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Abstract: It is important for Mars exploration rovers to achieve autonomous and safe mobility over
rough terrain. Terrain classification can help rovers to select a safe terrain to traverse and avoid sinking
and/or damaging the vehicle. Mars terrains are often classified using visual methods. However, the
accuracy of terrain classification has been less than 90% in read operations. A high-accuracy vision-
based method for Mars terrain classification is presented in this paper. By analyzing Mars terrain
characteristics, novel image features, including multiscale gray gradient-grade features, multiscale
edges strength-grade features, multiscale frequency-domain mean amplitude features, multiscale
spectrum symmetry features, and multiscale spectrum amplitude-moment features, are proposed that
are specifically targeted for terrain classification. Three classifiers, K-nearest neighbor (KNN), support
vector machine (SVM), and random forests (RF), are adopted to classify the terrain using the proposed
features. The Mars image dataset MSLNet that was collected by the Mars Science Laboratory (MSL,
Curiosity) rover is used to conduct terrain classification experiments. The resolution of Mars images
in the dataset is 256 × 256. Experimental results indicate that the RF classifies Mars terrain at the
highest level of accuracy of 94.66%.

Keywords: Mars terrain; rovers; terrain classification; terrain visual features

1. Introduction

Mars exploration motivates the search for extraterrestrial life, the development of
space technologies, and the design of human missions and habitations [1]. Mars rovers
are commonly used for Mars exploration. Mars rovers need to achieve mobility over
rough challenging terrain for exploration missions. The greatest single source of risk for
Mars rovers is Mars terrain. The Mars surface is covered with soft sand or hard gravel [2].
Although rovers can move fast on flat and nonslippery hard surfaces, they typically need
to traverse a sandy/gravel surface at lower speeds. The soft sand may produce substantial
wheel sinkage, causing the rover to become immobilized [3]. For example, the Spirit rover
has sunk into the soil numerous times [4], as shown in Figure 1a. Hard gravel can produce
significant vibration in a rover and damage the wheels. For example, the Curiosity rover
has experienced an unexpectedly high damage rate on its wheel, as shown in Figure 1b.
Due to the tribocorrosion caused by the interaction between the wheel and the terrain, this
damage will gradually expand as the rover travels [5]. Such terrain hazards can only be
identified visually. Knowledge of the terrain types will be useful for a rover to allow its
path to be adjusted to avoid such hazards and improve its mobility. Thus, the detection of
the terrain type is desirable for the control of high-mobility rovers.
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Figure 1. Risks to Mars rovers come from terrain: (a) Spirit rover sunk into the soil; (b) a puncture on
a wheel of Curiosity.

Vision-based terrain classification is usually accomplished using pattern recognition.
The images contain remote images and terrain images. Remote images are mainly used for
crater identification and spatial-occurrence-based statistical analysis of various landforms.
The terrain images are mainly used for the analysis of terrain traversability for rovers. Some
areas of the terrain may be covered with dust. The dust is a soft terrain; it belongs to the sand
terrain type. It can be recognized by terrain classification. According to the classification
results, the areal occurrence of dust on Mars in terrain images can be calculated. The terrain
images are treated as a signal source, and the color and texture of the images are extracted
as features for training classifiers or classifying terrain. Numerous studies have focused
on terrain classification based on vision. For example, references [6,7] extracted color
features (sin(hue), cos(hue), saturation, and value), texture features (horizontal, diagonal,
and vertical wavelet coefficients), and geometry features (average slope of the terrain, mean
squared deviation of the points from the least-squares plane along its normal, variance
in the height of the range data points, and the difference in height between the highest
and lowest points within the patch) from binocular vision images. During the training
phase, the features and corresponding terrain types were used to train three support vector
machine (SVM) classifiers. During the classification phase, the features extracted from
unknown-class terrain images were input into three SVMs to obtain three terrain classes.
The three classification results were then fused using a naïve Bayes fusion approach to
judge the terrain type [7].

A critical step to successfully building an image classifier is to extract and use in-
formative features from the given images. For the difficulty of data acquisition for Mars
terrain images, many studies tested terrain classification methods with roves’ fully op-
erational duplicates in Earth conditions and then applied those methods to the actual
rover. The image features that are often used for terrain classification in those studies
include color features based on the RGB space [8–12], HSV [6,7,13–15], and Lab [16] spaces;
Gabor features [12,17,18]; the contrast [10–12], correlation [12], energy [11–13], and con-
sistency [12] of gray-level co-occurrence matrix (GLCM); SURF features [19,20]; Daisy
features [19,20]; local binary patterns (LBP) [19–21]; local ternary patterns (LTP) [19–21];
local adaptive ternary patterns (LATP) [19,20]; contrast context histogram (CCH) [20]; and
the mean [2,9,13–15,22], entropy [8,9,22], contrast [8,23], correlation [23], energy [8,23], ho-
mogeneity [8,9,23], and standard deviation [9,12–15,22] at the grayscale. These features can
be used not only for terrain classification, but also for other image classification problems,
such as animal classification. They usually have strong generality in the description of
image textures, but lack specificity for terrain classification. The relevant research stud-
ies combine different general texture features and adopt feature selection technology to
carry out terrain classification. However, the selected features may have been extracted
without explicit prior knowledge of what properties represent the underlying scene that
are reflected by the original image. It will reduce the classification accuracy for terrain
classification. In these studies, the classifiers used include random forests (RFs) [2,12,18–21],
SVMs [6–9,16,17,19,20], multilayer perceptron [13–15,19,20], LIBLINEAR [19,20], decision
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tree [19,20], naïve Bayes classifier [19,20], K-nearest neighbor (KNN) [13–15,17,19,20], ex-
treme learning machine [17,24], batch-incremental regression tree model [22], probabilistic
neural network [23], and multilayer feed forward neural network learning algorithm [10].

