+1,α ∝ 〈ψ | I(1,2n+1) ∗ Rα(π) | ψ〉. (A40)

A graphical representation of the site-centered non-local order parameter K2n+1,α is
shown in Figure A9i, which is the overlap of a ground-state wave function ψ with its twisted
version, which results from the action of the combined operation I ∗ R. Then, the overlap is
untwisted by reversing the segment by means of unitary transformations UI∗R,A and UI∗R,B,
as shown in Figure A9ii. Here, UI∗R,A and UI∗R,B are unitary transformations, generated
from the action of the combined operation I ∗ R on |ψ〉 in a matrix- product state represen-
tation: ΓT

I∗R,A = exp iθI∗R,AU†
I∗R,AΓI∗R,AUI∗R,B and ΓT

I∗R,B = exp iθI∗R,BU†
I∗R,BΓI∗R,BUI∗R,A,

with θI∗R,A and θI∗R,B being the phase factors. When n becomes large enough, we only need
to keep the dominant eigenvector of the transfer matrix E. If the site-centered inversion is
carried out with respect to an A-site, then it yields the following

Kα =
Tr(UT

I∗R,BU†
I∗R,Aλ2

Aλ2
B)

Tr(λ2
Aλ2

B)
. (A41)
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Figure A9. A graphical representation of the site-centered nonlocal order parameter K2n+1,α (up to a
proportional constant), with α = x, y, and z, for a ground-state wave function in a matrix-product
state representation with the two-site translation invariance. (i) The overlap of a ground-state wave
function ψ with its twisted version, which results from the action of the combined operation I ∗ R.
(ii) The overlap is untwisted by reversing the segment by means of the unitary transformations UI∗R,A

and UI∗R,B. (iii) When n becomes large enough, we only need to keep the dominant eigenvector
of the transfer matrix E. If the site-centered inversion is carried out with respect to an A-site, then
it yields Kα = Tr(UT

I∗R,BU†
I∗R,Aλ2

Aλ2
B)/Tr(λ2

Aλ2
B). If the site-centered inversion is carried out with

respect to a B-site, then it yields Kα = Tr(UT
I∗R,AU†

I∗R,Bλ2
Bλ2

A)/Tr(λ2
Bλ2

A).

If the site-centered inversion is carried out with respect to a B-site, then it yields the
following

Kα =
Tr(UT

I∗R,AU†
I∗R,Bλ2

Bλ2
A)

Tr(λ2
Bλ2

A)
. (A42)

Appendix K. Fidelity Entropy S f (λ, γ), Fidelity Temperature Tf (λ, γ), and Fidelity
Internal Energy U f (λ, γ) for the Quantum Spin-1/2 XY Model

In this Appendix, we present mathematical details about fidelity entropy S f (λ, γ),
fidelity temperature Tf (λ, γ), and fidelity internal energy U f (λ, γ) for the quantum spin-
1/2 XY model. For this model, the Hamiltonian (1) is symmetrical under γ ↔ −γ and
λ↔ −λ. Therefore, we may restrict ourselves to the region defined by λ ≥ 0 and γ ≥ 0.

There are two dualities that occur on the two characteristic lines (γ = 1 and λ = 0):

(i) If γ = 1, then the Hamiltonian (1) is reduced to the transverse-field quantum Ising
model H(λ, 1) = −∑i (σ

x
i σx

i+1 + λσz
i ). Hence, under the Kramers–Wannier unitary

transformation U1: ∏j<i σz
j → τx

i τx
i+1, and σx

i σx
i+1 → τz

i , we have H(λ, 1)

= k′(λ′)U1H(λ′, 1)U†
1 , with λ′ = 1/λ and k′(λ′) = 1/λ′. The self-dual point is

located at λ = 1.
(ii) If λ = 0, then the Hamiltonian (1) is simplified to H(0, γ) = −1/2 ∑i[(1 + γ)σx

i σx
i+1

+(1 − γ)σ
y
i σ

y
i+1]. Under a unitary transformation U2: σx

2i → σx
2i, σx

2i+1 → σx
2i+1,

σ
y
2i → σ

y
2i, σ

y
2i+1 → −σ

y
2i+1, σz

2i → σz
2i, and σz

2i+1 → −σz
2i+1, we have H(0, γ)

= k′(γ′)U2H(0, γ′)U†
2 , with γ′ = 1/γ and k′(γ′) = 1/γ′. The self-dual point is

located at γ = 1.

The presence of the self-dual points makes it possible to divide two dual lines into
four parts: (i) γ = 1 with 0 ≤ λ < λc = 1; (ii)γ = 1 with λ > λc = 1; (iii) λ = 0 with
0 < γ ≤ 1; (iv) λ = 0 with γ ≥ 1. Here, part i and part iii are two principal parts, whereas
part ii and part iv are two non-principal parts that are dual to part i and part iii, respectively.
In addition, the disordered circle γ2 + λ2 = 1, featuring unentangled (factorized) ground
states [77–82], constitutes an additional characteristic line. That is, it is a factorizing-field
line. This is the third principal part.

The consideration of the dualities and factorizing fields allows us to separate the entire
region, defined by γ > 0 and λ > 0, into five different principal regimes: (I) the regime
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inside the disordered circle, with 0 < λ < 1 and 0 < γ <
√

1− λ2; (II) the regime outside
the disordered circle, with 0 < λ < 1 and

√
1− λ2 < γ < 1; (III) the regime with λ < 1 and

γ > 1; (IV) the regime with λ > 1 and 0 < γ < 1; (V) the regime with λ > 1 and γ > 1.
Now we turn to the explicit mathematical expressions for fidelity entropy S f (λ, γ),

fidelity temperature Tf (λ, γ), and fidelity internal energy U f (λ, γ).

Appendix K.1. Fidelity Entropy S f (λ, γ), Fidelity Temperature Tf (λ, γ), and Fidelity Internal
Energy U f (λ, γ): An Exterior Point of View

Let us start from fidelity entropy S(λ, γ) for the three principal parts, labelled as i, iii,
and v, on the two dual lines and the disordered circle, respectively.

(1) In part i (γ = 1 with 0 ≤ λ < λc = 1), we recall that a dominant control parameter
x was chosen to be x = 1− λ. From Equation (9), fidelity entropy Si(λ) takes the
following form:

Si(x) = −2
∫ x

xc
ln di(x; y) dy + Si

0. (A43)

Here, di(x; y) denotes the ground-state fidelity per lattice site in part i, and Si
0 is the

residual fidelity entropy at the critical point xc = 0. According to our convention (cf.
Section 2), we have Si

f (x) = Si(x).
(2) In part iii (λ = 0 with 0 < γ ≤ 1), we recall that a dominant control parameter x was

chosen to be x = γ. From Equation (9), fidelity entropy Siii(x) takes the same form as
Equation (A43) for part i, with the label being changed from i to iii. According to our
convention (cf. Section 2), we have Siii

f (x) = Siii(x).
(3) In part v, we recall that a dominant control parameter x was chosen to be

x = arctan (γ/λ), starting from the PT transition point (1, 0) up to the U(1)-
symmetric point (0, 1) on the disordered circle: λ2 + γ2 = 1. Given an exotic
QPT that exists at the PT transition point on the disordered circle [59], we need to
treat it separately. From Equation (9), fidelity entropy Sv(x) takes the same form as
Equation (A43) for part i, with the label being changed from i to v. According to our
convention (cf. Section 2), we have Sv

f (x) = Sv(x).

Now, we move to the five principal regimes:

(a) In regime I (0 < λ < 1 and 0 < γ <
√

1− λ2), we recall that a dominant control
parameter x was chosen to be x = γ and an auxiliary control parameter τ was chosen
to be τ = λ. From Equation (28), fidelity entropy SI(x, τ) takes the following form

SI(x, τ) = −2
∫ x

xc
ln dI(x, τ; y, τ) dy + SI

0(τ). (A44)

Here, dI(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime I, and
SI

0(τ) is the residual fidelity entropy at a critical point xc for a fixed τ, with xc = 0.
According to our convention (cf. Section 2), we have SI

f (x, τ) = SI(x, τ).

(b) In regime II (0 < λ < 1 and
√

1− λ2 < γ < 1), we recall that a dominant control
parameter x was chosen to be x = 1− λ and an auxiliary control parameter τ was
chosen to be τ = γ. From Equation (28), fidelity entropy SII(x, τ) takes the same form
as Equation (A44) for regime I, with the label being changed from I to II. According to
our convention (cf. Section 2), we have SII

f (x, τ) = SII(x, τ).

(c) In regime III ( 0 < λ < 1 and γ > 1), we recall that a dominant control parameter x was
chosen to be x = 1− λ and an auxiliary control parameter τ was chosen to be τ = γ.
From Equation (28), fidelity entropy SIII(x, τ) takes the same form as Equation (A44)
for regime I, with the label being changed from I to III. In this regime, the continuity
requirement for S f (x, τ) on the dual line, labelled as iv, implies that SIII

f (x, τ) includes

a contribution from scaling entropy SIII
σ (τ) = Siv

σ (1/τ) = − ln τ, due to a multiplying
factor k(1/τ) = 1/τ in part iv. Hence, we have SIII

f (x, τ) = SIII(x, τ) + SIII
σ (τ).
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(d) In regime IV ( λ > 1 and 0 < γ < 1), we recall that a dominant control parameter x
was chosen to be x = 1− 1/λ and an auxiliary control parameter τ was chosen to be
τ = γ. Here, a re-parametrization operation in the ground-state energy density e(λ, γ):
e(λ, γ) = mIV(x, τ)eIV(x, τ), with mIV(x, τ) = 1/(1− x), is performed to ensure that
the extent of a dominant control parameter x is finite. As discussed in Section 2,
SIV

f (x, τ) includes a contribution from scaling entropy SIV
σ (x, τ). Here, SIV

σ (x, τ) =

ln mIV(x, τ) = − ln(1− x). Thus, we have SIV
f (x, τ) = SIV(x, τ) + SIV

σ (x, τ), where

fidelity entropy SIV(x, τ), as follows from Equation (28), takes the same form as
Equation (A44) for regime I, with the label being changed from I to IV.

(e) In regime IV (λ > 1 and γ > 1), we recall that a dominant control parameter x
was chosen to be x = 1− 1/λ and an auxiliary control parameter τ was chosen to
be τ = γ. Here, a re-parametrization operation in the ground-state energy density
e(λ, γ): e(λ, γ) = mV(x, τ)eV(x, τ), with mV(x, τ) = 1/(1 − x), is performed to
ensure that the extent of a dominant control parameter x is finite. As discussed
in Section 2, SV

f (x, τ) includes a contribution from scaling entropy SV
σ (x, τ). Here,

SV
σ (x, τ) = ln mV(x, τ) = − ln(1− x). Thus, we have SV

f (x, τ) = SV(x, τ) + SV
σ (x, τ),

where fidelity entropy SV(x, τ), as follows from Equation (28), takes the same form as
Equation (A44) for regime I, with the label being changed from I to V.

We start our discussion from the three principal parts, labelled as i, iii, and v:

(1) In part i (γ = 1 with 0 ≤ λ < λc = 1), for the chosen dominant control parameter
x: x = 1− λ, the ground-state energy density ei(x) increases with x. Then, from
Equation (10), fidelity internal energy Ui(x) takes the following form

Ui(x) = − ln
ei(x)
ei(0)

Vi(x) + Ui
0. (A45)

Here, Ui
0 is an additive constant, and Vi(x) > 0 satisfies the singular first-order

differential equation
∂Vi(x)/∂x = αi(x) Vi(x), (A46)

with

αi(x) =
∂ln (ei(x)/ei(0))/∂x

∂Si(x)/∂x− ln (ei(x)/ei(0))
. (A47)

Accordingly, fidelity temperature Ti(x) follows from

Ti(x) = −∂Vi(x)
∂x

. (A48)

(2) In part iii (λ = 0 with 0 < γ ≤ 1), for the chosen dominant control parameter x:
x = γ, the ground-state energy density eiii(x) decreases with x. Then, fidelity internal
energy Uiii(x) takes the following form

Uiii(x) = ln
eiii(x)
eiii(0)

Viii(x) + Uiii
0 . (A49)

Here, Uiii
0 is an additive constant, and Viii(x) > 0 satisfies the singular first-order

differential equation
∂Viii(x)/∂x = αiii(x) Viii(x), (A50)

with

αiii(x) = − ∂ln (eiii(x)/eiii(0))/∂x
∂Siii(x)/∂x + ln (eiii(x)/eiii(0))

. (A51)
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Accordingly, fidelity temperature Tiii(x) follows from

Tiii(x) = −∂Viii(x)
∂x

. (A52)

(3) In part v, on the disordered circle, the ground-state energy density ev(x) is a constant
for the chosen dominant control parameter x: x = θ = arctan (γ/λ). Then, fidelity
internal energy Uv(x) is a constant, and fidelity temperature Tv(x) is zero:

Uv(x) = Uiii(1), Tv(x) = 0. (A53)

As discussed in Section 2, we have Uv
f (x) = Uv(x) and Tv

f (x) = Tv(x).

Now we move to the five principal regimes, labelled as I, II, III, IV, and V:

(a) In regime I (0 < λ < 1 and 0 < γ <
√

1− λ2), for the chosen dominant control
parameter x: x = γ, the ground-state energy density eI(x, τ) monotonically decreases
with x. Then, from Equation (30), fidelity internal energy UI(x, τ) takes the following
form

UI(x, τ) = ln
eI(x, τ)

eI(0, τ)
VI(x, τ) + UI

0(τ). (A54)

Here, UI
0(τ) is a function of τ, and VI(x, τ) > 0 satisfies the singular first-order

differential equation
∂VI(x, τ)

∂x
= αI(x, τ) VI(x, τ), (A55)

with

αI(x, τ) = − ∂ln (eI(x, τ)/eI(0, τ))/∂x
∂SI(x, τ)/∂x + ln (eI(x, τ)/eI(0, τ))

. (A56)

Accordingly, fidelity temperature TI(x, τ) in this regime is given by the following

TI(x, τ) = −∂VI(x, τ)

∂x
. (A57)

(b) In regime II (0 < λ < 1 and
√

1− λ2 < γ < 1), for the chosen dominant control
parameter x: x = 1 − λ, the ground-state energy density eII(x, τ) monotonically
increases with x. Then, from Equation (30), fidelity internal energy UII(x, τ) takes the
following form

UII(x, τ) = − ln
eII(x, τ)

eII(0, τ)
VII(x, τ) + UII

0 (τ). (A58)

Here, UII
0 (τ) is a function of τ, and VII(x, τ) > 0 satisfies the singular first-order

differential equation
∂VII(x, τ)

∂x
= αII(x, τ) VII(x, τ), (A59)

with

αII(x, τ) =
∂ln (eII(x, τ)/eII(0, τ))/∂x

∂SII(x, τ)/∂x− ln eII(x, τ)/e(0, τ)
. (A60)

Accordingly, fidelity temperature TII(x, τ) in this regime is given by the following

TII(x, τ) = −∂VII(x, τ)

∂x
. (A61)

(c) In regimes ω = III, IV, and V, fidelity internal energy Uω(x, τ), fidelity temperature
Tω(x, τ), and Vω(x, τ), together with the singular first-order differential equations
with αω(x, τ) take the same form as Equations (A58)–(A61) for regime II, with the
label being changed from II to III, IV, and V, respectively.
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In order to solve a singular first-order differential equation in principal part i and
principal part ii and in each principal regime, we perform a scaling analysis of αq(x) (q = i
and ii) and αω(x, τ) (ω=I, II, III, IV, and IV) in the vicinity of a critical point xc = 0, which
falls into two universality classes: (A) the Gaussian universality class for part iii on the
dual line and regime I, and (B) the Ising universality class for part i on the dual line and
regime II, regime III, regime IV, and regime V:

(A) When a Gaussian critical point xc = 0 is approached, fidelity entropy Siii(x) in part
iii and SI(x, τ) in regime I scale as Siii(x) ∼ x2 and SI(x, τ) ∼ x2, respectively. This
indicates that the critical exponent is ν = 1 (cf. Appendix H for details). Combined
with a scaling analysis of the ground-state energy density eiii(x) and eI(x, τ) near a
Gaussian critical point xc = 0: ln(eiii(x)/eiii(0)) ∼ ln x x2 and ln(eI(x, τ)/eI(0, τ)) ∼
ln x x2 (cf. Appendix H for details), we have the following:

αiii(x) ∼ ln x, (A62)

and
αI(x, τ) ∼ ln x. (A63)

The scaling behaviors for part iii and regime I are the same, as anticipated from the fact
that they both belong to the Gaussian universality class. Our numerical simulations
confirm this scaling analysis.

(B) When an Ising critical point is approached, fidelity entropy Si(x) in part i, and fi-
delity entropy SII(x, τ), SIII(x, τ), SIV(x, τ), and SV(x, τ) in regime II, regime III,
regime IV, and regime V scale as Si(x) ∼ x2 and Sω(x, τ) ∼ x2 (ω = II, III, IV,
and V). This indicates that the critical exponent is ν = 1 (cf. Appendix H for de-
tails). Taking into account the fact that the first-order derivative of ln (ei(x)/ei(0)) and
ln (eω(x, τ)/eω(0, τ)) with respect to x at a critical point xc = 0 is nonzero, we have
the following:

αi(x) ∼ 1
x

, (A64)

and
αω(x, τ) ∼ 1

x
. (A65)

The scaling behaviors for part i and regimes ω, with ω = II, III, IV, and V, are the
same, as anticipated from the fact that they belong to the Ising universality class. Our
numerical simulations confirm this scaling analysis.

Our analysis enables us to solve a singular first-order differential equation, as shown below.

(1) In part i (γ = 1 with 0 ≤ λ < λc = 1), since the integration of αi(x) with respect to x
is finite, the singular first-order differential equation, Equation (A46), may be solved
as follows:

Vi(x) = Vi
0Vi

1(x), (A66)

where Vi
0 is a constant to be determined, and Vi

1(x) takes the following form

Vi
1(x) = exp (

∫ x

0
αi(y)dy). (A67)

(2) In part iii (λ = 0 with 0 < γ ≤ 1), the solution Viii(x) to the singular first-order
differential equation equation, Equation (A50), takes the same form as Equations (A66)
and (A67) in part i, with the label being changed from i to iii.

(3) In part v, Vv(x) simply vanishes, given that Uv
f (x) is a constant on the disordered

circle: λ2 + γ2 = 1.

Similarly, we may determine Vω(x, τ) in the five principal regimes, with ω = I, II, III, IV
and V:
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(a) In regime I (0 < λ < 1 and 0 < γ <
√

1− λ2), since the integration of αI(x, τ)
with respect to x for a fixed τ is finite, the singular first-order differential equation,
Equation (A55), may be solved as follows:

VI(x, τ) = VI
0(τ)V

I
1(x, τ), (A68)

where VI
0(τ) is a function of τ, and VI

1(x, τ) is defined as follows

VI
1(x, τ) = exp (

∫ x

0
αI(y, τ)dy). (A69)

(b) In regime II, regime III, regime IV, and regime V, the solutions VII(x, τ), VIII(x, τ),
VIV(x, τ), and VV(x, τ) to the singular first-order differential equations take the same
form as Equations (A68) and (A69) for regime I, with the label being changed from I
to II, III, IV, and V, respectively.

Now we turn to the residual fidelity entropy on the two lines of critical points. We
remark that fidelity entropy, generically, is relative, in the sense that it is only determined up
to a constant. Here, as a convention, we choose fidelity entropy to be zero at the critical
point (1, 0). That is, we choose Siii

0 = 0. Then, Siii
f (x) follows from its definition, which

takes the same form as (A43), with the label being changed from i to iii. Furthermore, the
residual fidelity entropy Si

0 for part i and the residual fidelity entropy Sv
0 for part v are

determined from the continuity requirement for fidelity entropy at the characteristic point
(λ = 0 and γ = 1): Si

f (1) = Siii
f (1) and Sv

f (π/2) = Siii
f (1). Hence, fidelity entropy Si(x) on

the dual line, labelled as i, and fidelity entropy Sv(x) on the disordered circle, labelled as v,
follow from (A43) and its counterpart in part v, with the label being changed from i to v,
respectively.

Therefore, fidelity entropy in part ii and part iii follow from their duality transforma-
tion to part i and to part iv, respectively.

(1) In part ii (γ = 1 with λ > λc = 1), which is dual to principal part i, we have the
following: Hii(λ) = kii i(x)U1Hi(x)U†

1 , with x = 1/λ and kii i(x) = 1/x. This results in
rescaling in the ground-state energy density eii(λ): eii(λ) = kii i(x)ei(x). As discussed in
Section 2, an additional contribution to fidelity entropy Sii

f (λ) is scaling entropy Sii
σ(λ) ≡

Sii i
σ (λ), with Sii i

σ (λ) = ln kii i(λ), arising from a multiplying factor kii i(λ), in addition to
the contribution from the ground-state fidelity per lattice site Si(λ). Here, kii i(λ) ≡ kii i(x),
so kii i(λ) = λ. That is, we have Sii

f (λ) = Si
f (λ) + Sii

σ(λ).
(2) In part iv (λ = 0 with γ ≥ 1), which is dual to principal part iii, we have the

following: Hiv(γ) = kiv iii(x)U2Hiii(x)U†
2 , with x = 1/γ and kiv iii(x) = 1/x. This results

in rescaling in the ground-state energy density eiv(γ): eiv(γ) = kiv iii(x)eiii(x). As discussed
in Section 2, an additional contribution to fidelity entropy Siv

f (γ) is scaling entropy Siv
σ (γ) ≡

Siv iii
σ (γ), with Siv iii

σ (γ) = − ln kiv iii(γ), arising from a multiplying factor kiv iii(γ), in
addition to the contribution from the ground-state fidelity per lattice site Siii(γ). Here,
kiv iii(γ) ≡ kiv iii(x); thus, kiv iii(γ) = γ. That is, we have Siv

f (γ) = Siv
f (γ) + Siv

σ (γ).
We are free to choose V0 on one of the characteristic lines, since fidelity internal energy

is only determined up to a constant factor. Here, we set Viii
0 = 1 for the dual line (λ = 0

with 0 < γ ≤ 1), labelled as iii. Then, fidelity internal energy Uiii(x) on the Z2-symmetric
and dual line (λ = 0 with 0 < γ ≤ 1) is determined from (A49). A shift from Tiii(x)
to Tiii(x) − Tiii

0 induces a shift in fidelity internal energy in part iii: Uiii(x) − Tiii
0 Siii(x),

with Tiii
0 = Tiii(1). We refer to Tiii(x)− Tiii

0 and Uiii(x)− Tiii
0 Siii(x) as Tiii

f (x) and Uiii
f (x),

respectively. That is, Tiii
f (x) ≡ Tiii(x)− Tiii

0 and Uiii
f (x) ≡ Uiii(x)− Tiii

0 Siii(x). Then, as

discussed in Section 2, fidelity internal energy Uiv
f (γ) and Tiv

f (γ) in part iv (λ = 0 with

γ ≥ 1) follow from duality. That is, fidelity internal energy Uiv(γ) and fidelity temperature
Tiv(γ) take the following form: Uiv(γ) = Uiii(1/γ) and Tiv(γ) = Tiii(1/γ). In addition,
as shown in (A53), fidelity internal energy Uv(x) on the disordered circle, labelled as
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v, is a constant, which is determined to be Um, with Um = Uiii
f (1), from the continuity

requirement for fidelity internal energy.
On the dual line (γ = 1 with 0 < λ < 1), labelled as i, Ti(x) is shifted to Ti(x)− Ti

0,
with TI

0 = Ti(1). Then, Ui(x) is shifted to Ui(x)− Ti
0Si(x). In addition, fidelity internal

energy at a critical point with x = xc = 0 or, equivalently, λ = 1 and γ = 1 must be zero,
and fidelity internal energy satisfies the continuity requirement at the stable fixed point
with x = 1 or, equivalently, λ = 0 and γ = 1: Ui

0 = Ti
0Si

0 and Ui(1)− Ti
0Si(1) = Uiii

f (1).

Therefore, Vi
0 is determined as follows

Vi
0 =

Uiii
f (1)

− ln (ei(1)/ei(0))Vi
1(1) + αi(1)Vi

1(1)(S
i(1)− Si

0)
. (A70)

Once Vi
0 and Ui

0 are determined, fidelity temperature Ti(x) and fidelity internal energy
Ui(x) follow from (A45) and (A48). We refer to Ti(x)− Ti

0 and Ui(x)− Ti
0Si(x) as Ti

f (x)
and Ui

f (x), respectively. That is, Ti
f (x) ≡ Ti(x)− Ti

0 and Ui
f (x) ≡ Ui(x)− Ti

0Si(x). Then,

as discussed in Section 2, fidelity temperature Tii
f (x) and fidelity internal energy Uii

f (x) in

part ii (λ > λc = 1 and γ = 1) follow from duality. That is, fidelity temperature Tii(λ) and
fidelity internal energy Uii(λ) take the following form: Tii(λ) = Ti(1/λ) and Uii(λ)
= Ui(1/λ), respectively.

Now we have to ensure that fidelity mechanical-state functions are continuous at the
boundaries between different regimes for each phase. With this in mind, we are able to
determine the residual fidelity entropy SI

0(τ) on the line of the Gaussian critical points
(γ = 0 with 0 < λ < 1) and SII

0 (τ) on the line of the Ising critical points (λ = 1 with 0 <
γ < 1) from the continuity requirements on the disordered circle λ2 + γ2 = 1, labelled as v:
SI

f (
√

1− τ2, τ) = Sv
f (arctan(

√
1− τ2/τ)) and SII

f (
√

1− τ2, τ) = Sv
f (arctan(τ/

√
1− τ2)).

