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Abstract: The major issue in the evolution of housing prices is risk of housing price contagion. To
model this issue, we constructed housing multilayer networks using transfer entropy, generalized
variance decomposition, directed minimum spanning trees, and directed planar maximally filtered
graph methods, as well as China’s comprehensive indices of housing price and urban real housing
prices from 2012 to 2021. The results of our housing multilayer networks show that the topological
indices (degree, PageRank, eigenvector, etc.) of new first-tier cities (Tianjin, Qingdao, and Shenyang)
rank higher than those of conventional first-tier cities (Beijing, Shanghai, Guangzhou, and Shenzheng).

Keywords: housing price contagion risk; multilayer networks; transfer entropy; generalized variance
decomposition

1. Introduction

Owing to the rapid development of China’s real estate market, housing is a source of
concern for ordinary residents and investors, whether for living or investment purposes.
Moreover, the factors that influence and cause changes in housing prices are a hot topic. As
information exchange becomes increasingly common, obtaining housing price information
from various regions has become easier, potentially leading to a correlation effect between
housing prices in different regions. Changes in housing prices in one region may cause
changes in housing prices in other regions. Therefore, it is necessary to study the relation-
ship between housing prices in different regions to avoid the risk of contagion between
regions when housing prices in one place collapse and cause real estate in most regions to
experience a downturn through the aforementioned linkage. Moreover, such investigations
can improve the effectiveness of housing price control measures and provide useful advice
with respect to reducing the systemic risk of real estate.

Research on the correlation of housing prices between cities can be divided into
two categories: studies related to the spillover correlation of housing prices using spatial
measurement methods and those that investigate the correlation between sequences using
time series (Li Zheng et al., 2021) [1]. In general, for spatial econometric models, researchers
use Moran’s I index to test the spatial correlation between housing prices before using
spatial panel models to measure the spatial spillover effect of housing prices between
cities. Ding et al. (2015) [2] used spatial econometrics to compute spatial correlations
between 288 cities in China at the prefecture level and above. Based on spatial adjacency,
spatial distance, economic adjacency, and economic distance matrices, Chen et al. (2012) [3]
investigated the regional interaction of housing prices in China. Gong et al. (2020) [4]
constructed an adjacency matrix based on distances and used the spatial lag of an X model
(SLX), a spatial Durbin model, and a spatial Durbin error model to assess the spillover
effect of housing prices in the Chinese regions of Jiangsu, Zhejiang, Shanghai, and Anhui.

The aforementioned studies revealed a positive spatial network spillover effect related
to housing prices. Time-series analysis methods are more prevalent in housing price
linkage research than spatial econometric models. Early research focused primarily on
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the “ripple effect”, which posits that housing prices have the characteristics of continuous
transmission in space. Using data on British urban housing prices, MacDonald et al.
(1993) [5] and Alexander (1994) [6] confirmed the existence of a ripple effect. As time-
series analysis has become increasingly sophisticated, various methods for analyzing
the correlation between series have enriched research on housing price correlations. To
test the spatial relationship of urban housing prices, researchers have used the gravity
model, the Granger causality test, the cointegration test, impulse response analysis, the
generalized autoregressive conditional heteroskedasticity (GARCH) model, and other
methods. Wang et al. (2015) [7] used the generalized impulse response of the vector error
correction model to investigate the spillover effects of housing price bubbles in Beijing,
Tianjin, Shanghai, and Chongqing and discovered that the degree of spillover effects and
the direction of overflow differs among the four cities. Some researchers have combined the
vector autoregression (VAR) models with the generalized variance decomposition (GVD)
technique to study the spillover relationship of housing prices. For example, Yang et al.
(2018) [8] combined principal component analysis with the GVD of the VAR models to
study the effects of housing price spillovers in 69 large- and medium-sized Chinese cities.
Moreover, Lv et al. (2019) [9] investigated the spillover effect of housing prices in 35 large-
and medium-sized Chinese cities using the GVD of the thick-tailed VAR models.

In addition to using the VAR model, additional research has been conducted on the
level of systemic risk in the real estate industry and the associated risk contagion following
the subprime mortgage crisis. Li et al. (2019) [10] used the Tail Event driven NETwork
(TENET) method to construct a systemic risk spillover network across industries. Liu et al.
(2014) [11] used the AR-GARCH-CoVaR method to assess systemic risk spillovers in the real
estate industry. The GARCH model has also been effectively used to evaluate the spillover
contagion and correlation between housing prices and interest rates, exchange rates, and
the stock market. Liu et al. (2016) [12] investigated the spillover and nonlinear correlation
between housing prices, exchange rates, and stock prices using a smooth transition vector
error correction GARCH (STVEC-GARCH) model. Yamaka et al. (2022) [13] investigated
the nonlinear causality and dynamic correlation between exchange rates and housing
prices in the boom-and-business market using the panel quantile Granger causality and
dynamic conditional correlation (DCC) copula GARCH method. Some scholars have also
applied the GARCH model to study the linkage effect of housing prices between regions.
Zeng et al. (2015) [14] used the DCC-GARCH model to examine the relationship between
housing price fluctuations in the three urban agglomerations of Beijing–Tianjin–Hebei, the
Yangtze River Delta, and the Pearl River Delta. In research on the Granger causality test in
housing price correlation networks, Chen et al. (2016) [15] evaluated the network structure
characteristics of housing price linkage in 69 large- and medium-sized cities in China. They
also extended the Granger causality test by including a nonlinear relationship to evaluate
the correlation effect of housing prices in 70 large- and medium-sized Chinese cities [16].

The multilayer network method is rarely used to study the relationship between
housing prices in the literature reviewed above. However, owing to the shortcomings
caused by incomplete information from a single-layer network, we first constructed a
multilayer network based on the comprehensive indices of housing prices (CIHP) and
real housing prices of 31 major Chinese cities using the GVD and transfer entropy (TE)
methods. Subsequently, we use the directed minimum spanning tree (DMST) and directed
planar maximally filtered graph (DPMFG) methods to simplify each layer of the network
and analyze the source and central cities in the housing price correlation network. The
Multiplex Infomap method was used to conduct a community analysis of the multilayer
network and study the geographical location and economic characteristics of cities with
similar housing price fluctuation characteristics.

