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Abstract: The higher-order interactions in complex systems are gaining attention. Extending the
classic bounded confidence model where an agent’s opinion update is the average opinion of its peers,
this paper proposes a higher-order version of the bounded confidence model. Each agent organizes a
group opinion discussion among its peers. Then, the discussion’s result influences all participants’
opinions. Since an agent is also the peer of its peers, the agent actually participates in multiple group
discussions. We assume the agent’s opinion update is the average over multiple group discussions.
The opinion dynamics rules can be arbitrary in each discussion. In this work, we experiment with
two discussion rules: centralized and decentralized. We show that the centralized rule is equivalent
to the classic bounded confidence model. The decentralized rule, however, can promote opinion
consensus. In need of modeling specific real-life scenarios, the higher-order bounded confidence
is more convenient to combine with other higher-order interactions, from the contagion process to
evolutionary dynamics.

Keywords: opinion dynamics; bounded confidence; higher-order interaction; HK model

1. Introduction

Opinion dynamics, being one of the essential branches of sociophysics, studies the sta-
tistical physics of collective opinion evolution driven by microscopic rules of individuals [1].
Opinion dynamics models can be broadly classified into two categories concerning the opin-
ion space [2]: the discrete opinion space [3–11], and the continuous opinion space [12–16].
The models based on discrete opinion space usually assume two opposing opinions in the
system (e.g., +1, −1, or A, B, etc.). The classic discrete opinion dynamics models include the
voter model [3–5], the Sznajd model [6–8], and the Galam model [9–11]. Another class of
models is based on continuous opinion space, where an individual’s opinion is measured
by a real number between 0 and 1, inclusive. One of the most classic models with continu-
ous opinion space is the DeGrootian model [2,12–14]. Then, it was not until researchers
introduced the bounded confidence into the continuous opinion dynamics that the well-
known Deffuant–Weisbuch (DW) model [15] and Hegselmann–Krause (HK) model [16]
were born. The HK model can be considered a mean-field approximation to the DW model.
Although both the DW and HK models are based on bounded confidence, we only focus
on the HK model in this work.

The HK model assumes that an agent (i.e., an individual) only accepts opinions that
do not differ from its own by more than a critical value. This critical value is labeled as the
bounded confidence. This work denotes the bounded confidence by r (r ≥ 0) and supposes
there are N agents in a well-mixed population. The opinion of agent i at time step t is
denoted by xi(t). In the classic HK model, an agent’s opinion update is the average of all
acceptable opinions:

xi(t + 1) =
1

|Ni(t)| ∑
j∈Ni(t)

xj(t), (1)

where Ni(t) = {j
∣∣|xi(t)− xj(t)| ≤ r, j = 1, 2, . . . , N} and |Ni(t)| is the number of elements

in set Ni(t). Note that self-loop j = i is allowed. The opinion updates of all agents are
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synchronous. Letting the system evolve according to Equation (1), we can obtain a stability
(i.e., stationary) opinion profile. The opinion profile switches from consensus to polarization
and fragmentation as the bounded confidence r decreases, intuitively elucidating the so-
called “information cocoon” [17] where individuals are bound to a cluster of similar
opinions and do not interact with other clusters.

A variety of mathematical tools have been used to investigate the properties of the
bounded confidence model, by which the convergence [18,19], the pattern formation [20],
the entropy [21], and the control theory [22] in the bounded confidence model have been
studied. Other works focus on innovations in the model itself. Some of them introduced
various new factors [23–33], such as the opinion leader [23], the memory [24], the ex-
pression and private opinion [25], the fuzzy inference [26], the stubbornness [27–29], and
the noise [23,30–33], to the classic bounded confidence model. Others consider different
possibilities of evolutionary mechanisms of the system [27,34–39], such as the heteroge-
neous bounded confidence [27,34,35], the heterogeneous pressure [36,37], and the circular
opinion space [38,39]. One of the most important topics in the bounded confidence model
is how to promote the opinion consensus. In this regard, some works have investigated
the conditions of consensus formation [40–43]. Other works introduced new factors or
mechanisms, such as the external activation [44], and the combination of pairwise and
group interactions [45], with the aim of promoting opinion consensus.