Similarly, the residual fidelity entropy SIII
0 (τ) on the line of the Ising critical points (λ = 1

with γ > 1) is determined from the continuity requirement on the dual line (λ = 0 with
γ > 1), labelled as iv: SIII

f (1, τ) = Siv
f (1/τ). In addition, the continuity requirement for

fidelity entropy on the line of the Ising critical points (λ = 1 with γ > 0), implies that
SIV

0 (τ) = SII
0 (τ) and SV

0 (τ) = SIII
0 (τ).

The remaining task is to ensure the continuity requirements for fidelity temperature
and fidelity internal energy. To this end, we need to determine Tω

0 ≡ Tω
m − Tω

t for the five
principal regimes, with ω = I, II, III, IV, and V. Here, Tω

m represents fidelity temperature,
evaluated from a dominant control parameter x in one principal regime ω, at a chosen
point on a principal part, which is a boundary in the principal regime ω, whereas Tω

t
represents fidelity temperature at the same point, but it is evaluated from a dominant
control parameter x in the principal part itself. Specifically, in regime I, for a fixed τ = λ,
we have TI

m(τ) = TI(
√

1− τ2, τ) and TI
t (τ) = 0 on the disordered circle, labelled as v.

In regime II, for a fixed τ = γ, we have TII
m(τ) = TII(

√
1− τ2, τ) and TII

t (τ) = 0 on the
disordered circle, labelled as v. In regime III, for a fixed τ = γ, we have TIII

m (τ) = TIII(1, τ)
and TIII

t (τ) = Tiv
f (1/τ) in the dual image part iv, located on the dual line (λ = 0 with

γ ≥ 1). In regime IV, for a fixed τ = γ, we have TIV
m (τ) = TIV(1, τ) and TIV

t (τ) = 0,
when x = 1; i.e., when λ is infinite in value. In regime V, for a fixed τ = γ, we have
TV

m(τ) = TV(1, τ) and TV
t (τ) = 0, when x = 1; i.e., when λ is infinite in value.

(a) In regime I (λ < 1 and 0 < γ <
√

1− λ2), for a fixed τ, in order to ensure
the continuity requirement for fidelity temperature on the disordered circle, labelled as
v, TI(x, τ) is shifted to TI(x, τ) − TI

0(τ), with TI
0(τ) = TI(

√
1− τ2, τ). Then, UI(x, τ) is

shifted to UI(x, τ)− TI
0(τ)S

I(x, τ), with SI(x, τ) left intact. In addition, fidelity internal
energy on the line of the Gaussian critical points (γ = 0 with 0 < λ < 1) with x = xc = 0,
for a fixed τ, must be zero, and fidelity internal energy satisfies the continuity requirement
on the disordered circle, labelled as v, as discussed in Section 2: UI

0(τ) = TI
0(τ)S

I
0(τ) and

UI(
√

1− τ2, τ)− TI
0(τ)S

I(
√

1− τ2, τ) = Um. Therefore, VI
0(τ) is determined as follows
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VI
0(τ) =

Um

ln (eI(
√

1− τ2, τ)/eI(0, τ))VI
1(
√

1− τ2, τ) + αI(
√

1− τ2, τ)VI
1(
√

1− τ2, τ)(SI(
√

1− τ2, τ)− SI
0(τ))

. (A71)

Once VI
0(τ) and UI

0(τ) are determined, fidelity temperature TI(x, τ) and fidelity inter-
nal energy UI(x, τ) follow from (A54) and (A57), respectively. Following from our discus-
sions in Section 2, fidelity entropy SI

f (x, τ), fidelity temperature TI
f (x, τ), and fidelity inter-

nal energy UI
f (x, τ) take the following form: SI

f (x, τ) = SI(x, τ), TI
f (x, τ) = TI(x, τ)− TI

0(τ)

and UI
f (x, τ) = UI(x, τ)− TI

0(τ)S
I(x, τ), respectively.

(b) In regime II (
√

1− λ2 < γ < 1 and 0 < λ < 1), for a fixed τ, in order to ensure
the continuity requirement for fidelity temperature on the disordered circle, labelled as
v, TII(x, τ) is shifted to TII(x, τ)− TII

0 (τ), with TII
0 (τ) = TII(

√
1− τ2, τ). Then, UII(x, τ) is

shifted to UII(x, τ)− TII
0 (τ)S

II(x, τ), with SII(x, τ) left intact. In addition, fidelity internal
energy on the line of the Ising critical points (λ = 1 with 0 < γ ≤ 1) with x = xc = 0, for
a fixed τ, must be zero, and fidelity internal energy satisfies the continuity requirement
on the disordered circle, labelled as v, as discussed in Section 2: UII

0 (τ) = TII
0 (τ)S

II
0 (τ) and

UII(
√

1− τ2, τ)− TII
0 (τ)S

II(
√

1− τ2, τ) = Um. Therefore, VII
0 (τ) is determined as follows

VII
0 (τ)=

Um

−ln (eII(
√

1−τ2, τ)/eII(0, τ))VII
1 (
√

1−τ2, τ)+αII(
√

1−τ2, τ)VII
1 (
√

1−τ2, τ)(SII(
√

1−τ2, τ)−SII
0 (τ))

. (A72)

Once VII
0 (τ) and UII

0 (τ) are determined, fidelity temperature TII(x, τ) and fidelity
internal energy UII(x, τ) follow from (A58) and (A61), respectively. Following from our
discussions in Section 2, fidelity entropy SII

f (x, τ), fidelity temperature TII
f (x, τ), and fi-

delity internal energy UII
f (x, τ) take the following form: SII

f (x, τ) = SII(x, τ), TII
f (x, τ) =

TII(x, τ)− TII
0 (τ), and UII

f (x, τ) = UII(x, τ)− TII
0 (τ)S

II(x, τ), respectively.
(c) In regime III ( 0 < λ < 1 and γ > 1), for a fixed τ, in order to ensure the continuity

requirement for fidelity temperature on the dual line (λ = 0 with γ ≥ 1), labelled as
iv, TIII(x, τ) is shifted to TIII(x, τ) − TIII

0 (τ), with TIII
0 (τ) = TIII(1, τ) − Tiv

f (1/τ). Then,

UIII(x, τ) is shifted to UIII(x, τ)− TIII
0 (τ)SIII(x, τ), with SIII(x, τ) left intact. In addition,

fidelity internal energy on the line of the Ising critical points (λ = 1 with 0 < γ < 1), with
x = xc = 0, for a fixed τ, must be zero, and fidelity internal energy satisfies the continuity
requirement at the Z2-symmetric and dual line (λ = 0 with γ ≥ 1), labelled as iv, as
discussed in Section 2: UIII

0 (τ) = TIII
0 (τ)SIII

0 (τ) and UIII(1, τ)− TIII
0 (τ)SIII(1, τ) = Uiv

f (1/τ).

Therefore, VIII
0 (τ) is determined as follows

VIII
0 (τ) =

Uiv
f (1/τ)− Tiv

f (1/τ)(SIII(1, τ)− SIII
0 (τ))

− ln (eIII(1, τ)/eIII(0, τ))VIII
1 (1, τ) + αIII(1, τ)VIII

1 (1, τ)(SIII(1, τ)− SIII
0 (τ))

. (A73)

Once VIII
0 (τ) and UIII

0 (τ) are determined, fidelity temperature TIII(x, τ) and fidelity
internal energy UIII(x, τ) follow from their counterparts of (A58) and (A61), with the
label being changed from II to III, respectively. Following from our discussions in Sec-
tion 2, fidelity entropy SIII

f (x, τ), fidelity temperature TIII
f (x, τ), and fidelity internal energy

UIII
f (x, τ) take the following form: SIII

f (x, τ) = SIII(x, τ), TIII
f (x, τ) = TIII(x, τ) − TIII

0 (τ)

and UIII
f (x, τ) = UIII(x, τ)− TIII

0 (τ)SIII(x, τ), respectively.
(d) In regime IV ( λ > 1 and 0 < γ < 1), for a fixed τ, in order to ensure the continuity

requirement for fidelity temperature on the characteristic line located at infinity, when
λ is infinite in value, TIV(x, τ) is shifted to TIV(x, τ)− TIV

0 (τ), with TIV
0 (τ) = TIV(1, τ),

accompanied by a shift in UIV(x, τ): UIV(x, τ)− TIV
0 (τ)SIV(x, τ), with SIV(x, τ) left intact.

In addition, fidelity internal energy on the line of the Ising critical points (λ = 1 with
0 < γ < 1) with x = xc = 0, for a fixed τ, must be zero, and fidelity internal energy satisfies
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the continuity requirement on the characteristic line located at infinity, when λ is infinite in
value, as discussed in Section 2: UIV

0 (τ) = TIV
0 (τ)SIV

0 (τ) and UIV(1, τ)− TIV
0 (τ)SIV(1, τ) =

Um. Therefore, VIV
0 (τ) is determined as follows

VIV
0 (τ) =

Um

− ln (eIV(1, τ))/(eIV(0, τ))VIV
1 (1, τ) + αIV(1, τ)VIV

1 (1, τ)(SIV(1, τ)− SIV
0 (τ))

. (A74)

Once VIV
0 (τ) and UIV

0 (τ) are determined, fidelity temperature TIV(x, τ) and fidelity
internal energy UIV(x, τ) follow from their counterparts of (A61) and (A58), with the label
being changed from II to IV, respectively, given that (λ, γ) and (x, τ) label the same point in
the principal regime. Following from our discussions in Section 2, fidelity entropy SIV

f (x, τ),

fidelity temperature TIV
f (x, τ), and fidelity internal energy UIV

f (x, τ) take the following

form: SIV
f (x, τ) = SIV(x, τ), TIV

f (x, τ) = TIV(x, τ)− TIV
0 (τ), and UIV

f (x, τ)

= UIV(x, τ)− TIV
0 (τ)SIV(x, τ), respectively.

(e) In regime V ( λ > 1 and γ > 1), for a fixed γ, in order to ensure the continuity
requirement for fidelity temperature on the characteristic line located at infinity, when
λ is infinite in value, fidelity temperature TV(x, τ) is shifted to TV(x, τ) − TV

0 (τ), with
TV

0 (τ) = TV(1, τ), accompanied by a shift in UV(x, τ): UV(x, τ) − TV
0 (τ)SV(x, τ), with

SV(x, τ) left intact. In addition, fidelity internal energy on the line of the Ising critical
points (λ = 1 with γ ∈ (1, ∞)) with x = xc = 0, for a fixed τ, must be zero, and fidelity
internal energy satisfies the continuity requirement on the characteristic line located at
infinity, when λ is infinite in value, as discussed in Section 2: UV

0 (τ) = TV
0 (τ)SV

0 (τ) and
UV(1, τ)− TV

0 (τ)SV(1, τ) = Um. Therefore, VV
0 (τ) is determined as follows

VV
0 (τ) =

Um

− ln (eV(1, τ))/(eV(0, τ))VV
1 (1, τ) + αV(1, τ)VV

1 (1, τ)(SV(1, τ)− SV
0 (τ))

. (A75)

Once VV
0 (τ) and UV

0 (τ) are determined, fidelity temperature TV(x, τ) and fidelity
internal energy UV(x, τ) follow from their counterparts of (A58) and (A61), with the label
being changed from II to V, respectively. Following from our discussions in Section 2, fidelity
entropy SV

f (x, τ), fidelity temperature TV
f (x, τ), and fidelity internal energy UV

f (x, τ) take

the following form: SV
f (x, τ) = SV(x, τ), TV

f (x, τ) = TV(x, τ) − TV
0 (τ), and UV

f (x, τ) =

UV(x, τ)− TV
0 (τ)SV(x, τ), respectively.

Once fidelity entropy Sq
f (x), fidelity temperature Tq

f (x), and fidelity internal energy

Uq
f (x) (q = i, iii, and v) on the characteristic lines and fidelity entropy Sω

f (x, τ), fidelity
temperature Tω

f (x, τ), and fidelity internal energy Uω
f (x, τ) (ω=I, II, III, IV, and V) in

the five principal regimes are determined, fidelity entropy S f (λ, γ), fidelity temperature
Tf (λ, γ), and fidelity internal energy U f (λ, γ) follow. That is, Sq

f (λ, γ) ≡ Sq
f (x) and

Sω
f (λ, γ) ≡ Sω

f (x, τ), Tq
f (λ, γ) ≡ Tq

f (x) and Tω
f (λ, γ) ≡ Tω

f (x, τ), and Uq
f (λ, γ) ≡ Uq

f (x)
and Uω

f (λ, γ) ≡ Uω
f (x, τ), when we move from x and τ to λ and γ, meaning that x and τ

are regarded as functions of λ and γ. This is due to the fact that (λ, γ) and (x, τ) label the
same point on each characteristic line and in each principal regime.

Numerical simulation results for fidelity entropy S f (λ, γ), fidelity temperature Tf (λ, γ),
and fidelity internal energy U f (λ, γ) for the quantum spin-1/2 XY model are shown in
Figure 12a–c, respectively.

Appendix K.2. Fidelity Entropy S f (1, γ), Fidelity Temperature Tf (1, γ), and Fidelity Internal
Energy U f (1, γ): An Interior Point of View

For the quantum spin-1/2 XY model, there are three lines of critical points: one line of
the Gaussian critical points located at γ = 0 with −1 < λ < 1, with central charge c = 1,
and the two lines of the Ising critical points located at λ = ±1 with γ > 0, with central
charge c = 1/2, if we restrict to the region: γ > 0. However, the two lines of the Ising
critical points located at λ = ±1 with γ > 0 are symmetrical with respect to γ → −γ.
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Therefore, we only need to consider the line of the Ising critical points (λ = 1 with γ > 0).
We remark that the model is critical, with central charge c = 1, when γ is infinite in value,
with the symmetry group U(1) being generated by ∑i(−1)iSz

i .
On the line of the Gaussian critical points located at γ = 0 with −1 < λ < 1, which

has been described as scenario II-1 in Section 6, any two ground states with two different
values of λ are orthogonal to each other as a result of the level crossings, since ∑i Sz

i is
conserved. As a consequence, the ground-state fidelity per lattice site between any two
ground states vanishes. This implies that no dominant control parameter is available on
the line of the Gaussian critical points for the quantum spin-1/2 XY model, unless it is
embedded into the quantum spin-1/2 XYZ model in a magnetic field (cf. Appendix N).

On the line of the Ising critical points located at λ = 1 with γ > 0, which has been
described as scenario I-1 in Section 6, there is a characteristic point γ = 1, which is self-dual,
in contrast to other points. Therefore, the line of the Ising critical points may be divided
into two parts: part a is from γ = 0 to γ = 1 and part b is from γ = ∞ to γ = 1, both
of which are principal parts. A dominate control parameter x is chosen to be γ in part a.
However, the extent of γ is not finite in part b. Therefore, a re-parametrization operation
needs to be performed in the ground-state energy density e(1, γ): e(1, γ) = mb(x)eb(x),
with mb(x) = 1/x. Accordingly, a dominant control parameter x is chosen to be x = 1/γ
in part b.

Let us start from fidelity entropy S(x) in part a and part b:
In part a, from Equation (9), fidelity entropy Sa(x) takes the following form

Sa(x) = −2
∫ x

xc
ln da(x; y) dy + Sa

0. (A76)

Here, da(x; y) denotes the ground-state fidelity per lattice site in part a, and Sa
0 is the

residual fidelity entropy at the transition point xc = 0, labelled as PT. According to our
convention (cf. Section 2), we have Sa

f (x) = Sa(x).
In part b, a re-parametrization operation in the ground-state energy density e(1, γ):

e(1, γ) = mb(x)eb(x), with mb(x) = 1/x, is performed. As discussed in Section 2, Sb
f (x)

includes contributions from fidelity entropy Sb(x) and from scaling entropy Sb
σ(x), with

Sb
σ(x) = ln x. Thus, we have Sb

f (x) = Sb(x) + Sb
σ(x), where fidelity entropy Sb(x), as

follows from Equation (9), takes the same form as Equation (A76) for part a, with the label
being changed from a to b.

Once fidelity entropy S f (x) is determined, fidelity internal energy U f (x) and fidelity
temperature Tf (x) may be determined from solving the singular first-order differential
equation, Equation (14), as discussed for continuous QPTs in Section 2.

In part a, for the chosen dominant control parameter x = γ, the ground-state energy
density ea(x) monotonically decreases with x. Then, fidelity internal energy Ua(x) takes
the following form

Ua(x) = ln
ea(x)
ea(0)

Va(x) + Ua
0 . (A77)

Here, Ua
0 is an additive constant, and Va(x) > 0 satisfies the singular first-order

differential equation:
∂Va(x)

∂x
= αa(x) Va(x), (A78)

with

αa(x) = − ∂ln (ea(x)/ea(0))/∂x
∂Sa(x)/∂x + ln (ea(x)/ea(0))

. (A79)

Accordingly, fidelity temperature Ta(x) in this part follows from

Ta(x) = −∂Va(x)
∂x

. (A80)
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In part b, fidelity internal energy Ub(x), fidelity temperature Tb(x), and Vb(x) to-
gether with its singular first-order differential equation with αb(x) take the same form as
equations, Equations (A77)–(A80), for part a, with the label being changed from a to b.

In order to solve a singular first-order differential equation in each part, we perform a
scaling analysis of αa(x) and αb(x) near a transition point.

Near the point xc = 0 for the two parts, fidelity entropy Sa(x) and Sb(x) scale
as Sa(x) ∼ x2 and Sb(x) ∼ x2, respectively. Combined with a scaling analysis of the
ground-state energy density ea(x) and eb(x) near xc = 0: ln(ea(x)/ea(0)) ∼ ln xx2 and
ln(eb(x)/eb(x)) ∼ ln xx2, we have the following:

αa(x) ∼ ln (1− x), (A81)

and
αb(x) ∼ ln (1− x). (A82)

Our numerical simulations confirm this scaling analysis.
This enables us to solve a singular first-order differential equation, as shown below.
(a) In Part a: λ = 1 and 0 < γ < 1, the singular first-order differential equation,

Equation (A78), may be solved as follows:

Va(x) = Va
0 Va

1 (x), (A83)

where Va
0 is a constant, and Va

1 (x) takes the following form.

Va
1 (x) = exp (

∫ x

0
αa(y)dy). (A84)

(b) In part b, the solution Vb(x) to the singular first-order differential equation takes
the same form as Equations (A83) and (A84) for part a, with the label being changed from
a to b.

The remaining task is to determine S0, U0, and V0 in the two parts. In part a, we
require that fidelity entropy from an interior point of view at the transition point, labelled
as PT, is single-valued. That is, Sa

f (x) from an interior point of view is equal to Sm, which
is fidelity entropy from an exterior point of view at the transition point x = 0, labelled
as PT. Therefore, Sa

0 is determined: Sa
0 = Sm. With this in mind, Sb

0 is determined from
the continuity requirement for Sb

f (x) at the self-dual point with x = 1: Sb
f (1) = Sa

f (1). In
addition, at the self-dual point, we require fidelity temperature from an interior point of
view to be zero, and fidelity internal energy from an interior point of view should be equal to
fidelity internal energy from an exterior point of view at the U(1)-symmetric point (0, 1) for
the quantum spin-1/2 XY model, denoted as Um. As argued in Section 2, for this purpose,
a shift in fidelity temperature is performed: Ta(x)− Ta

0 and Tb(x)− Tb
0 accompanied by

a shift in fidelity internal energy—Ua(x) − Ta
0 Sa(x) and Ub(x) − Tb

0 Sb(x), respectively.
Therefore, we need to determine Ta

0 and Tb
0 for principal parts a and b, respectively. In part

a, we have Ta
0 ≡ Ta(1), where Ta(1) represents fidelity temperature Ta(x) at the self-dual

point x = 1, evaluated from a dominant control parameter x in part a. In part b, we have
Tb

0 ≡ Tb(1), where Tb(1) represents fidelity temperature Tb(x) at the self-dual point x = 1,
evaluated from a dominant control parameter x in part b. Specifically, in part a, in order to
ensure the requirement for fidelity temperature at the self dual point with x = 1, shifts in
fidelity temperature from Ta(x) to Ta(x)− Ta

0 and in fidelity internal energy from Ua(x) to
Ua(x)− Ta

0 Sa(x) are performed. In addition, fidelity internal energy at the transition point
with x = 0, labelled as PT, must be zero, and fidelity internal energy at the self-dual point
with x = 1 satisfies the continuity requirement, as discussed in Section 2: Ua

0 = Ta
0 Sa

0 and
Ua(1)− Ta

0 Sa(1) = Um. Hence, Va
0 is determined as follows

Va
0 =

Um

ln (ea(1)/ea(0))Va
1 (1) + αa(1)Va

1 (1)(S
a(1)− Sa

0)
. (A85)
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Once Va
0 and Ua

0 are determined, fidelity temperature Ta(x) and fidelity internal
energy Ua(x) follow from (A77) and (A80), respectively. We refer to Ta(x)− Ta

0 and Ua(x)
−Ta

0 Sa(x) as Ta
f (x) and Ua

f (x), respectively. That is, Ta
f (x) ≡ Ta(x) − Ta

0 and Ua
f (x) ≡

Ua(x)− Ta
0 Sa(x).

In part b, in order to ensure the requirement for fidelity temperature at the self dual
point with x = 1, shifts in fidelity temperature from Tb(x) to Tb(x)− Tb

0 and in fidelity
internal energy from Ub(x) to Ub(x)− Tb

0 Sb(x) are performed. In addition, fidelity internal
energy, when x tends to 0, must be zero and fidelity internal energy at the self-dual point
x = 1, satisfies the continuity requirement, as discussed in Section 2: Ub

0 = Tb
0 Sb

0 and
Ub(1)− Tb

0 Sb(1) = Um. Hence, Vb
0 is determined as follows

Vb
0 =

Um

ln (eb(1)/eb(0))Vb
1 (1) + αb(1)Vb

1 (1)(S
b(1)− Sb

0)
. (A86)

Once Vb
0 and Ub

0 are determined, fidelity temperature Tb(x) and fidelity internal
energy Ub(x) follow from their counterparts of (A77) and (A80), with the label being
changed from a to b, respectively. We refer to Tb(x)− Tb

0 and Ub(x)− Tb
0 Sb(x) as Tb

f (x)

and Ub
f (x), respectively. That is, Tb

f (x) ≡ Tb(x)− Tb
0 and Ub

f (x) ≡ Ub(x)− Tb
0 Sb(x).

Once fidelity entropy Sq
f (x), fidelity temperature Tq

f (x), and fidelity internal energy

Uq
f (x) (q=a and b) are determined for the two parts, fidelity entropy S f (1, γ), fidelity

temperature Tf (1, γ), and fidelity internal energy U f (1, γ) follow, since they take the same
values as Sq

f (x), Tq
f (x), and Uq

f (x), respectively. That is, Sq
f (1, γ) ≡ Sq

f (x), Tq
f (1, γ) ≡ Tq

f (x),

and Uq
f (1, γ) ≡ Uq

f (x), when we move from x to γ, meaning that x is regarded as a function
of γ.

Numerical simulation results for fidelity entropy S f (1, γ), fidelity temperature Tf (1, γ),
and fidelity internal energy U f (1, γ) on the line of the Ising critical points located at λ = 1
with γ > 0 are shown in Figure 14a–c, respectively.

Appendix L. Fidelity Entropy S f (λ, h), Fidelity Temperature Tf (λ, h), and Fidelity
Internal Energy U f (λ, h) for the Transverse-Field Quantum Ising Model in a
Longitudinal Field

In this Appendix, we present mathematical details about fidelity entropy S f (λ, h),
fidelity temperature Tf (λ, h), and fidelity internal energy U f (λ, h) for the transverse-field
quantum Ising model in a longitudinal field.

For this model, the ground-state phase diagram is simple. A first-order QPT occurs
at h = 0, when 0 ≤ λ < 1, which ends at a critical point (1, 0). At the first-order QPT
points, the model is driven from a phase with spin polarization in −x to a phase with
spin polarization in x, when h changes its sign. When h = 0, the model becomes the
transverse-field Ising model, which exhibits a second-order QPT at λc = 1, characterized
by the Z2 symmetry-breaking order for λ < 1. As mentioned in Appendix K, duality
occurs for the transverse-field quantum Ising model. We remark that, when h = 0, fidelity
mechanical-state functions have been determined as a special case of the quantum spin-1/2
XY model, corresponding to γ = 1. Therefore, we restrict ourselves to the region λ ≥ 0 and
h ≥ 0.

With the symmetry and duality in mind, we may divide the region λ ≥ 0 and h ≥ 0
into two principal regimes, as shown in Section 2. They are labelled as regime I, defined as
0 ≤ λ < 1 and h ≥ 0, and regime II, defined as λ ≥ 1 and h ≥ 0.

Now we turn to the explicit mathematical expressions for fidelity entropy S f (λ, h),
fidelity temperature Tf (λ, h), and fidelity internal energy U f (λ, h) for the transverse-field
quantum Ising model in a longitudinal field.

We recall the choices of a dominant control parameter in the two regimes:
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(a) In regime I (0 ≤ λ < 1 and h ≥ 0), a dominant control parameter x was chosen to
be x = h/(1 + h) and an auxiliary control parameter τ was chosen to be τ = λ. In
this regime, a re-parametrization operation in the ground-state energy density e(λ, h)
: e(λ, h) = mI(x, τ) eI(x, τ) is performed, with mI(x, τ) = 1/(1− x), to ensure that
eI(x, τ) is monotonic with x. Note that if x = 0 or, equivalently, h = 0, then the model
reduces to the transverse-field Ising model, which in turn is a special case of the
quantum spin-1/2 XY model with γ = 1 (cf. Section 7 and Appendix K). As a result,
fidelity mechanical-state functions for x = 0 may be taken from the quantum spin-1/2
XY model with γ = 1 (cf. Appendix K). In this Appendix, fidelity mechanical-state
functions for the transverse-field Ising model are denoted as STFI(τ), TTFI(τ) and
UTFI(τ), with τ = λ, respectively.