The remainder of this paper Is structured as follows. In Section 2, we introduce the
theory of the TE and GVD networks, the calculation of multilayer network centralities, and
Multiplex Infomap. In Section 3, we introduce the datasets and the CIHP construction,
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followed by presentation of the empirical results in Section 4. Finally, Section 5 comprises
the conclusion and discussion.

2. Methodologies
2.1. Construction of Multilayer Networks

The TE method measures the transfer of housing price information between two cities,
whereas the GVD method measures the impact of housing prices in other cities on housing
prices in a given city. The correlation network created by these two methods is asymmetric,
which corresponds to the asymmetric phenomenon of housing price fluctuation contagion
in reality. Therefore, these two methods can describe the relationship between housing
prices while also considerably reducing the bias that occurs in single-layer networks
owing to the use of a multilayer network. Because the housing price correlation networks
constructed by these two methods are all fully connected networks (except for the self-loop),
it is difficult to grasp the key information. Consequently, we used the DMST and DPMFG
methods to simplify the networks and build simplified multilayer housing price networks.

2.1.1. Calculation of Transfer Entropy

According to Schreiber (2000) [17] and Chen et al. (2014) [18], we can calculate the
transfer entropy from one city’s housing prices to those of another. A detailed introduction
of the TE method can be found in Supplementary Materials. Based on the TE method, the
incidence matrix of housing prices can be calculated as follows:

TE_W =


0 TE(1, 2) · · · TE(1, n− 1) TE(1, n)

TE(2, 1) 0 · · · TE(2, n− 1) TE(2, n)
...

...
. . .

...
...

TE(n− 1, 1) TE(n− 1, 2) · · · 0 TE(n− 1, n− 1)
TE(n, 1) TE(n, 2) · · · TE(n, n− 1) 0

 (1)

where the TE TE(i, j) represents the information transfer from region I to region J. The
diagonal element is set to 0 because there is no information transmission between housing
prices in the same city.

2.1.2. Calculation of Generalized Variance Decomposition

Based on Diebold and Yilmaz (2014) [19], we can construct the contagion matrix
by the method of generalized variance decomposition; further details can be found in
Supplementary Materials. The elements of the GVD matrix for the H-step forecast are
calculated as follows:

dH
ij =

σ−1
ii

H−1
∑

h=0
(e′i AhΣej)

2

H−1
∑

h=0
(e′i AhΣA′ei)

(2)

where ej is the unit vector, the element of which at j is 1 and the rest are 0; Σ denotes the
covariance matrix of the random disturbance vector (εt); σii is the εt standard deviation; H
denotes the forecast period; and h is the disturbance in the moving average formula term
lag order.

Because the row sum of the GVD is not always 1, the elements in the generalized
variance matrix are standardized to better analyze the spillover relationship between
housing prices and can be calculated as follows:

d̃ij =
dij

∑N
j=1 dij

(3)
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Subsequently, the variance decomposition matrix can be obtained as:

Dij(h) =


d̃11 d̃12 · · · d̃1N
d̃21 d̃22 · · · d̃2N

...
...

. . .
...

d̃N1 d̃N2 · · · d̃NN


N×N

(4)

The diagonal of the obtained GVD matrix is set to 0; only the elements related to
housing price overflow are retained. The processed variance decomposition matrix is:

VD_W =


0 d̃1,2 · · · d̃1,N−1 d̃1,N

d̃2,1 0 · · · d̃2,N−1 d̃2,N
...

...
. . .

...
...

d̃N−1,1 d̃N−1,2 · · · 0 d̃N−1,N
d̃N,1 d̃N,2 · · · d̃N,N−1 0

 (5)

2.1.3. Steps of the DMST Method

The housing price correlation network built using the two aforementioned methods is
fully connected and has a total of N(N − 1) edges. However, the number of samples is too
large to use a fully connected network to identify and analyze important nodes. Therefore,
an appropriate method for simplifying the graph is required. Because the two correlation
matrices constructed herein are both directed matrices, we simplify network graphs using
a DMST (Kwon et al., 2008; Qiu et al., 2020) [20,21] and a DPMFG (Ye et al., 2019) [22]. The
DMST procedure is as follows.

1. Randomly select a node as the root node;
2. Travel all edges and find the smallest entry edges of all points except for the root node.

Then, sum up the weighted values of edges to form the new graph. Determine the
final minimum arborescence if no cycles exist in the new graph;

3. If a ring exists in the new graph, shrink the ring to a point and change the edge weight.
The procedure to change edge weights is as follows:

(1) Choose a node (u) in the ring and set the incoming edge of this node as
in[u] and outgoing edge as (u, i, w). i and w refer to the source node and
weight, respectively;

(2) Set the new edge weight of node u as (u, i, w− in[u]);
(1) Return to Step 2 if the new weight graph contains rings;

4. Expand the new graph if rings do not exist by the loop-breaking method (Hemminger,
1966; Gabow et al., 1986) [23,24]. The steps of the loop-breaking method are as follows:

(1) Find a loop in the graph;
(2) Remove the edge with the highest weight among the loops, but keep the

graph connected;
(3) Repeat this process until there are no loops in the graph (but they are still

connected) and obtain the minimum spanning tree.

2.1.4. Steps of the DPMFG Method

The network generated using the DMST method is extremely clear and easy to process,
but too few edges are retained, and some critical information is frequently overlooked. To
retain more edges, it is necessary to make the network as simple as possible while also
ensuring that the retained information is sufficient for analysis of the characteristics of the
network structure and to identify critical nodes in the network. Thus, we adopt the DPMFG
method, which is similar to the DMST method. The calculation steps of the DPMFG method
are as follows.
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(1) By summing symmetric elements, convert the directed network into an undirected network;
(2) Use the undirected PMFG to simplify a fully connected network to a network with

only 3 (N − 2) edges remaining;
(3) Restore each edge in the simplified undirected PMFG network to two directed edges,

and keep the direction and weight of the side with the highest weight value as the
edge and weight of the directed PMFG. Thus, the network is simplified to a directed
PMFG network.