As we mentioned previously, in the classic bounded confidence model, an agent’s
opinion update is directly the average over its peers. In other words, in the framework of
the classic bounded confidence model, it is not straightforward to consider higher-order
interactions. This is an important entry point, since higher-order interactions beyond
pairwise ones can model real-life scenarios in a more intuitive way and have been revealed
for non-trivial phenomena that do not exist in pairwise interactions [46–48]. With these
attractive advantages, higher-order interactions have been introduced into a wide range
of complex systems, from contagion process [49–51] to evolutionary games [52–54], by
means of hypergraphs or simplicial complexes. In particular, opinion dynamics based on
higher-order interactions have sprouted [55–58]. Neuhäuser et al. [55] studied opinion
consensus dynamics by multibody interactions and found that the resulting dynamics can
cause shifts away from the average system state. Sahasrabuddhe et al. [56] further explored
consensus dynamics on hypergraphs based on sociological theories and investigated rele-
vant dynamics on real-world structures. Hickok et al. [57] studied the Deffuant–Weisbuch
bounded confidence model on hypergraphs and found that agents can jump from one
opinion cluster to another in a single time step, which is impossible in bounded confidence
models with pairwise interactions. In addition, Horstmeyer and Kuehn [58] investigated a
coevolutionary voter model on simplicial complexes.

The work mentioned above on opinion dynamics was carried out on hypergraphs
or simplicial complexes in a strict way but did not relate the concept of higher-order
interactions to the bounded confidence directly. The theoretical concept of “higher-order
bounded confidence” has corresponding realistic scenarios; for example, when opinion
discussions can happen among a group of people instead of two-by-two, a person may
want to join in a discussion because her opinion is close to the discussion’s organizer.
As a result, she is involved in the group opinion discussion even if the opinions of some
participants are not close to her.

In this way, considering both theoretical and practical importance, this work tries
to provide the introduction of higher-order bounded confidence at a theoretical model
level. Similar algorithms can be found in many previous multidisciplinary fields, but let
us employ a simple one to analog, the multiplayer evolutionary games (e.g., the public
goods game [59]). In multiplayer games, each focal agent organizes a game among its
neighbors and itself. Meanwhile, its neighbors also perform the same action. As a result,
each agent actually participates in multiple games organized by its neighbors and itself
(see Figure 1, left). In this regard, the common algorithm is to average the results obtained
by these multiple games. In this work, we analog this algorithm to the bounded confidence
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model. While the multiplayer games are based on constant interactions, the peers that
an agent interacts with in the bounded confidence model are determined by the opinion
distance, which varies at each time step. Here, the homogeneity of bounded confidence
ensures that the “peer interaction” is always undirected (i.e., interactions are always mutual,
see Figure 1, right). Therefore, we can perform the following analogous migration of the
higher-order interaction algorithm. First, each agent organizes a group opinion discussion
among its peers. Second, since the peers perform the same action, each agent participates
in multiple opinion discussions organized by its peers. Finally, the opinion update of an
agent is the average over the results obtained from these multiple discussions.

Figure 1. Schematic of the analogy, from games with higher-order interactions (left), to opinion
dynamics with higher-order bounded confidence (right). (left) five agents on a regular square lattice.
The purple agent organizes a multiplayer game among the five agents (its nearest neighbors and
itself), while also participates in the games organized by the other four agents. (right) five agents on
a continuous one-dimensional opinion space. The purple agent organizes a group opinion discussion
among the blue, purple, and red agents within its bounded confidence, while also participates in the
discussions organized by the blue and red agents.

The structure of this paper is described below. While the rules followed by a single
group opinion discussion could be arbitrary, Section 2 gives two basic rules: centralized
and decentralized. The former is equivalent to the classic HK model, while the latter
leads to “higher-order” interactions. In Section 3, we explore the role of decentralized
discussion in promoting the opinion consensus, compared to the classic HK model. In
Section 4, we review the higher-order bounded confidence framework and discuss potential
future development.

2. Model

Consider a well-mixed population of N agents. At time step t, each agent i = 1, 2, . . . , N
holds an opinion xi(t). Suppose the opinion is represented by a continuous real num-
ber between 0 and 1: 0 ≤ xi(t) ≤ 1. For each agent, we denote a peer set Ni(t) =
{j
∣∣|xi(t)− xj(t)| ≤ r, j = 1, 2, . . . , N}, where r represents the bounded confidence. We

assume an agent i only interacts with its peer agents in Ni(t), whose opinions are not more
than r away from agent i. We allow self-loop: i ∈ Ni(t).