Several published studies have focused on Mars terrain classification [2,13–15]. Ono [2]
used a set of NAVCAM images from MSL to study Mars terrain classification and extracted
the following image features in gray, gradients, and range channels: the channel intensity
and the intensity at an x and y offset from the pixel and the averages of the rectangles at
random positions in the local context of the point of interest. RF is used to classify each
pixel in the terrain image with an accuracy of the derivable terrain of 76.2%. Shang [13–15]
investigated Mars terrain classification using a Plate South panorama image obtained from
the panoramic camera on the Spirit rover. A fuzzy rough feature selection was applied to
the color and gray statistics features to select essential informative features in representing
Mars terrain images. In addition, SVM, KNN, and a decision tree were compared for
classifying the terrain images, the results of which showed that the classification using an
SVM with the selected features achieved an accuracy of 87.7%.

In most previous studies on Mars terrain classification, numerous traditional image
features, which are often not specifically targeted for terrain classification issues when first
proposed, also have been extracted without explicit prior knowledge of what properties
represent the underlying scene that are reflected by the original image. This may cause the
accuracy of the terrain classification to be insufficient at a rate of about 88%. To improve
the accuracy of the terrain classification, novel image features specifically for the Mars
terrain classification are proposed in this paper by analyzing the characteristics of different
Mars terrains. Three classifiers, namely, KNN, SVM, and RF, are applied to obtain the
terrain classification results. Experimental results show that the accuracy of the terrain
classification adopting an RF classifier reaches 94.66% and that the recognition accuracy of
each terrain type is higher than 92%.

The remainder of this paper is organized as follows. Section 2 introduces the types
of Mars terrain images under investigation. In Section 3, the characteristics of different
Mars terrains are analyzed and new image features for terrain classification are proposed.
Section 4 provides a summary of the three types of learning classifier mechanism (namely,
KNN, SVM, and RF) used to conduct the image classification. Section 5 discusses the
experiment results of the Mars terrain classification. Finally, some concluding remarks are
given in Section 6.

2. Mars Terrain Types

The Mars images used in this study are components of MSLNet [25]. The data set
MSLNet consists of 6691 images that were collected by the Mars Science Laboratory (MSL,
Curiosity) rover that was manufactured by NASA in USA. It contains wheel images, short-
range terrain images, and long-range terrain images. The short-range terrain images refer
to the terrain images close to the Curiosity rover, and the long-range terrain images refer to
the terrain images far away from the Curiosity rover. We selected 100 short-range terrain
images from this dataset to study Mars terrain classification. These images are all obtained
under the natural lighting of Mars, without special lighting processing. The brightness of
the pictures is not uniform, and some images have shadows.

As shown in Figure 2, we identified the following three terrain types that need to be
distinguished to operate a rover safely: sandy terrain (ST), hard terrain (HT), and gravel
terrain (GT). ST is usually soft sand, HT is usually bedrock or slate that is difficult to deform,
and GT is usually hard gravel. The three terrain types involve a majority of the terrain that
the rovers encounter and need to be distinguished to operate a rover safely.
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Figure 2. Mars terrain samples: (a) sandy terrain, (b) hard terrain, and (c) gravel terrain.

ST can easily cause significant sinkage because it is soft and compressible. The contact
area between the wheel and terrain is large, and thus, the stress on the wheel is insufficient
to cause an increase in the wheel cracking (Curiosity rover wheels) under a constant load.
However, the Mars rovers may sink into the soil and become immobilized owing to a
significant sinkage.

HT is hard and can create tiny deformations when the rovers move over it. The wheel
can be regarded as having no sinkage. The HT can produce greater traction than a soft
terrain, resulting in more effective mobility. Although rovers can move quickly on HT, the
contact area between a wheel and terrain is extremely small, and therefore, the stress on
the wheel is large under a constant load. This may induce stress concentration cracking at
the chevrons of the grousers, resulting in crack growth.

GT is hard and uneven, and the rovers need to move slowly over it to decrease the
vibrations produced and avoid damage to their components. In addition, the contact
between the wheel and the sharp gravels can be treated as a point of contact. This can
produce significant stress on the wheel rim, resulting in cracks. Round rock does not apply
as high of a point load, but it can stress the grousers and cause cracks to propagate.

According to the above analysis, HT is the safest among the three types of terrains
for a rover. Thus, it is the preferred one for the rover. The rovers need to adjust their
control strategy and path according to the terrain types to improve their mobility and avoid
damage. Therefore, the ability to classify these three terrain types will be a benefit for the
rover motion.

3. Feature Extraction

As shown in Figure 2, The Mars terrain is usually red. Color features cannot be
used to distinguish different terrain types clearly. To improve the accuracy of the terrain
classification, we extract unique texture features to represent the underlying characteristics
of a given image by analyzing the visual differences in the images for the different terrain
types. These features consist of multiscale gray gradient-grade features (MSGGGFs),
multiscale edges strength-grade features (MSESGFs), multiscale frequency-domain mean
amplitude features (MSFDMAFs), multiscale spectrum symmetry features (MSSSFs), and
multiscale spectrum amplitude-moment features (MSSAMFs).