2.2. Topology Calculation and Community Partitioning Method for Multilayer Networks
2.2.1. Centrality in Multilayer Networks

Unlike the aggregate algorithm, which simply aggregates the topology parameters
from each single-layer network, the multilayer algorithm used in our study also consid-
ers connections between points from different layers. Domenico et al. (2013) [25] and
Domenico et al. (2015) [26] used the tensorial formulation to calculate various multilayer
network structure indicators.

When considering a multilayer network, a multilayer adjacency tensor can be used as an
object for the complex relationship of the multilayer network. According to Domenico et al.
(2013) [25], the multilayer network can be expressed as follows:

Mαγ̃

βδ̃
=

N

∑
i,j=1

L

∑
h,k=1

wij(hk)eα(i)eβ(j)eγ̃(h)e
δ̃
(k) (6)

where N represents the number of nodes, L is the number of layers in the network, and
wij(hk) denotes the connection between the node i of the layer h and node j of layer k. If it is
a weighted network, w represents the corresponding weight value; otherwise, it is 1. If the
network is a directed network, wij(hk) and wji(kh) are not necessarily equal. eα(i) denotes
the αth component of the ith contravariant canonical vector (ei) in RN , and eβ(j) represents
the βth component of the jth covariant canonical vector in RN . eγ̃(h) is the vector of the
canonical basis in space RL, where the Greek index indicates the components of the vector,
and the Latin index indicates the hth canonical vector. The multilayer adjacency tensor
(Mαγ̃

βδ̃
) is a general object that can be used to represent the complicated relationships among

nodes can be used to conveniently calculate the node centrality in a multilayer network.

(1) Degree Centrality

The degrees of nodes are determined by the sum of each layer in the aggregated
multilayer network calculation. In reality, the relationship between two nodes may differ
between layers. Thus, when the degrees of each layer are directly summed, errors may
occur. The same issue arises in the subsequent calculations of various centrality metrics.
For multilayer networks, the association between different layers and whether the nodes
between the layers can be connected need to be considered comprehensively. This method
directly calculates various centrality measures as a whole, which can better reflect the actual
relationship. Using the previously introduced multilayer adjacency tensor, we can directly
calculate the multilayer degree centrality vector using the following formula:

Kα = Mαγ̃

βδ̃
Uδ̃

γ̃uβ (7)

where Uδ̃
γ̃ denotes a second-order tensor, the elements of which are all equal to 1; and uβ

denotes the 1-vector, the components of which are all equal to 1. After some algebra, the
multi-degree centrality vector can be written as:

Kα =
L

∑
h,k=1

kα(h̃k̃) (8)
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where kα(h̃k̃) denotes the degree centrality vector that reflects the connections between
layers h̃ and k̃. Clearly, the degree centrality vector calculated using this method differs
from that calculated by aggregating the network layers into a single-layer network.

(2) Eigenvector Centrality

Eigenvector centrality is an indicator commonly used to describe the importance of
a node that often has a high eigenvector centrality when its neighbors also have a high
eigenvector centrality. The eigenvector centrality vector in a multilayer network can be used
as the solution to the tensorial equation (Wi

j vi = λ1vj), where λ1 is the largest eigenvalue

of Wi
j (the adjacency tensor of the monoplex), and vi denotes the eigenvector centrality

of node i. In the case of multilayer networks, we can obtain the eigenvector centrality by
solving the tensorial equation:

Miα
jβΘiα = λ1Θjβ (9)

where λ1 denotes the largest eigenvalue, and Θiα is the corresponding eigentensor centrality
of each node in each layer when accounting for the whole interconnected relationship.
Thus, the multilayer Bonacich’s eigenvector centrality is given by Θjβ = λ−1

1 Miα
jβΘiα.

(3) PageRank Centrality

PageRank centrality quantifies how well a node is connected to other nodes. In
general, if a node is connected to many other nodes, its PageRank value will be higher. The
PageRank calculation simultaneously considers the PageRank value of the node connected
to a node; if the PageRank value of the associated node is higher, the PageRank value of the
considered node will also be higher. For the multilayer PageRank centrality calculation, we
can start from the steady-state solution of the equation pjβ(t + 1) = Riα

jβ piα(t) in the case

of a multilayer network, where Riα
jβ denotes the corresponding transition tensor that the

walker jumps to a neighbor with rate r and teleports to any other node in the network with
rate 1− r, and piα(t) represents the time-dependent tensor that described the probability
of finding a walker at a particular node in a particular layer. This rank-4 tensor can be
written as:

Riα
jβ = rTiα

jβ +
(1− r)

NL
uiα

jβ (10)

where Tiα
jβ denotes the tensor of transition probabilities for jumping between pairs of nodes

and switching between pairs of layers (the calculation process is detailed in Domenico et al.
(2015) [27]), and uiα

jβ denotes the rank-4 tensor that with all components equal to 1. We

can obtain the eigentensor (Ωiα) of the transition tensor (Riα
jβ); the multilayer PageRank is

then calculated by simply contracting the layer index of the eigentensor with the 1-vector
ωi = Ωiαuα, i.e., by summing up across layers.

2.2.2. Multiplex Infomap

Infomap is a stochastic and fast algorithm used to identify the best modular description
of network flows according to the map equation, which measures the length required to
communicate dynamics in a network and takes advantage of the information theory duality
between finding regularities in data and compressing the data. Flow dynamics in multi-
layer networks are more complex than in single-layer networks because a random walker
moves both intralayer and interlayer, and empirical interlayer weights are usually lacking.
According to Daniel Edler et al. (2017) [28] and Domenico et al. (2015) [27], the multiplex
map equation can be used to reveal the community structure of multilayer networks.