(b) In regime II (λ ≥ 1 and h ≥ 0), a dominant control parameter x was chosen to be
x =

√
(λ− 1)2 + h2/(1 +

√
(λ− 1)2 + h2) and an auxiliary control parameter τ was

chosen to be τ = arctan(h/(λ− 1)) ∈ (0, π/2). The ranges of x and τ are 0 < x < 1
and 0 < τ < π/2, respectively. In this regime, a re-parametrization operation in the
ground-state energy density e(λ, h) : e(λ, h) = mII(x, τ) eII(x, τ), is performed, with
mII(x, τ) = 1/(1− x). This choice is consistent with the requirement from duality,
which occurs when τ = 0, corresponding to the transverse-field quantum Ising model.

Fidelity entropy S f (x, τ), fidelity temperature Tf (x, τ), and fidelity internal energy
U f (x, τ) may be determined following from our prescriptions for discontinuous QPTs
(regime I) and for continuous QPTs (regime II), as discussed in Section 2.

(a) In regime I (0 ≤ λ < 1 and h ≥ 0), a re-parametrization operation in the ground-
state energy density e(λ, h): e(λ, h) = mI(x, τ) eI(x, τ), with mI(x, τ) = 1/(1 − x), is
performed, and fidelity entropy SI

f (x, τ) includes contributions from both fidelity entropy

SI
f (x, τ) and scaling entropy SI

σ(x, τ), as discussed in Section 2. Thus, we have SI
f (x, τ) ≡

SI(x, τ) + SI
σ(x, τ). Here, SI

σ(x, τ) = ln mI(x, τ), and SI(x, τ) follows from definition (33).
For a fixed τ, SI(x, τ) takes the following form

SI(x, τ) = −2
∫ x

xd

ln dI(x, τ; y, τ) dy + SI
0(τ). (A87)

Here, dI(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime I, and
SI

0(τ) is the residual fidelity entropy at a discontinuous QPT point xd for a fixed τ, with
xd = 0. The continuity requirement for fidelity entropy S f (x, τ) at xd = 0 implies that
SI

0(τ) = STFI(τ).
In regime I, for a fixed τ, the ground-state energy density eI(x, τ) monotonically

increases with x. Then, from Equation (35), fidelity internal energy UI(x, τ) takes the
following form

UI(x, τ) = −[ln κ + ln
eI(x, τ)

eI(0, τ)
]VI(x, τ) + UI

0(τ). (A88)

Here, UI
0(τ) is a function of τ, and VI(x, τ) > 0 satisfies the regular first-order differ-

ential equation
∂VI(x, τ)

∂x
= αI(x, τ) VI(x, τ), (A89)

with

αI(x, τ) =
∂ln (eI(x, τ)/eI(0, τ))/∂x

∂SI(x, τ)/∂x− (ln κ + ln (eI(x, τ)/eI(0, τ)))
. (A90)

Accordingly, fidelity temperature TI(x, τ) in this regime is given by the following

TI(x, τ) = −∂VI(x, τ)

∂x
. (A91)
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In regime I, we have to ensure that fidelity mechanical-state functions are continuous at
the boundaries. Indeed, we have already taken into account the continuity requirement for
fidelity entropy, thus determining the residual fidelity entropy on the line of discontinuous
QPT points and the critical point xc = 0 for a fixed τ = 1. The remaining task is to
ensure the continuity requirements for fidelity temperature and fidelity internal energy. In
addition to the dual line (x = 0), there is another characteristic line (x = 1 with 0 < τ < 1),
since a factorized ground state occurs at x = 1, thus leading to zero-fidelity temperature,
with fidelity internal energy being UTFI(0). To this end, we need to determine TI

0(τ)
≡ TI

m(τ)− TI
t (τ) for the regime. For a fixed τ, we have TI

m(τ) = TI(1, τ) and TI
t (τ) = 0.

Furthermore, in order to ensure the continuity requirement for fidelity temperature on the
line of discontinuous QPT points and the requirement for fidelity temperature T(x, τ) to
be zero when h is infinite in value, for a fixed τ, TI(x, τ) is shifted to TI(x, τ)− TI

0(τ) and
UI(x, τ) is shifted to UI(x, τ)− TI

0(τ)S
I(x, τ). At x = 0, the continuity requirements for

fidelity temperature and fidelity internal energy imply that TI(0, τ)− TI
0(τ) = TTFI(τ) and

UI(0, τ)− TI
0(τ)S

TFI(τ) = UTFI(τ). On the other hand, at x = 1, the continuity requirement
for fidelity internal energy implies that UI(1, τ)− TI

0(τ)S
I(1, τ) = UTFI(0). Therefore, κ,

UI
0(τ), and VI

0(τ) are determined from these continuity requirements for a fixed τ. We
refer to TI(x, τ) − TI

0(τ) and UI(x, τ) − TI
0(τ)S

I(x, τ) as TI
f (x, τ) and UI

f (x, τ). That is,

TI
f (x, τ) ≡ TI(x, τ)− TI

0(τ) and UI
f (x, τ) ≡ UI(x, τ)− TI

0(τ)S
I(x, τ).

The model is not exactly solvable when h 6= 0. Instead, we simulate it numerically to
evaluate ground-state wave functions by exploiting the iTEBD algorithm [39–41,46–48] in
the matrix-product state representation, with the bond dimension χ ranging from 20 to 200.
This allows us to determine, among others, parameter ln κ, as plotted in Figure A10a. It
approaches zero when τ → 0 and τ → 1 and exhibits a minimum around τ = 0.33.
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Figure A10. (a) In regime I, the parameter ln κ for the transverse-field quantum Ising model in a
longitudinal field on the line of discontinuous QPT points. It approaches zero when τ → 0 and τ → 1
and exhibits a minimum around τ ≈ 0.33. (b) In regime II, the critical exponent ν for the correlation
length ξ for the transverse-field quantum Ising model in a longitudinal field. The critical point (1, 0)
is approached along a straight line with τ = π/4. The correlation length ξ scales as ξ ∼ x−ν. Our
numerical simulation shows that ν ∼ 0.51. For other choices of τ, it yields similar results, with the
critical exponent ν ranging from 0.51 to 0.52. Here, the model has been simulated by means of the
iTEBD algorithm [39–41,46–48], in the matrix- product state representation, with the bond dimension
χ ranging from 20 to 200.

(b) In regime II (λ ≥ 1 and h ≥ 0), the critical point, located at λ = 1 and h = 0,
controls the underlying physics. In this regime, fidelity mechanical-state functions are
evaluated from our prescription for continuous QPTs in Section 2. For the chosen dominant
control parameter x: x =

√
(λ− 1)2 + h2, the ground-state energy density eII(x, τ) is

monotonic with x, for a fixed τ. As discussed in Section 2, SII
f (x, τ) includes contributions

from both fidelity entropy SII
f (x, τ) and scaling entropy SII

σ (x, τ). Thus, we have SII
f (x, τ) ≡

SII(x, τ) + SII
σ (x, τ), with SII

σ (x, τ) = ln mII(x, τ), and SII
f (x, τ) follows from definition (28).

For a fixed τ, SII(x, τ) takes the following form

SII(x, τ) = −2
∫ x

xc
ln dII(x, τ; y, τ) dy + SII

0 (τ). (A92)
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Here, dII(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime II, and
SII

0 (τ) is the residual fidelity entropy at the critical point xc for a fixed τ, with xc = 0, or
equivalently λ = 1 and h = 0. Therefore, SII

0 (τ) is identified to be fidelity entropy for the
transverse-field quantum Ising model at the same critical point. That is, SII

0 (τ) = STFI(1)
for a fixed τ.

In regime II, for a fixed τ, eII(x, τ) monotonically increases with x. Then, from
Equation (30), fidelity internal energy UII(x, τ) takes the following form

UII(x, τ) = − ln
eII(x, τ)

eII(0, τ)
VII(x, τ) + UII

0 (τ). (A93)

Here, UII
0 (τ) is a function of τ, and VII(x, τ) > 0 satisfies the singular first-order

differential equation:
∂VII(x, τ)

∂x
= αII(x, τ) VII(x, τ), (A94)

with

αII(x, τ) =
∂ln (eII(x, τ)/eII(0, τ))/∂x

∂SII(x, τ)/∂x− ln (eII(x, τ)/eII(0, τ))
. (A95)

Accordingly, fidelity temperature TII(x, τ) in this regime is given by the following

TII(x, τ) = −∂VII(x, τ)

∂x
. (A96)

In order to solve a singular first-order differential equation in the regime, we analyze
the scaling behavior of αII(x, τ) in the vicinity of the critical point. For τ 6= 0, we find that
the critical exponent ν takes ν ' 0.5, with τ = π/4 as an example, shown in Figure A10b.
Thus, fidelity entropy SII(x, τ) scales as x3/2. This is consistent with a general scaling
analysis in Appendix H, which predicts that SII(x, τ) ∼ xν+1. Therefore, for a fixed τ,
αII(x, τ) diverges when x tends to xc, with xc = 0, as follows

αII(x, τ) ∝
1

x1/2 . (A97)

For a fixed τ, the singular first-order differential equation, Equation (A94), may be
solved as follows:

VII(x, τ) = VII
0 (τ)VII

1 (x, τ), (A98)

where VII
0 (τ) > 0 is a function of τ, and VII

1 (x, τ) is defined as follows

VII
1 (x, τ) = exp (

∫ x

0
αII(y, τ)dy). (A99)

Therefore, fidelity internal energy UII(x, τ) and fidelity temperature TII(x, τ) follow
from (A93) and (A96), respectively.

Now we have to ensure that fidelity mechanical-state functions are continuous at the
boundaries. Indeed, we have already taken into account the continuity requirement for
fidelity entropy, thus determining the residual fidelity entropy at the critical point xc for a
fixed τ, with xc = 0. The remaining task is to ensure the continuity requirements for fidelity
temperature and fidelity internal energy. In this regime, there is another characteristic line
(x = 1 with 0 < τ < π/2), since a factorized ground state occurs there, thus leading to
zero-fidelity temperature, with fidelity internal energy being UTFI(0). To this end, we need
to determine TII

0 (τ) ≡ TII
m(τ)− TII

t (τ) for regime II. Here, we have TII
m(τ) = TII(1, τ) and

TII
t (τ) = 0.

In order to ensure that fidelity temperature Tf (x, τ) vanishes, when x proceeds to 1,
for a fixed τ, TII(x, τ) is shifted to TII(x, τ)− TII

0 (τ), with TII
0 (τ) = T I I(1, τ), accompanied

by a shift in UII(x, τ): UII(x, τ)− TII
0 (τ)S

II(x, τ). In addition, fidelity internal energy at the



Entropy 2022, 24, 1306 118 of 157

critical point xc for a fixed τ, with xc = 0, must be zero, and fidelity internal energy at (1, τ)
satisfies the continuity requirement, as discussed in Section 2: UII

0 (τ) = TII
0 (τ)S

II
0 (τ) and

UII(1, τ)− TII
0 (τ)S

II(1, τ) = UTFI(0). Hence, VII
0 (τ) is determined as follows

VII
0 (τ) =

UTFI(0)
− ln (eII(1, τ)/eII(0, τ))VII

1 (1, τ) + αII(1, τ)VII
1 (1, τ)(SII(1, τ)− STFI(1))

. (A100)

After VII
0 (τ) and UII

0 (τ) are determined, fidelity temperature TII(x, τ) and fidelity inter-
nal energy UII(x, τ) follow from (A93) and (A96), respectively. We refer to TII(x, τ)− TII

0 (τ)
and UII(x, τ)− TII

0 (τ)S
II(x, τ) as TII

f (x, τ) and UII
f (x, τ), respectively. That is, TII

f (x, τ)

≡ TII(x, τ)− TII
0 (τ) and UII

f (x, τ) ≡ UII(x, τ)− TII
0 (τ)S

II(x, τ), respectively.
Once fidelity entropy Sω

f (x, τ), fidelity temperature Tω
f (x, τ), and fidelity internal

energy Uω
f (x, τ) (ω=I and II) are determined for the two principal regimes, fidelity entropy

S f (λ, h), fidelity temperature Tf (λ, h), and fidelity internal energy U f (λ, h) follow. That is,
Sω

f (λ, h) ≡ Sω
f (x, τ), Tω

f (λ, h) ≡ Tω
f (x, τ), and Uω

f (λ, h) ≡ Uω
f (x, τ) when we move from

x and τ to λ and h, meaning that x and τ are regarded as functions of λ and h.
Numerical simulation results for fidelity entropy S f (λ, h), fidelity temperature Tf (λ, h),

and fidelity internal energy U f (λ, h) for the transverse-field quantum Ising model in a
longitudinal field are shown in Figure 16a–c, respectively.

Appendix M. Fidelity Entropy S f (∆, γ), Fidelity Temperature Tf (∆, γ), and Fidelity
Internal Energy U f (∆, γ) for the Quantum Spin-1/2 XYZ Model

In this Appendix, we present mathematical details about fidelity entropy S f (∆, γ), fi-
delity temperature Tf (∆, γ), and fidelity internal energy U f (∆, γ) for the spin-1/2 quantum
XYZ model.

For this model, the Hamiltonian (3) is symmetrical under γ ↔ −γ. Therefore, we
may restrict ourselves to the region γ ≥ 0. As shown in Figure 17, there are three different
phases, labelled as AFx, AFz, and FMz, representing an AF phase in the x direction, an AF
phase in the z direction, and an FM phase in the z direction, respectively. There are three
lines of critical points: γ = 0 with −1 < ∆ ≤ 1, γ = −1 + ∆ with ∆ ≥ 1 and γ = −1− ∆
with ∆ < −1. As demonstrated (cf. Appendix C), there are five different dualities. In
addition, there is a characteristic line (γ = 1 + ∆ with ∆ > −1), representing factorizing
fields [77–79].

Taking into account the symmetries, dualities, and factorizing fields, we may divide
the region γ ≥ 0 into twelve different regimes, with the characteristic lines, defined by
γ = 0, γ = 1, and γ = ±1± ∆, as the boundaries. The twelve regimes are separated into
two groups, with six regimes in each group dual to each other. As shown in Section 2,
regime I, regime III, regime V, regime VII, regime IX, and regime XI are dual to each other,
whereas regime II, regime IV, regime VI, regime VIII, regime X, and regime XII are dual
to each other. Therefore, there are only two principal regimes, representing the physics
underlying the quantum spin-1/2 XYZ model (3). Here, we choose regime I (0 < ∆ < 1
and 0 < γ < 1− ∆) and regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆) as two principal
regimes.

Now we turn to the explicit mathematical expressions for fidelity entropy S f (∆, γ),
fidelity temperature Tf (∆, γ), and fidelity internal energy U f (∆, γ) for the quantum spin-
1/2 XYZ model.

Appendix M.1. Fidelity Entropy S f (∆, γ), Fidelity Temperature Tf (∆, γ), and Fidelity Internal
Energy U f (∆, γ): An Exterior Point of View

Let us determine fidelity entropy Si(x) in principal part i on the factorizing-field
line (γ = 1 + ∆ with −1 < ∆ < 0), and fidelity entropy Sii(x) in principal part ii on the
U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < 1):
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(i) On the factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0), the same factorized
state occurs as the ground-state wave function, with the ground-state energy density
e(∆, 1 + ∆) = −(∆ + 2)/2. We recall that a dominant control parameter x was chosen
to be x = ∆ + 1 for a fixed γ− ∆ = 1. Here, a re-parametrization operation in the
ground-state energy density e(∆, 1 + ∆): e(∆, 1 + ∆) = mi(x)ei(x), with mi(x) =
(x + 1)/2, is performed. Therefore, ei(x) is a constant as x varies. Note that the
quantum spin-1/2 XYZ model becomes the quantum spin-1/2 XY model, when x = 1.
Therefore, fidelity mechanical-state functions for x = 1 has been determined, as
discussed in Appendix K. In particular, fidelity entropy Si(1) for x = 1 is known.
With this in mind, fidelity entropy Si(x) on the factorizing-field line (γ = 1 + ∆
with 0 < γ < 1), is identical to Si(1) up to scaling entropy Si

σ(x). Thus, we have
Si

f (x) = Si(1) + Si
σ(x). Here, Si

σ(x) = ln mi(x), with mi(x) = (x + 1)/2. According

to our convention (cf. Section 2), we have Si
f (x) = Si(x).

(ii) On the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < 1), we recall that a dominant
control parameter x was chosen to be x = 1− ∆/(2− ∆). Here, a re-parametrization
operation in the ground-state energy density e(∆, 1− ∆): e(∆, 1− ∆) = mii(x)eii(x)
is performed, with mii(x) = 2/(x + 1). It should be emphasized that the ground-
state energy density e(∆, 1− ∆) is not monotonic as a function of ∆. However, a
re-parametrization operation in the ground-state energy density ensures that both
mii(x) and eii(x) are monotonically decreasing with x. In particular, x has been chosen
to be consistent with duality between regime III and regime IV, (cf. Appendix C).
As discussed in Section 2, Sii

f (x) includes contributions from fidelity entropy Sii(x)
and from scaling entropy Sii

σ(x). That is, Sii
f (x) = Sii(x) + Sii

σ(x), with scaling entropy

Sii
σ(x) = − ln mii(x). Here, Sii(x) takes the following form:

Sii(x) = −2
∫ x

xc
ln dii(x; y) dy + Sii

0 , (A101)

where dii(x; y) denotes the ground-state fidelity per lattice site in principal part ii, and
Sii

0 is the residual fidelity entropy at the critical point xc = 0.

We move to the two principal regimes: regime I and regime II.
(a) In regime I (0 < ∆ < 1 and γ < 1−∆), we recall that a dominant control parameter

x was chosen to be x = γ, and an auxiliary control parameter τ was chosen to be τ = ∆.
From Equation (28), for a fixed τ, fidelity entropy SI(x, τ) takes the following form

SI(x, τ) = −2
∫ x

xc
ln dI(x, τ; y, τ) dy + SI

0(τ). (A102)

Here, dI(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime I, and
SI

0(τ) is the residual fidelity entropy at a critical point xc for a fixed τ, with xc = 0.
(b) In regime II (−1 < ∆ < 0 and γ < 1 + ∆), we recall that a dominant control

parameter x was chosen to be x = γ, and an auxiliary control parameter τ was chosen to be
τ = ∆. From Equation (28), fidelity entropy SII(x, τ) takes the same form as Equation (A102)
for regime I, with the label being changed from I to II.

Once fidelity entropy Sq
f (x) (q = i and ii) in the two principal parts and fidelity entropy

Sω
f (x, τ) (ω=I and II) in the two principal regimes are determined, fidelity temperature

Tq
f (x) and fidelity internal energy Uq

f (x) in the principal parts may be determined from
solving the singular first-order differential equation, Equation (14), and fidelity temperature
Tω

f (x, τ) and fidelity internal energy Uω
f (x, τ) in the principal regimes may be determined

from solving the singular first-order differential equation, Equation (31), as discussed for
continuous QPTs in Section 2.

We start our discussion from the two principal parts, labelled as i and ii.
(i) On the factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0), for the chosen dominant

control parameter x: x = ∆ + 1, fidelity temperature Ti(x) vanishes: Ti(x) = 0. Meanwhile,
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fidelity internal energy Ui(x) is a constant: Ui(x) = Um, where Um has been determined in
Appendix K, since the quantum spin-1/2 XYZ model becomes the quantum spin-1/2 XY
model, when x = 1. As discussed in Section 2, we have Ti

f (x) = Ti(x) and Ui
f (x) = Ui(x).

(ii) On the dual line (γ = 1− ∆ with 0 < ∆ < 1), for the chosen dominant control
parameter x: x = 1− ∆/(2− ∆), a re-parametrization operation in the ground-state energy
density e(∆, 1− ∆): e(∆, 1− ∆) = mii(x)eii(x) with mii(x) = 2/(1 + x), is performed to
ensure that eii(x) monotonically decreases with x. Then, from Equation (10), Uii(x) takes
the form

Uii(x) = ln
eii(x)
eii(0)

Vii(x) + Uii
0 . (A103)

Here, Uii
0 is an additive constant, and Vii(x) > 0 satisfies the singular first-order

differential equation
∂Vii(x)/∂x = αii(x) Vii(x), (A104)

with

αii(x) = − ∂ln (eii(x)/eii(0))/∂x
∂Sii(x)/∂x + ln (eii(x)/eii(0))

. (A105)

Accordingly, fidelity temperature Tii(x) follows from

Tii(x) = −∂Vii(x)
∂x

. (A106)

Next, we move to fidelity temperature and fidelity internal energy in the two principal
regimes:

(a) In regime I (0 < ∆ < 1 and 0 < γ < 1−∆), for the chosen dominant control parameter
x: x = γ, the ground-state energy density eI(x, τ) monotonically decreases with x, for
a fixed τ = ∆. Then, from Equation (30), fidelity internal energy UI(x, τ) takes the
form

UI(x, τ) = ln
eI(x, τ)

eI(0, τ)
VI(x, τ) + UI

0(τ). (A107)

Here, UI
0(τ) is a function of τ, and VI(x, τ) > 0 satisfies the singular first-order

differential equation
∂VI(x, τ)

∂x
= αI(x, τ) VI(x, τ), (A108)

with

αI(x, τ) = − ∂ln (eI(x, τ)/eI(0, τ))/∂x
∂SI(x, τ)/∂x + ln (eI(x, τ)/eI(0, τ))

. (A109)

Accordingly, fidelity temperature TI(x, τ) in this regime is given by

TI(x, τ) = −∂VI(x, τ)

∂x
. (A110)

(b) In regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆), fidelity internal energy UII(x, τ),
fidelity temperature TII(x, τ), and VII(x, τ), together with its singular first-order
differential equation with αII(x, τ), take the same form as Equations (A107)–(A110)
for regime I, with the label being changed from I to II.

To solve the singular first-order differential equation, Equation (A108), and its counter-
parts, we analyze the scaling behavior of αI/II(x, τ) in the vicinity of a critical point xc, with
xc = 0, for −1 < τ < 1. As discussed in Appendix H, fidelity entropy SI/II(x, τ) scales as
SI/II(x, τ) ∼ xν(τ)+1, with ν(τ), as a function of τ ∈ (−1, 1), being the critical exponent for
the correlation length. In addition, for a fixed τ ∈ (−1, 1), our numerical simulation shows
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that the ground-state energy density eI/II(x, τ) near a critical point xc, with xc = 0, scales
as follows

ln
eI/II(x, τ)

eI/II(0, τ)
∼ xK(τ) ln x. (A111)

In regime I and regime II, as long as ν(τ) < K(τ) ≤ ν(τ) + 1, αI/II(x, τ) scales as
follows

αI/II(x, τ) ∝ xK(τ)−ν(τ)−1 ln x. (A112)

The scaling behaviors for regime I and regime II are the same, as anticipated from the
fact that they both belong to the Gaussian universality class. This is confirmed numerically,
as shown in Figure A11. Actually, two different sets of the critical exponent ν(τ) are plotted
as a function of τ ∈ (−1, 1): one is ν(τ), which is extracted from the scaling behavior
of fidelity entropy SI/II(x, τ), the other is νb(τ), extracted from the leading singular term
via the exact solution in Ref. [125] (see, also Ref. [130]). For −1 < τ < 0, ν(τ) and νb(τ)
matches, with an accuracy up to 5%. However, for τ > 0, a significant discrepancy arises
between ν(τ) and νb(τ). One might attribute this discrepancy to the fact that only the
leading singular term is taken into account to extract νb(τ), which also neglects the presence
of logarithmic factor ln x. Indeed, the necessity to include this logarithmic factor may be
justified from a heuristic argument that it exists, since αI/II(x, τ) should be smooth along a
line of critical points with τ ∈ (−1, 1), combined with the fact that it exists at an infinite
number of discrete points between τ = 0 and τ = 1 if π/µ is an even integer, with
cos µ = τ [125]. Note that our numerical result for ν(τ), as τ approaches 1, coincides with
a previous observation that ν(1) ≈ 2 [229].
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Figure A11. A parameter K(τ), 1 + νb(τ), and 1 + ν(τ) as a function of τ ∈ (−1, 1). Here, K(τ) is
defined via a scaling relation for the ground-state energy density e(x, τ) ∼ xK(τ) ln x for a fixed τ, and
νb(τ) and ν(τ) represent, respectively, two different sets of the critical exponent ν for the correlation
length: one is ν(τ), which is extracted from the scaling behavior of fidelity entropy SI/II(x, τ), and
the other is νb(τ), extracted from the leading singular term via the exact solution.

Since the integration of αI/II(x, τ) with respect to x is finite, the singular first-order
differential equation, Equation (A108), for regime I and its counterpart for regime II may
be solved in a straightforward manner.

Let us first determine Vi(x) and Vii(x) in the two principal parts, labelled as i and ii,
respectively.

(i) In principal part i on the factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0), Vi(x)
vanishes: Vi(x) = 0.

(ii) In principal part ii on the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < 1), when
the KT critical point xc = 0 is approached, fidelity entropy Sii(x) scales as Sii(x) ∼ x3.
Taking into account the fact that the first-order derivative of ln (eii(x)/eii(0)) with respect
to x at the critical point xc, with xc = 0, is nonzero, αii(x) scales as follows

αii(x) ∼ 1
x

. (A113)
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This is a situation similar to the Kramers–Wannier dual line (γ = 1) for the quantum
spin-1/2 XY model. Then, since the integration of αii(x) with respect to x is finite, the
singular first-order differential equation, Equation (A104), may be solved as follows:

Vii(x) = Vii
0 Vii

1 (x), (A114)

where Vii
0 is a constant to be determined, and Vii

1 (x) takes the following form

Vii
1 (x) = exp (

∫ x

0
αii(y)dy). (A115)

The singular first-order differential equations for regime I and regime II are solved in
a similar manner.