3.1. Multiscale Gray Gradient-Grade Features

It can be seen in Figure 3 that the changes in grayscale are the strongest for GT,
followed by HT and ST. The more intense the changes are in the gray value, the larger
the gray gradient. In this study, several thresholds were set to indicate the grayscale
gradient levels. The pixel ratio of each gradient level in an image is extracted as the gray
gradient-based features.
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Figure 3. Mars terrain gray images: (a) sandy terrain, (b) hard terrain, and (c) gravel terrain.

The gradient can represent a variation in the gray value of an image. The gradient
expression of the pixel (u, v) is{

gu(u, v) = f (u + 1, v)− f (u, v)
gv(u, v) = f (u, v + 1)− f (u, v)

(1)

g(u, v) =
√

gu2(u, v) + gv2(u, v) (2)

For any pixel point (u, v), a window with a scale of ni × ni centered on the pixel is
selected to calculate the gradient value of each point in the window, obtaining a gradient
image g. The number of pixels with gradient values greater than thgj is Ngj in gradient
image g. Here, thgj is the gradient threshold for indicating the grayscale gradient levels:

thgj = j× dg (3)

where j indicates the gradient level, and dg represents the gradient value spacing of adjacent
gradient levels.

Based on the gradient image, the pixel proportion pi
gj of the j-th gradient grade is

extracted as the image feature.
pi

gj = Ngj
/

ni
2 (4)

In this paper, j = 1, 2, . . . , 10, and dg = 5. Thus, the feature vector Pi
g = [pi

g1, pi
g2, . . . , pi

g10]
is constructed with the window scale of ni× ni. Three windows of different scales are selected,
and Pi

g is extracted for each window. The multiscale gray gradient-based feature vector is
Pg = [P1

g, P2
g, P3

g].

3.2. Multiscale Edges Strength-Grade Features

The edges of the image can be extracted based on the gradient, for example, using
the “Canny” algorithm. It is applied to extracting edges in the image in the present study.
Figure 4 shows the results of edge extraction for the sample images. It can be seen in
Figure 4 that the number of strong edges in the GT image is the largest, followed by the
number of strong edges in an HT image and the smallest number of strong edges in an
ST image.

Figure 4. Extraction results of strong edges: (a) ST, (b) HT, and (c) GT.

For any pixel point (u, v), a window with a scale of ni × ni centered on the pixel is
selected. The edges of the selected window are extracted using the “Canny” algorithm.
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The edges at different edge strengths are extracted by changing the gradient threshold
parameters of the “Canny” algorithm. The number of pixels of the edges extracted with the
gradient threshold thej is Nej:

thej = j× de (5)

pi
gj = Ngj

/
ni

2 (6)

where j indicates the edge strength level, and de represents the gradient value spacing of
the strength levels of the adjacent edge.

Based on the number of edges in the image, the pixel proportion pi
ej of the j-th edge

strength grade is extracted as an image feature.

pi
ej = Nej

/
ni

2 (7)

In this study, j = 1, 2, . . . , 9, and de = 0.1. Thus, the feature vector Pi
e = [pi

e1, pi
e2, . . . pi

e9]
is constructed for a window with a scale of ni × ni. Three windows of different scales are
selected, and the feature vector Pi

e is extracted for each window. Therefore, we obtain a
multiscale gray gradient-based feature vector, Pe = [P1

e , P2
e , P3

e ].

3.3. Frequency Spectrum-Based Features
3.3.1. Spectral Analysis for Images of Different Terrain Types

Figure 5 shows the Fourier-transform spectrum images of an ST image, an HT image,
and a GT image.

Figure 5. Spectrum images: (a) ST, (b) HT, and (c) GT.

Owing to a uniform distribution of particles in the sand, the absorption and reflection
of light in all directions of the terrain are approximately the same. The terrain image has
a few strong boundaries and no obvious texture direction. For a spatial domain image of
ST, the gray value distribution is concentrated, and the variation in the gray value and
the gray gradient are both small. Therefore, the spectrum image of ST has the following
characteristics: (1) a low brightness, (2) a nearly axisymmetric distribution along wu = 0 and
wv = 0, and (3) an energy distribution concentrated in the low-frequency part. The bright
spots in the spectrum image are concentrated in the low-frequency part. The low-frequency
part has a high level of brightness, and thus, its amplitude is large. The high-frequency
part has low brightness, and thus, its amplitude is small.

HT may have some pits or bulges on the surface owing to environmental factors, such
as wind and light. Pits or bulges can form strong boundaries in an HT image. The gray
value distribution of the spatial domain in a hard image is more concentrated than that
in a GT image but is more scattered than that in an ST image. The gray value changes
more gently than in a GT image but is more intense than that of an ST image. The gray
gradient is smaller than that of a GT image but larger than that of an ST image. Therefore,
the spectrum image of HT has the following characteristics: (1) more brightness than the
spectrum image of an ST image, but more darkness than the spectrum image of a GT image,
(2) no axisymmetry along wu = 0 or wv = 0, and (3) a slightly higher spectrum energy at
low frequency than at high frequency. The bright spots in the spectrum image are more
concentrated than those in the spectrum image of a GT image. The amplitudes of the
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high-frequency part are lower than those of the spectrum image of a GT image but higher
than those of the spectrum image of an ST image.