We use Wβ
ij to describe the intralayer adjacency of layer β and Dαβ

i to describe the
interlayer adjacency of physical node i. Then, we take the random walker moves according
to intralayer links with probability 1− τ, and the random walker can move in different
layers along any link of the physical node with probability τ. Therefore, the random walker
switches from layer α to layer β with probability sβ

i /Sα
i , where Sα

i = ∑β Dαβ
i represents the
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total interlayer outlink weights of node i in layer α, and sβ
i = ∑j Wβ

ij represents the total
intralayer outlink weights of node i in layer β. Transition probabilities are used to describe
the random walker dynamics:

Pαβ
ij (τ) = (1− τ)δαβ

Wβ
ij

sβ
i

+ τ
Wβ

ij

Si
(11)

where Pαβ
ij is the transition probability that node i in layer α moves to node j in layer β; τ is

the probability that the random walker moves between layers; sβ
i = ∑j Wβ

ij represents the

total intralayer outlink weights in the same layer; Si = ∑β sβ
i represents the total interlayer

outlink weights across all layers; and δαβ is the Kronecker delta, which is 1 if α = β and 0
otherwise. pα

i denotes the stationary distribution of state node i, α, i.e., node i in layer α,
and can be derived from the recursive system of equations:

pα
i = ∑

j,β
pβ

j P
βα
ji (12)

To ensure a unique ergodic solution in directed networks, we use teleportation at a
rate κ to state nodes proportional to their intralayer in-link weights. To make the results
more robust to the teleportation rate κ, we use unrecorded teleportation steps and recorded
steps along links. First, we can obtain the recorded visit rates by calculating the stationary
distribution with teleportation to state nodes proportional to their outlink weights.

p̃α
i = (1− κ)∑

j,β
pβ

j P
βα
ji + κ∑

i,α

Sα
i

Sα
i

(13)

We derive the recorded steps along links qαβ
ji and nodes pα

i in next step:

qαβ
ji = p̃β

j P
βα
ji (14)

pα
i = ∑

j,β
qαβ

ji (15)

For directed networks, the results are robust to the variation of teleportation rate κ in a
wide range, and the results are independent of κ for undirected networks (Domenico et al.,
2015) [27]. In the interest of simplicity, we use a teleportation rate of κ = 0.15 throughout
our directed networks.

The map equation can express the description length based on the rates at which a
random walker enters and exits modules and visits nodes within modules, which can be
used to calculate the rates for a multiplex network. qιx and qιy denote the transition rates
at which the random walker enters and exits each module, respectively, where modules
ι = 1, 2, . . . , m are assigned from a given partition (M) of state nodes i, α.

qιx = ∑
{i,α}∈J 6=ι,{j,β}∈ι

qαβ
ij (16)

qιy = ∑
{i,α}∈ι,{j,β}∈J 6=ι

qαβ
ij (17)

For module codebook ι, the physical node visit rates describe the random walker
visiting each of the physical nodes in the module and can be written as:

pi∈ι = ∑
{i,α}∈ι

pα
i (18)
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Now, we have expressed the description length of a random walker in terms of the
three rates at which it enters and exits modules and visits state nodes of physical nodes
within modules. Subsequently, we can obtain the two-level map equation in terms of
multilayer networks with the per-step average description length (L(M)) of the trajectory
of an ergodic random walker:

L(M) = qxH(
qιx
qx

) +
m

∑
ι=1

pι�H(
pi∈ι

pι�
) (19)

pι� = qιy + pi∈ι (20)

qx =
m

∑
ι=1

qιx (21)

where H(•) denotes the Shannon entropy. For an identically distributed random variable
(Z), P(zi) represents the probability distribution of events (zi), and Shannon entropy can be
described as follows:

H(Z) = −∑i P(zi) log2 P(zi) (22)

Finally, we can use the Infomap search algorithm to acquire the optimal solution to
minimize the previously introduced multiplex map equation.

2.3. Flowchart of the Methodologies

Sections 2.1–2.3 outline the main methods and steps used in the present study. These
methods are mainly divided into two parts. In Section 2.1, we described the construction of
multilayer networks, including the construction of fully connected networks (VD and TE
methods) and two network-simplification methods (DMST and DPMFG methods).

In Section 2.2, we introduced the topology analysis method for multilayer networks,
such as the topology calculation (PageRank, eigenvector, etc.) and community partitioning
(Multiplex Infomap) methods.

The specific methodological steps can be represented by the following flowchart in
Figure 1:
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In the interest of simplicity, the formulae discussed in this article are summarized in
Table 1 to clarify the calculation logic between the formulae.

Table 1. Compilation of the formulae discussed in this article.

Description Formula Number References

2.1 Construction of multilayer networks

Network constructed by
TE method (1) Schreiber (2000) [17], Chen et al.

(2014) [18]

Network constructed by
VD method (2)~(5) Diebold and Yilmaz (2014) [19]

2.2 Topology calculation and community partitioning method for multilayer networks

Degree centrality (6)~(8)
Domenico et al. (2013) [25],
Domenico et al. (2015) [26]Eigenvector centrality (9)

PageRank centrality (10)

Multiplex Infomap (11)~(22) Domenico et al. (2015) [27], Daniel
Edler et al. (2017) [28],

3.1 Calculation of housing price linkage index

Calculate the weight of each
data point (23)~(28)

Chen Minghua et al. (2020) [16],
Zhang Xiaoyan (2021) [29]Calculate the comprehensive

index of housing price (29)

Although the relationships between the formulae used in this article are listed in
the table, these relationships are not intuitive, so we also present a diagram detailing the
relationships between the formulae in Figure 2.
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3. Data and Indicator Processing
3.1. Calculation of Comprehensive Index of Housing Prices

The sales price index of new commercial houses and secondhand houses is included
in the housing price index data. The two indicators must be combined to create a compre-
hensive index. If the weight of the two indicators is arbitrarily chosen as a proportion, it
is highly subjective and speculative. Thus, we employ the entropy method to objectively
assign the two indicators. This method’s weight value is determined by the structural
characteristics of the data. The greater the dispersion of an indicator, the more information
it contains and the more weight it is given.