The interactions are second-order. At time step t, we go through the N agents. Each fo-
cal agent i organizes a group opinion discussion among its peers j ∈ Ni(t). The opinions of
all participants xj(t) can influence the discussion’s outcome. We denote the discussion’s
outcome by oi(t). The N agents organize their discussions synchronously.

Note that an agent is also the peer of its peers. In this way, an agent i should participate
in |Ni(t)| discussions at each time step, where |Ni(t)| denotes the number of elements in
Ni(t). We assume each discussion works in the opinion updates of all participants, and the
opinion update of each agent is the average over all discussions it participates in. That is,
for an agent i, the opinion update is
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xi(t + 1) =
1

|Ni(t)| ∑
j∈Ni(t)

oj(t). (2)

The N agents update their opinions synchronously. Unlike Equation (1), where xj(t) is
the outcome of pairwise interaction, in Equation (2), oj(t) is the outcome of group interactions.

Next, we further give oj(t) concrete forms. For example, Equation (2) degenerates
to the classic HK model, if we give oj(t) = xj(t). In this case, the discussion organized
by agent j is “centralized” because the organizer j directly adopts its own opinion as the
discussion’s outcome. This is reminiscent of “stubbornness” [27–29] with which agents
do not change opinions. However, the centralized rule here simply means the organizer’s
opinion is the outcome of a group discussion.

Other than the centralized rule, let us propose another rule—the “decentralized”.
Literally, if the discussion is decentralized, the discussion’s outcome is the average opinion
over all participants. As a possible result, the outcome oj(t) centered on agent j whose
opinion is initially at a distance |xj(t) − xi(t)| < r from agent i could fall outside the
interaction range (i.e., |oj(t)− xi(t)| > r). However, i still interacts with j, which does not
happen in the classic HK model. To sum up,

oj(t) =


xj(t), if agent j is centralized,

1
|Nj(t)| ∑

k∈Nj(t)
xk(t), if agent j is decentralized. (3)

We classify agent types by centralized and decentralized, who only organize central-
ized and decentralized discussions, respectively. We denote the fraction of decentralized
agents in the population by α (0 ≤ α ≤ 1), while 1− α is the fraction of centralized agents.
The type of an agent does not change with time.

The decentralized rule may allow agents to interact at an opinion distance larger
than r, which cannot happen in the classic HK model. For instance, we take the purple
agent on the right side of Figure 1, whose opinion is denoted by x2(t) according to the
schematic. If we assume that the blue agent is “centralized,” and the purple and the red
agents are “decentralized,” then x2(t + 1) = [o1(t) + o2(t) + o3(t)]/3, where o1(t) = x1(t),
o2(t) = [x1(t) + x2(t) + x3(t)]/3, o3(t) = [x2(t) + x3(t) + x4(t)]/3. Thus, in this example,
we see that the purple agent interacts with the orange agent at an opinion distance larger
than r.

It might also be necessary to mention that a single outcome’s concrete form oj(t) could
be arbitrary, not limited to the “centralized” or “decentralized” adopted in this paper, as
long as it is a function of the opinions of j’s peers k, oj(t) = f (xk(t)

∣∣k ∈ Nj(t)).

3. Numerical Simulation
3.1. Experiment Design

In the simulation, we fix N = 1000. At t = 0, we set each agent’s initial opinion xi(0)
uniformly at random between 0 and 1, inclusive. Among the N agents, the decentralized
agents totaling αN are randomly designated, and the remaining (1− α)N are centralized.
Then, we simulate the system according to the rules established in Section 2.

Figure 2 shows each agent’s opinion xi(t) as a function of time t at α = 1 (all agents are
decentralized). Within finite time steps, the opinions in the system converge to clusters and
no longer change with t; that is, the system achieves stability. When the system achieves
stability, the opinion profile is fragmentation, polarization, and consensus at r = 0.05,
r = 0.15, and r = 0.25, respectively, similar to the classic HK model [16]. The final opinion
profile can rely on different initial opinion configurations, but most work assumes a uniform
distribution at random to keep it simple [21–27].
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Figure 2. Each agent’s opinion xi(t), i = 1, 2, . . . , N, as a function of time t at α = 1 and different r.
(a) r = 0.05. (b) r = 0.15. (c) r = 0.25. There are N curves in each panel, where one curve represents
the opinion evolution of one agent.