Gravel on GT can obstruct light, forming a shadow on the terrain. An uneven distribu-
tion of gravel creates a large difference in the absorption and reflection of light for different
directions of the terrain. The gray value distribution of the image is dispersed, the gray
level changes drastically, and the gray gradient is large. Therefore, the spectrum image of
ST has the following characteristics: (1) high brightness, (2) no axisymmetry along wu = 0
or wv = 0, and (3) a similar spectrum energy of the low-frequency and high-frequency parts.
The bright spots in the spectrum image are scattered. The low- and high-frequency parts
are both high in brightness and large in amplitude. The terrain will show obvious texture
features in a single direction.

Three types of frequency spectrum-based features are extracted to represent the differ-
ences in frequency spectrum images of the three types of terrains.

3.3.2. Multiscale Frequency-Domain Mean Amplitude Features

For any pixel point (u, v), a window with a scale of ni × ni centered on a pixel is
transformed into the frequency domain to obtain a frequency spectrum image. The mean
amplitude of the frequency spectrum image is

pi
A =

ni

∑
j=1

ni

∑
k=1

A(u, v)

/
ni

2 (8)

where A(u, v) is the amplitude of the point (u, v) in a frequency spectrum image.
Under windows of three different scales, a multiscale frequency-domain mean ampli-

tude vector, PA = [p1
A, p2

A, p3
A], of a terrain image is constructed.

3.3.3. Multiscale Spectrum Symmetry Features

The terrain spectrum is divided into four parts, as shown in Figure 5. The spectrum
symmetry along wu = 0 or wv = 0 in a ni× ni window is evaluated using the following features:

pi
Fx =

∣∣mi1
F −mi2

F
∣∣

pi
Fy =

∣∣mi1
F −mi4

F
∣∣

pi
σx =

∣∣σi1
F − σi2

F
∣∣

pi
Fy =

∣∣σi1
F − σi4

F
∣∣ (9)



mi1
F =

n
∑

x=0

n
∑

y=0
|F(u, v)|

/
n2

i

mi2
F =

0
∑

x=−n

n
∑

y=0
|F(u, v)|

/
n2

i

mi4
F =

n
∑

x=0

0
∑

y=−n
|F(u, v)|

/
n2

i

(10)



σi1
F =

√
n
∑

x=0

n
∑

y=0

(
|F(u, v)| −mi1

F
)2
/

n2
i

σi2
F =

√
0
∑

x=−n

n
∑

y=0

(
|F(u, v)| −mi2

F
)2
/

n2
i

σi4
F =

√
n
∑

x=0

0
∑

y=−n

(
|F(u, c)| −mi4

F
)2
/

n2
i

(11)

where mi
F and σi

F represent the mean value and standard deviation of the terrain spectrum
at the scale of ni × ni.
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For any pixel point (u, v), the spectrum symmetry features are extracted under the
windows of three different scales. Thus, a multiscale spectrum symmetry feature vector,
Ps = [p1

Fx, p2
Fx, p3

Fx, p1
Fy, p2

Fy, p3
Fy, p1

σx, p2
σx, p3

σx, p1
σy, p2

σy, p3
σy], is constructed.

3.3.4. Multiscale Spectrum Amplitude-Moment Features

The amplitude moment for a pixel in the spectrum is defined as the result of the pixel
amplitude multiplied by the distance between it and the center bright spot. The spectrum
amplitude-moment feature in an ni × ni window is expressed as follows:

pi
m =

ni

∑
j=1

ni

∑
k=1

A(u, v) · d(u, v)

/
ni

2 (12)

where d(u, v) is the distance between the pixel (u, v) and the center bright spot.
Three windows of different scales are selected. Thus, a multiscale spectrum amplitude-

moment feature vector, Pm = [p1
m, p2

m, p3
m], is extracted for each pixel in the terrain image.

4. Terrain Classification Methods

A feature vector, P = {Pg, Pe, PA, Ps, Pm} = {p1, p2, . . . , pl}, with l components is obtained
through feature extraction. Terrain classification is achieved by combining classifiers and
the proposed feature vector P.

4.1. K-Nearest Neighbor

The KNN algorithm was first proposed by Cover and Hart as a nonparametric classi-
fication algorithm [26] and has been widely used in various fields of pattern recognition
and data mining. The idea of the KNN algorithm is as follows: given a sample Pa to be
classified, K neighbors of a given training sample set most similar to Pa are first found.
The types of these neighbors are weighted using the similarity between Pa and each of
its neighbors, where the similarity is typically measured based on the Euclidean distance
metric (although any other distance metric may also work). The classification of the sample
Pa is then determined with the greatest number of votes among the K-nearest type labels.
The similarity between Pi and Pj can be calculated using the Euclidean distance, as shown
in the following equation:

d(Pi, Pj) =

√√√√ l

∑
x=1

(pix − pjx)
2 (13)

where l denotes the length of the feature vectors Pi and Pj. When classifying the sample
Pa ={pa1, pa2 . . . , pal}, first, calculate the distance d(Pa, Pi) between the sample Pa and each
sample of the training set, and then find the samples Pmin1, ..., PminK with the smallest
K d(Pa, Pi), where the corresponding category is c(Pmin1) . . . , c(PminK), c

(
Pminj

)
∈ c.