For a city, there is an m× n order data matrix X = (xij)m×n, where m represents the
length of time, and n is the number of indicators. The greater the difference between the
index values of a column of data in a numerical matrix, the more information the index
contains and the greater the role of the index is in the overall evaluation. For m months
and n indicators of city r, Xθij denotes the jth indicator of city i in the θth year. According
to Chen Minghua et al. (2020) [16] and Zhang Xiaoyan (2021) [29], the improved entropy
weight method is used to calculate the weight of each indicator as follows.

(1) Because the order of magnitude of the indicators may differ, the data must be standard-
ized before calculating the entropy value of each indicator. The indicators selected
herein are all positive; therefore, the standardization formula for each indicator is:

X′θij =
Xθij −min(Xθ j)

max(Xθ j)−min(Xθ j)
(23)

where max(Xθ j) is the maximum value of indicator j, and min(Xθ j) is the minimum
value of indicator j;

(2) To avoid 0 and negative values when calculating entropy, it is necessary to and add
0.1 to all values.

X′′θij = X′θij + 0.1 (24)

(3) Determine the proportion of the jth index Pθij of each city in each year:

Pθij =
X′′θij

m
∑

θ=1

r
∑

i=1
X′′θij

(25)

(4) Calculate the information entropy of the jth index. The lower the entropy value, the
greater the difference between the indices. The information entropy is expressed as
follows:

ej = −K
m

∑
θ=1

r

∑
i=1

Pθij ln Pθij (26)

where K = 1
ln(mr) .

(5) Calculate the difference coefficient of the jth index:

aj = 1− ej (27)

(6) Calculate the weight of jth index:

gj =
aj

n
∑

j=1
aj

(28)
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(7) Calculate the comprehensive index of housing price (ind). Because there is a minimal
difference in the dimension of the sales price index between new commercial houses
and the secondhand houses, the original data can be used to calculate the CIHP:

indθi =
n

∑
j=1

(gjXθij) (29)

where indθi denotes the CIHP of city i in the θth year.

3.2. Analysis of the Comprehensive Index of Housing Prices

We select the capital cities of China’s provinces (Urumqi, Lhasa, and Xi’ning are ex-
cluded owing to a lack of data) and five well-developed cities (Shenzhen, Xiamen, Dalian,
Ningbo, and Qingdao) as samples for our study. Therefore, a total of 33 cities are in-
cluded for analysis; the time span runs from January 2012 to August 2021. The Wind
database is used to calculate the housing price index. For subsequent research and analysis,
we employ two methods to divide the selected cities. One method involves dividing
them into eastern, central, and western regions according to their geographical location
(eastern regions: Beijing, Tianjin, Shijiazhuang, Shenyang, Dalian, Shanghai, Nanjing,
Hangzhou, Ningbo, Fuzhou, Xiamen, Jinan, Qingdao, Guangzhou, Shenzhen, Nanning,
and Haikou; central regions: Taiyuan, Huhehaote, Changchun, Haerbin, Hefei, Nanchang,
Zhengzhou, Wuhan, and Changsha; western regions: Chongqing, Chengdu, Guiyang, Kun-
ming, Xi’an, Lanzhou, and Yinchuan); the method other entails dividing them into first-tier,
new first-tier, second-tier, and third-tier cities according to the “Ranking of Cities’ Business
Attractiveness in China 2021” (https://www.datayicai.com/readReport/267) (accessed on
27 January 2022) reported by the Yicai website (first-tier cities: Shanghai, Beijing, Shenzhen,
and Guangzhou; new first-tier cities: Chengdu, Hangzhou, Chongqing, Xi’an, Wuhan,
Nanjing, Tianjin, Zhengzhou, Changsha, Ningbo, Qingdao, and Shenyang; second-tier
cities: Hefei, Kunming, Xiamen, Jinan, Fuzhou, Dalian, Haerbin, Changchun, Shijiazhuang,
Nanning, Guiyang, Nanchang, Taiyuan, and Lanzhou; third-tier cities: Haikou, Hohhot,
and Yinchuan). Because the selected regions are all in developed urban areas, the number
of third-tier cities is relatively small.

To construct the CIHP for the 33 investigated cities, we employ the entropy method
and use the average value of the CIHP during the study period for sorting and analysis.
Table 2 displays the results.

Table 2 shows that, except for Hefei, Xiamen, and Nanning, the top ten cities in the
CIHP are all first-tier or new first-tier cities. The top four cities, in particular, are all first-tier
cities, namely Shenzhen, Guangzhou, Beijing, and Shanghai. However, there is no special
urban-grade difference among the lower-ranked cities. Except for the first-tier cities, the
other three types of cities are represented among the 10 cities with the lowest rankings.

From the perspective of regional distribution, except for Hefei, Wuhan, and Changsha
in the central part of the CIHP, the other top 10 cities are all located in the eastern part of
the country. The ten lowest-ranking cities have no discernible regional distribution and
are located in the eastern, central, and western regions. This may be because the cities in
our sample have high levels of economic development, and there is no obvious difference
between the low-ranked cities. Consequently, there is little variation in the growth rate of
housing prices, and the CIHP is also considerably similar.

The city with the lowest CIHP is Haikou. Nonetheless, its CHIP score is 102.3%,
demonstrating that despite minor fluctuations in the growth of housing prices in the major
cities in China, they all show an upward trend in general.

https://www.datayicai.com/readReport/267
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Table 2. Cities ranked according to the comprehensive index of housing prices.