Below, we define that the system achieves stability at time t if |xi(t)− xi(t− 1)| <
0.0001, ∀i = 1, 2, . . . , N. We set the following statistical quantities to measure the system’s
property at stability:

• PC, the frequency of consensus in multiple runs (0 ≤ PC ≤ 1). In a run, if there
is only one opinion cluster left in the system (e.g., Figure 2c), we say the system
achieves consensus;

• r1, the lower bounded confidence above which the system may consistently achieve
consensus (i.e., PC < 1, ∀r < r1, and PC = 1, ∃r ≥ r1). Similarly, r0, the upper bounded
confidence below which the system cannot achieve consensus (i.e., PC = 0, ∀r < r0,
and PC > 0, ∃r ≥ r0);

• NC, the number of opinion clusters. For example, in Figure 2a–c, we have NC = 7,
NC = 2 and NC = 1, respectively. NC = 1 means the system achieves consensus;

• Cmax, the relative size of the largest opinion cluster. We find the opinion cluster with
the highest number of agents and divide it by N. Obviously, this quantity yields
1/N ≤ Cmax ≤ 1;

• ρ[xi(T∗)], the distribution of stability opinions. We divide the range between 0 and 1
into 100 equal parts, and denote ∆x = 1/100 = 0.01. If n∆x ≤ xi(T∗) < (n + 1)∆x,
we add 1 to the distribution function at the nth part (n = 1, 2, . . . , 100). After going
through i = 1, 2, . . . , N, we divide the result in each part by N, and acquire the
normalized opinion distribution;

• T∗, the convergence time. If |xi(t) − xi(t − 1)| < 0.0001, i = 1, 2, . . . , N, then, we
denote T∗ = t.

All the statistical quantities are the average over 105 independent runs. Now, we study
the system’s property at stability by these statistical quantities.

3.2. Results

In Figure 3, we study the frequency of consensus PC. Figure 3a shows PC as a function
of the bounded confidence r at different α. When α = 0, the results are the same as the
classic HK model. It is seen that as, r increases, PC gradually increases from 0 to 1 in the
interval 0.15 . r . 0.25. The curves at different α show the same pattern. We can find a
bounded confidence rα=1 ≈ rα=0 − 0.03 in the decentralized model (α = 1) to reproduce
the same PC value as the classic model (α = 0). In other words, the larger the α, the larger
the PC value of the corresponding curve at each point. To validate this, Figure 3b shows PC
as a function of α at different r selected from the interval 0.15 . r . 0.25. It can be seen that
PC always increases with an increase in α, which means the more decentralized agents in
the system, the greater the frequency of complete consensus is.
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Figure 3. (a) The frequency of consensus PC as a function of the bounded confidence r at different α;
(b) the frequency of consensus PC as a function of the fraction of decentralized agents α at different r.

A further approach to Figure 3 is studying the critical point where the opinion consen-
sus emerges. Figure 4 shows the lower bounded confidence r1 (above which the system
may consistently achieve consensus) and the upper bounded confidence r0 (below which
the system cannot achieve consensus) as a function of α. Since the data points are scattered,
a linear fit is performed to reveal the trend of the data. It is revealed that either r0 or r1
decreases with an increase in α. This illustrates that the larger the α, on the one hand, the
earlier the PC starts to increase from 0 to 1, and, on the other hand, the earlier the PC ends
the change from 0 to 1, finally reaching 1. Decentralized agents can advance the critical
point of opinion consensus emergence.

Figure 4. The lower bounded confidence r1, above which the system may consistently achieve
consensus (i.e., PC < 1, ∀r < r1, and PC = 1, ∃r ≥ r1), as a function of α. The upper bounded
confidence r0, below which the system cannot achieve consensus (i.e., PC = 0, ∀r < r0, and PC > 0,
∃r ≥ r0), as a function of α. The “data” derive from simulation, while the “fitting” derives from fitting
a linear function to “data” using the least squares method.