Ultimately, the type of Pa is calculated using the following equations:

cknn(Pa) = argmax
ci∈c

K

∑
j=1

δ
(
ci, c
(
Pminj

))
(14)

δ
(
ci, c
(
Pminj

))
=

{
1 ci = c

(
Pminj

)
0 ci = c

(
Pminj

) (15)

The advantage of the KNN classification algorithm is its simplicity and easy imple-
mentation, as well as its strong robustness and high accuracy. However, the number of
calculations during the classification process is large. The selection value of the parameter
K has a significant influence on the classification result. If K is too large, it may cause too
many samples of other types for a nonclassified sample among K samples, which results
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in an incorrect classification prediction. If K is too small, the number of neighbors of a
nonclassified sample is small. The classification is seriously affected by noise, reducing the
classification accuracy.

4.2. Support Vector Machine

SVM dichotomizes data based on statistical learning theory [26]. The idea is to con-
struct an optimal separating hyperplane in the feature space so that the plane can separate
the two types of data, and the interval between the two types is the largest, as shown in
Figure 6.

Figure 6. Schematic optimal separating hyperplane.

The training set is {Pi, ci}, Pi ∈ Rn, ci ∈ {±1}. The equation of the hyperplane H is
whPi

T + th = 0. The plane H1 is parallel to H and passes through the point closest to H in
the first type. The plane H2 is parallel to H and passes through the point closest to H in
the second type. To eliminate the influence of singularities on hyperplane generalization,
the slack variable ξi is introduced. The construction of the optimal hyperplane can be
transformed into the following convex quadratic programming problem:

min
(

1
2‖wh‖2 +

n
∑

i=1
Csξi

)
s.t.ci(whPi + th)− 1 ≥ 0 i = 1, 2, . . . , ns

(16)

where ns is the number of samples in the training set. Cs is the penalty factor. Using a
Lagrange multiplier, Equation (16) can be converted to the following dual problem:

WS(α) =
n
∑

i=1
αLi −

1
2

n
∑

i=1
αLiαLjcicj

(
PiPj

)
s.t.

n
∑

i=1
αLici = 0 0 ≤ αLi ≤ CsL, i = 1, 2, . . . , ns

(17)

where αLi is the Lagrange multiplier. The αLi is not equal to zero for all points in H1 and
H2. Therefore,

wh =
n

∑
i=1

αLiciPi (18)

th = cj −
n

∑
i=1

ciαLi
(
Pj·Pi

)
(19)

The trained SVM is

cSVM(Pa) = sgn

(
n

∑
i=1

ciαLi(Pa·Pi) + th

)
(20)
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For linearly indivisible data, the kernel function is usually used to transform the feature
space to make the data linearly separable in the new feature space. The corresponding
classifier is

cSVM(Pa) = sgn

(
n

∑
i=1

ciαLiKsvm(Pa·Pi) + th

)
(21)

where Ksvm(Pa·Pi) stands for kernel function. It contains a linear kernel function, polyno-
mial kernel function, radial basis kernel function, and sigmoid kernel function.

For the classification of sc types (sc > 2), the following three methods are usually adopted:

(1) For any type ci, SVM is constructed to realize the separating hyperplane of type ci and
other types. A total of sc classifiers need to be constructed.

(2) An SVM classifier is constructed for any two types. A total of sc (sc − 1)/2 SVM
classifiers are constructed. The sc (sc − 1)/2 results are obtained when classifying a
sample. The type of a sample is determined by voting.

(3) Modify the SVM objective function to satisfy the multivalue classification.

4.3. Random Forests

Random forests [26] are evolved by combining the bagging algorithm with the decision
tree algorithm. The bagging extracts w subsamples from the original database through a
sampling with playback and then trains m base learners with w subsamples to reduce the
variance in the model. However, not only random forests randomly extract subsamples
from the original dataset, they also randomly select t features instead of selecting the
optimal feature from all features to segment the nodes when training each base learner,
further reducing the number of nodes. The subset of t features is different for each node.
The variance in the model is lower. The basic learner used in random forests is the CART
decision tree.

The smaller the sample subset size w of the random forest selection is, the smaller the
variance in the model is, but the larger the deviation is. Therefore, in a practical application,
we usually adjust the parameters through cross validation to obtain an appropriate sample
subset size. The classification steps of random forests are as follows:

(1) Random samples: randomly select w samples from a sample set using bootstrap.
(2) Random features: t features are randomly selected from all features, and the best

partitioning features are selected as nodes to establish a CART decision tree.
(3) Repeat the above two steps m times; that is, build m CART decision trees.
(4) Then, m CART forms random forests. The classification result is decided through a

vote using m classification results of CART. The type crf(Pa) of an unclassified sample
Pa is

cr f (Pa) = argmax
ci∈c

m

∑
j=1

δ
(
ci, cj(Pa)

)
(22)

δ
(
ci, cj(Pa)

)
=

{
1 ci = cj(Pa)
0 ci = cj(Pa)

(23)

where cj(Pa) denotes the output of the j-th CART decision tree. The characteristics of
random forests are as follows: (1) the random forest model is prone to an overfitting
in sample sets with serious noise. (2) The more partitioned features are prone to
have a greater impact on the decision making of random forests, thus affecting the
fitting model.

5. Experiment Verification
5.1. Comparison of Terrain Classification Results with Different Features

The window scales for feature extraction are selected as 5 × 5, 10 × 10, and 30 × 30.
The test samples for the three terrain types are the same. The number of trees in the random
forest is five.
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The classification accuracy of different groups of features is compared in this section.
Half of the short-range images in MSLNet are treated as the training set to train terrain
classifiers, and other short-range images are used to test the classification accuracy. Figure 7
shows the terrain classification results of different groups of features. The image features
can be divided into five classes: MSGGGFs Pg, MSESGFs Pe, MSFDMAFs PA, MSSSFs
Ps, and MSSAMFs Pm. Those features are used to classify terrain. Then, they are com-
bined to conduct terrain classification. The combination features contain the frequency
spectrum-based features (FBFs) P f (which are the combination of MSFDMAFs, MSSSFs,
and MSSAMFs.), the combination of FBFs and MSGGGFs Pg f , the combination of FBFs and
MSESGFs Pe f , the combination of MSGGGFs and MSESGFs Pge, and the combination of all
features P. Table 1 shows the detail classification results using all features.