Ranking City Abbreviation CIHP

1 Shenzhen SZ 110.6588

2 Guangzhou GZ 107.6885

3 Beijing BJ 107.54

4 Shanghai SH 107.1897

5 Heifei HF 106.8774

6 Xiamen XM 106.8587

7 Nanjing NJ 106.3807

8 Wuhan WH 105.8394

9 Nanning NN 104.798

10 Changsha CS 104.6763

11 Xi’an XA 104.6693

12 Kunming KM 104.5756

13 Zhengzhou ZZ 104.5389

14 Fuzhou FZ 104.5032

15 Shenyang SY 104.4324

16 Hangzhou HZ 104.3276

17 Huhehaote HHHT 104.1595

18 Shijiazhuang SJZ 103.9711

19 Yinchuan YC 103.8835

20 Chongqing CQ 103.8156

21 Guiyang GY 103.7865

22 Tianjin TJ 103.7282

23 Nanchang NC 103.7266

24 Haerbin HRB 103.6739

25 Dalian DL 103.6114

26 Ningbo NB 103.4872

27 Taiyuan TY 103.4435

28 Chengdu CD 103.4259

29 Jinan JN 103.4219

30 Changchun CC 103.2341

31 Lanzhou LZ 102.9835

32 Qingdao QD 102.8244

33 Haikou HK 102.3365

3.3. Selection and Source of Real Housing Price Data

The real housing price data used in our statical analysis were collected from the Anjuke
website (https://www.anjuke.com/fangjia) (accessed on 2 December 2021). The selected
cities and time intervals are consistent with the CIHP.

4. Results and Analysis

Based on the aforementioned methods and data, we determine the TE calculation bins,
lags, and predictive horizon of GVD to be two, one (one month), and three periods (one
quarter), respectively.

https://www.anjuke.com/fangjia
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Subsequently, we use the DMST and DPMFG methods to translate the TE matrix and
GVD matrix, which are generated by the CIHP and real housing prices, into two different
four-layer networks. The characteristics of a multilayer network topology are used to
describe the influence and contagion of housing prices in various locations.

We depict the multiplex networks of CIHP and the real housing price. To visualize
the node cities with more edges in the complex network more intuitively, we use the
node degree (the sum of outgoing and incoming degrees) as the node size. The larger
the node, the more cities with which the city’s housing price is linked in the network.
Generally, cities with more connecting nodes play an important role in the housing price
association network. When a city’s housing prices are affected, the central city is not only
more vulnerable to the impact of changes in housing prices in other cities, but changes in
its housing prices can also spread to others cities.

4.1. Topology Analysis of Each Layer in Multilayer Complex Networks

The amount of information required to analyze central cities is insufficient if the
number of edges in the simplified network obtained from the DMST is small and the degree
difference of each node is not large. Hence, for the DMST-simplified network, we only
examine the source nodes, that is, nodes with only outgoing degrees and no incoming
degrees. To a considerable extent, the source nodes can represent the source of housing
price correlation, which is of significance for analyzing the contagion source of housing
price changes and preventing and controlling abnormal housing price changes. In other
words, we analyze the source node of the DMST-generated simplified network and the
center node of the DPMFG-generated simplified network.

The multilayer network structure of the CIHP and real housing prices can is shown in
Figure 3.

The source cities of the CIHP DMST network are Guangzhou and Xiamen, whereas
the source cities of the DMST network of real housing prices are Shenzhen and Guangzhou.
Therefore, there are three source cities: Guangzhou, Xiamen, and Shenzhen. The CIHP in
the source cities is high, particularly in Shenzhen and Guangzhou, which are the top two
among all investigated cities. Xiamen is ranked slightly lower, in sixth place. These results
show that the source of the contagion of housing price changes is often a city that has a
rapidly rising housing prices, which plays a leading role for all cities. Thus, when housing
prices in such cities rise or fall, the effect is distributed to other cities, causing housing
prices in other cities to change.

The four-layer price complex networks simplified by the DPMFG show that the
core cities differ depending on the complex networks. In the network constructed using
the CIHP and TE methods, the top cities with the highest degree of nodes are Lanzhou,
Changsha, Qingdao, and Wuhan. Only Shenzhen and Shanghai have slightly larger node
sizes than the first top central cities among the four traditional first-tier cities. The top
central cities are replaced by Shenyang, Tianjin, Hangzhou, and Haikou in the network
built using the CIHP and GVD methods. The degree of the first-tier cities is higher than
that determined using the TE method, although only a medium degree, with a large gap
compared to the top cities.

From the perspective of the network built using real housing prices and the TE method,
Qingdao, Harbin, and Yinchuan are the most prominent cities, ranking far higher than
Beijing and Taiyuan. Only Beijing ranks in the middle of the first-tier cities, with the other
three cities ranking extremely low. Zhengzhou and Xi’an rank far higher than other cities
in the network constructed using real housing prices and the GVD method, whereas the
first-tier cities rank lower.
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Figure 3. Multilayer complex network diagram of the comprehensive index of housing prices and
real housing prices. (a) The network is built on the comprehensive index of housing prices. From
left to right, the first figure depicts a network constructed using TE and DMST methods, the second
depicts a network constructed using VD and DMST methods, the third depicts a network built using
TE and DPMFG methods, and the fourth depicts a network constructed using VD and DPMFG
methods. (b) Network built using real-world housing price data. The first figure depicts a network
constructed using TE and DMST methods, the second depicts a network built using VD and DMST
methods, the third depicts a network constructed using TE and DPMFG methods, and the fourth
depicts a network built using VD and DPMFG methods.

Excluding some second-tier cities (Lanzhou and Harbin) and third-tier cities (Haikou
and Yinchuan), the rest of the top-ranked cities are new first-tier cities. Qingdao, in
particular, has a high degree in the two DPMFG-simplified networks built using the TE
method, which is at the heart of the comparison. Conversely, Qingdao has a low degree for
networks constructed using the GVD method. The traditional notion that first-tier cities
should have a substantial impact on the housing prices of other cities is not reflected in
the four DPMFG-simplified networks presented above. Except for Beijing and Shenzhen,
which are in the middle of the network built using the TE method, the ranking in the other
cases is extremely low.

