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Abstract: Einstein-Podolsky-Rosen steering is a kind of powerful nonlocal quantum resource in
quantum information processing such as quantum cryptography and quantum communication.
Many criteria have been proposed in the past few years to detect steerability, both analytically and
numerically, for bipartite quantum systems. We propose effective criteria for tripartite steerability
and genuine tripartite steerability of three-qubit quantum states by establishing connections between
the tripartite steerability (resp. genuine tripartite steerability) and the tripartite entanglement (resp.
genuine tripartite entanglement) of certain corresponding quantum states. From these connections,
tripartite steerability and genuine tripartite steerability can be detected without using any steering
inequalities. The “complex cost” of determining tripartite steering and genuine tripartite steering
can be reduced by detecting the entanglement of the newly constructed states in the experiment.
Detailed examples are given to illustrate the power of our criteria in detecting the (genuine) tripartite
steerability of tripartite states.

Keywords: tripartite steerability; genuine tripartite steerability; tripartite entanglement; genuine
tripartite entanglement

1. Introduction

Originally introduced by Schrödinger [1] the Einstein-Podolsky-Rosen (EPR) steering
for bipartite systems was considered as a ’spooky action at distance’ [2] in the sense that
one party can steer another distant party’s state instantly. The concept of EPR steering was
proposed by Wiseman, Jones, and Doherty in 2007 [3]. Since then the EPR steering has been
systematically studied. Many different methods were proposed to detect and quantify the
steerability of bipartite quantum states [4–15], together with many applications in quantum
information processing tasks including one-sided device-independent quantum key dis-
tribution, random generation and one-sided device-independent quantum self-testing of
pure quantum states, subchannel discrimination, quantum communication et al. [16–25].

The EPR steering lies between quantum nonlocality and quantum entanglement. A
bipartite state is quantum nonlocal if it does not admit a local hidden variable model [26],
while it is EPR steerable if it does not admit a hidden state model [3].

Bipartite steering is defined as follows. Alice and Bob share a quantum state ρAB . Alice
performs black-box measurements A with outcomes a, denoted by Ma

A (Ma
A ≥ 0 ∀A, a and

∑
a

Ma
A = I ∀A, with I denoting the identity operator). The set of unnormalized conditional

states {δa
A} on Bob’s side is called an assemblage. Each element in this assemblage is

given by
δa

A = Tr[(Ma
A ⊗ I) · ρAB ]. (1)

Alice can not steer Bob if δa
A admits a local hidden state model (LHS), i.e., δa

A admits
the decomposition

δa
A = ∑

λ

p(λ)p(a|A, λ)ρ
β
λ, (2)
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where λ denotes classical random variable which occurs with probability p(λ) satisfying
∑
λ

p(λ) = 1, p(a|A, λ) is the probability given by the black-box measurement on Alice’s

side, ρ
β
λ are some local hidden states. Bob performs measurement B with outcomes b,

denoted by Mb
B, on the assemblage. The joint probability is p(a, b|A, B) = Tr[Mb

Bδa
A]. ρAB

is said to be a steerable state from Alice to Bob if p(a, b|A, B) does not admit a local hidden
variable-local hidden state (LHV-LHS) model of the form,

p(a, b|A, B) = ∑
λ

p(λ)p(a|A, λ)pQ(b|B, ρ
β
λ). (3)

Different from quantum entanglement and quantum nonlocality, EPR steering is
asymmetric in general, which means that Alice can steer Bob but not vice versa for some
bipartite quantum states ρAB [27]. The bipartite quantum nonlocality and EPR steering
can be detected by detecting the EPR steering and quantum entanglement of some newly
constructed quantum states, respectively [28–30].