More generally, we can study the final number of opinion clusters NC at the stationary
state. Figure 5a demonstrates NC as a function of r at different α. Similar to the results
of PC, the function NC at different α share the same pattern. In particular, we can find an
rα=1 ≈ rα=0 − 0.03 to reproduce the classic model when 0.15 . r . 0.25. As r increases,
NC decreases, and the trend always presents a “steplike” behavior at different α. The break-
points are distributed in 0.15 . r . 0.2, where “sharp steps” appear. The position of
breakpoints is consistent with r0 (see the panel inside Figure 5a), foretelling that opinion
consensus will emerge as r continues to increase. In addition, we notice that the larger the
α, the smaller the NC value of the corresponding curve at each point. Figure 5b further
shows NC as a function of α at different r, which reveals that NC always decreases with an
increase in α; that is, more decentralized agents lead to fewer opinion clusters in the system.
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Figure 5. (a) The number of opinion clusters NC as a function of the bounded confidence r at
different α; (b) the number of opinion clusters NC as a function of the fraction of decentralized agents
α at different r.

Let us dig into more details. We show the relative size of the largest opinion cluster
Cmax as a function of r in Figure 6a. With an increase in r, the largest opinion cluster’s
relative size Cmax increases, indicating greater consensus in the system because more agents
gather in the largest opinion cluster. At a larger α, the Cmax value of the corresponding
curve is greater; that is, decentralized agents facilitate the agents in the system to gather in
the largest opinion cluster, forming opinion consensus. The “steplike” behavior can also be
observed in the function Cmax, and the sharp steps appear in 0.15 . r . 0.2. The position
of breakpoints is also consistent with those in Figure 5, where opinion consensus starts to
emerge, implying that there is indeed a correlation between the relative size of the largest
opinion cluster and the degree of opinion consensus. It is also worth noting that, in the
“step-like” stage, α has non-monotonous effects on Cmax, as seen in Figure 6b, which is
different from most situations observed in Figure 6a. Such non-trivial marginal phenomena
may be worth exploring in the future.

Figure 6. (a) The relative size of the largest opinion cluster Cmax as a function of the bounded
confidence r at different α; (b) the relative size of the largest opinion cluster Cmax as a function of the
fraction of decentralized agents α at different r.

Furthermore, Figure 7 presents the distribution of stability opinions ρ[xi(T∗)] at r = 0.2,
which provides more details than a relative size of the largest opinion cluster. In Figure 7a,
α = 0. From Figures 3 and 5, we have PC ≈ 0.11 and NC ≈ 1.89. The distribution of stability
opinions is mainly polarized, as shown on the two sides in Figure 7a. The consensus brings
about the less central distribution reached cases. In Figure 7b, α = 1. We have PC ≈ 0.88
and NC ≈ 1.12 from Figures 3 and 5, respectively; opinion consensus takes the big lead.
It can be seen from Figure 7b that the distribution on both sides is already sparse, and the
opinions are mainly concentrated in the central area, xi(T∗) ∼ 0.5. Comparing Figure 7a,b,
we say that more decentralized agents guide the stability opinions toward the central area
in opinion space, promoting the opinion consensus.
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Figure 7. The distribution of stability opinions ρ[xi(T∗)] at r = 0.2 and different α. (a) α = 0; (b) α = 1.
The results are the average of 105 independent runs.

Figure 8 shows the distribution of stability opinions ρ[xi(T∗)] as a function of specific
parameters. The transverse profile in Figure 8 corresponding to a given vertical coordinate
can be drawn in the form of Figure 7. Figure 8a shows ρ[xi(T∗)] as a function of r at
α = 1. As r increases, the system tends to consensus, and the stability opinions gradu-
ally concentrate towards the center area xi(T∗) ∼ 0.5 rather than an even distribution
0 < xi(T∗) < 1. At a qualitative level, though all agents are decentralized, the pattern in
Figure 8a is the same as the classic HK model [16]. Figure 8b shows ρ[xi(T∗)] as a function
of α at r = 0.2, in which we can observe the process of decentralized agents promoting
consensus. Consistent with Figure 7a,b, with an increase in α, the opinion distribution on
the two sides gradually whitens, and the one in the central area fades to blue. The stability
opinion profile transforms from polarization to consensus.