The light- and dark-green stripes in Figure 4a,b represent the degree of DPMFG-
simplified networks (CHPI networks and real housing price networks, respectively). Be-
cause the size of the selected node is calculated according to the degree, including both the
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part entering and leaving the node, it is impossible to tell whether the third-tier city is in the
center because of its high housing price overflow or because it is considerably influenced
by other cities. To further analyze the spillover effect of the central city and the extent
of spillover from other cities, we calculate some structural indicators of the multilayer
complex network to judge whether the central city has a large spillover effect or is affected
by spillover from other cities.
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Figure 4. The multi-degree, multi-degree-in and multi-degree-out centrality of multilayer networks.
(a) The multi-degree centrality of CIHP networks; (b) the multi-degree centrality of real housing
price networks; (c) the multi-degree-in centrality of CIHP networks; (d) the multi-degree-in centrality
of real housing price networks; (e) the multi-degree-out centrality of CIHP networks; (f) the multi-
degree-out centrality of real housing price networks.

4.2. Multilayer Network Centrality Index Analysis

We calculate the multi-PageRank centrality with reference to Domenico et al. (2015) [26]
and the multi-degree and multi-eigenvector according to the work of Domenico et al.
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(2013) [25]. Furthermore, the aggregate value of the aforementioned indicators can be
calculated according to Boccaletti S et al. (2014) [30]. The degree-in centrality and degree-
out centrality can also be calculated for the degree centrality. Only the multi-centrality
calculated by the multilayer algorithm will be used in the subsequent analysis, as it more
accurately describes the structural characteristics of the multilayer network. Because multi-
ple cities have the same value for some indicators, we use the same ranking value in these
cases. The aforementioned indicators are calculated for the two four-layer networks of the
CIHP and real housing prices, and the results are as follows:

Notably, the eigenvector centrality value for the network derived from the DMST is
0 because the calculation of the eigenvector requires each point to be reachable, whereas
the DMST network cannot satisfy this condition (Figure 5c,d). Regarding the structural
indicators of the CIHP, the cities with the highest multi-centrality are Tianjin, Changsha,
and Shenyang, although this result may vary depending on multi-centrality. These three
cities are among the top 10 multi-centrality cities listed earlier (Figures 4 and 5) (except that
Tianjin and Shenyang rank lower in multi-degree-out centrality (Figure 4e,f).
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Figure 5. The multi-PageRank and multi-eigenvector centrality of multilayer networks. (a) The
multi-PageRank centrality of CIHP networks; (b) the multi-PageRank centrality of real housing price
networks; (c) the multi-eigenvector centrality of CIHP networks; (d) The multi-eigenvector centrality
of real housing price networks.

Although Tianjin ranks first in terms of the multi-centrality of real housing prices,
Qingdao ranks first in multi-degree-out centrality, indicating that Qingdao has the charac-
teristics of a highly central city (three types of multi-degree centrality are shown in Figure 4).
Qingdao is also ranked highly in the CIHP, at least in the top 10, and in the top four for
multi-degree and multi-degree-out centrality (Figure 4a,b,e,f). These results show that
Qingdao has a considerably high position in terms of both complex network centrality
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calculated using the CIHP and direct centrality calculated using real housing price data.
Therefore, it can be argued that Qingdao has a prominent position with respect to the
contagion of housing price changes.

Regarding the comparison of Haikou and Yinchuan presented in the previous section,
the multi-centrality indicators presented in Figures 4 and 5 show that the centrality of the
two cities ranks lower, possibly because they are highly ranked in some networks. Hence,
to correctly evaluate whether a city is located in the center of the housing price correlation
network, multiplex networks must be combined. It is inadvisable to rely solely on one or
two complex networks to determine the status of a city in the correlation network.

Beijing ranked highest among the top 10 cities in terms of centrality of the four first-tier
cities of Beijing, Shanghai, Guangzhou, and Shenzhen a total of six times, with the highest
ranking of second in the multi-degree-out centrality of real housing prices (Figure 4f).
Guangzhou only appeared in the top 10 once for the multi-degree-out centrality of the
CIHP network (Figure 4e). Shanghai and Shenzhen were only in the top 10 three or four
times, with a top ranking of third place. These findings also show that first-tier cities are not
always at the center of the housing price correlation network. Tianjin, Qingdao, Shenyang,
Beijing, and Taiyuan are the top 10 cities, with more than six occurrences; excluding Beijing
and the second-tier city Taiyuan, the other three cities are new first-tier cities. These
results also demonstrate that as the economy gradually develops, the dominance of the
traditional first-tier cities with respect to housing price changes is gradually replaced by
newly developed next-tier cities. Therefore, when controlling for the severe fluctuations in
housing prices, we can focus on these new first-tier cities and conduct necessary housing
price supervision to prevent rapid fluctuations in housing prices in a short period of time,
which is not only conducive to the stability of housing prices in local cities but can also
stabilize housing prices in other cities through the housing price association network.

Table 3 depicts the multi-centrality of the multilayer network of the CIHP and real
housing prices. Here, “CIHP” represents the multi-centrality of the multilayer network
constructed using the CIHP, and “price” represents the multi-centrality of the multilayer
network constructed using the real housing prices. In addition, we count the number of
times each city has been ranked in the top 10 in various multi-centrality categories, as
shown in the last column of Table 3.

Table 3. Multi-centrality ranking of cities.

City
PageRank Eigenvector Degree Degree-In Degree-Out Rank in

Top 10CIHP Price CIHP Price CIHP Price CIHP Price CIHP Price

TJ 1 7 2 7 3 2 1 8 22 1 9

QD 9 1 8 1 2 1 4 1 2 16 9

SY 2 20 1 9 4 7 3 18 22 2 7

BJ 3 13 23 19 7 7 9 18 10 2 6

TY 24 6 10 8 21 4 18 9 19 5 6

SJZ 6 3 14 2 16 13 7 5 28 29 5

WH 4 31 3 31 4 18 2 13 28 16 4

XA 10 11 11 6 27 4 26 4 15 12 4

CS 12 26 7 13 1 18 7 13 1 16 4

SH 16 5 30 3 10 21 18 15 5 16 4

ZZ 23 9 24 16 19 6 18 6 15 9 4

YC 30 14 21 28 7 7 11 3 9 33 4

NC 5 30 15 25 21 14 26 10 11 10 3

CQ 8 18 5 29 16 33 32 26 2 29 3

HK 14 33 4 26 7 28 15 32 5 16 3

FZ 15 16 25 10 31 10 18 18 33 4 3
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Table 3. Cont.