The multipartite steering is an important resource in quantum communication net-
works [31–33] and in one-sided or two-sided device-independent entanglement detec-
tions [34,35]. Some ambiguities exist in the definition of multipartite steering. With respect
to the typical spooky action at a distance [31–33], and the semi-device independent en-
tanglement verification scheme [34,35], two different approaches have been introduced to
define the multipartite steering [31,34,35]. One approach is to define genuine multipartite
steering in terms of the steering under bi-partitions. A tripartite state ρABC is defined to be
genuine tripartite steerable if the state does not admit the mixtures of bi-partitions where in
each partition (e.g., A|BC) the two-party state (e.g., BC) is allowed to be steerable. Linear
inequalities have been derived to detect this kind of genuine multipartite steering [31] and
used in experimental demonstrations [32,33].

Another approach to defining tripartite steering and genuine tripartite steering is given
as follows [34,35]. Let p(a, b, c|A, B, C) be the joint probability that Alice, Bob and Charlie
perform measurements A, B and C with outcomes a, b and c, given by measurements
operators Ma

A, Mb
B and Mc

C, respectively. A quantum state ρABC is said to be tripartite
steerable from Alice (untrusted party) to Bob and Charlie (trusted parties) if p(a, b, c|A, B, C)
does not admit a fully LHV-LHS model such that

p(a, b, c|A, B, C) = ∑
λ

p(λ)p(a|A, λ)pQ(b|B, τ
β
λ )pQ(c|C, τ

γ
λ ), (4)

where pQ(b|B, τ
β
λ ) = Tr[Mb

Bτ
β
λ ] and pQ(c|C, τ

γ
λ ) = Tr[Mc

Cτ
γ
λ ] are the distributions from the

local hidden states τ
β
λ and τ

γ
λ , see Equation (13) in [35] and Equation (2) in [36].

The genuine tripartite steering has been defined in [34–36]. Alice measures her system
so as to nonlocally influence the state of the other two parties. The ensemble of the
unnormalized states is given by

{δBC
Ma

A
= Tr[(Ma

A ⊗ I⊗ I).ρABC ]}. (5)

If the ensemble prepared on Bob’s and Charlie’s sides cannot be reproduced by a
biseparable state as Equation (6),

ρABC =∑
λ

p1(λ)ρ
α
λ ⊗ ρ

βγ
λ + ∑

λ

p2(λ)ρ
αβ
λ ⊗ ρ

γ
λ + ∑

λ

p3(λ)ρ
β
λ ⊗ ρ

αγ
λ , (6)
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with ∑
λ

p1(λ) + p2(λ) + p3(λ) = 1, then ρABC is not genuine tripartite steerable from Alice

to Bob and Charlie. Therefore, if ρABC is genuine tripartite steerable from Alice to Bob and
Charlie, then each member of the ensemble (5) can not be expressed as [34,36],

δBC
Ma

A
=∑

λ

p1(λ)p1(a|A, λ)ρ
βγ
λ

+ ∑
λ

p2(λ)δ
β
Ma

A ,λ ⊗ ρ
γ
λ

+ ∑
λ

p3(λ)ρ
β
λ ⊗ δ

γ
Ma

A ,λ

(7)

with δ
β
Ma

A ,λ = TrA[(Ma
A ⊗ I)ραβ

λ ] and δ
γ
Ma

A ,λ = TrA[(Ma
A ⊗ I)ραγ

λ ]. The first term on the right-
hand side of (7) stands for that Alice cannot steer Bob and Charlie. Bob and Charlie share
entanglement and a local hidden entangled state ρ

βγ
λ . The other two terms imply that there

is no entanglement between Bob and Charlie, and Alice can steer one of the two systems
but not both: the second (third) term stands for that Alice can steer Bob (Charlie) but not
Charlie (Bob).