Figure 8. (a) The distribution of stability opinions ρ[xi(T∗)] as a function of the bounded confidence r
at α = 1; (b) the distribution of stability opinions ρ[xi(T∗)] as a function of the fraction of decentralized
agents α at r = 0.2.

Finally, we study the convergence time T∗ as a binary function of r and α in Figure 9.
The convergence time can also be used as a side measure of the role of decentralized agents
on opinion consensus. It can be seen that the relatively time-consuming areas are two
banded areas up and down. Looking at it vertically with r, the upper narrower band area
corresponds to the region where PC increases from 0 to 1 in Figure 3. Looking horizontally
at its variation with α, the narrower banded area gradually shifts downward as α increases,
and its edges correspond qualitatively to r0 and r1 in Figure 4. This likewise indicates
that the convergence time becomes larger in the process of consensus emergence (i.e.,
0 < PC < 1). It is concluded from Figure 9 that, first, decentralized agents accelerate
the convergence of opinions. Second, the variation pattern of T∗ with r does not change
qualitatively with α.
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Figure 9. The convergence time T∗ as a binary function of the bounded confidence r and the fraction
of decentralized agents α.

3.3. Discussion

A further observation from Figure 9, however, indicates that the higher-order HK
model at a specific bounded confidence rα=1 cannot be reached by simply rescaling rα=0 in
the classic HK model—if we can find an rα=0 to reproduce the system behavior at an rα=1,
then we should be able to observe an equal T∗ at α = 1 to the one at α = 0, which does
not hold according to Figure 9. While the effective bounded confidence rα=1 ≈ rα=0 − 0.03
can be found for PC and NC, the same operation is not practical for T∗. In particular, from
opinion fragmentation to polarization, we cannot even find a rescaled T∗ between the two
values of α.

The “decentralized” rule in this work can be seen as a linear superposition of the
“centralized” one, as demonstrated in Section 2. It is common in complex systems that the
simplest higher-order interaction can be seen as a linear transformation of the pairwise
version. For example, the public goods game, which is the simplest multiplayer game
that we mentioned in Section 1, can be understood as a superposition of the prisoner’s
dilemma game [60] because of its linearity. The higher-order interactions, however, are not
necessarily simple superpositions of pairwise interactions. An example is the N-person
Hawk–Dove game, which reveals new phenomena compared with the 2-person version
because of nonlinearity [61]. By analogy again, the higher-order bounded confidence
model should potentially reveal non-trivial phenomena compared with the classic one once
more complex rules are introduced. Even so, it should be noted that the simplest linear
higher-order version is usually the most popular, especially when we study additional
mechanisms other than the higher-order effect itself.

4. Conclusions

As an extension to the classic bounded confidence model where agents are influenced
by peers through pairwise interactions, this paper introduced a possible framework of
higher-order bounded confidence. The opinions of agents are influenced by group opinion
discussions instead of by peers directly. The microscopic rule in each group discussion
can be arbitrary, and we experimented with two underlying rules: centralized and de-
centralized. The former is equivalent to the classic HK model. From a series of statistic
quantities, we showed that the decentralized rule, which represents a higher-order inter-
action compared with the centralized one, can promote opinion consensus and accelerate
opinion convergence. Not surprisingly, the decentralized rule allows the interaction with
opinions outside an agent’s original bounded confidence, which is somewhat equivalent to
enlarging the bounded confidence despite such a transformation not always being effective
or necessary.

However, the perspective of the model is more important than simply numerical
results. In this work, the focal object for interactions is not agents, but rather groups.



Entropy 2022, 24, 1300 10 of 12

The group-based perspective to the classic bounded confidence model may bring the
convenience of introducing other group-based dynamics into the bounded confidence
model, such as the majority rule and other interdisciplinary dynamics. Since the function
oj(t) = f (xk(t)

∣∣k ∈ Nj(t)) determining the outcome of a single discussion is open-ended,
the possible microscopic rules to be introduced are extensive.

To sum up, the “higher-order” interaction in this paper has two levels of inspiration.
The first level is extending the first-order peers in opinion updating to the second-order, (i.e.,
the “decentralized” rule). The second level is to reconstruct the classic bounded-confidence
model from the group-based perspective.
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