City
PageRank Eigenvector Degree Degree-In Degree-Out Rank in

Top 10CIHP Price CIHP Price CIHP Price CIHP Price CIHP Price

SZ 18 4 29 15 4 28 15 26 2 22 3

NN 19 2 19 4 31 18 30 10 19 22 3

HRB 20 27 16 22 13 3 9 2 15 12 3

JN 22 10 20 12 10 28 4 18 22 29 3

HHHT 25 12 13 5 21 10 11 6 28 12 3

NB 27 32 27 20 18 10 30 15 5 5 3

CD 11 8 6 18 31 23 25 18 28 16 2

LZ 13 21 26 27 10 28 4 32 22 16 2

HZ 7 19 17 21 13 25 11 18 11 22 1

GY 17 28 9 23 21 25 15 26 22 16 1

GZ 21 29 28 33 19 28 32 26 5 22 1

KM 26 23 12 24 13 15 11 26 11 7 1

NJ 29 15 31 30 27 15 18 18 22 8 1

HF 31 17 32 14 21 15 26 10 11 12 1

DL 28 24 22 32 27 23 26 18 15 16 0

CC 32 25 18 17 21 21 18 26 19 10 0

XM 33 22 33 11 30 25 18 15 28 29 0

4.3. Community Analysis of Multilayer Networks

By employing the Multiplex Infomap method, we reveal the community structure of
multilayer networks constructed using the CIHP and real housing prices. The Multiplex
Infomap can integrate the characteristics of multiple networks and group individuals with
similar characteristics into the same community, resulting in a large gap between different
communities and a small gap between the same community. In this manner, we can
investigate which cities have similar characteristics and gain an improved understanding
of the linkage of housing prices, which is critical for subsequent housing price control. As
shown in Figure 6, we use the Multiplex Infomap method to cluster the communities of the
two four-layer networks and obtain a community clustering diagram of the CIHP and real
housing prices.

According to the community clustering diagram of the CIHP, the cities can be divided
into six communities. The first-tier cities of Beijing, Shanghai, Guangzhou, and Shenzhen
are all part of the same community, as are Nanjing, Hefei, and Xiamen. These three cities
are either adjacent to Shanghai (Nanjing and Hefei) or in the same coastal special economic
zone as Shenzhen (Xiamen) and thus do not have a large gap relative to the first-tier cities.
The first-tier cities are not all part of the same community according to the community
clustering diagram of real housing prices. Except for Beijing and Guangzhou, which are
in the same community, Shenzhen and Shanghai are in separate communities with other
cities and are separated by a considerable distance. For example, Shanghai is in the same
community as Hefei, Chengdu, Kunming, and Yinchuan, whereas Shenzhen is not clearly
in the same community as the other cities. In general, the community clustering result
obtained by using the CIHP is more effective for first-tier cities and is highly correlated
with their actual economic level and geographical location.

The three cities of Tianjin, Qingdao, and Shenyang, which are among the top 10 cities
in various categories of multi-centrality, are in the same community clustering of the CIHP,
as are Jinan, Wuhan, and Changsha. Tianjin and Qingdao remain in the same community
in terms of real housing price clustering, whereas Shenyang is a member of a separate
community. Jinan and Wuhan are also in the same community as Tianjin and Qingdao,
whereas Changsha is not in the same community as Tianjin or Shenyang. The clustering
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results of the two communities show that the central cities with a higher importance are
more likely to share the same characteristics and attributes, making it easier for them to be
grouped together.
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It can be concluded that the multilayer complex network community clustering results
obtained from the CIHP are superior; these results not only accurately divide the first-tier
cities into the same community but also cluster the cities with higher rankings as per
the multilayer network structure characteristics into the same community. There is still
a substantial gap between the outcomes of real housing prices and the actual situation,
and the outcomes of community division are less effective than those from the CIHP.
Therefore, the multilayer complex network constructed using the CIHP is more consistent
with the actual situation and has a high degree of recognition with respect to identifying
important nodes.

5. Conclusions and Discussion

Focusing on the risk contagion of housing prices, we used the TE and GVD methods to
construct a fully connected network with respect to housing price correlation. Subsequently,
we simplified this network using the DMST and DPMFG, yielding two different four-layer
multiplex network graphs of the CIHP and real housing prices, respectively. By analyzing
the source cities from the DMST network, we found that the source cities are Guangzhou,
Xiamen, and Shenzhen, which are all among the top cities in the CIHP. In addition, accord-
ing to the node size of the DPMFG network, the central city is not a traditional first-tier
city; rather, new first-tier cities appears more frequently in the central location.
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Calculation the multi-centrality of multilayer networks shows that traditional first-tier
cities do not rank extremely high in the various categories of multi-centrality. However,
Tianjin, Qingdao, and Shenyang, which are new first-tier cities, occupy the central position
in the multilayer networks. Furthermore, new first-tier cities replace first-tier cities as the
core of the price fluctuation correlation network. Subsequently, we used the Multiplex
Infomap method to cluster multilayer networks and found that the community cluster
based on the CIHP is most effective. The first-tier cities and some cities near Shanghai
are members of the same community, as are Tianjin, Qingdao, and Shenyang, with high
network structure indicators.

The methods of building multilayer networks and dynamic topology extraction can
also be applied to financial networks. For example, when building stock/bank multilayer
networks, we can use the closing prices of multiple stocks as the research object, build a
multilayer financial network through VD and TE methods, and build dynamic financial
networks for crisis early warning research. The method used in the present study has good
applicability in the financial field.

In the future, we will consider using machine learning to identify early warning signs
of rising housing prices. We intend to convert housing data into a symbolic sequence
(0 and 1) corresponding to price rises and falls. Through the sliding window method
and multilayer network structured indicators (multi-PageRank, multi-eigenvector, etc.)
constructed above as the characteristics (X1, X2, X3, etc.) of a machine learning model,
various machine learning models can be used to forecast the rise or fall in housing prices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24091305/s1, Appendix: Construction of multilayer networks.
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