A state is genuine tripartite steerable from Alice to Bob and Charlie if the joint probabil-
ity p(a, b, c|A, B, C) = Tr[(Mb

B⊗Mc
C)δ

BC
Ma

A
] does not admit a hybrid LHV-LHS model [35,36],

p(a, b, c|A, B, C) = ∑
λ

p1(λ)p(a|A, λ)pQ(b, c|B, C, ρ
βγ
λ )

+ ∑
λ

p2(λ)pQ(a, b|A, B)pQ(c|C, ρ
γ
λ)

+ ∑
λ

p3(λ)pQ(a, c|A, C)pQ(b|B, ρ
β
λ),

(8)

where p(a|A, λ) is the distribution on Alice’s side from black-box measurements per-
formed on a quantum state, pQ(c|C, ρ

γ
λ) and pQ(b|B, ρ

β
λ) are the distributions from measure-

ments on quantum states ρ
γ
λ and ρ

β
λ. pQ(b, c|B, C, ρ

βγ
λ ) can be reproduced by quantum state

ρ
βγ
λ shared by Bob and Charlie. pQ(a, b|A, B) = Tr[(Ma

A ⊗Mb
B)ρ

αβ
λ ] and pQ(a, c|A, C) =

Tr[(Ma
A ⊗Mc

C)ρ
αγ
λ ] are distributions from a quantum state with untrusted A and trusted

B and C. When Ma
A = I, pQ(b|B) and pQ(c|C) are probabilities from the local hidden

states TrA[ρ
αβ
λ ] and TrA[ρ

αγ
λ ], respectively, since B and C are the trusted parties. We always

use pQ(x, y|X, Y) (x, y = a, b or c and X, Y = A, B or C) to represent the distribution
from measurements on two parties with one party trusted and the other two untrusted in
this paper.

A quantum state ρABC is said to be tripartite steerable from (untrusted) Alice and Bob
to (trusted) Charlie if the joint probability p(a, b, c|A, B, C) does not admit a fully LHV-LHS
model such that

p(a, b, c|A, B, C) = ∑
λ

p(λ)p(a|A, λ)p(b|B, λ)pQ(c|C, τ
γ
λ ), (9)

where p(a|A, λ) and p(b|B, λ) are the probabilities from the black-box measurements,
pQ(c|C, τ

γ
λ ) is the distribution from local hidden state τ

γ
λ , see also the definition given

in [35,36].
The genuine tripartite steering from Alice and Bob to Charlie has also been defined

in [34–36]. Alice and Bob measure their systems so as to nonlocally influence the state of
Charlie’s. The ensemble prepared on Charlie’s side cannot be reproduced by a biseparable
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state as Equation (6). Each member in the ensemble of unnormalized states can not be
given by

δC
Ma

A ,Mb
B
=Tr[(Ma

A ⊗Mb
B ⊗ I).ρABC ]

=∑
λ

p1(λ)p1(a, b|A, B, λ)ργ
λ

+ ∑
λ

p2(λ)p(a|A, λ)δγ

Mb
B ,λ

+ ∑
λ

p3(λ)p(b|B, λ)δγ
Ma

A ,λ,

(10)

with δ
γ

Mb
B ,λ

= TrB [(Mb
B ⊗ I)ρβγ

λ ] and δ
γ

Mb
A ,λ

= TrA[(Ma
A ⊗ I)ραγ

λ ]. The first term on the right-

hand side of (10) stands for that Alice and Bob cannot jointly steer Charlie, and the second
(third) term stands for that only Bob (Alice) can steer the state of Charlie. A state is genuine
tripartite steerable from Alice and Bob to Charlie if the joint probability p(a, b, c|A, B, C)
does not admit a hybrid LHV-LHS model such that

p(a, b, c|A, B, C) = ∑
λ

p1(λ)p(a, b|A, B, λ)pQ(c|C, ρ
γ
λ)

+ ∑
λ

p2(λ)p(a|A, λ)pQ(b, c|B, C)

+ ∑
λ

p3(λ)p(b|B, λ)pQ(a, c|A, C),

(11)

where ∑
λ

p1(λ) + ∑
λ

p2(λ) + ∑
λ

p3(λ) = 1. p(a|A, λ) and p(b|B, λ) are the distributions on

Alice’s and Bob’s sides, respectively, arising from black-box measurements performed
on a quantum state. p(a, b|A, B, λ) is the distribution produced from black-box mea-
surements performed on a quantum state. pQ(c|C, ρ