Figure 7. Terrain classification results of different groups of features: (a) classification results of KNN,
(b) classification results of SVM, and (c) classification results of RF.

Table 1. Terrain classification results using all features P.

Classifiers
Terrain Classification Accuracy

Mean Accuracy
HT ST GT

KNN 85.58% 92.65% 90.64% 89.63%
SVM 83.22% 91.56% 93.96% 89.58%
RF 92.27% 97.30% 94.40% 94.66%

It can be seen in Table 1 that when single class features are used for terrain classification,
the average classification accuracy of MSGGGFs is the highest, but lower than 80%. When
the combination features of some classes are used for classification, the highest average
classification accuracy is 85.48%, 9.18% lower than the average classification accuracy
when all features are used. When all the features are used for terrain classification, the
classification accuracy is the highest, and the average accuracy of terrain classification
reaches 94.66%. In addition, the classification accuracy of HT is significantly improved.
Therefore, every class feature plays an important role in terrain classification. Here, all
features are combined to construct the feature vector for Mars terrain classification.

When all features are used for terrain classification, KNN, SVM, and RF classify HT
at rates of 85.18%, 83.22%, and 92.27%, respectively; ST at rates of 92.65%, 91.56%, and
97.30%, respectively; and GT at rates of 90.64%, 93.96%, and 94.40%, respectively. Thus, the
classification accuracies of the KNN, SVM and RF are approximately 89.63%, 89.58%, and
94.66%, respectively. The RF classifier has the highest classification accuracy and, thus, is
the most beneficial for planetary rovers when adjusting their motion control strategy.
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5.2. Comparison of Terrain Classification with the Use of Novel Features and Traditional Features

This section mainly compares the terrain classification results of the proposed image
texture features and the traditional image texture features. The traditional image texture
features used involve gray co-occurrence matrix texture features, Gabor texture features,
spatial statistical texture features, LBP, and wavelet coefficients. Half of the short-range
images in MSLNet are treated as the training set to train terrain classifiers, and other
short-range images are used to test the classification accuracy. Table 2 shows the terrain
classification results using the proposed image texture features and the traditional image
texture features.

Table 2. Comparison of terrain classification using different features.

Classification Methods Features Classification Accuracy

KNN
Proposed image texture features 89.63%

Traditional image texture features 84.89%

SVM
Proposed image texture features 89.58%

Traditional image texture features 83.27%

RF
Proposed image texture features 94.66%

Traditional image texture features 85.44%

It can be seen in the results (Table 2) that for KNN, SVM, and RF classification methods,
the classification accuracy using proposed image texture features is higher than that using
traditional image texture features. The highest accuracy of the three methods is 85.44%
when using traditional image texture features. Based on the proposed image texture
features, the highest accuracy of terrain classification among the three methods is 94.66%.
Therefore, the texture features proposed in this paper are helpful for improving the terrain
classification accuracy.

5.3. Comparison of Terrain Classification Results with Different Classifiers

The classification method was tested using the short-range images in MSLNet. The
classification methods were compared by cross validation of the resampling method in the
statistical method. The data were divided into five parts, each containing three terrain types.
Four parts were used as the training set, and the reserved one as the test set. The whole
process was repeated five times in different ways. The classification results are shown
in Table 3. The average value of the classification results five times cross validation was
used to form the confusion matrix of the classification results to evaluate the performance
of the classification methods. The detailed classification results of the KNN, SVM, and
RF classifiers are shown in Tables 4–6. Two statistic indicators including precision PPV
and specificity TNR were calculated and are shown in Table 7. Figure 8 shows receiver
operating characteristic (ROC) curves for these three classifiers. Table 8 shows the area
under the curve (AUC) values of all ROC curves.

Table 3. Cross-validation results of terrain classification for three classifiers.

Classifiers KNN SVM RF

1st test 90.02% 88.85% 95.18%
2nd test 90.27% 88.94% 95.29%
3rd test 90.28% 88.96% 95.27%
4th test 90.22% 88.84% 95.24%
5th test 90.18% 88.78% 95.20%
Average 90.19% 88.87% 95.24%

Standard error 0.0009 0.0007 0.0004
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Table 4. Confusion matrix for Mars terrain classification results of the KNN classifier.

Actual Terrain Types

HT ST GT

Classified terrain types
HT 86.46% 6.65% 8.58%
ST 8.29% 93.01% 0.31%
GT 5.25% 0.34% 91.11%

Table 5. Confusion matrix for Mars terrain classification results of the SVM classifier.

Actual Terrain Types

HT ST GT

Classified terrain types
HT 84.78% 7.26% 10.36%
ST 8.96% 92.46% 0.26%
GT 6.26% 0.28% 89.38%

Table 6. Confusion matrix for Mars terrain classification results of the RF classifier.

Actual Terrain Types

HT ST GT

Classified terrain types
HT 93.42% 2.56% 4.94%
ST 4.92% 97.38% 0.15%
GT 1.66% 0.06% 94.91%

Table 7. The secondary statistical indicators of the confusion matrix.