(a) In regime I (0 < ∆ < 1 and 0 < γ < 1− ∆), since the integration of αI(x, τ) with re-
spect to x for a fixed τ is finite, the singular first-order differential equation, Equation (A108),
may be solved as follows:

VI(x, τ) = VI
0(τ)V

I
1(x, τ), (A116)

where VI
0(τ) is a function of τ, and VI

1(x, τ) is defined as follows

VI
1(x, τ) = exp (

∫ x

0
αI(y, τ)dy). (A117)

(b) In regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆), the solution VII(x) to the singular
first-order differential equation takes the same form as Equations (A116) and (A117) for
regime I, with the label being changed from I to II.

We require that fidelity entropy takes the same value Sm as that at the U(1)-symmetric
point (0, 1) for the quantum spin-1/2 XY model (cf. Section 7). Therefore, Si

0 and Sii
0 are

determined: Si(1) = Sm and Sii(1) = Sm. Hence, fidelity entropy Si(x) and Sii(x) in the
two principal parts are determined.

Now, let us determine V0 and U0 in the two principal parts, labelled as i and ii, and
in the two principal regimes: regime I and regime II. As argued in Section 2, we need to
determine Tq

0 for principal part q (q = i and ii). In principal part i, we have Ti
0 = 0. In

principal part ii, we have Tii
0 = Tii(1).

In order to ensure that fidelity temperature vanishes at the characteristic point (λ = 0
and γ = 1), Tii(x) is shifted to Tii(x)− Tii

0 , with Tii
0 ≡ Tii(1), accompanied by a shift in

Uii(x): Uii(x)− Tii
0 Sii(x). In addition, fidelity internal energy at the critical point xc, with

xc = 0, must be zero, and fidelity internal energy at the characteristic point x = 1 (λ = 0
and γ = 1) satisfies the continuity requirement, as discussed in Section 2: Uii

0 = Tii
0 Sii

0 and
Uii(1)− Tii

0 Sii(1) = Um. Therefore, Vii
0 is determined as follows

Vii
0 =

Um

ln (eii(1)/eii(0))Vii
1 (1) + αii(1)Vii

1 (1)(S
ii(1)− Sii

0 )
. (A118)

Once Vii
0 and Uii

0 are determined, fidelity temperature Tii(x) and fidelity internal
energy Uii(x) follow from (A103) and (A106), respectively. Then, following from our
discussions in Section 2, fidelity temperature Tii

f (x) and fidelity internal energy Uii
f (x) take

the following form: Tii
f (x) = Tii(x)− Tii

0 and Uii
f (x) = Uii(x)− Tii

0 Sii(x), respectively.
Now we turn to the residual fidelity entropy on the line of the Gaussian critical points.

We are able to determine the residual fidelity entropy SI
0(τ) and SII

0 (τ), respectively, from
the continuity requirements: SI(1− τ, τ) = Sii(1− τ/(2− τ)) at a point in principal part ii,
and SII(1 + τ, τ) = Si(τ + 1) at a point in principal part i. Here, the continuity requirement
for fidelity entropy at a point in the two principal parts, labelled as i and ii, implies that
fidelity entropies in regime I and regime II include contributions from scaling entropy
SI

σ(x, τ) and SII
σ (x, τ) due to a re-parametrization operation in the ground-state energy

density in the two principal parts, respectively. Hence, we have SI
f (x, τ) = SI(x, τ)+
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SI
σ(x, τ) and SII

f (x, τ) = SII(x, τ) + SII
σ (x, τ), where SI

σ(x, τ) = Sii
σ(1 − τ/(2 − τ)) and

SII
σ (x, τ) = Si

σ(τ + 1).
We have to ensure that fidelity mechanical-state functions are continuous at the bound-

aries for the two principal regimes. Indeed, we have already taken into account the
continuity requirement for fidelity entropy, thus determining the residual fidelity entropy
on the line of the Gaussian critical points. The remaining task is to ensure the continuity
requirements for fidelity temperature and fidelity internal energy. To this end, we need to
determine TI

0 ≡ TI
m − TI

t and TII
0 ≡ TII

m − TII
t for the two principal regimes. In regime I, we

have TI
m(τ) = TI(1− τ, τ) and TI

t (τ) = Tii(1− τ/(2− τ)) for a fixed τ. In regime II, we
have TII

m(τ) = TII(1 + τ, τ) and TII
t (τ) = 0 for a fixed τ.

In regime I, for a fixed τ, in order to ensure the continuity requirement for fidelity
temperature in principal part ii, TI(x, τ) is shifted to TI(x, τ)− TI

0(τ), with TI
0(τ)

= TI(
√

1− τ2, τ). Then, UI(x, τ) is shifted to UI(x, τ)− TI
0(τ)S

I(x, τ), with SI(x, τ) left
intact. Here, TI

0(τ) ≡ TI(1− τ, τ)− Tii(1− τ/(2− τ)). In addition, fidelity internal energy
on the line of the Gaussian critical points (γ = 0 with 0 < ∆ < 1), with x = xc = 0, for a
fixed τ must be zero, and fidelity internal energy satisfies the continuity requirement in
principal part ii, as discussed in Section 2: UI

0(τ) = TI
0(τ)S

I
0(τ) and UI(1− τ, τ)

−TI
0(τ)S

I(1− τ, τ) = Uii
f (1− τ/(2− τ)). Therefore, VI

0(τ) is determined as follows

VI
0(τ) =

Uii
f (1− τ/(2− τ))− Tii

f (1− τ/(2− τ))(SI(1− τ, τ)− SI
0(τ))

ln (eI(1− τ, τ)/eI(0, τ))VI
1(1− τ, τ) + αI(1− τ, τ)VI

1(1− τ, τ)(SI(1− τ, τ)− SI
0(τ))

. (A119)

Once VI
0(τ) and UI

0(τ) are determined, fidelity temperature TI(x, τ) and fidelity in-
ternal energy UI(x, τ) follow from (A107) and (A110), respectively. Following from our
discussions in Section 2, fidelity entropy SI

f (x, τ), fidelity temperature TI
f (x, τ), and fi-

delity internal energy UI
f (x, τ) take the following form: SI

f (x, τ) = SI(x, τ), TI
f (x, τ) =

TI(x, τ)− TI
0(τ), and UI

f (x, τ) = UI(x, τ)− TI
0(τ)S

I(x, τ), respectively.
In regime II, for a fixed τ, in order to ensure the continuity requirement for fidelity

temperature in principal part i, TII(x, τ) is shifted to TII(x, τ)− TII
0 (τ), with TII

0 (τ)

= TII(
√

1− τ2, τ). Then, UII(x, τ) is shifted to UII(x, τ) − TII
0 (τ)S

II(x, τ), with SII(x, τ)
left intact. Here, TII

0 (τ) = TII(1 + τ, τ). In addition, fidelity internal energy on the line
of the Gaussian critical points (γ = 0 with 0 < ∆ < 1) or, equivalently, x = xc, with
xc = 0, for a fixed τ must be zero, and fidelity internal energy satisfies the continuity
requirement in principal part i, as discussed in Section 2: UII

0 (τ) = TII
0 (τ)S

II
0 (τ) and

UII(1 + τ, τ)− TII
0 (τ)S

II(1 + τ, τ) = Um. Therefore, VII
0 (τ) is determined as follows

VII
0 (τ) =

Um

ln (eII(1 + τ, τ)/eII(0, τ))VII
1 (1 + τ, τ) + αII(1 + τ, τ)VII

1 (1 + τ, τ)(SII(1 + τ, τ)− SII
0 (τ))

. (A120)

After VII
0 (τ) and UII

0 (τ) are determined, fidelity temperature TII(x, τ) and fidelity
internal energy UII(x, τ) follow from their counterparts of (A107) and (A110), with the label
being changed from I to II, respectively. Following from our discussions in Section 2, fidelity
entropy SII

f (x, τ), fidelity temperature TII
f (x, τ), and fidelity internal energy UII

f (x, τ) take

the following form: SII
f (x, τ) = SII(x, τ), TII

f (x, τ) = TII(x, τ) − TII
0 (τ), and UII

f (x, τ) =

UII(x, τ)− TII
0 (τ)S

II(x, τ), respectively.
Once fidelity entropy Sq

f (x), fidelity temperature Tq
f (x), and fidelity internal energy

Uq
f (x) (q = i, ii) in the two principal parts and fidelity entropy Sω

f (x, τ), fidelity temperature
Tω

f (x, τ), and fidelity internal energy Uω
f (x, τ) in the two principal regimes (ω = I, II) are

determined, fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal
energy U f (∆, γ) follow. That is, Sq

f (∆, γ) ≡ Sq
f (x) and Sω

f (∆, γ) ≡ Sω
f (x, τ), Tq

f (∆, γ)

≡ Tq
f (x) and Tω

f (∆, γ) ≡ Tω
f (x, τ), and Uq

f (∆, γ) ≡ Uq
f (x) and Uω

f (∆, γ) ≡ Uω
f (x, τ), when

we move from x and τ to ∆ and γ, meaning that x and τ are regarded as functions of
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∆ and γ. This is due to the fact that (∆, γ) and (x, τ) label the same point in the control
parameter space.

If fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal energy
U f (∆, γ) are determined in regime I and regime II, then fidelity mechanical-state functions
in the non-principal regimes are determined from dualities in Appendix C by taking into
account a contribution from scaling entropy arising from dualities (cf. Appendix G).

Numerical simulations for fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and
fidelity internal energy U f (∆, γ) are shown in Figure 18a–c, respectively.

Appendix M.2. Fidelity Entropy S f (∆, 0), Fidelity Temperature Tf (∆, 0), and Fidelity Internal
Energy U f (∆, 0): An Interior Point of View

We start from the complete line of critical points (γ = 0 with −1 < ∆ < 1), which has
been labelled as scenario III-1 in Section 6. Here, a dominant control parameter x is chosen
to be x = 1− ∆. From Equation (9), fidelity entropy S(x) takes the following form

S(x) = −2
∫ x

xc
ln d(x; y) dy + S0. (A121)

Here, d(x; y) denotes the ground-state fidelity per lattice site on the complete line,
labelled as scenario III-1, and S0 is the residual fidelity entropy at the KT transition point
xc = 0. According to our convention (cf. Section 2), we have S f (x) = S(x).

On the complete line (γ = 0 with −1 < ∆ < 1), which constitutes a principal part as a
whole (cf. scenario III-1), ground-state energy density e(x) monotonically increases with x.
Then, from Equation (10), fidelity internal energy U(x) takes the following form

U(x) = − ln
e(x)
e(0)

V(x) + U0. (A122)

Here, U0 is an additive constant, and V(x) > 0 satisfies the singular first-order
differential equation:

∂V(x)
∂x

= α(x) V(x), (A123)

with

α(x) =
∂ln (e(x)/e(0))/∂x

∂S(x)/∂x− ln (e(x)/e(0))
. (A124)

Accordingly, fidelity temperature T(x) on the complete line is given by the following

T(x) = −∂V(x)
∂x

. (A125)

To solve the singular first-order differential equation, Equation (A123), we analyze
the scaling behavior of α(x) in the vicinity of the KT transition point xc = 0. As it turns
out, fidelity entropy S(x) scales as S(x) ∼ x3. In addition, our numerical simulation shows
that the ground-state energy density e(x) near the KT transition point xc = 0 scales as
ln(e(x)/e(0)) ∼ x. Then, α(x) diverges as follows

α(x) ∝
1
x

. (A126)

Our numerical simulations confirm this scaling analysis.
Since the integration of α(x) with respect to x is finite, the singular first-order differen-

tial equation, Equation (A123), may be solved in a straightforward manner:

V(x) = V0V1(x), (A127)
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where V0 is a positive constant, and V1(x) takes the following form

V1(x) = exp (
∫ x

0
α(y)dy). (A128)

The remaining task is to determine S0, U0, and V0. Here, we require that, at the FM
transition point x = 2 or equivalently ∆ = −1, fidelity mechanical-state functions are equal
to those from an exterior point of view. In addition, at the KT transition point x = 0 or
equivalently, ∆ = 1, fidelity internal energy must be zero. Hence, S0 is determined from
the requirement S f (2) = Sm, with Sm denoting fidelity entropy from an exterior point of
view at the FM transition point x = 2. That is, fidelity entropy S f (x) from an interior point
of view matches that from an exterior point of view at the FM transition point; thus, it
is single-valued there. In addition, fidelity temperature at the FM transition point must
be zero, thus leading to T0 = T(2). Furthermore, fidelity internal energy U f (x) at the KT
transition point x = 0 must be zero, and fidelity internal energy U f (x) is single-valued at
the FM transition point x = 2 when it is approached along the U(1)-symmetric line (γ = 0),
as discussed in Section 2: U0 = T0S0 and U(2)− T0S(2) = Um, with Um denoting fidelity
internal energy from an exterior point of view at the FM transition point. Hence, V0 is
determined as follows

V0 =
Um

− ln (e(2)/e(0))V1(2) + α(2)V1(2)(S f (2)− S0)
. (A129)

After V0 and U0 are determined, fidelity temperature T(x) and fidelity internal energy
U(x) follow from (A122) and (A125), respectively. We refer to T(x)− T0 and U(x)− T0S(x)
as Tf (x) and U f (x), respectively. That is, Tf (x) ≡ T(x)− T0 and U f (x) ≡ U(x)− T0S(x).

Once fidelity entropy S f (x), fidelity temperature Tf (x), and fidelity internal energy
U f (x) are determined on the complete line of critical points (γ = 0 with −1 < ∆ < 1),
fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and fidelity internal energy U f (∆, 0)
follow. That is, S f (∆, 0) ≡ S f (x), Tf (∆, 0) ≡ Tf (x), and U f (∆, 0) ≡ U f (x), when we move
from x to ∆, meaning that x is regarded as a function of ∆. This is due to the fact that (∆, 0)
(−1 < ∆ < 1) and x label the same point on the complete line.

Numerical simulation results for fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0),
and fidelity internal energy U f (∆, 0) are shown in Figure 19a–c, respectively.

Appendix N. Fidelity Entropy, Fidelity Temperature, and Fidelity Internal Energy for
the Quantum Spin-1/2 XXZ Model in a Magnetic Field

In this Appendix, we present mathematical details about fidelity entropy S f (∆, h),
fidelity temperature Tf (∆, h), and fidelity internal energy U f (∆, h) for the quantum spin-
1/2 XXZ model in a magnetic field.

As shown in Figure 20, there are four phases, labelled as AF, FM−, FM+, and XY,
representing an AF phase, an FM phase with all spin down, an FM phase with all spin up,
and a critical phase with central charge c = 1, respectively. We may restrict ourselves to the
region h ≥ 0, since the Hamiltonian (4) is symmetrical with respect to h↔ −h. Meanwhile,
the consideration of the phase transition lines and characteristic lines allows us to separate
the entire region with h ≥ 0 into four principal regimes: regime I, regime II, regime III, and
regime IV.

Now we turn to the explicit mathematical expressions for fidelity entropy S f (∆, h),
fidelity temperature Tf (∆, h), and fidelity internal energy U f (∆, h) for the quantum spin-
1/2 XXZ model in a magnetic field.

The choices of a dominant control parameter x in the four principal regimes are as
follows: In regime I, a dominant control parameter x was chosen to be x =

√
(∆ + 1)2 + h2/

(1+
√
(∆ + 1)2 + h2), and an auxiliary control parameter τ was chosen to be τ = arctan(h/

(∆ + 1)) ∈ (π/2, π]. Here, a re-parametrization operation in the ground-state energy
density e(∆, h): e(∆, h) = mI(x, τ) eI(x, τ), with mI(x, τ) = (2 sin τ − cos τ)x/(1− x) + 1,
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is performed to ensure that eI(x, τ) is a constant: eI(x, τ) = −1. In regime II, a dominant
control parameter x was chosen to be x = 1− 1/(h−∆), and an auxiliary control parameter
τ was chosen to be τ = ∆ ∈ [−1, ∞). Here, a re-parametrization operation in the ground-
state energy density e(∆, h): e(∆, h) = mII(x, τ) eII(x, τ), with mII(x, τ) = τ + 2/(1− x), is
performed to ensure that eII(x, τ) is a constant: eII(x, τ) = −1. In regime III, a dominant
control parameter x was chosen to be x = −∆, and an auxiliary control parameter τ was
chosen to be τ = h. In regime IV, a dominant control parameter x was chosen to be
x = hc − h, and an auxiliary control parameter τ was chosen to be τ = ∆.

We remark that fidelity mechanical-state functions on the line of the PT transition
points (h = 1+∆ with ∆ > −1) for the quantum spin-1/2 XXZ model in a magnetic field (4)
may be determined from those on the factorizing-field line (γ = 1+ ∆ with ∆ > −1) for the
quantum spin-1/2 XYZ model (3), since we have to regard both of them as a sub-model of
the quantum spin-1/2 XYZ model in a magnetic field. That is, the quantum spin-1/2 XXZ
model in a magnetic field (4) consitutes a U(1)-symmetric plane (γ = 0) and the quantum
spin-1/2 XYZ model (3) constitutes a dual plane (h = 0) for the quantum spin-1/2 XYZ
model in a magnetic field.

In fact, the line of the PT transition points (h = 1+ ∆ with ∆ > −1) and the factorizing-
field line (γ = 1 + ∆ with ∆ > −1) are located on the factorizing-field cone surface [77–82]
(cf. scenario II-2 and scenario III-2 in Section 6). The presence of the factorizing-field
cone surface divides the three-dimensional region, defined by h > 0 and γ > 0, into
three-dimensional principal regimes in the control parameter space. In a three-dimensional
principal regime, the three coupling parameters ∆, γ and h may be parametrized in the
following form: γ = r sin θ and h = r cos θ, with ∆ left intact. Hence, if we restrict to the
factorizing-field cone surface, then a dominant control parameter x is chosen to be θ and two
auxiliary control parameters τ1 and τ2 are chosen to be τ1 = ∆ and τ2 = 1 + ∆, respectively.
In addition, an important observation is that the ground state remains to be the same for a
fixed θ on the factorizing-field cone surface, implying that any circle on the factorizing-field
cone surface with a fixed ∆ accommodates the same set of factorized ground states as
that on the disordered circle for the spin-1/2 XY model (1), with an identification of its
coupling parameter λ with the coupling parameter h for the quantum spin-1/2 XYZ model
in a magnetic field. In fact, the spin-1/2 XY model (1) is also a sub-model of the quantum
spin-1/2 XYZ model in a magnetic field, with ∆ = 0. Given that the factorizing-field line
(γ = 1+ ∆ with ∆ > −1) for the quantum spin-1/2 XYZ model (3) is divided into two parts
that are dual to each other (cf. Appendix M), we need to partition the factorizing-field cone
surface with ∆ > −1 into two regimes: −1 < ∆ < 0 and ∆ > 0. In regime −1 < ∆ < 0, a
re-parametrization operation is performed: e(γ, ∆, h) = m(x, τ1, 1 + τ1)e(x, τ1, 1 + τ1), with
m(x, τ1, 1 + τ1) = (2 + τ1)/2. This results in a contribution to scaling entropy from the
re-parametrization operation: Sσ(∆, γ, h) = ln(2 + ∆)− ln 2. In regime ∆ > 0, one has to
combine the re-parametrization operation with the duality transformation connecting the
two parts on the factorizing-field line (γ = 1 + ∆ with ∆ > −1), both of which induce a
contribution to scaling entropy: Sσ(∆, γ, h) = ln(2 + ∆)− 2 ln(1 + ∆)− ln 2 for ∆ > 0.

Hence, for the quantum spin-1/2 XXZ model in a magnetic field (4), fidelity tem-
perature Tp(∆) on the line of the PT transition points (h = 1 + ∆ with ∆ > −1) is zero,
and fidelity internal energy Up(∆) on the line of the PT transition points (h = 1 + ∆ with
∆ > −1) takes the maximum value Um, which is identical to that at all stable fixed points
for the quantum spin-1/2 XYZ model (cf. Appendix M). Meanwhile, Sp(∆) on the line of
the PT transition points (h = 1 + ∆ with ∆ > −1) takes the following form:

Sp(∆) = SXYZ(∆, 1 + ∆)− SXY(0, 1), (A130)

Here, SXYZ(∆, 1 + ∆) is fidelity entropy on the factorizing-field line (γ = 1 + ∆ with
∆ > −1) for the quantum spin-1/2 XYZ model (3): SXYZ(∆, 1 + ∆) = ln(2 + ∆)− ln 2 + Sm
for −1 < ∆ < 0 and SXYZ(∆, 1 + ∆) = ln(2 + ∆) − 2 ln(1 + ∆) − ln 2 + Sm for ∆ > 0,
where Sm denotes fidelity entropy at the U(1)-symmetric point (∆ = 0 and γ = 1) for the
quantum spin-1/2 XYZ model (cf. Appendix M), and SXY(0, 1) denotes SXY(cos θ, sin θ)
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at θ = π/2, where SXY(cos θ, sin θ) is fidelity entropy at (cos θ, sin θ), evaluated from
θ = 0, on the disordered circle: λ2 + γ2 = 1 for the quantum spin-1/2 XY model (1):
SXY(cos θ, sin θ)=−2

∫ θ
0 ln d(cos θ, sin θ; cos η, sin η) dη, where d(cos θ, sin θ; cos η, sin η) is

the ground-state fidelity per lattice site on the disordered circle (cf. Appendix A).
In regime I, the ground state remains the same: a spin-polarized state with all spins

down for h > 0. Therefore, SI
f (x, τ) includes contributions from the residual fidelity entropy

SI
0(τ) and scaling entropy SI

σ(x, τ), as discussed in Section 2: SI
f (x, τ) = SI

0(τ) + SI
σ(x, τ),

with scaling entropy SI
σ(x, τ) = ln(2 sin τx− cos τx + 1− x)− ln(1− x). Here, SI

0(τ) =
Sm − ln 2 is determined by the continuity requirement for fidelity entropy at the FM
transition point: SI

0(π/2) = Sp(−1). In addition, fidelity temperature TI
f (x, τ) is zero, and

fidelity internal energy UI
f (x, τ) is the maximum: UI

f (x, τ) = Um.
In regime II, the ground state remains the same: a spin-polarized state with all

spins down for h > 0. Therefore, SII
f (x, τ) includes contributions from the residual fi-

delity entropy SII
0 (τ) and scaling entropy SII

σ (x, τ), as discussed in Section 2: SII
f (x, τ) =

SII
0 (τ) + SII

σ (x, τ), with scaling entropy SII
σ (x, τ) = ln(2 + τ − τx)− ln(1− x). Here, SII

0 (τ)
is determined by the continuity requirement for fidelity entropy on the line of the PT tran-
sition points (h = 1 + ∆ with ∆ > −1): SII

0 (τ) = Sp(τ). In addition, fidelity temperature
TII

f (x, τ) is zero, and fidelity internal energy UII
f (x, τ) is the maximum: UII

f (x, τ) = Um.

In regime III, from an exterior point of view, fidelity temperature TIII
f (x, τ) diverges,

indicating strong quantum fluctuations. Fidelity internal energy UIII
f (x, τ) is, by convention,

zero, and the only contribution to fidelity entropy is the residual fidelity entropy S0, which
is known on the line of the PT transition points. However, it is time-consuming to determine
the residual fidelity entropy S0 in regime III (cf. scenario II-2 and scenario III-2 in Section 6).
Instead, we mainly focus on fidelity mechanical-state functions from an interior point of
view in regime III.

In regime IV, for ∆ = ∆c, an IC transition occurs at (∆c, hc). The ground-state wave
functions do not vary with h and the ground-state energy density does not depend on h.
For the chosen control parameter x, the ground-state energy density e(x, τ) is a constant for
a fixed τ. Therefore, fidelity entropy SIV

f (x, τ), fidelity temperature TIV
f (x, τ), and fidelity

internal energy UIV
f (x, τ) do not depend on τ. That is, we only need to determine fidelity

entropy, fidelity temperature, and fidelity internal energy on the Z2-symmetric line (h = 0
with ∆ > 1). We remark that fidelity mechanical-state functions for h = 0 with ∆ > 1
are identical to those for the quantum spin-1/2 XYZ model, when γ = 0 with ∆ > 1
(cf. Section 9). Therefore, we have SIV

f (x, τ) = SXYZ
f (τ, 0), SIV

f (x, τ) = TXYZ
f (τ, 0), and

SIV
f (x, τ) = UXYZ

f (τ, 0), respectively.
Now we move to fidelity entropy S f (x, τ), fidelity temperature Tf (x, τ), and fidelity

internal energy U f (x, τ) in regime III from an interior point of view.
Principal regime III is enclosed by the boundaries consisting of a line of the Gaussian

critical points, a line of the PT transition points, and a line of the IC transition points.
Therefore, it is a two-dimensional critical XY regime. The critical points on a vertical line in
regime III result from the level crossings. Therefore, a dominant control parameter x is, by
definition, not available, since the ground-state fidelity per lattice site is zero. In contrast,
the ground-state fidelity per lattice site is well-defined on a horizontal line in regime III.
Therefore, a dominant control parameter x may be chosen. For the chosen dominant control
parameter x, with x = −∆, the ground-state energy density e(∆, h) is not monotonic with ∆,
for a fixed h. Therefore, a re-parametrization operation in the ground-state energy density
e(∆, h): e(∆, h) = mIII(x, τ) eIII(x, τ), with mIII(x, τ) = 1/(∆c + x + 1), is performed to
ensure that eIII(x, τ) is monotonic with x. As discussed in Section 2, SIII

f (x, τ) includes

contributions from both fidelity entropy SIII(x, τ) and scaling entropy SIII
σ (x, τ). That is,
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SIII
f (x, τ) = SIII(x, τ) + SIII

σ (x, τ), with scaling entropy SIII
σ (x, τ) = − ln mIII(x, τ). For a

fixed τ, SIII(x, τ) takes the following form

SIII(x, τ) = −2
∫ x

xc
ln dIII(x, τ; y, τ) dy + SIII

0 (τ). (A131)

Here, dIII(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime III, and
SIII

0 (τ) is the residual fidelity entropy at a critical point xc for a fixed τ.
In regime III, the ground-state energy density eIII(x, τ) monotonically decreases with

x. Then, from Equation (30), fidelity internal energy UIII(x, τ) takes the following form

UIII(x, τ) = ln
eIII(x, τ)

eIII(0, τ)
VIII(x, τ) + UIII

0 (τ). (A132)

Here, UIII
0 (τ) is a function of τ, and VIII(x, τ) > 0 satisfies the following differential

equation:
∂VIII(x, τ)

∂x
= αIII(x, τ) VIII(x, τ), (A133)

with

αIII(x, τ) = − ∂ln (eIII(x, τ)/eIII(0, τ))/∂x
∂SIII(x, τ)/∂x + ln eIII(x, τ)/eIII(0, τ)

. (A134)

Accordingly, fidelity temperature TIII(x, τ) in this regime is given by the following

TIII(x, τ) = −∂VIII(x, τ)

∂x
. (A135)

To solve the singular first-order differential equation, Equation (A133), we analyze
the scaling behavior of αIII(x, τ) in the vicinity of the IC transition point xc = 0. Fidelity
entropy SIII(x, τ) scales as SIII(x, τ) ∼ x3. In addition, our numerical simulation shows that
the ground-state energy density eIII(x, τ) in the vicinity of the IC transition point xc = 0
scales as ln(eIII(x, τ)/eIII(0, τ)) ∼ x. Hence, αIII(x, τ) scales as follows

αIII(x, τ) ∝
1
x

. (A136)

This scaling analysis is confirmed in our numerical simulation.
Since the integration of αIII(x) with respect to x is finite, the singular first-order

differential equation, Equation (A133), may be solved in a straightforward manner

VIII(x, τ) = VIII
0 (τ)VIII

1 (x, τ), (A137)

where VIII
0 (τ) is a function of τ, and VIII

1 (x, τ) is defined as follows

VIII
1 (x, τ) = exp (

∫ x

xc
αIII(y, τ)dy). (A138)

For a fixed τ, a PT transition point occurs at xp, and an IC transition occurs at xc. The
continuity requirement for fidelity entropy at the PT transition point x = xp demands
that SIII(xp, τ) = Sp(τ − 1). Hence, SIII

0 (τ) is determined. In order to ensure the con-
tinuity requirement for fidelity temperature at the PT point (xp, τ), TIII(x, τ) is shifted
to TIII(x, τ) − TIII

0 (τ), accompanied by a shift in UIII(x, τ): UIII(x, τ) − TIII
0 (τ)SIII(x, τ),

with SIII(∆, h) left intact. Here, TIII
0 (τ) ≡ TIII(xp, τ). In addition, fidelity internal en-

ergy at the IC transition point (xc, τ) must be zero, and fidelity internal energy satisfies
the continuity requirement at the PT transition point (xp, τ), as discussed in Section 2:
UIII

0 (τ) = TIII
0 (τ)SIII

0 (τ) and UIII(xp, τ)− TIII
0 (τ)SIII(xp, τ) = Um. Therefore, VIII

0 (τ) is
determined as follows
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VIII
0 (τ) =

Um

ln (eIII(xp, τ)/eIII(xc, τ))VIII(xp, τ) + αIII(xp, τ)VIII(xp, τ)(SIII(xp, τ)− SIII
0 (τ))

. (A139)

Once VIII
0 and UIII

0 are determined, fidelity temperature TIII(x, τ) and fidelity in-
ternal energy UIII(x, τ) follow from (A132) and (A135), respectively. Following from
our discussions in Section 2, fidelity entropy SIII

f (x, τ), fidelity temperature TIII
f (x, τ),

and fidelity internal energy UIII
f (x, τ) take the following form: SIII

f (x, τ) = SIII(x, τ),

TIII
f (x, τ) = TIII(x, τ)− TIII

0 (τ), and UIII
f (x, τ) = UIII(x, τ)− TIII

0 (τ)SIII(x, τ), respectively.

Once fidelity entropy SIII
f (x, τ), fidelity temperature TIII

f (x, τ), and fidelity internal

energy UIII
f (x, τ) are determined in this principal regime, fidelity entropy SIII

f (∆, h), fidelity

temperature TIII
f (∆, h) and fidelity internal energy UIII

f (∆, h) follow. That is, SIII
f (∆, h)

≡ SIII
f (x, τ), TIII

f (∆, h) ≡ TIII
f (x, τ), and UIII

f (∆, h) ≡ UIII
f (x, τ), when we move from (x, τ)

to (∆, h), meaning that x and τ are regarded as functions of ∆ and h. This is due to the fact
that (∆, h) and (x, τ) label the same point in the control parameter space.

Numerical simulations for fidelity entropy S f (∆, h), fidelity temperature Tf (∆, h), and
fidelity internal energy U f (∆, h) are shown as a function of ∆ in Figure 21a–c, respectively,
for h = 0.25, 0.45, and 1.

Appendix O. Fidelity Entropy S f (∆, γ), Fidelity Temperature Tf (∆, γ), and Fidelity
Internal Energy U f (∆, γ) for the Quantum Spin-1 XYZ Model

In this Appendix, we present mathematical details about fidelity entropy S f (∆, γ),
fidelity temperature Tf (∆, γ) and fidelity internal energy U f (∆, γ) for the quantum spin-1
XYZ model.

We restrict ourselves to the region γ ≥ 0 due to the fact that the Hamiltonian (5)
is symmetrical with respect to γ ↔ −γ. The ground-state phase diagram is shown in
Figure 17 with four distinct phases, labelled as AFx, AFz, FMz, and the Haldane phase—a
typical example for the SPT phases. Our simulation results from the iTEBD algorithm,
with the bond dimension χ = 60, yield the Ising transition point from the AFx phase to
the Haldane phase on the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < 1) is located at
(∆c0, 1− ∆c0), with ∆c0 ≈ 0.915, and the KT transition point from the critical XY phase to
the Haldane phase on the U(1)-symmetric line (γ = 0) is located at (∆c1, 0), with ∆c1 ≈ 0.29.
The three lines of the Gaussian critical points are located on γ = 0 with −1 < ∆ ≤ ∆c1 and
its two dual images. In addition, there exist six lines of the Ising critical points, dual to each
other, with one of them connecting (∆c1, 0) and (∆c0, 1− ∆c0). Moreover, the FM transition
points are located at (−1, 0) and its dual image points, and the SU(2)-symmetric points are
located at (1, 0) and its dual image points.

As demonstrated in Appendix C, there are five different dualities, which are identical
to those for the quantum spin-1/2 XYZ chain, thus leading to four self-dual lines (γ =
±1± ∆), and two semi-self-dual lines (γ = 1 and ∆ = 0). The factorizing-field line is
located at γ = 1 + ∆, with ∆ > −1 [77–79].

Taking into account the symmetries, dualities, and factorizing fields, together with
one soft line and the phase boundaries between different phases, we may divide the region
γ ≥ 0 into twenty-four different regimes. The twenty-four regimes fall into four groups,
with six regimes in each group that are dual to each other. As shown in Section 2, regime
I, regime V, regime IX, regime XIII, regime XVII, and regime XXI are dual to each other;
regime II, regime VI, regime X, regime XIV, regime XVIII, and regime XXII are dual to
each other; regime III, regime VII, regime XI, regime XV, regime XIX, and regime XXIII
are dual to each other, whereas regime IV, regime VIII, regime XII, regime XVI, regime XX,
and regime XXIV are dual to each other. Therefore, there are only four principal regimes,
representing the physics underlying the model. We chose regime I (0 < ∆ < ∆c0 and
0 < γ < 1), regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆), regime III (∆c1 < ∆ < 1 and
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0 < γ < 1− ∆c0), and regime IV (0 < ∆ < ∆c1 and 0 < γ < 1− ∆c1) as four principal
regimes.

As it turns out, the SU(2)-symmetric point (1, 0) is a metastable fixed point, which
is located on the SU(2) characteristic line—the spin-1 bilinear–biquadratic model—if we
embed the Hamiltonian (5) into a more general model including an anisotropic extension
of the biquadratic interactions. Fidelity internal energy and fidelity temperature at the
metastable fixed point (1, 0) follow from the continuity requirements by taking into account
the fact that they are determined from the Takhtajan–Babujian critical point to the AKLT
point on the SU(2) characteristic line. That is, the AKLT point is regarded as the stable fixed
point. Therefore, we demand that fidelity temperature is zero and fidelity internal energy
is equal to the maximum Um at the AKLT point. In this Appendix, fidelity mechanical-state
functions at the metastable fixed point (1, 0) is denoted as SH , TH , and UH , as discussed in
Appendix O.3.

Now we turn to the explicit mathematical expressions for fidelity entropy S f (∆, γ),
fidelity temperature Tf (∆, γ), and fidelity internal energy U f (∆, γ).

Appendix O.1. Fidelity Entropy S f (∆, γ), Fidelity Temperature Tf (∆, γ), and Fidelity Internal
Energy U f (∆, γ): An Exterior Point of View

There are five principal parts on the characteristic lines: (i) the U(1)-symmetric line
(γ = 0 with ∆c1 < ∆ < 1), which is also a dual line; (ii) the U(1)-symmetric line (γ = 1− ∆
with 0 < ∆ < ∆c0), which is also a dual line; (iii) the U(1)-symmetric line (γ = 1− ∆ with
∆c0 < ∆ < 1), which is also a dual line; (iv) the factorizing-field line (γ = 1 + ∆ with
−1 < ∆ < 0); (v) the semi-self-dual line (∆ = 0 with 0 < γ < 1).

Let us determine fidelity entropy S(∆, γ) in the five principal parts.
(i) In principal part i on the U(1)-symmetric line (γ = 0 with ∆c1 < ∆ < 1), we recall

that a dominant control parameter x was chosen to be x = ∆ − ∆c1. As follows from
definition (9), fidelity entropy Si(x) takes the following form

Si(x) = −2
∫ x

xc
ln di(x; y) dy + Si

0. (A140)

Here, di(x; y) denotes the ground-state fidelity per lattice site in principal part i, and
Si

0 is the residual fidelity entropy at the KT transition point xc = 0. According to our
convention (cf. Section 2), we have Si

f (x) = Si(x).
(ii) In principal part ii on the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < ∆c0),

we recall that a dominant control parameter x was chosen to be x = ∆c0/(2 − ∆c0) −
∆/(2 − ∆). The Ising transition occurs at xc = 0 or equivalently (∆c0, 1 − ∆c0). Here,
a re-parametrization operation in the ground-state energy density e(∆, 1− ∆): e(∆, 1−
∆) = mii(x)eii(x), with mii(x) = (∆c0/(2− ∆c0) + 1)/(x + 1), is performed. It should
be emphasized that the ground-state energy density e(∆, 1− ∆) is not monotonic as a
function of ∆ on the U(1)-symmetric line (γ = 1− ∆). In contrast, both mii(x) and eii(x)
monotonically decreases with x. In particular, x has been chosen to retain consistency with
duality between regime V and regime IX (cf. Appendix C). As discussed in Section 2, Sii

f (x)
includes contributions from both fidelity entropy Sii(x) and scaling entropy Sii

σ(x). That
is, Sii

f (x) = Sii(x) + Sii
σ(x), with scaling entropy Sii

σ(x) = − ln mii(x). From Equation (9),

fidelity entropy Sii(x) takes the same form as Equation (A140) for part i, with the label
being changed from i to ii.

(iii) In principal part iii on the U(1)-symmetric line (γ = 1− ∆ with ∆c0 < ∆ < 1), we
recall that a dominant control parameter x was chosen to be x = ∆/(2−∆)−∆c0/(2−∆c0).
The Ising transition occurs at xc = 0 or equivalently, (∆c0, 1−∆c0). It should be emphasized
that the ground-state energy density e(∆, 1− ∆) is monotonically decreasing with x, along
the U(1)-symmetric line (γ = 1− ∆ with ∆c0 < ∆ < 1). Fidelity entropy Siii(x), as follows
from Equation (9), takes the same form as Equation (A140) for part i, with the label being
changed from i to iii. According to our convention (cf. Section 2), we have Siii

f (x) = Siii(x).
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(iv) In principal part iv on the factorizing-field line (γ = 1 + ∆ with 0 < γ < 1), the
same factorized state occurs as ground-state wave functions, with the ground-state energy
density e(∆, 1 + ∆) being e(∆, 1 + ∆) = −(∆ + 2)/2. We recall that a dominant control
parameter x was chosen to be x = ∆ + 1 for a fixed γ − ∆. Here, a re-parametrization
operation in the ground-state energy density e(∆, 1 + ∆): e(∆, 1 + ∆) = miv(x)eiv(x), with
miv(x) = (x + 1)/2, is performed. Therefore, eiv(x) is a constant as x varies. With this in
mind, fidelity entropy Siv(x) in principal part iv is identical to Siv(1), apart from scaling
entropy Siv

σ (x). Thus, we have Siv
f (x) = Siv(1) + Siv

σ (x), with Siv
σ (x) = ln mii(x).

(v) In principal part v on the semi-self-dual line (∆ = 0 with 0 < γ < 1), we recall that
a dominant control parameter x was chosen to be x = γ. From Equation (9), fidelity entropy
Sv(x) takes the same form as Equation (A140) for part i, with the label being changed from
i to v. According to our convention (cf. Section 2), we have Sv

f (x) = Sv(x).
We move to the four principal regimes: regime I, regime II, regime III, and regime IV.
(a) In regime I (0 < ∆ < ∆c0 and 0 < γ < 1), we recall that a dominant control

parameter x was chosen to be x = ∆c/(2− ∆c)− ∆/(2− ∆) and an auxiliary control pa-
rameter τ was chosen to be τ = γ + ∆. The Ising transition occurs at xc = 0 or equivalently,
(∆c, γc). Here, a re-parametrization operation in the ground-state energy density e(∆, γ):
e(∆, γ) = mI(x, τ)eI(x, τ), with mI(x, τ) = (∆c/(2− ∆c) + 1)/(x + 1), is performed. It
should be emphasized that the ground-state energy density e(∆, γ) is not monotonic as
a function of ∆ on the line (γ = τ − ∆). In contrast, both mI(x, τ) and eI(x, τ) mono-
tonically decreased with x for a fixed τ. As discussed in Section 2, SI

f (x, τ) includes

contributions from both fidelity entropy SI(x, τ) and scaling entropy SI
σ(x, τ). That is,

SI
f (x, τ) = SI(x, τ) + SI

σ(x, τ), where scaling entropy SI
σ(x, τ) = − ln mI(x, τ), and for a

fixed τ, SI(x, τ) takes the following form

SI(x, τ) = −2
∫ x

xc
ln dI(x, τ; y, τ) dy + SI

0(τ). (A141)

Here, dI(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime I, and
SI

0(τ) is the residual fidelity entropy at a critical point xc for a fixed τ, with xc = 0.
(b) In regime II (−1 < ∆ < 0 and γ < 1 + ∆), we recall that a dominant control

parameter x was chosen to be x = γ and an auxiliary control parameter τ was chosen to
be τ = λ. Following from Equation (28), fidelity entropy SII(x, τ) takes the same form as
Equation (A141) for regime I, with the label being changed from I to II. According to our
convention (cf. Section 2), we have SII

f (x, τ) = SII(x, τ).
(c) In regime III (∆c1 < ∆ < 1 and 0 < γ < 1 − ∆c0), we recall that a dominant

control parameter x was chosen to be x = ∆/(2 − ∆) − ∆c/(2 − ∆c) and an auxiliary
control parameter τ was chosen to be τ = γ + ∆. The Ising transition occurs at xc = 0
or equivalently (∆c, γc). Following from Equation (28), fidelity entropy SIII(x, τ) takes
the same form as Equation (A141) for regime I, with the label being changed from I to III.
According to our convention (cf. Section 2), we have SIII

f (x, τ) = SIII(x, τ).
(d) In regime IV (0 < ∆ < ∆c1 and 0 < γ < ∆c1), we recall that a dominant control

parameter x was chosen to be x = (γ + ∆)/(2− γ − ∆) − ∆/(2− ∆) and an auxiliary
control parameter τ was chosen to be τ = γ + ∆. The Gaussian transition occurs at xc = 0
for a fixed τ or equivalently (τ, 0). Here, a re-parametrization operation in the ground-state
energy density e(∆, γ): e(∆, γ) = mIV(x, τ)eIV(x, τ), with mIV(x, τ) = (τ/(2− τ)+ 1)/(x+
1), is performed. It should be emphasized that the ground-state energy density e(∆, γ) is
not monotonic as a function of ∆ on the line (γ = τ − ∆). In contrast, both mIV(x, τ) and
eIV(x, τ) monotonically decrease with x for a fixed τ. As discussed in Section 2, SIV

f (x, τ)

includes contributions from both fidelity entropy SIV(x, τ) and scaling entropy SIV
σ (x, τ).

That is, SIV
f (x, τ) = SIV(x, τ) + SIV

σ (x, τ), where scaling entropy SIV
σ (x, τ) = − ln mIV(x, τ),

and fidelity entropy SIV(x, τ), as follows from Equation (28), takes the same form as
Equation (A141) for regime I, with the label being changed from I to IV.
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Once fidelity entropy Sq
f (x) (q = i, ii, iii, iv, and v) in the five principal parts and

fidelity entropy Sω
f (x, τ) (ω=I, II, III and IV) in the four principal regimes are determined,

fidelity temperature Tq
f (x) and fidelity internal energy Uq

f (x) in the principal parts may be
determined from solving the singular first-order differential equation, Equation (14), and
fidelity temperature Tω

f (x, τ) and fidelity internal energy Uω
f (x, τ) in the principal regimes

may be determined by solving the singular first-order differential equation, Equation (31),
according to our prescription for continuous QPTs in Section 2.

Now we turn to fidelity temperature Tf (x, τ) and fidelity internal energy U f (x, τ) in
the five principal parts.

(i) In principal part i on the U(1)-symmetric line (γ = 0 with ∆c1 < ∆ < 1), for the
chosen dominant control parameter x = ∆− ∆c1, the ground-state energy density ei(x)
monotonically decreases with x. Then, from Equation (10), fidelity internal energy Ui(x)
takes the following form

Ui(x) = ln
ei(x)
ei(0)

Vi(x) + Ui
0. (A142)

Here, Ui
0 is an additive constant, and Vi(x) > 0 satisfies the singular first-order

differential equation
∂Vi(x)/∂x = αi(x) Vi(x), (A143)

with

αi(x) = − ∂ln (ei(x)/ei(0))/∂x
∂Si(x)/∂x + ln (ei(x)/ei(0))

. (A144)

Accordingly, fidelity temperature Ti(x) follows from

Ti(x) = −∂Vi(x)
∂x

. (A145)

(ii) In principal part ii on the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < ∆c0), fi-
delity internal energy Uii(x), fidelity temperature Tii(x), and Vii(x), together with its singu-
lar first-order differential equation with αii(x), take the same form as
Equations (A142)–(A145) for part i, with the label being changed from i to ii, respectively.

(iii) In principal part iii on the U(1)-symmetric line (γ = 1− ∆ with ∆c0 < ∆ < 1),
fidelity internal energy Uiii(x), fidelity temperature Tiii(x), and Viii(x), together with its sin-
gular first-order differential equation with αiii(x), take the same form as
Equations (A142)–(A145) for part i, with the label being changed from i to iii, respectively.

(iv) In principal part iv on the factorizing-field line (γ = 1 + ∆ with 0 < γ < 1), for
the chosen dominant control parameter x = ∆ + 1, fidelity temperature Tiv(x) vanishes:
Tiv(x) = 0. Meanwhile, fidelity internal energy Uiv(x) is a constant: Uiv(x) = Um,
with Um being the maximum yet to be determined. As discussed in Section 2, we have
Tiv

f (x) = Tiv(x) and Uiv
f (x) = Uiv(x).

(v) In principal part v, fidelity internal energy Uv(x), fidelity temperature Tv(x), and
Vv(x), together with its singular first-order differential equation with αv(x), take the same
form as Equations (A142)–(A145) for part i, with the label being changed from i to v.

We move to fidelity temperature and fidelity internal energy in four principal regimes:
regime I, regime II, regime III, and regime IV.

(a) In regime I (0 < ∆ < ∆c0 and 0 < γ < 1), for a fixed τ = γ + ∆, the Ising transition
occurs at (∆c, γc) or, equivalently, (xc, τ), with x = ∆c/(2− ∆c)− ∆/(2− ∆). For a fixed
τ, the ground-state energy density eI(x, τ) monotonically decreases with x. Hence, from
Equation (30), fidelity internal energy UI(x, τ) takes the following form

UI(x, τ) = ln
eI(x, τ)

eI(0, τ)
VI(x, τ) + UI

0(τ). (A146)
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Here, UI
0(τ) is a function of τ, and VI(x, τ) > 0 satisfies the singular first-order

differential equation:
∂VI(x, τ)

∂x
= αI(x, τ) VI(x, τ), (A147)

with

αI(x, τ) = − ∂ln (eI(x, τ)/eI(0, τ))/∂x
∂SI(x, τ)/∂x + ln (eI(x, τ)/eI(0, τ))

. (A148)

Accordingly, fidelity temperature TI(x, τ) in this regime is given by the following

TI(x, τ) = −∂VI(x, τ)

∂x
. (A149)

(b) In regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆), fidelity internal energy UII(x, τ),
fidelity temperature TII(x, τ), and VII(x, τ), together with its singular first-order differential
equation with αII(x, τ), take the same form as Equations (A146)–(A149) for regime I, with
the label being changed from I to II, respectively.

(c) In regime III (∆c1 < ∆ < 1 and 0 < γ < 1− ∆c0), fidelity internal energy UIII(x, τ),
fidelity temperature TIII(x, τ), and VIII(x, τ), together with its singular first-order differen-
tial equation with αIII(x, τ), take the same form as Equations (A146)–(A149) for regime I,
with the label being changed from I to III, respectively.

(d) In regime IV (0 < ∆ < ∆c1 and 0 < γ < 1 − ∆c1), fidelity internal energy
UIV(x, τ), fidelity temperature TIV(x, τ), and VIV(x, τ), together with its singular first-
order differential equation with αIV(x, τ), take the same form as Equations (A146)–(A149)
for regime I, with the label being changed from I to IV, respectively.

In order to solve a singular first-order differential equation in each principal part and
in each principal regime, we perform a scaling analysis of αq(x) (q = i, ii, iii, and v) and
αω(x, τ) (ω = I, II, III, and IV) in the vicinity of a critical point xc = 0, which falls into three
universality classes: (A) the Gaussian universality class for part v, regime II, and regime IV;
(B) the Ising universality class for part ii and part iii and regime I and regime III; (C) the KT
universality class for part i.

(A) If a Gaussian critical point xc = 0 is approached, fidelity entropy Sv(x) scales as
Sv(x) ∼ xν(0)+1 in part v, fidelity entropy SII(x, τ) and fidelity entropy SIV(x, τ) scale as
SII(x, τ) ∼ xν(τ)+1 in regime II, and SIV(x, τ) ∼ xν(τ)+1 in regime IV, respectively, with ν(τ),
as a function of τ, being the critical exponent for the correlation length (cf. Appendix H). In
addition, our numerical simulation shows that the ground-state energy density ev(x) near
a critical point xc = 0 scales as follows:

ln
ev(x)
ev(0)

∼ xK(0) ln x, (A150)

and, for a fixed τ ∈ (−1, 0), our numerical simulation shows that the ground-state energy
density eII/IV(x, τ) near a critical point xc = 0 scales as follows

ln
eII/IV(x, τ)

eII/IV(0, τ)
∼ xK(τ) ln x. (A151)

In part v, with ν(0) < K(0) ≤ ν(0) + 1, αv(x) scales as follows:

αv(x) ∝ xK(0)−ν(0)−1 ln x, (A152)

and in regime II and regime IV, as long as ν(τ) < K(τ) ≤ ν(τ) + 1, αII/IV(x, τ) scales as
follows

αII/IV(x, τ) ∝ xK(τ)−ν(τ)−1 ln x. (A153)
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Our numerical simulations confirm this analysis, as shown in Figure A12 for regime
II and part v. For regime IV, we have K(τ) ' 1.13 and ν(τ) ' 0.78 for τ = 0.1, and
K(τ) ' 1.14 and ν(τ) ' 0.78 for τ ' 0.2, respectively.

(B) If a Ising critical point xc = 0 is approached, fidelity entropy Sq(x) scales as Sq(x) ∼
x2 in part q, with q = ii and iii, and Sω(x, τ) scales as Sω(x, τ) ∼ x2 in regime ω, with q =
I and III. This indicates that the critical exponent is ν = 1 (cf. Appendix H for details),
consistent with the previous work on the Ising transition between the Haldane phase
and the AFx phase [163,230]. Taking into account the fact that the first-order derivative
of ln (eq(x)/eq(0)) and ln (eω(x, τ)/eω(0, τ)) with respect to x at a critical point xc = 0 is
nonzero [230], αq(x) and αω(x, τ) scale as

αq(x) ∼ 1
x

, (A154)

and
αω(x, τ) ∼ 1

x
, (A155)

respectively. The scaling behaviors for part ii and part iii and for regime I and regime III
are the same, as anticipated from the fact that all the phase transitions belong to the Ising
universality class. Our numerical simulations confirm this analysis.

(C) In part i, when a KT transition point xc = 0 is approached, fidelity entropy
Si(x) scale as Si(x) ∼ x3. Taking into account the fact that the first-order derivative of
ln (ei(x)/ei(0)) with respect to x, at a critical point xc = 0, is nonzero, αi(x) scales as follows

αi(x) ∼ 1
x

. (A156)

Our numerical simulations confirm this analysis.
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K(τ)

Figure A12. A parameter K(τ) and ν(τ) + 1 as a function of τ ∈ (−1, 0). Here, K(τ) is defined via
a scaling relation for the ground-state energy density eII(x, τ) ∼ xK(τ) ln x for a fixed τ, and ν(τ)

represents the critical exponent for the correlation length.