Classifiers Terrain Types Precision PPV Specificity TNR

KNN
HT 85.02% 92.38%
ST 91.54% 95.70%
GT 94.22% 97.20%

SVM
HT 82.79% 91.19%
ST 90.93% 95.39%
GT 93.18% 96.73%

RF
HT 92.57% 96.25%
ST 95.05% 97.46%
GT 98.22% 99.14%

Figure 8. ROC curves: (a) ROC curve for the KNN classifier, (b) ROC curve for the SVM classifier,
and (c) ROC curve for the RF classifier.
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Table 8. Mars terrain classification AUC for the three classifiers.

Terrain Types

HT ST GT

Classifiers
KNN 0.9590 0.9892 0.9915
SVM 0.9516 0.9855 0.9836
RF 0.9859 0.9966 0.9977

The AUC values of the ROC curve for the KNN classification of GT, ST, and HT are
0.9915, 0.9892, and 0.9590, respectively. When identifying GT, ST, and HT using the SVM
classifier, the AUC values are 0.9836, 0.9855, and, 0.9516, respectively. The AUC values
for terrain classification achieved using the RF classifier are 0.9977, 0.9966, and 0.9859 for
GT, ST, and HT, respectively. The ROC curves and AUC values show that KNN classifies
GT with the best performance, although the true-positive rate (TPR) of ST is the highest,
reaching 93.01%, as shown in Table 4. The precision of ST is 91.54%, which is less than
the precision of GT at 94.22%. Similarly, the AUC values of the ROC curves show that
both SVM and KNN also classify GT with the best level of performance. The classification
accuracy of ST is higher than that of HT for all three classifiers.

If numerous STs and GTs (dangerous terrain) are misclassified as HT (safe terrain),
the rovers will mistake a large amount of dangerous terrain as safe and, thus, choose such
dangerous terrain to move over. This is not conducive to preventing the rover from sinking
or incurring wheel damage. The misclassification rates of KNN, SVM, and RF are 15.23%,
17.62%, and 7.50%, respectively. Thus, RF misclassifies dangerous terrain as safe terrain at
the lowest rate. This is more favorable for the safe driving of the rovers. ST is misclassified
as HT by the KNN, SVM, and RF classifiers at rates of 6.65%, 7.26%, and 2.56%, respectively.
Therefore, the RF classifier is the most beneficial for reducing the possibility of an ST being
misclassified as an HT. This is most helpful for rovers sticking to avoid sinking owing to
substantial wheel sinkage. However, the possibility of KNN or RF misclassifying ST as
HT is greater, which is not conducive to avoiding a sinking accident. The proportions of
GT misclassified as HT by KNN, SVM, and RF are 8.58%, 10.36%, and 4.94%, respectively.
Therefore, RF is most beneficial for planetary rovers to avoid wheel damage caused by
gravel. The rate of misclassification of HT as ST or GT by the RF classifier is 7.58%, which
is lower than that for the KNN and SVM classifiers. Through the above analysis, the RF
classifier achieves the best performance for Mars terrain classification. Thus, it is selected
as a terrain classification classifier.

5.4. Classified Images

The ultimate task of this study is to classify Mars images and detect the terrain in such
images. As an illustration, the images classified using the RF are shown in Figures 9 and 10.

Most of the pixels in Figure 9d are classified as ST, and only a few pixels are classified
as HT. Figure 9e shows that few pixels in the HT image are identified as ST, and other pixels
are partitioned as HT. Almost all pixels in Figure 9f are recognized as GT; a small number
of pixels are plotted as HT. The terrain classification is therefore quite efficient and accurate.

Figure 10a contains HT, GT, and ST. Figure 10b is the mixture of ST and GT. The
components of Figure 10c are ST and GT. Figure 10d–f is the classified results. It can be
seen that the method proposed in this study can better distinguish the terrain type of
a region in an image with mixed-terrain types. In each terrain-type region, only a few
pixels are classified incorrectly. The terrain classification has high accuracy. However, the
pixels near the regional junction of different terrain types are continuously misclassified.
Its features are coupled with the adjacent terrain types so that the differences between
the extracted features and the features of two adjacent terrain types are large, resulting in
misclassification. The width of the misclassification area is related to the feature scale.
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Figure 9. Classification of Mars single-type terrain images: (a) the original image of ST, (b) the
original image of HT, (c) the original image of GT, (d) the classified image of ST, (e) the classified
image of HT, and (f) the classified image of GT.

Figure 10. Classification of Mars mixture-type terrain images: (a) the original image 1, (b) the original
image 2, (c) the original image 3, (d) the classified image 1, (e) the classified image 2, and (f) the
classified image 3.

5.5. Comparison with Other Classification Methods

The terrain image dataset Terrain8 [27] was used to evaluate the effectiveness of our
method for visual terrain classification. Those images were all earth terrain images. Terrain8
consists of eight types of terrain: asphalt, dirt, grass, floor, gravel, rock, sand, and wood
chips, as shown in Figure 11.

Based on the above experiment results, the RF classifier was selected as terrain classifier.
The proposed method was compared with deep filter banks (DFBs) [27], hierarchical coding
vectors (HCVs) [28], Fisher vector (FV) [29], LBP. Table 9 shows the classification results for
five classification methods. Table 10 shows the classification accuracy of each type terrain
for the proposed method in this paper.