Since the integration of αq(x) and αω(x, τ) with respect to x is finite, the singular
first-order differential equations may be solved in a straightforward manner.

Let us first determine V(x, τ) in the five principal parts.
(a) In principal part i on the U(1)-symmetric line (γ = 0 with ∆c1 < ∆ < 1), since the

integration of αi(x) with respect to x is finite, the singular first-order differential equation,
Equation (A143), may be solved as follows:

Vi(x) = Vi
0Vi

1(x), (A157)

where Vi
0 is a constant, and Vi

1(∆, 0) is defined as follows

Vi
1(x) = exp (

∫ x

0
αi(y)dy). (A158)

(b) In principal parts ii, iii, and v, the solutions Vii(x), Viii(x), and Vv(x) to the singular
first-order differential equations take the same form as Equations (A157) and (A158) for
part i, with the label being changed from i to ii, iii, and v, respectively.
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(c) In principal part iv on the factorizing-field line (γ = 1 + ∆ with 0 < γ < 1), Vi(x)
vanishes: Vi(x) = 0.

The singular first-order differential equation, Equation (A147), for regime I, and their
counterparts for regime III, regime II and regime IV, may be solved in a similar manner.

(a) In regime I (0 < ∆ < ∆c0 and 0 < γ < 1), since the integration of αI(x, τ)
with respect to x, for a fixed τ, is finite, the singular first-order differential equation,
Equation (A147), may be solved as follows:

VI(x, τ) = VI
0(τ)V

I
1(x, τ), (A159)

where VI
0(τ) is a function of τ, and VI

1(x, τ) is defined as follows

VI
1(x, τ) = exp (

∫ x

0
αI(y, τ)dy). (A160)

(b) In regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆), regime III (0 < ∆ < 1, 0 <
γ < 1− ∆c0), and regime IV (0 < ∆ < ∆c1 and 0 < γ < 1− ∆c1), the solutions VII(x, τ),
VIII(x, τ), and VIV(x, τ) to the singular first-order differential equations take the same form
as Equations (A159) and (A160) for regime I, with the label being changed from I to II, III,
IV, and V, respectively.

Now, we turn to the residual fidelity entropy Sq
0 for the five principal parts, with

q = i, ii, iii, iv and v. We remark that fidelity entropy S f (x, τ), generically, is relative in
the sense that it is only determined up to a constant. Here, as a convention, we chose
fidelity entropy S f (x, τ) to be zero at the critical point xc, with xc = 0, in part v. Hence, we
have Sv

0 = 0. Therefore, fidelity entropy Sv
f (x) in part v follows from its definition, which

takes the same form as Equation (A140), with the label being changed from i to v. Here,
we denote fidelity entropy Sv

f (1) at the characteristic point x = 1 or equivalently ∆ = 0

and γ = 1, as Sm. Then, the residual fidelity entropy Sii
0 and Siv

0 are determined from the
continuity requirement for fidelity entropy at the U(1)-symmetric point (0, 1): Sii

f (1) = Sm

and Siv
f (1) = Sm. Following from the continuity requirement at the Ising transition point,

the residual fidelity entropy Siii
0 in part iii is determined: Siii

0 = Sii
0 . In addition, the residual

fidelity entropy Si
0 on the U(1)-symmetric line (γ = 0 with ∆c1 < ∆ < 1), labelled as i, is

determined from the continuity requirement for fidelity entropy at the KT transition point
(∆c1, 0), which is identical to the residual fidelity entropy S0 at the KT transiton point on the
complete line of critical points (γ = 0 with −1 < ∆ < ∆c1) from an interior point of view
(cf. Appendix O.2), as a result of an analogue of the Hawking radiation (cf. scenario III-1).

We are free to choose V0 on one of the characteristic lines, since fidelity internal energy
U f (x, τ) is only determined up to a constant factor. Here, we set Vv

0 = 1 on the semi-self-
dual line (∆ = 0 with 0 < γ < 1), labelled as v. To ensure that fidelity temperature Tv

f (x)
at the characteristic point x = 1, or equivalently ∆ = 0 and γ = 1, is zero, a shift from
Tv(x) to Tv(x)− Tv

0 is performed in part v, which induces a shift in fidelity internal energy:
Uv(x)− Tv

0 Sv(x). Here, Tv
0 ≡ Tv(1). We refer to Tv(x)− Tv

0 and Uv(x)− Tv
0 Sv(x) as Tv

f (x)
and Uv

f (x), respectively. That is, Tv
f (x) ≡ Tv(x) − Tv

0 and Uv
f (x) ≡ Uv(x) − Tv

0 Sv(x).
Therefore, fidelity internal energy Uv

f (x) on the semi-self-dual line (∆ = 0 with 0 < γ < 1),
labelled as v, is determined. Here, we denote fidelity internal energy at the characteristic
point x = 1, or equivalently ∆ = 0 and γ = 1, as Um. Then, we require that fidelity internal
energy at the AKLT point takes a maximum value, Um. Therefore, fidelity temperature
TH and fidelity internal energy UH at the SU(2)-symmetric point (∆ = 1 and γ = 0)
are determined by taking the same values as those for the spin-1 bilinear–biquadratic
model at the same point, with D = 0 (cf. Appendix O.3). We are able to determine Tq

0
for the other principal parts, labelled as q, with q = i, ii, iii, and iv. In part i, we have
Ti

0 = Ti(1− ∆c1)− TH . In part ii, we have Tii
0 = Tii(∆c0/(2− ∆c0)). In part iii, we have

Tiii
0 = Tiii(1− ∆c/(2− ∆c))− TH . In part iv, we have Tiv

0 = 0.
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Now we need to determine V0 and U0 in the remaining four principal parts: part i,
part ii, part iii, and part iv.

(i) In principal part i on the U(1)-symmetric line (γ = 0 with ∆c1 < ∆ < 1), in
order to ensure the continuity requirement for fidelity temperature at the SU(2)-symmetric
point (∆ = 1 and γ = 0), Ti(x) is shifted to Ti(x)− Ti

0, accompanied by a shift in Ui(x):
Ui(x) − Ti

0Si(x), with Si(x) left intact. In addition, fidelity internal energy Ui(x) at a
critical point xc = 0 must be zero, and fidelity internal energy Ui(x) satisfies the continuity
requirement at the SU(2)-symmetric point (∆ = 1 and γ = 0), with x = 1 − ∆c1, as
discussed in Section 2: Ui

0 = Ti
0Si

0 and Ui(1− ∆c1)− Ti
0Si(1− ∆c1) = UH . Therefore, Vi

0 is
determined as follows

Vi
0 =

UH − TH(Si(1− ∆c1)− Si
0)

ln (ei(1− ∆c1)/ei(0))Vi
1(1− ∆c1) + αi(1− ∆c1)Vi

1(1− ∆c1)(Si(1− ∆c1)− Si
0)

. (A161)

Once Vi
0 and Ui

0 are determined, fidelity temperature Ti(x) and fidelity internal energy
Ui(x) follow from (A142) and (A145), respectively. We refer to Ti(x)− Ti

0 and Ui(x)
−Ti

0Si(x) as Ti
f (x) and Ui

f (x), respectively. That is, Ti
f (x) ≡ Ti(x)− Ti

0 and Ui
f (x)

≡ Ui(x)− Ti
0Si(x).

(ii) In principal part ii on the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ < ∆c), in
order to ensure that fidelity temperature vanishes at the characteristic point (∆ = 0 and
γ = 1), Tii(x) is shifted to Tii(x)− Tii

0 , accompanied by a shift in Uii(x): Uii(x)− Tii
0 Sii(x),

with Sii(x) left intact. In addition, fidelity internal energy Uii(x) at a critical point xc
must be zero, and fidelity internal energy Uii(x) at the U(1)-symmetric point (0, 1), or
equivalently x = ∆c0/(2 − ∆c0), satisfies the continuity requirement, as discussed in
Section 2: Uii

0 = Tii
0 Sii

0 and Uii(∆c0/(2− ∆c0))− Tii
0 Sii(∆c0/(2− ∆c0)) = Um. Therefore, Vii

0
is determined as follows

Vii
0 = Um

ln (eii(∆c0/(2−∆c0))/eii(0))Vii
1 (∆c0/(2−∆c0))+αii(∆c0/(2−∆c0))Vii

1 (∆c0/(2−∆c0))(Sii(∆c0/(2−∆c0))−Sii
0 )

. (A162)

Once Vii
0 and Uii

0 are determined, fidelity temperature Tii(∆, 1−∆) and fidelity internal
energy Uii(∆, 1− ∆) follow from their counterparts of (A142) and (A145), with the label
being changed from i to ii, respectively. We refer to Tii(x)− Tii

0 and Uii(x)− Tii
0 Sii(x) as

Tii
f (x) and Uii

f (x), respectively. That is, Tii
f (x) ≡ Tii(x)− Tii

0 and Uii
f (x) ≡ Uii(x)− Tii

0 Sii(x).
(iii) In principal part iii on the U(1)-symmetric line (γ = 1− ∆ with ∆c < ∆ < 1), in

order to ensure that fidelity temperature is continuous at the SU(2)-symmetric point ∆ = 1
and γ = 0, Tiii(x) is shifted to Tiii(x)− Tiii

0 , accompanied by a shift in Uiii(x): Uiii(x)
−Tiii

0 Siii(x), with Siii(x) left intact. In addition, fidelity internal energy Uiii(x) at a critical
point xc, with xc = 0, must be zero, and fidelity internal energy Uiii(x) satisfies the
continuity requirement at the SU(2)-symmetric point (∆ = 1 and γ = 0, or equivalently xm
= 1− ∆c0/(2− ∆c0), as discussed in Section 2: Uiii

0 = Tiii
0 Siii

0 and Uiii(xm)− Tiii
0 Siii(xm)

= UH , with UH denoting fidelity internal energy at the same point for the spin-1 bilinear–
biquadratic model. Therefore, Viii

0 is determined as follows

Viii
0 =

UH − TH(Siii(xm)− Siii
0 )

ln (eiii(xm)/eiii(0))Viii
1 (xm) + αiii(xm)Viii

1 (xm)(Siii(xm)− Siii
0 )

. (A163)

Once Viii
0 and Uiii

0 are determined, fidelity temperature Tiii(x) and fidelity internal
energy Uiii(x) follow from their counterparts of (A142) and (A145), with the label being
changed from i to iii, respectively. We refer to Tiii(x)− Tiii

0 and Uiii(x)− Tiii
0 Siii(x) as Tiii

f (x)
and Uiii

f (x), respectively. That is, Tiii
f (x) ≡ Tiii(x)− Tiii

0 and Uiii
f (x) ≡ Uiii(x)− Tiii

0 Siii(x).
(iv) In principal part iv on the factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0),

Viv(x) vanishes; thus, Viv
0 = 0 and Uiv

0 = 0.
Now we turn to the residual fidelity entropy on the line of the Ising critical points

between the AFx phase and the Haldane phase in regime I or regime III, denoted as SI
0(τ)
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or SIII
0 (τ), respectively, and the residual fidelity entropy on the line of the Gaussian critical

points: γ = 0, with −1 < ∆ ≤ ∆c1 in regime II and regime IV, denoted as SII
0 (τ) and

SIV
0 (τ), respectively. In regime I, the residual fidelity entropy SI

0(τ) is determined from
the continuity requirement on the semi-self-dual line (∆ = 0 with 0 < γ < 1), labelled
as v: SI(τ) = Sv

f (τ). Then, the residual fidelity entropy SIII
0 (τ) is determined from the

continuity requirement on the line of the Ising critical points between the AFx phase and
the Haldane phase: SIII

0 (τ) = SI
0(τ). In regime II, the residual fidelity entropy SII

0 (τ) is
determined from the continuity requirement on the factorizing-field line (γ = 1 + ∆ with
−1 < ∆ < 0), labelled as iv. Note that, the continuity requirement for fidelity entropy at a
point on the factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0), labelled as iv, implies that
fidelity entropy in regime II includes contributions from scaling entropy SII

σ (x, τ) due to a
re-parametrization operation in the ground-state energy density on the factorizing-field line
(γ = 1 + ∆ with −1 < ∆ < 0), lablled as iv. Hence, we have SII

f (x, τ) = SII(x, τ) + SII
σ (x, τ),

where SII
σ (x, τ) = Siv

σ (τ + 1). In regime IV, the residual fidelity entropy SIV
0 (τ) is determined

from the continuity requirement on the semi-self-dual line (∆ = 0 with 0 < γ < 1),
labelled as v: SIV(τ) = Sv

f (τ). Then, SIII
0 (τ) is determined from the continuity requirement

on the line of the Ising critical points between the AFx phase and the Haldane phase:
SIII

0 (τ) = SI
0(τ). Moreover, the continuity requirement for S f (x, τ) on the factorizing-field

line, labelled as iv, leads to a contribution to SII
f (x, τ) in regime II from scaling entropy

SII
σ (τ) due to a re-parametrization operation in the ground-state energy density. Hence, we

have SII
f (x, τ) = SII(x, τ) + SII

σ (τ). Here, SII
σ (τ) = Siv

σ (τ + 1) = ln(2 + τ)− ln(2).
We have to ensure that fidelity mechanical-state functions are continuous at the bound-

aries of the four principal regimes. Indeed, we have already taken into account the continu-
ity requirement for fidelity entropy; the remaining task is to ensure continuity requirements
for fidelity temperature and fidelity internal energy. As discussed in Section 2, we need
to determine Tω

0 ≡ Tω
m − Tω

t for the four principal regimes, with ω = I, II, III, and IV.
Here, Tω

m represents fidelity temperature, evaluated from a dominant control parameter x
in one principal regime ω, at a chosen point in a principal part, which is a boundary in a
principal regime ω, whereas Tω

t represents fidelity temperature at the same point, but it
is evaluated from a dominant control parameter x in the principal part itself. Specifically,
in regime I, for a fixed τ ∈ (0, 1), we have TI

m(τ) = TI(∆c/(2− ∆c), τ) and TI
t (τ) = Tv(τ).

Here, TI(∆c/(2− ∆c), τ) is evaluated from the chosen dominant control parameter x in
the principal regime for a fixed τ, which is along the straight line (γ = τ − ∆), and Tv(τ)
is evaluated from the semi-self-dual line (∆ = 0 with 0 < γ < 1), labelled as v, for the
same chosen point. ∆ = ∆c and γ = τ − ∆c is the Ising transition point between the
Haldane phase and the AFx phase for a fixed τ. In regime II, for a fixed τ ∈ (−1, 0), we
have TII

m(τ) = TII(1 + τ, τ) and TII
t (τ) = Tiv(τ + 1), with Tiv(τ + 1) denoting fidelity

temperature on the factorizing-field line (γ = 1 + ∆ with −1 < ∆ < 0), labelled as iv.
In regime III, for a fixed τ ∈ (0, 1), we have TIII

m (τ) = TIII(τ/(2− τ) − ∆c/(2− ∆c), τ)
and TIII

t (τ) = Ti
f (τ). Here, TIII(τ/(2− τ)− ∆c/(2− ∆c), τ) is evaluated from a dominant

control parameter on the line (γ = τ − ∆), and Ti
f (τ) is evaluated from a dominant control

parameter on the U(1)-symmetric line (γ = 0 with 0 < ∆ < 1), labelled as i. In regime
IV, for a fixed τ ∈ (0, ∆c1), we have TIV

m (τ) = TIV(τ/(2− τ), τ) and TI
t (τ) = Tv(τ). Here,

TIV(τ/(2− τ), τ) is evaluated along the line (γ = τ − ∆), and Ti
f (τ) is evaluated from a

dominant control parameter on the semi-self-dual line (∆ = 0 with 0 < γ < 1), labelled
as v.

Now, let us determine V0 and U0 for the four principal regimes.
(1) In regime I (0 < ∆ < ∆c0 and 0 < γ < 1), in order to ensure the continuity

requirement for fidelity temperature on the semi-self-dual line (∆ = 0 with 0 < γ < 1),
labelled as v, TI(x, τ) is shifted to TI(x, τ) − TI

0(τ), with TI
0(τ) = TI(∆c/(2− ∆c), τ) −

Tv(τ). Here, (∆c, τ − ∆c) is the Ising transition point between the Haldane phase and the
AFx phase. Then, UI(x, τ) is shifted to UI(x, τ) − TI

0(τ)S
I(x, τ), with SI(x, τ) left intact.

In addition, fidelity internal energy UI(x, τ) on the line of the Ising critical points must
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be zero, and fidelity internal energy UI(x, τ) satisfies the continuity requirement on the
semi-self-dual line (∆ = 0 with 0 < γ < 1), labelled as v, as discussed in Section 2:
UI

0(τ) = TI
0(τ)S

I
0(τ) and UI(∆c/(2 − ∆c), τ) − TI

0(∆c/(2 − ∆c), τ)SI(∆c/(2 − ∆c), τ) =
Uv

f (τ). Therefore, VI
0(τ) is determined as follows

VI
0(τ) =

Uv
f (τ)−Tv

f (τ)(S
I(∆c/(2−∆c),τ)−SI

0(τ))

ln (eI(∆c/(2−∆c),τ)/eI(0,τ))VI
1(x0,τ)+αI(∆c/(2−∆c),τ)VI

1(∆c/(2−∆c),τ)(SI(∆c/(2−∆c),τ)−SI
0(τ))

. (A164)

Once VI
0(τ) and UI

0(τ) are determined, fidelity temperature TI(x, τ) and fidelity inter-
nal energy UI(x, τ) follow from (A146) and (A149), respectively. Following from our discus-
sions in Section 2, fidelity entropy SI

f (x, τ), fidelity temperature TI
f (x, τ), and fidelity inter-

nal energy UI
f (x, τ) take the following form: SI

f (x, τ) = SI(x, τ), TI
f (x, τ) = TI(x, τ)− TI

0(τ)

and UI
f (x, τ) = UI(x, τ)− TI

0(τ)S
I(x, τ), respectively.

(2) In regime II (−1 < ∆ < 0 and 0 < γ < 1 + ∆), in order to ensure the continuity
requirement for fidelity temperature on the U(1)-symmetric line (γ = 1− ∆ with 0 < ∆ <
∆c0), TII(x, τ) is shifted to TII(x, τ)− TII

0 (τ), with TII
0 (τ) = TII(1 + τ, τ). Then, UII(x, τ) is

shifted to UII(x, τ)− TII
0 (τ)S

II(x, τ), with SII(x, τ) left intact. Here, TII
0 (∆) = TII(∆, 1 + ∆).

In addition, fidelity internal energy UII(x, τ) on the line of the Gaussian critical points
(γ = 0 with −1 < ∆ < ∆c1), or equivalently, x = xc = 0, for a fixed τ, must be zero, and
fidelity internal energy UII(x, τ) satisfies the continuity requirement in principal part iv, as
discussed in Section 2: UII

0 (τ) = TII
0 (τ)S

II
0 (τ) and UII(1 + τ, τ)− TII

0 (τ)S
II(1 + τ, τ) = Um.

Therefore, VII
0 (τ) is determined as follows

VII
0 (τ) =

Um

ln (eII(1 + τ, τ)/eII(0, τ))VII
1 (1 + τ, τ) + αII(1 + τ, τ)VII

1 (1 + τ, τ)(SII(1 + τ, τ)− SII
0 (τ))

. (A165)

Once VII
0 (τ) and UII

0 (τ) are determined, fidelity temperature TII(x, τ) and fidelity
internal energy UII(x, τ) follow from their counterparts of (A146) and (A149), with the
label being changed from I to II. Following from our discussions in Section 2, fidelity
entropy SII

f (x, τ), fidelity temperature TII
f (x, τ), and fidelity internal energy UII

f (x, τ) take

the following form: SII
f (x, τ) = SII(x, τ), TII

f (x, τ) = TII(x, τ) − TII
0 (τ), and UII

f (x, τ) =

UII(x, τ)− TII
0 (τ)S

II(x, τ), respectively.
(3) In regime III (0 < ∆ < 1, 0 < γ < 1− ∆c0), in order to ensure the continuity

requirement for fidelity temperature on the U(1)-symmetric line (γ = 0 with 0 < ∆ < 1),
TIII(x, τ) is shifted to TIII(x, τ)− TIII

0 (τ), with TIII
0 (τ) = TIII(τ/(2− τ)− ∆c/(2− ∆c), τ)

−Tiv
f (τ). Here, (∆c, τ − ∆c) is the Ising transition point between the Haldane phase and

the AFx phase, for a fixed τ. Then, UIII(x, τ) is shifted to UIII(x, τ) − TIII
0 (τ)SIII(x, τ),

with SIII(x, τ) left intact. In addition, fidelity internal energy UIII(x, τ) on the line of the
Ising critical points must be zero, and fidelity internal energy UIII(xm, τ) satisfies the
continuity requirement on the U(1)-symmetric line, labelled as i, as discussed in Section 2:
UIII

0 (τ) = TI
0(τ)S

III
0 (τ) and UIII(xm, τ)− TIII

0 (τ)SIII(xm, τ) = Ui
f (τ). Here, xm

= τ/(2− τ)− ∆c/(2− ∆c). Therefore, VIII
0 (τ) is determined as follows

VIII
0 (τ) =

Ui
f (τ)− Ti

f (τ)(S
III(xm, τ)− SIII

0 (τ))

ln (eIII(xm, τ)/eIII(0, τ))VIII
1 (xm, τ) + αIII(xm, τ)VI

1(xm, τ)(SIII(xm, τ)− SIII
0 (τ))

. (A166)

Once VIII
0 (τ) and UIII

0 (τ) are determined, fidelity temperature TIII(x, τ) and fidelity
internal energy UIII(x, τ) follow from their counterparts of (A146) and (A149), with the
label being changed from I to III. Following from our discussions in Section 2, fidelity
entropy SIII

f (x, τ), fidelity temperature TIII
f (x, τ), and fidelity internal energy UIII

f (x, τ) take

the following form: SIII
f (x, τ) = SIII(x, τ), TIII

f (x, τ) = TIII(x, τ)− TIII
0 (τ), and UIII

f (x, τ) =

UIII(x, τ)− TIII
0 (τ)SIII(x, τ), respectively.

(4) In regime IV (0 < ∆ < ∆c1 and 0 < γ < ∆c1), in order to ensure the continuity
requirement for fidelity temperature on the semi-self-dual line (∆ = 0 with 0 < γ < 1),
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labelled as v, TIV(x, τ) is shifted to TIV(x, τ)− TIV
0 (τ), with TIV

0 (τ) = TIV(τ/(τ − 2), τ)−
Tv(τ). Here, (τ/(2− τ), τ) is the Gaussian transition point. Then, UIV(x, τ) is shifted to
UIV(x, τ)− TIV

0 (τ)SIV(x, τ), with SIV(x, τ) left intact. In addition, fidelity internal energy
UIV(x, τ) on the line of the Gaussian critical points with xc = 0 for a fixed τ, must be zero,
and fidelity internal energy UIV(x, τ) satisfies the continuity requirement on the semi-dual
line (∆ = 0 with 0 < γ < 1), labelled as v, as discussed in Section 2: UIV

0 (τ) = TIV
0 (τ)SIV

0 (τ)
and UIV(τ/(2− τ), τ)− TIV

0 (τ/(2− τ), τ)SI(τ/(2− τ), τ) = Uv
f (τ). Therefore, VI

0(τ) is
determined as follows

VIV
0 (τ) =

Uv
f (τ)−Tv

f (τ)(S
IV(τ/(2−τ),τ)−SIV

0 (τ))

ln (eIV(τ/(2−τ),τ)/eIV(0,τ))VIV
1 (x0,τ)+αIV(τ/(2−τ),τ)VIV

1 (τ/(2−τ),τ)(SIV(τ/(2−τ),τ)−SIV
0 (τ))

. (A167)

After VIV
0 (τ) and UIV

0 (τ) are determined, fidelity temperature TIV(x, τ) and fidelity
internal energy UIV(x, τ) follow from their counterparts of (A146) and (A149), with the label
being changed from I to IV, respectively. Following from our discussions in Section 2, fidelity
entropy SIV

f (x, τ), fidelity temperature TIV
f (x, τ), and fidelity internal energy UIV

f (x, τ) take

the form: SIV
f (x, τ) = SIV(x, τ), TIV

f (x, τ) = TIV(x, τ)− TIV
0 (τ), and UIV

f (x, τ)

= UIV(x, τ)− TIV
0 (τ)SIV(x, τ), respectively.

Once fidelity entropy Sq
f (x), fidelity temperature Tq

f (x), and fidelity internal energy

Uq
f (x) (q = i, ii, iii, iv and v) in the five principal parts and fidelity entropy Sω

f (x, τ),
fidelity temperature Tω

f (x, τ), and fidelity internal energy Uω
f (x, τ) in the four principal

regimes (ω = I, II, III and IV) are determined, fidelity entropy S f (∆, γ), fidelity temperature
Tf (∆, γ), and fidelity internal energy U f (∆, γ) follow. That is, Sq

f (∆, γ) ≡ Sq
f (x) and

Sω
f (∆, γ) ≡ Sω

f (x, τ), Tq
f (∆, γ) ≡ Tq

f (x) and Tω
f (∆, γ) ≡ Tω

f (x, τ), and Uq
f (∆, γ) ≡ Uq

f (x)
and Uω

f (∆, γ) ≡ Uω
f (x, τ), when we move from x and τ to ∆ and γ, meaning that x and τ

are regarded as functions of ∆ and γ. This is due to the fact that (∆, γ) and (x, τ) label the
same point in the control parameter space.

If fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and fidelity internal energy
U f (∆, γ) are determined in regime I, regime II, regime III, and regime IV, then fidelity
mechanical-state functions in the non-principal regimes are determined from dualities
in Appendix C by taking into account a contribution from scaling entropy arising from
dualities (cf. Appendix G).

Numerical simulations for fidelity entropy S f (∆, γ), fidelity temperature Tf (∆, γ), and
fidelity internal energy U f (∆, γ) are shown in Figure 23a–c, respectively.

Appendix O.2. Fidelity Entropy S f (∆, 0), Fidelity Temperature Tf (∆, 0), and Fidelity Internal
Energy U f (∆, 0): An Interior Point of View

We start from the complete line of critical points (γ = 0 with −1 < ∆ < ∆c1), which
has been labelled as scenario III-1 in Section 6. Here, a dominant control parameter x is
chosen to be x = ∆c1−∆. From Equation (9), fidelity entropy S(x) takes the following form

S(x) = −2
∫ x

xc
ln d(x; y) dy + S0. (A168)

Here, d(x; y) denotes the ground-state fidelity per lattice site on the complete line,
labelled as scenario III-1, and S0 is the residual fidelity entropy at the KT transition point
xc = 0. According to our convention (cf. Section 2), we have S f (x) = S(x).

On the complete line (γ = 0 with −1 < ∆ < ∆c1), which constitutes a principal part as
a whole (cf. scenario III-1), the ground-state energy density e(x) monotonically increases
with x. Then, from Equation (10), fidelity internal energy U(x) takes the following form

U(x) = − ln
e(x)
e(0)

V(x) + U0. (A169)
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Here, U0 is an additive constant, and V(x) > 0 satisfies the singular first-order
differential equation:

∂V(x)
∂x

= α(x) V(x), (A170)

with

α(x) =
∂ln (e(x)/e(0))/∂x

∂S(x)/∂x− ln (e(x)/e(0))
. (A171)

Accordingly, fidelity temperature T(x) on the complete line is provided by the following

T(x) = −∂V(x)
∂x

. (A172)

To solve the singular first-order differential equation, Equation (A123), we analyze
the scaling behavior of α(x) in the vicinity of the KT transition point xc = 0. As it turns
out, fidelity entropy S(x) scales as S(x) ∼ x3. In addition, our numerical simulation shows
that the ground-state energy density e(x), near the KT transition point xc = 0, scales as
ln(e(x)/e(0)) ∼ x. Then, α(x) scales as follows

α(x) ∝
1
x

. (A173)

Our numerical simulations confirm this scaling analysis.
Since the integration of α(x) with respect to x is finite, the singular first-order differen-

tial equation, Equation (A170), may be solved in a straightforward manner:

V(x) = V0V1(x), (A174)

where V0 is a positive constant, and V1(x) takes the following form

V1(x) = exp (
∫ x

0
α(y)dy). (A175)

The remaining task is to determine S0, U0, and V0. Here, we require that, at the FM
transition point x = 1+∆c1, or equivalently ∆ = −1, fidelity mechanical-state functions are
equal to those from an exterior point of view. In addition, at the KT transition point x = 0,
or equivalently ∆ = ∆c1, fidelity internal energy must be zero. Hence, S0 is determined
from the following requirement: S f (1) = Sm, with Sm denoting fidelity entropy from an
exterior point of view at the FM transition point x = 1. That is, fidelity entropy S f (x) from
an interior point of view matches that from an exterior point of view at the FM transition
point, so it is single-valued there. In addition, fidelity temperature at the FM transition
point must be zero, thus leading to T0 = T(1). Furthermore, fidelity internal energy
U f (x) at the KT transition point x = 0 must be zero, and fidelity internal energy U f (x) is
single-valued at the FM transition point x = 1, as discussed in Section 2: U0 = T0S0 and
U(1)− T0S(1) = Um, with Um being fidelity internal energy from an exterior point of view
at the FM transition point. Hence, V0 is determined as follows

V0 =
Um

ln (e(1)/e(0))V1(1) + α(1)V1(1)(S f (1)− S0)
. (A176)

After V0 and U0 are determined, fidelity temperature T(x) and fidelity internal energy
U(x) follow from (A169) and (A172), respectively. We refer to T(x)− T0 and U(x)− T0S(x)
as Tf (x) and U f (x), respectively. That is, Tf (x) ≡ T(x)− T0 and U f (x) ≡ U(x)− T0S(x).

Once fidelity entropy S f (x), fidelity temperature Tf (x) and fidelity internal energy
U f (x) are determined on the complete line, fidelity entropy S f (∆, 0), fidelity temperature
Tf (∆, 0) and fidelity internal energy U f (∆, 0) follows. That is, S f (∆, 0) ≡ S f (x), Tf (∆, 0) ≡
Tf (x), and U f (∆, 0) ≡ U f (x), when we move from x to ∆, meaning that x is regarded as a
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function of ∆. This is due to the fact that (∆, 0) (−1 < ∆ < ∆c1) and x label the same point
on the complete line.

Numerical simulations for fidelity entropy S f (∆, 0), fidelity temperature Tf (∆, 0), and
fidelity internal energy U f (∆, 0) are shown in Figure 24a–c, respectively.

Appendix O.3. Fidelity Entropy S f (D), Fidelity Temperature Tf (D), and Fidelity Internal Energy
U f (D) for the Spin-1 Bilinear-Biquadratic Model

The spin-1 bilinear–biquadratic model is described by the following Hamiltonian:

H(D) = ∑
i
(Si · Si+1 + D(Si · Si+1)

2), (A177)

where Si = (Sx
i , Sy

i , Sz
i ), and Sx

i , Sy
i , and Sz

i represent the spin-1 matrices at site i.
As argued in Ref. [231], the AKLT point is characterized by the onset of short-range in-

commensurate spin correlations in the spin-1 bilinear–biquadratic model. In addition, there
is a hidden Z2×Z2 symmetry-breaking order in the Haldane phase [160,161], which results
in a four-fold degenerate ground states after a non-local unitary transformation [160,161].
Therefore, it is plausible to regard the AKLT point as a characteristic point, which is
identified as a stable fixed point in the Haldane phase. Here, we remark that the spin-1
bilinear–biquadratic model constitutes the SU(2) characteristic line, if we embed both the
Hamiltonian (5) and the Hamiltonian (A177) into a more general model, which includes
an anisotropic extension of the biquadratic interactions. As a consequence, the AF spin-1
Heisenberg model turns out to be a metastable fixed point. This means that we have to
determine fidelity mechanical-state functions for the AF spin-1 Heisenberg model via the
spin-1 bilinear–biquadratic model.

In this Appendix, we present mathematical details about fidelity entropy S f (D),
fidelity temperature Tf (D), and fidelity internal energy U f (D) from the Babujian–Takhtajan
critical point Dc = −1 [152,153] to the AKLT point DAKLT = 1/3 [133,134].

We choose a dominant control parameter x to be x = D + 1. From Equation (9), fidelity
entropy S(x) takes the following form

S(x) = −2
∫ x

xc
ln d(x; y) dy + S0. (A178)

Here, d(x; y) denotes the ground-state fidelity per lattice site, and S0 is the residual
fidelity entropy at the critical point xc = 0. According to our convention (cf. Section 2), we
have S f (x) = S(x).

Once fidelity entropy S f (x) is determined, fidelity temperature Tf (x) and fidelity
internal energy U f (x) may be determined from solving the singular first-order differential
equation (14), as discussed for continuous QPTs in Section 2. Here, the ground-state energy
density e(x) monotonically increases with x. Then, from Equation (10), fidelity internal
energy U(x) takes the following form

U(x) = − ln
e(x)
e(0)

V(x) + U0. (A179)

Here, U0 is an additive constant, and V(x) > 0 satisfies the singular first-order
differential equation

∂V(x)
∂x

= α(x) V(x), (A180)

with

α(x) =
∂ln (e(x)/e(0))/∂x

∂S(x)/∂x− ln (e(x)/e(0))
. (A181)
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Accordingly, fidelity temperature T(x) is given by the following

T(x) = −∂V(x)
∂x

. (A182)

To solve the singular first-order differential equation, Equation (A123), we analyze the
scaling behavior of α(x) near point xc = 0. Fidelity entropy S(x) scales as S(x) ∼ x3. In
addition, our numerical simulation shows that the ground-state energy density e(x) near
point xc = 0 scales as ln(e(x)/e(0)) ∼ x [232]. Then, α(x) diverges as follows

α(x) ∝
1
x

. (A183)

Our numerics confirm this scaling analysis.
Since the integration of α(x) with respect to x is finite, the singular first-order differen-

tial equation, Equation (A123), may be solved in a straightforward manner:

V(x) = V0(x)V1(x), (A184)

where V0(x) is a function of x, and V1(x) is defined as follows

V1(x) = exp (
∫ x

0
α(y)dy). (A185)

A shift in fidelity temperature is performed: T(x)− T0, accompanied by a shift in
fidelity internal energy: U(x)− T0S(x). We refer to T(x)− T0 and U(x)− T0S(x) as Tf (x)
and U f (x), respectively. That is, Tf (x) ≡ T(x)− T0 and U f (x) ≡ U(x)− T0S(x).

The continuity requirement for fidelity entropy demands that S(1) = SH , where S(1) is
fidelity entropy for the spin-1 bilinear–biquadratic model (A177) with x = 1, or equivalently,
D = 0, and SH is fidelity entropy at the metastable fixed point (1, 0) on the (∆, γ) plane
for the quantum spin-1 XYZ model (5). We emphasize that fidelity entropy S f (∆, γ) is not
single-valued at the metastable fixed point (1,0) for the quantum spin-1 XYZ model (5)
(cf. Section 6). Here, we choose SH to represent fidelity entropy at the metastable fixed
point (1, 0), evaluated from the U(1)-symmetric line (γ = 0 with ∆c1 < ∆ < 1), labelled
as i. Therefore, the residual fidelity entropy S0 at the Babujian–Takhtajan critical point is
determined. In order to ensure that fidelity temperature is zero at the AKLT point, with
x = 4/3, T(x) is shifted to T(x)− T0, accompanied by a shift in U(x): U(x)− T0S(x), with
S(x) left intact. In addition, fidelity internal energy U(x) at a critical point xc, with xc = 0,
must be zero, and fidelity internal energy U(x) at the AKLT point, with x = 4/3, takes the
maximum value Um, as discussed in Section 2: U0 = T0S0 and U(4/3)− T0S(4/3) = Um.
Here, Um is identical to fidelity internal energy at the stable fixed point for the quantum
spin-1 XYZ model (5). Therefore, V0 is determined as follows

V0 =
Um

− ln (e(4/3)/e(0))V1(4/3) + α(4/3)V1(4/3)(S f (4/3)− S0)
. (A186)

After V0 and U0 are determined, fidelity temperature T(x) and fidelity internal energy
U(x) follow from (A179) and (A182), respectively. We refer to T(x)− T0 and U(x)− T0S(x)
as Tf (x) and U f (x), respectively. That is, Tf (x) ≡ T(x)− T0 and U f (x) ≡ U(x)− T0S(x).

Once fidelity entropy S f (x), fidelity temperature Tf (x), and fidelity internal energy
U f (x) are determined, fidelity entropy S f (D), fidelity temperature Tf (D), and fidelity
internal energy U f (D) follow. That is, S f (D) ≡ S f (x), Tf (D) ≡ Tf (x), and U f (D) ≡
U f (x), when we move from x to D, meaning that x is regarded as a function of D. This is
due to the fact that D and x label the same point on the SU(2)-symmetric line.

Our numerical simulation results for fidelity entropy S f (D), fidelity temperature
Tf (D), and fidelity internal energy U f (D), with Dc < D < DAKLT, are shown in
Figure A13a–c, respectively.
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Figure A13. Fidelity entropy S f (D), fidelity temperature Tf (D), and fidelity internal energy U f (D)

for the spin-1 bilinear–biquadratic model. (a) Fidelity entropy S f (D) monotonically increases from
D = −1 to D = 1/3 and reaches its maximum at ∆ = 1/3. (b) Fidelity temperature Tf (D) diverges
at D = −1, but it is zero at a characteristic point D = 1/3. (c) Fidelity internal energy U f (D)

monotonically increases, starting from D = −1 to D = 1/3, and it reaches its maximum at D = 1/3.

Appendix P. Fidelity Entropy S f (Jx, Jy), Fidelity Temperature Tf (Jx, Jy), and Fidelity
Internal Energy U f (Jx, Jy) for the Spin-1/2 Kitaev Model on a Honeycomb Lattice

In this Appendix, we present mathematical details about fidelity entropy S f (Jx, Jy),
fidelity temperature Tf (Jx, Jy), and fidelity internal energy U f (Jx, Jy) for the spin-1/2 Kitaev
model on a honeycomb lattice. Here, we set Jz as an energy scale, Jz = 1, for the sake
of brevity.

We restrict ourselves to the region Jx ≥ 0 and Jy ≥ 0. As shown in Figure 25, there are
four distinct phases: three gapped Z2 quantum spin liquid phases, and one gapless Z2 spin
liquid phase. There are three lines of critical points ( Jy = 1 + Jx with Jx ≥ 0, Jy = 1− Jx
with 0 ≤ Jx ≤ 1, and Jy = −1 + Jx with Jx > 1), that are dual to each other. A remarkable
feature of the spin-1/2 Kitaev model on a honeycomb lattice is that there are three different
dualities (cf. Appendix C).

Taking the symmetries and dualities into account, we may divide the region, defined
by Jx ≥ 0 and Jy ≥ 0, into twelve distinct regimes, enclosed by the boundaries consisting
of the Z2-symmetric line (Jx = Jy), the two self-dual lines (Jx = 1 and Jy = 1), and the
two semi-self dual lines (Jx = 0 and Jy = 0), together with the three lines of critical points.
The twelve regimes are separated into two groups, with six regimes in each group that
are dual to each other. As shown in Section 2, the first group includes regime I, regime
III, regime V, regime VII, regime IX, and regime XI, whereas the second group includes
regime II, regime IV, regime VI, regime VIII, regime X, and regime XII. Therefore, there are
only two principal regimes representing the physics underlying the model. Here, we chose
regime I (0 < Jx < 1/2 and Jx < Jy < 1− Jx) and regime II (0 < Jx < 1, 1− Jx < Jy < 1
and Jy > Jx) as the two principal regimes. Hence, all other regimes are symmetric or dual
image regimes.

Now, we turn to the explicit mathematical expressions for fidelity entropy S f (Jx, Jy),
fidelity temperature Tf (Jx, Jy), and fidelity internal energy U f (Jx, Jy) for the spin-1/2 Kitaev
model on a honeycomb lattice. We recall the choices of a dominant control parameter x in
the two principal regimes:

(i) Regime I (0 < Jx < 1/2 and Jx < Jy < 1− Jx): A dominant control parameter x was

chosen to be x =
√

J2
x + J2

y(1− Jx − Jy)/(Jx + Jy), and an auxiliary control parameter

τ was chosen to be τ = Jy/Jx ∈ (1, ∞).
(ii) Regime II (0 < Jx < 1, 1− Jx < Jy < 1 and Jy > Jx): A dominant control parameter

x was chosen to be x =
√
(Jx − 1)2 + (Jy − 1)2(Jx + Jy − 1)/(2− Jx − Jy), and an

auxiliary control parameter τ was chosen to be τ = (Jy − 1)/(Jx − 1) ∈ (0, 1).
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Appendix P.1. Fidelity Entropy S f (Jx, Jy), Fidelity Temperature Tf (Jx, Jy), and Fidelity Internal
Energy U f (Jx, Jy) for the Spin-1/2 Kitaev Model on a Honeycomb Lattice: An Exterior Point
of View

Let us determine fidelity entropy Si(x) in the principal part on the Z2-symmetric line
(Jx = 0 with 0 < Jy < 1), labelled as i. We recall that a dominant control parameter x was
chosen to be x = 1− Jy. As follows from (9), fidelity entropy Si(x) takes the following form

Si(x) = −2
∫ x

xc
ln di(x; y) dy + Si

0. (A187)

Here, di(x; y) denotes the ground-state fidelity per lattice site in the principal part, and
Si

0 is the residual fidelity entropy at the critical point xc = 0 between the gapped Z2 spin
liquid phases. According to our convention (cf. Section 2), we have Si

f (x) = Si(x).
Now we move to fidelity entropy S f (Jx, Jy) in two principal regimes.
(a) In regime I (0 < Jx < 1/2 and Jx < Jy < 1 − Jx), for the chosen dominant

control parameter x: x =
√

J2
x + J2

y(1− Jx − Jy)/(Jx + Jy), fidelity entropy SI(x, τ) takes
the following form

SI(x, τ) = −2
∫ x

xc
ln dI(x, τ; y, τ) dy + SI

0(τ). (A188)

Here, dI(x, τ; y, τ) denotes the ground-state fidelity per lattice site in regime I, and
SI

0(τ) is the residual fidelity entropy at a critical point xc for a fixed τ, with xc = 0.
According to our convention (cf. Section 2), we have SI

f (x, τ) = SI(x, τ).
(b) In regime II (0 < Jx < 1, 1− Jx < Jy < 1 and Jy > Jx), for the chosen dominant

control parameter x: x =
√
(Jx − 1)2 + (Jy − 1)2(Jx + Jy− 1)/(2− Jx− Jy), fidelity entropy

SII(x, τ), as follows from Equation (28), takes the same form as Equation (A188) for regime
I, with the label being changed from I to II. According to our convention (cf. Section 2), we
have SII

f (x, τ) = SII(x, τ).

Once fidelity entropy Si
f (x) in principal part i and fidelity entropy Sω

f (x, τ) (ω = I and II)

in the two principal regimes are determined, fidelity temperature Ti
f (x) and fidelity internal

energy Ui
f (x) in principal part i may be determined from solving the singular first-order

differential equation, Equation (14), and fidelity temperature Tω
f (x, τ) and fidelity internal

energy Uω
f (x, τ) in the principal regime ω may be determined from solving the singular

first-order differential equation, Equation (31), according to our prescription for continuous
QPTs in Section 2.

We start our discussions from fidelity temperature and fidelity internal energy in
principal part i on the Z2-symmetric line (Jx = 0 with 0 < Jy < 1). For the chosen dominant
control parameter x = 1− Jy, the ground-state energy density ei(x) increases with x. Thus,
fidelity internal energy Ui(x) takes the following form

Ui(x) = − ln
ei(x)
ei(0)

Vi(x) + Ui
0. (A189)

Here, Ui
0 is an additive constant, and Vi(x) > 0 satisfies the singular first-order

differential equation:
∂Vi(x)/∂x = αi(x) Vi(x), (A190)

with

αi(x) =
∂ln (ei(x)/ei(0))/∂x

∂Si(x)/∂x− ln (ei(x)/ei(0))
. (A191)



Entropy 2022, 24, 1306 145 of 157

Accordingly, fidelity temperature Ti(x) in this part follows from

Ti(x) = −∂Vi(x)
∂x

. (A192)

Now, we move to the two principal regimes: regime I and regime II.
(a) In regime I (0 < Jx < 1 and Jx < Jy < 1− Jx), for a fixed τ = Jy/Jx, the ground-

state energy density eI(x, τ) monotonically increases with x, with x =
√

J2
x + J2

y

(1− Jx − Jy)/(Jx + Jy). Thus, fidelity internal energy UI(x, τ) takes the following form

UI(x, τ) = − ln
eI(x, τ)

eI(0, τ)
VI(x, τ) + UI

0(τ). (A193)

Here, UI
0(τ) is a function of τ, and VI(x, τ) > 0 satisfies the singular first-order

differential equation
∂VI(x, τ)

∂x
= αI(x, τ) VI(x, τ), (A194)

with

αI(x, τ) =
∂ln (eI(x, τ)/eI(0, τ))/∂x

∂SI(x, τ)/∂x− ln (eI(x, τ)/eI(0, τ))
. (A195)

Accordingly, fidelity temperature TI(x, τ) in this regime is given by the following

TI(x, τ) = −∂VI(x, τ)

∂x
. (A196)

(b) In regime II (0 < Jx < 1, 1− Jx < Jy < 1, and Jy > Jx), for a fixed τ = (Jy − 1)/
(Jx − 1) ∈ (0, 1), the ground-state energy density eII(x, τ) monotonically decreases with

x, with x =
√
(Jx − 1)2 + (Jy − 1)2(Jx + Jy − 1)/(2− Jx − Jy). Thus, from Equation (30),

fidelity internal energy UII(x, τ) takes the following form

UII(x, τ) = ln
eII(x, τ)

eII(0, τ)
VII(x, τ) + UII

0 (τ). (A197)

Here, UII
0 (τ) is a function of τ, and VII(x, τ) > 0 satisfies the singular first-order

differential equation:
∂VII(x, τ)

∂x
= αII(x, τ) VII(x, τ), (A198)

with

αII(x, τ) = − ∂ln (eII(x, τ)/eII(0, τ))/∂x
∂SII(x, τ)/∂x + ln eII(x, τ)/e(0, τ)

. (A199)

Accordingly, fidelity temperature TII(x, τ) in this regime is provided by the following

TII(x, τ) = −∂VII(x, τ)

∂x
. (A200)

To solve the singular first-order differential equations, Equations (A194) and (A198),
we analyze the scaling behavior of αI(x, τ) and αII(x, τ) in the vicinity of a critical point
xc = 0 for a fixed τ. When a critical point xc = 0 is approached, fidelity entropy SI(x, τ)
and SII(x, τ) scale as SI(x, τ) ∼ x5/2 and SII(x, τ) ∼ x5/2, respectively, consistent with the
fact that d = 2, m = 1, ν‖ = 1/2, and ν⊥ = 1 [227,233]. Here, ν‖ and ν⊥ stand for the critical
exponent for the correlation length in two perpendicular directions, with m and d − m
being the effective dimensions, respectively (cf. Appendix H). Combined with a scaling
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analysis of the ground-state energy density eI(x, τ) and eII(x, τ) near a critical point xc = 0:
ln eI(x, τ) ∼ x and ln eII(0, τ) ∼ x, we have the following:

αI(x, τ) ∼ 1
x

, (A201)

and
αII(x, τ) ∼ 1

x
. (A202)

This scaling analysis is confirmed in our numerical simulations.
Since the integration of αI(x, τ)/αII(x, τ) with respect to x is finite, the singular first-

order differential equation, Equation (A194), for regime I and regime II may be solved in a
straightforward manner.

(a) In regime I (0 < Jx < 1 and Jx < Jy < 1− Jx), for a fixed τ, the singular first-order
differential equation, Equation (A194), may be solved as follows:

VV(x, τ) = VV
0 (τ)VV

1 (x, τ), (A203)

where VI
0(τ) is a function of τ, and VI

1(x, τ) is defined as follows

VI
1(x, τ) = exp (

∫ x

0
αI(y, τ)dy), (A204)

(b) In regime II, the solution VII(x, τ) to the singular first-order differential equation
takes the same form as Equations (A203) and (A204) for regime I, with the label being
changed from I to II.

We dictate that fidelity entropy should be zero at the critical point x = xc, with xc = 0
or equivalently, Jx = 0 and Jy = 1, in principal part i. That is, Si

0 = 0. As argued in
Section 2, we need to determine Ti

0 for principal part i. Fidelity temperature at the U(1)-
symmetric point x = 1, or equivalently Jx = Jy = 0, in principal part i is zero. Then, we
have Ti

0 ≡ Ti(1).
We are free to choose V0 on one of the characteristic lines, since fidelity internal

energy U f (x, τ) is only determined up to a constant factor. Here, we set Vi
0 = 1 for the Z2-

symmetric line (Jx = 0 with 0 < Jy < 1), labelled as i. Then, fidelity internal energy Ui(x) in
part i is determined from (A189). A shift from Ti(x) to Ti(x)− Ti

0 induces a shift in fidelity
internal energy in part i: Ui(x)− Ti

0Si(x). We refer to Ti(x)− Ti
0 and Ui(x)− Ti

0Si(x) as
Ti

f (x) and Ui
f (x), respectively. That is, Ti

f (x) ≡ Ti(x)− Ti
0 and Ui

f (x) ≡ Ui(x)− Ti
0Si(x).

Now we turn to the residual fidelity entropy SI
0(τ) on the line of critical points (Jy

= 1 − Jx with 0 < Jx < 1/2). SI
0(τ) is determined from the continuity requirement

for fidelity entropy SI
f (x, τ) at a characteristic point (x0, τ), with x0 =

√
1 + τ2/(1 + τ),

which turns out to be the U(1)-symmetric point (Jx = 0 and Jy = 0) for any τ: SI
0(τ) =

Si(1)− SI(x0, τ). In addition, the continuity requirement for fidelity entropy demands that
the residual fidelity entropy SII

0 (τ) is identical to the residual fidelity entropy SI
0(τ) on the

line of critical points (Jy = 1− Jx with 0 ≤ Jx ≤ 1). That is, we have SII
0 (τ) = SI

0(1/τ).
With this in mind, SI

f (x, τ) and SII
f (x, τ) are determined in the two principal regimes,

respectively.
The remaining task is to ensure the continuity requirements for fidelity temperature

and fidelity internal energy. To this end, we need to determine Tω
0 ≡ Tω

m − Tω
t for the

two principal regimes, with ω = I and II. Specifically, in regime I, for a fixed τ, we have
TI

m(τ) = TI(x0, τ) and TI
t (τ) = 0. Here, TI(x0, τ) denotes fidelity temperature, evaluated

from a dominant control parameter x for a fixed τ in regime I, at (x0, τ) or equivalently
Jx = 0 and Jy = 0. In regime II, TII(xs, τ) denotes fidelity temperature, evaluated from a
dominant control parameter x for a fixed τ in principal regime II, at a characteristic point
(xs, τ), with xs =

√
1 + τ2/(1 + τ), which turns out to be the S3-symmetric point, located

at Jx = 1 and Jy = 1, for any τ. Then, we have TII
m(τ) = TII(xs, τ) and TII

t (τ) = 0.
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In regime I (0 < Jx < 1/2 and Jx < Jy < 1− Jx), in order to ensure the continuity re-
quirement for fidelity temperature at the U(1)-symmetric point (x0, τ) for a fixed τ, or equiv-
alently Jx = 0 and Jy = 0, TI(x, τ) is shifted to TI(x, τ)− TI

0(τ), with TI
0(τ) = TI(x0, τ).