It can been seen from Table 9 that the proposed method classified eight terrains with
the highest accuracy, reaching 92.0%. In addition, the recognition rate of each type of terrain
is not less than 85.9% by using the proposed classification method. Thus, the proposed
method is also suitable for earth terrain classification.
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Figure 11. Sample images in Terrain8: (a) asphalt, (b) dirt, (c) floor, (d) grass, (e) gravel, (f) roc,
(g) sand, and (h) wood chips.

Table 9. Comparison of classification results of five classification methods.

Methods Classification Accuracy

Proposed mothed 92.0%
DFB 89.8%
HCV 85.6%
FV 81.0%

LBP 78.3%

Table 10. Classification accuracy of each type of terrain for the proposed method.

Terrain Type Classification Accuracy

Asphalt 93.6%
Dirt 94.1%

Grass 85.9%
Floor 93.9%

Gravel 94.0%
Rock 90.9%
Sand 91.6%

Wood chips 92.0%

5.6. Computational Requirements

The computational times of the terrain classification were obtained by using an image
of 256 × 256 pixels. All algorithms in this work were implemented in the VS2015 version
on an Intel Core i3-M380 2.53 GHz computer. Feature extraction requires 937.6 s per image.
The training times of SVM and RF are 95.2 and 8.5 s, respectively. The times required for
terrain classification by KNN, SVM, and RF are 892.9, 2.5, and 4.7 s respectively.

In the future, the method will be tested on board. The power consumption and
running speed tests will be tested by using the experimental prototype of the Mars rover.
The algorithm will be optimized and improved in consideration of the running speed,
power consumption, and classification accuracy, so that it can be applied to the actual Mars
rover, help the Mars rover to identify the terrain type, and select a safer driving path.
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6. Conclusions and Discussions

In this study, a highly accurate method for in situ image-based Martian terrain classifi-
cation is proposed. It is accomplished using newly proposed image features in conjunction
with the RF classifier. The following conclusions were drawn:

(1) By analyzing the characteristics of the Martian terrain, novel image features, including
multiscale gray gradient-based features, multiscale edges number-based features, mul-
tiscale frequency-domain mean amplitude features, multiscale spectrum symmetry
features, and multiscale spectrum amplitude-moment features, specifically targeted
for terrain classification issues are proposed. These features differ from traditional
image features. Traditional image features can be used for image classification in
numerous fields, and thus have universal applicability. However, they reducing
the accuracy of some classification types, such as Martian terrain classification. The
image features proposed in this paper are only for terrain classification, and they are
beneficial for improving the accuracy of terrain classification, but they may not have
universal applicability for image classification in other fields.

(2) The KNN, SVM, and RF classifiers were compared regarding terrain classification
using the proposed image features. The experiment results show that RF classifies
the Martian terrain with the highest level of accuracy, reaching 94.66%, and has a low
proportion at 7.73% for dangerous terrain (ST and GT) classified as safe terrain (HT).
It can therefore effectively help planetary rovers identify the terrain type and choose a
safe terrain to traverse.

There are some issues need to be discussed.

(1) The Mars terrain types are divided into HT, ST, and GT, among which HT has better
traversability, ST is easy to cause vehicle sinking, and GT is easy to cause hardware
damage. The terrain classification method classifies the Mars terrain into HT, ST, and
GT to help the rover identify the terrain type. Thus, the rover can select the terrain
with better traversability to achieve safe driving. The terrain softness needs to be
judged according to the wheel–terrain interaction force and the wheel sinkage. After
obtaining the relevant data, a prediction system of terrain mechanical characteristics
can be built by combining visual means. This is a future research direction. The
system can be used to predict the terrain mechanical characteristics, including the
softness and friction characteristics of the terrain, so as to facilitate the rover to judge
the traversability of the terrain according to the terrain mechanical characteristics and
select the best moving path.

(2) This paper is aimed at the study of the classification of the Mars terrain. The features
proposed are based on the characteristics of the Mars terrain. The terrain classification
method can be applied to any Mars rover. The dataset MSLNet collected by the Cu-
riosity rover is used to test the terrain classification algorithm in this paper. The Mars
terrain types are divided into HT, ST, and GT. Another image dataset of Mars terrain
is similar to MSLNet. If this method is to be applied to another image classification, it
needs to be analyzed according to specific problems. In this paper, the Earth surface
image dataset Terrain8 is used to test the proposed classification method; the results
show that this method is suitable for Earth terrain classification. However, it may not
be suitable for the classification of animal images, since the feature extraction in this
paper is aimed at terrain texture, which is different from animal texture. In the future,
the following problems need to be studied.

(3) The Mars terrain classification method under complex lighting conditions will be
studied and tested. The study on image enhancement will be carried out for different
lighting conditions, including strong lighting, weak lighting, shadows formed by
light occlusion, uneven lighting brightness, and so on, to increase the robustness and
applicability of the algorithm.

(4) It can be seen from the experimental results that misclassifications often occur in the
regional junction of different terrain types. To solve this problem, image segmentation
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technology can be introduced in the future to segment the different types of terrain
regions and then conduct terrain classification to obtain the terrain type in every region
to improve the classification accuracy of heterogeneous terrain junction regions.

(5) To realize the high-fidelity simulation and motion control of planetary rovers consider-
ing terramechanics, a terrain–environment perception system of a planetary rover can
be built by combining vision-based terrain classification with the identification of the
terrain properties. The system can help a planetary rover construct a knowledge base
of the visual terrain features and terramechanics properties, and estimate the value
domain of the terrain parameters using the terrain images where the rover will move.
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