Then, UI(x, τ) is shifted to UI(x, τ)− TI
0(τ)S

I(x, τ), with SI(x, τ) left intact. In addition,
fidelity internal energy UI(x, τ) on the line of critical points (0, τ) must be zero, and fidelity
internal energy UI(x, τ) satisfies the continuity requirement at the U(1)-symmetric point
(x0, τ) or equivalently Jx = 0 and Jy = 0, as discussed in Section 2: UI

0(τ) = TI
0(τ)S

I
0(τ)

and UI(x0, τ)− TI
0(τ)S

I(x0, τ) = Ui
f (1). Therefore, VI

0(τ) is determined as follows

VI
0(τ) =

Ui
f (1)

− ln eI(x0, τ)/eI(0, τ)VI
1(x0, τ) + αI(x0, τ)VI

1(x0, τ)(SI(x0, τ)− SI
0(τ))

. (A205)

After VI
0(τ) and UI

0(τ) are determined, fidelity temperature TI(x, τ) and fidelity in-
ternal energy UI(x, τ) follow from (A193) and (A196), respectively. Following from our
discussions in Section 2, fidelity entropy SI

f (x, τ), fidelity temperature TI
f (x, τ), and fi-

delity internal energy UI
f (x, τ) take the following form: SI

f (x, τ) = SI(x, τ), TI
f (x, τ) =

TI(x, τ)− TI
0(τ), and UI

f (x, τ) = UI(x, τ)− TI
0(τ)S

I(x, τ), respectively.
In regime II (0 < Jx < 1, 1− Jx < Jy < 1 and Jy > Jx), in order to ensure that fidelity

temperature vanishes at the S3-symmetric point (xs, τ) for a fixed τ, or equivalently Jx = 1
and Jy = 1, TII(x, τ) is shifted to TII(x, τ)− TII

0 (τ), with TII
0 (τ) = TII(xs, τ). Then, UII(x, τ)

is shifted to UII(x, τ)− TII
0 (τ)S

II(x, τ), with SII(x, τ) left intact. In addition, fidelity internal
energy UII(x, τ) on the line of critical points (0, τ) must be zero, and fidelity internal
energy UII(Jx, Jy) satisfies the continuity requirement at the S3-symmetric point (xs, τ),
or equivalently, Jx = 1 and Jy = 1, as discussed in Section 2: UII

0 (τ) = TII
0 (τ)S

II
0 (τ) and

UII(x0, τ)− TII
0 (τ)S

II(x0, τ) = Ui
f (1). Therefore, VII

0 (τ) is determined as follows

VII
0 (τ) =

Ui
f (1)

ln eII(xs, τ)/eII(0, τ)VII
1 (xs, τ) + αII(xs, τ)VII

1 (xs, τ)(SII(xs, τ)− SII
0 (τ))

. (A206)

Once VII
0 (τ) and UII

0 (τ) are determined, fidelity temperature TII(x, τ) and fidelity
internal energy UII(x, τ) follow from their counterparts of (A193) and (A196), with the label
being changed from I to II, respectively. Following from our discussions in Section 2, fidelity
entropy SII

f (x, τ), fidelity temperature TII
f (x, τ), and fidelity internal energy UII

f (x, τ) take

the following form: SII
f (x, τ) = SII(x, τ), TII

f (x, τ) = TII(x, τ) − TII
0 (τ), and UII

f (x, τ) =

UII(x, τ)− TII
0 (τ)S

II(x, τ), respectively.
Once fidelity entropy Sq

f (x), fidelity temperature Ti
f (x), and fidelity internal energy

Ui
f (x) on the characteristic line, labelled as i, and fidelity entropy Sω

f (x, τ), fidelity tempera-
ture Tω

f (x, τ) and fidelity internal energy Uω
f (x, τ) (ω=I and II) are determined for the two

principal regimes, fidelity entropy S f (Jx, Jy), fidelity temperature Tf (Jx, Jy), and fidelity
internal energy U f (Jx, Jy) follow. That is, Sq

f (Jx, Jy) ≡ Sq
f (x) and Sω

f (Jx, Jy) ≡ Sω
f (x, τ),

Tq
f (Jx, Jy) ≡ Tq

f (x) and Tω
f (Jx, Jy) ≡ Tω

f (x, τ), and Uq
f (Jx, Jy) ≡ Uq

f (x) and Uω
f (Jx, Jy) ≡

Uω
f (x, τ), when we move from x and τ to Jx and Jy, meaning that x and τ are regarded as

functions of Jx and Jy. This is due to the fact that (Jx, Jy) and (x, τ) label the same point
on each characteristic line and in each principal regime.

If fidelity entropy S f (Jx, Jy), fidelity temperature Tf (Jx, Jy), and fidelity internal energy
U f (Jx, Jy) are determined in regime I and regime II, then fidelity mechanical-state functions
in the non-principal regimes are determined from dualities in Appendix C by taking into
account a contribution from scaling entropy arising from dualities (cf. Appendix G).

Numerical simulations for fidelity entropy S f (Jx, Jy), fidelity temperature Tf (Jx, Jy),
and fidelity internal energy U f (Jx, Jy) are shown in Figure 26a–c, respectively.
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Appendix P.2. Fidelity Entropy S f (Jx, 1− Jx), Fidelity Temperature Tf (Jx, 1− Jx), and Fidelity
Internal Energy U f (Jx, 1− Jx) for the Spin-1/2 Kitaev Model on a Honeycomb Lattice: An Interior
Point of View

There are three complete lines of critical points: Jy = 1 + Jx with Jx ≥ 0, Jy = 1− Jx
with 0 ≤ Jx ≤ 1, and Jy = −1 + Jx with Jx > 1. Since they are dual to each other, we only
need to focus on the complete line of critical points (Jy = 1− Jx with 0 < Jx < 1) labelled
as scenario I-3 in Section 6. The complete line is divided into two symmetric parts, with
the principal part being the line of critical points (Jy = 1− Jx with 0 < Jx < 1/2). Here,

a dominant control parameter x is chosen to be x =
√

J2
x + (Jy − 1)2. From Equation (9),

fidelity entropy S(x) takes the following form

S(x) = −2
∫ x

xc
ln d(x; y) dy + S0. (A207)

Here, d(x; y) denotes the ground-state fidelity per lattice site in the principal part, and
S0 is the residual fidelity entropy at the critical point xc = 0. According to our convention
(cf. Section 2), we have S f (x) = S(x).

In the principal part (Jy = 1− Jx and 0 < Jx < 1/2), the ground-state energy density
e(x) monotonically increases with x. Then, from Equation (10), fidelity internal energy
U(x) takes the following form

U(x) = − ln
e(x)
e(0)

V(x) + U0. (A208)

Here, U0 is an additive constant, and V(x) > 0 satisfies the singular first-order
differential equation:

∂V(x)
∂x

= α(x) V(x), (A209)

with

α(x) =
∂ln (e(x)/e(0))/∂x

∂S(x)/∂x− ln (e(x)/e(0))
. (A210)

Accordingly, fidelity temperature T(x) in the principal part is provided by the follow-
ing

T(x) = −∂V(x)
∂x

. (A211)

To solve the singular first-order differential equation, Equation (A209), we analyze the
scaling behavior of α(x) in the vicinity of the critical point xc = 0. Fidelity entropy S(x)
scales as S(x) ∼ x3. In addition, our numerical simulation shows that the ground-state
energy density e(x), near xc = 0, scales as ln(e(x)/e(0)) ∼ x. Then, α(x) scales as follows

α(x) ∝
1
x

. (A212)

This scaling analysis is confirmed in our numerical simulations.
Since the integration of α(x) with respect to x is finite, the singular first-order differen-

tial equation, Equation (A209), may be solved in a straightforward manner:

V(x) = V0V1(x), (A213)

where V0 is a positive constant, and V1(x) takes the following form

V1(x) = exp (
∫ x

0
α(y)dy). (A214)

The remaining task is to determine S0, U0, and V0. We choose S0 = 0, as follows
from the requirement that fidelity entropy is single-valued at the critical point x = 0 or,
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equivalently, Jx = 0 and Jy = 1. We require that, at the Z2-symmetric point x =
√

2/2, or
equivalently Jx = Jy = 1/2, fidelity temperature is zero, thus leading to T0 = T(

√
2/2).

Furthermore, fidelity internal energy at the Z2-symmetric point x =
√

2/2, or equivalently
Jx = Jy = 1/2, takes the maximum value and fidelity internal energy at the critical point
x = 0, or equivalently Jx = 0 and Jy = 1, is zero: U0 = T0S0 and U(

√
2/2)− T0S(

√
2/2) =

Um, with Um being the maximum value for fidelity internal energy from an exterior point
of view. Hence, V0 is determined as follows

V0 =
Um

− ln (e(
√

2/2)/e(0))V(
√

2/2) + α(
√

2/2)V(
√

2/2)(S(
√

2/2)− S0)
. (A215)

After V0 and U0 are determined, fidelity temperature T(x) and fidelity internal energy
U(x) follow from (A208) and (A211). We refer to T(x)− T0 and U(x)− T0S(x) as Tf (x)
and U f (x), respectively. That is, Tf (x) ≡ T(x)− T0 and U f (x) ≡ U(x)− T0S(x).

Once fidelity entropy S f (x), fidelity temperature Tf (x), and fidelity internal en-
ergy U f (x) are determined in the principal part, fidelity entropy S f (Jx, 1− Jx), fidelity
temperature Tf (Jx, 1 − Jx), and fidelity internal energy U f (Jx, 1 − Jx) follow. That is,
S f (Jx, 1 − Jx) ≡ S f (x), Tf (Jx, 1 − Jx) ≡ Tf (x), and U f (Jx, 1 − Jx) ≡ U f (x), when we
move from x to (Jx, 1− Jx), meaning that x is regarded as a function of Jx. This is due to
the fact that (Jx, 1− Jx) and x label the same point in the control parameter space. Fidelity
mechanical-state functions on the other two lines of critical points follow from dualities.
Note that x, as a function of Jx, is monotonic. Hence, it is proper to present the final results
as a function of Jx.

Numerical simulations for fidelity entropy S f (Jx, 1− Jx), fidelity temperature Tf (Jx, 1−
Jx), and fidelity internal energy U f (Jx, 1− Jx) are shown in Figure 27a–c, respectively.

Appendix Q. Zamolodchikov RG Flows vs. Real-Space RG Flows

In the main text, we restrict ourselves to formalize fidelity flows mimicking real-space
RG flows and do not touch upon Zamolodchikov RG flows. However, as it turns out, it is
necessary to make a distinction between real-space RG flows and Zamolodchikov RG flows.

For this purpose, we delve into fidelity flows for the quantum spin-1/2 XY model,
discussed in Section 13, which mimic real-space RG flows. For convenience, we reproduce
them in the guise of real-space RG flows in Figure A14a. It follows that real-space RG flows
proceed from an unstable fixed point to a stable fixed point. Note that there are two lines
of critical points: One is the line of the Gaussian critical points (γ = 0 with −1 < λ < 1),
with central charge c being 1, and the other is the Ising critical line (λ = 1 with γ > 0),
with central charge c being 1/2. In addition, a critical point with central charge c being 1 is
located at infinity, when γ is infinite in value. Therefore, Zamolodchikov RG flows must be
drastically different from real-space RG flows. Actually, Zamolodchikov RG flows proceed
from an unstable fixed point to another unstable fixed point before they eventually end at
a stable fixed point, with a c-function that is non-increasing along any RG trajectory [52].
Note that the c-function becomes central charge c at an unstable fixed point. A sketch of
Zamolodchikov RG flows is plotted in Figure A14b for the quantum spin-1/2 XY model. As
a consequence, it is necessary to extend the notion of fidelity flows in order to understand
Zamolodchikov RG flows in fidelity mechanics.

(a)( )

III V

1

II

IV
I

IV

0 1

(a)
(b)( )

III V

1

I
II

IV

0 1

(b)

Figure A14. Fidelity flows for the quantum spin-1/2 XY model (1): (a) fidelity flows mimicking
real-space RG flows and (b) fidelity flows mimicking Zamolodchikov RG flows.
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An observation is that we have to negate our choice of a dominant control parameter
x in some principal regimes in order to accommodate fidelity flows mimicking Zamolod-
chikov RG flows in the context of fidelity mechanics and in the sense that a chosen dominant
control parameter x in such a principal regime must be replaced by −x (up to an additive
constant). Specifically, for the quantum spin-1/2 XY model, we have to negate our choices
for a dominant control parameter x in regime II and regime III (cf. Section 7).

According to our prescription in Section 2, fidelity internal energy U(x), fidelity
entropy S(x), and fidelity temperature T(x) follow once a dominant control parameter
x is chosen in a given regime. Mathematically, we have ∆U(x) = T(x)∆S(x). Now,
we negate our dominant control parameter choice, x̄ = 2xc − x, as indicated in Fig-
ure A15. Then, we anticipate that fidelity temperature T(x) is left intact (T̄(x̃) = T(x)),
and fidelity internal energy U(x) becomes Ū(x̄) = Ū0 −U(x), with Ū0 being an undeter-
mined (additive) constant. However, fidelity entropy S(x) needs to be replaced by S̄(x̄):
S̄(x̄) = −2

∫ x̄
x̄c

ln d(x̄, ȳ)dȳ + S̄b0, with S̄b0 being an additive constant. Hence, we have the
following

∆̄(Ū(x̄)) = T̄(x̄)∆̄S̄(x̄) + ∆̄W̄(x̄). (A216)

Here, fidelity work ∆̄W̄(x̄) takes the following form: ∆̄W̄(x̄) = −T̄(x̄)(∆̄S̄(x̄) −
∆S(x)). Physically, this amounts to stating that ∆̄S̄(x̄) bits of information is created in
the information storage media associated with a dominant control parameter x̄, whereas
∆S f (x) bits of information is erased from the information storage media associated with a
dominant control parameter x. We emphasize that it is necessary to erase all information
recorded in the information storage media associated with a dominant control parameter x.
Otherwise, we would be able to remember the future instead of the past, a subtle problem
to be dealt with when a dominant control parameter x is negated, resulting in x̄.

(a) (b)

Figure A15. (a) A real-space RG flow from xc to x+ and from xc to x−. (b) A Zamolodchikov RG flow
from x̄− to x̄c and from x̄c to x̄+. In the part from xc to x−, the direction of the Zamolodchikov RG
flow is reversed. Accordingly, a dominant control parameter x is negated to be x̄: x̄ = 2xc − x. Here,
the presence of 2xc is to ensure that x̄c = xc. In contrast, in the part from xc to x+, the direction of the
Zamolodchikov RG flow is the same as that of the real-space RG flow. Hence, a dominant control
parameter x̄ is retained: x̄ = x.

With the above discussion in mind, we are ready to be back to the quantum spin-1/2
XY model. In regime II, a dominant control parameter x was chosen to be λ−

√
1− γ2,

starting from λ =
√

1− γ2 on the disorder line and ending at λ = 1, for each γ ∈ (0, 1).
In regime III, a dominant control parameter x was chosen to be λ, starting from λ = 0
and ending at λ = 1, for each γ > 1. Once the chosen dominant control parameter x is
negated in regime II and regime III, we are able to determine fidelity mechanical-state
functions in the two regimes. Combined with fidelity mechanical-state functions in regime
I, regime IV, and regime V (cf. Section 7), we are able to piece together all regimes by
imposing the continuity requirements on the boundaries, thus resulting in fidelity internal
energy U f (λ, γ), fidelity entropy S f (λ, γ), and fidelity temperature Tf (λ, γ) tailored to
Zamolodchikov RG flows in fidelity mechanics. It is during this last step that we transform
them back to the original control parameters λ and γ, with a subscript “ f ” added and the
tilde removed from fidelity mechanical-state functions.

We plot fidelity entropy S f (λ, γ), fidelity temperature Tf (λ, γ), and fidelity internal
energy U f (λ, γ) for the quantum spin-1/2 XY model in Figure A16a–c, respectively. Fidelity
entropy S f (λ, γ) exhibits singularities on the two dual lines (γ = 1 and λ = 0), and on the
disordered circle: λ2 + γ2 = 1, in addition to the two lines of critical points, located at γ = 0
with −1 < λ < 1 and λ = 1 with γ 6= 0. One might view such a singularity as a “phase
transition” in fidelity mechanics. Note that fidelity entropy S f (λ, γ) reaches its maximum
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on the dual line (γ = 1), when λ is infinite in value. In addition, fidelity temperature
Tf (λ, γ) diverges at the two lines of critical points (γ = 0 with −1 < λ < 1 and λ = 1
with γ 6= 0), but it is zero on the disordered circle: λ2 + γ2 = 1, and at a characteristic line,
representing a factorizing field when λ is infinite in value. Meanwhile, fidelity internal
energy U f (λ, γ) takes the same value on the disordered circle: λ2 + γ2 = 1, and it reaches
its maximum when λ is infinite in value.

(a) (b) (c)

Figure A16. Fidelity internal energy S f (λ, γ), fidelity entropy Tf (λ, γ), and fidelity temperature
U f (λ, γ) for the quantum spin-1/2 XY model tailored to Zamolodchikov RG flows. Here, we restrict
ourselves to the region, defined by λ ≥ 0 and γ ≥ 0, due to the symmetry of the Hamiltonian (1)
with respect to γ↔ −γ and λ↔ −λ. (a) Fidelity entropy S f (λ, γ) exhibits singularities at the two
dual lines (γ = 1 and λ = 0), and on the disordered circle: λ2 + γ2 = 1, in addition to the two lines
of critical points located at γ = 0 with −1 < λ < 1 and λ = 1 with γ 6= 0. One might view such a
singularity as a “phase transition" in fidelity mechanics. Note that fidelity entropy S f (λ, γ) reaches
its maximum on the dual line (γ = 1) when λ is infinite in value. (b) Fidelity temperature Tf (λ, γ)

diverges at the two lines of critical points (γ = 0 with −1 < λ < 1 and λ = 1 with γ 6= 0), but it
is zero on the disordered circle: λ2 + γ2 = 1 and at a characteristic line, representing a factorizing
field when λ is infinite in value. (c) Fidelity internal energy U f (λ, γ) takes the same value on the
disordered circle: λ2 + γ2 = 1, and it reaches its maximum when λ is infinite in value.

Although we restrict our discussion to the quantum spin-1/2 XY model, it is appli-
cable to any quantum many-body systems undergoing QPTs regardless of dimension-
ality. As such, it sheds new light on Zamolodhikov’s c-theorem [52,53] and Cardy’s
a-theorem [55,56].

References
1. Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 1999.
2. Wen, X.-G. Quantum Field Theory of Many-Body Systems; Oxford University Press: Oxford, UK, 2004.
3. Nishimori, H.; Ortiz, G. Elements of Phase Transitions and Critical Phenomena; Oxford University Press: Oxford, UK, 2011.
4. Landau, L.D.; Lifshitz, E.M.; Pitaevskii, E.M. Statistical Physics; Butterworth-Heinemann: New York, NY, USA, 1999.
5. Anderson, P.W. Basic Notions of Condensed Matter Physics, Addison-Wesley: The Advanced Book Program; Addison-Wesley: Reading,

MA, USA, 1997.
6. Coleman, S. An Introduction to Spontaneous Symmetry Breakdown and Gauge Fields: Laws of Hadronic Matter; Academic: New York,

NY, USA, 1975.
7. Kadanoff, L.P. Scaling laws for Ising model near T∗c . Physics 1966, 2, 263–272. [CrossRef]
8. Wilson, K.G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 1975, 47, 773–840.

[CrossRef]
9. Fisher, M. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 1974, 46, 597–616. [CrossRef]
10. Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Clarendon Press: Oxford, UK, 2002.
11. Drell, S.D.; Weinstein, M.; Yankielovicz, S. Quantum field theories on a lattice: Variational methods for arbitrary coupling

strengths and the Ising model in a transverse magnetic field. Phys. Rev. D 1977, 16, 1769. [CrossRef]
12. Jullien, R.; Fields, J.N.; Doniach, S. Kondo Lattice: Real-Space Renormalization-Group Approach. Phys. Rev. Lett. 1977, 38,

1500–1503. [CrossRef]
13. Wen, X.-G. Topological orders in regid states. Int. J. Mod. Phys. B 1990, 4, 239–271. [CrossRef]
14. Hasan, M.; Kane, C. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [CrossRef]
15. Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [CrossRef]
16. Zanardi, P.; Paunkovic, N. Ground state overlap and quantum phase transitions. Phys. Rev. E 2006, 74, 031123. [CrossRef]
17. Zanardi, P.; Cozzini, M.; Giorda, P. Ground state fidelity and quantum phase transitions in free Fermi systems. J. Stat. Mech.

Theory Exp. 2007, 2007, L02002. [CrossRef]

http://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.46.597
http://dx.doi.org/10.1103/PhysRevD.16.1769
http://dx.doi.org/10.1103/PhysRevLett.38.1500
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevE.74.031123
http://dx.doi.org/10.1088/1742-5468/2007/02/L02002


Entropy 2022, 24, 1306 152 of 157

18. Cozzini, M.; Ionicioiu, R.; Zanardi, P. Quantum fidelity and quantum phase transitions in matrix product states. Phys. Rev. B 2007,
76, 104420. [CrossRef]

19. Venuti, L.C.; Zanardi, P. Quantum critical scaling of the geometric tensors. Phys. Rev. Lett. 2007, 99, 095701. [CrossRef] [PubMed]
20. You, W.-L.; Li, Y.-W.; Gu, S.-J. Fidelity, dynamic structure factor, and susceptibility in critical phenomena. Phys. Rev. E 2007, 76,

022101. [CrossRef]
21. Gu, S.-J.; Kwok, H.M.; Ning, W.Q.; Lin, H.-Q. Fidelity susceptibility, scaling, and universality in quantum critical phenomena.

Phys. Rev. B 2008, 77, 245109. [CrossRef]
22. Yang, M.F. Ground-state fidelity in one-dimensional gapless models. Phys. Rev. B 2007, 76, 180403(R). [CrossRef]
23. Tzeng, Y.C.; Yang, M.F. Scaling properties of fidelity in the spin-1 anisotropic model. Phys. Rev. A 2008, 77, 012311. [CrossRef]
24. Oelkers, N. Links, Ground-state properties of the attractive one-dimensional Bose-Hubbard model. Phys. Rev. B 2007, 75, 115119.

[CrossRef]
25. Fjaerestad, J.O. Ground state fidelity of Luttinger liquids: A wavefunctional approach. J. Stat. Mech. Theory Exp. 2008, 2008,

P07011. [CrossRef]
26. Zhou, H.-Q.; Barjaktarevic, J.P. Fidelity and quantum phase transitions. J. Phys. A Math. Theor. 2008, 41, 412001. [CrossRef]
27. Zhou, H.-Q.; Zhao, J.-H.; Li, B. Fidelity approach to quantum phase transitions: Finite-size scaling for the quantum Ising model in

a transverse field. J. Phys. A Math. Theor. 2008, 41, 492002. [CrossRef]
28. Zhou, H.-Q.; Orús, R.; Vidal, G. Ground State Fidelity from Tensor Network Representations. Phys. Rev. Lett. 2008, 100, 080601.

[CrossRef] [PubMed]
29. Zhao, J.-H.; Zhou, H.-Q. Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B

2009, 80, 014403. [CrossRef]
30. Wang, H.-L.; Zhao, J.-H.; Li, B.; Zhou, H.-Q. Kosterlitz-Thouless phase transition and ground state fidelity: A novel perspective

from matrix product states. J. Stat. Mech. 2011, 2011, L10001. [CrossRef]
31. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 2006, 321, 2–111. [CrossRef]
32. Baskaran, G.; Mandal, S.; Shankar, R. Exact results for spin dynamics and fractionalization in the Kitaev model. Phys. Rev. Lett.

2007, 98, 247201. [CrossRef]
33. Chen, H.-D.; Nussinov, Z. Exact results of the Kitaev model on a hexagonal lattice: Spin states, string and brane correlators, and

anyonic excitations. J. Phys. A Math. Theor. 2008, 41, 075001. [CrossRef]
34. Berezinskii, V.L. Destruction of long range order in one dimensional and two dimensional systems having a continuous symmetry

group I. classical systems. Sov. Phys. JETP 1972, 34, 610–616.
35. Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State

Phys. 1973, 6, 1181–1203. [CrossRef]
36. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.
37. White, S.R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 1992, 69, 2863–2866. [CrossRef]
38. Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 2005, 77, 259–315. [CrossRef]
39. Verstraete, F.; Cirac, J.I.; Murg, V. Matrix product states, projected entangled pair states, and variational renormalization group

methods for quantum spin systems. Adv. Phys. 2008, 57, 143–224. [CrossRef]
40. Cirac, J.I.; Verstraete, F.J. Renormalization and tensor product states in spin chains and lattices. J. Phys. A Math. Theor. 2009, 42,

504004. [CrossRef]
41. Jordan, J.; Orús, R.; Vidal, G.; Verstraete, F.; Cirac, J.I. Classical simulation of infinite-size quantum lattice systems in two spatial

dimensions. Phys. Rev. Lett. 2008, 101, 250602. [CrossRef] [PubMed]
42. Shi, Q.-Q.; Li, S.-H.; Zhao, J.-H.; Zhou, H.-Q. Graded projected entangled-pair state representations and an algorithm for

translationally invariant strongly correlated electronic systems on infinite-size lattices in two spatial dimensions. arXiv 2009,
arXiv:0907.5520.

43. Li, S.-H.; Shi, Q.-Q.; Zhou, H.-Q. Ground-state phase diagram of the two-dimensional t-J model. arXiv 2010, arXiv:1001.3343.
44. Kraus, C.V.; Schuch, N.; Verstraete, F.; Cirac, J.I. Fermionic projected entangled pair states. Phys. Rev. A 2010, 81, 052338.

[CrossRef]
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