γ
λ) is the distribution from the state

ρ
γ
λ. pQ(b, c|B, C) = Tr[(Mb

B ⊗Mc
C)ρ

βγ
λ ] and pQ(a, c|A, C) = Tr[(Ma

A ⊗Mc
C)ρ

αγ
λ ] are prob-

abilities from a 2-qubit quantum state with untrusted A and B and trusted C. When
Ma

A = Mb
B = I, pQ(c|C) are probabilities from the local hidden states TrB [ρ

βγ
λ ] and TrA[ρ

αγ
λ ],

respectively, since C is the trusted party.
Entropic steering inequalities and semi-definite-program have been adopted to inves-

tigate the detection of multipartite steering [34,36,37]. In the following, we construct new
quantum states with respect to given three-qubit states and detect the tripartite steering and
genuine tripartite steering analytically in terms of the tripartite entanglement and the gen-
uine tripartite entanglement of the newly constructed quantum states. The entanglement
of the newly constructed states can be detected by using the entanglement witness without
full tomography of the states. By detecting the entanglement of the newly constructed
states, the tripartite steering and genuine tripartite steering can be detected without using
any steering inequalities. Since the “complexity cost” (the number of possible patterns
of joint detection outcomes that can occur, see [38]) for the least complex demonstration
of entanglement is less than the “complexity cost” for the least complex demonstration
of EPR steering [29,38], our scheme reduces the “complex cost” in experimental steering
demonstration.

2. Main Results

A quantum state is fully separable if the joint probability p(a, b, c|A, B, C) satisfies
the condition,

p(a, b, c|A, B, C) = ∑
λ

pλ pQ(a|A, τα
λ )pQ(b|B, τ

β
λ )pQ(c|C, τ

γ
λ ). (12)

Fully separable states are neither tripartite steerable states from Alice to Bob and
Charlie nor from Alice and Bob to Charlie. From (4) and (9) a state which is not tripartitely
steerable from Alice to Bob and Charlie is not tripartitely steerable from Alice and Bob to
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Charlie, i.e., tripartite steering from Alice and Bob to Charlie is stronger than that from
Alice to Bob and Charlie.

A quantum state is bi-separable if the joint probability p(a, b, c|A, B, C) satisfies the
condition,

p(a, b, c|A, B, C) = ∑
λ

p1(λ)pQ(a, b|A, B, ρ
αβ
λ )pQ(c|C, ρ

γ
λ)

+ ∑
λ

p2(λ)pQ(a|A, ρa
λ)pQ(b, c|B, C, ρ

βγ
λ )

+ ∑
λ

p3(λ)p(b|B, ρb
λ)pQ(a, c|A, C, ρ

αγ
λ ),

(13)

where ∑
λ

p1(λ) + ∑
λ

p2(λ) + ∑
λ

p3(λ) = 1. A bi-separable quantum state must not be a

genuine tripartite steerable state from Alice to Bob and Charlie or from Alice and Bob to
Charlie. From (8) and (11) a state which is not genuine tripartite steerable from Alice to
Bob and Charlie is not genuine tripartite steerable from Alice and Bob to Charlie. As a
result, given in [34], the noisy GHZ state demonstrates the genuine tripartite steering from
Alice to Bob and Charlie in a larger region compared to that from Alice and Bob to Charlie.
For general tripartite quantum states, the genuine tripartite steering from Alice and Bob to
Charlie is also stronger than that from Alice to Bob and Charlie.

Theorem 1. Let ρABC be a three-qubit quantum state and

τ1
ABC = µ ρABC + (1− µ)

I2

2
⊗ ρBC (14)

with ρBC = TrAρABC and I2 the 2× 2 identity matrix. We have

(i) If τ1
ABC is genuine tripartite entangled, then ρABC is genuine tripartite steerable from Alice to

Bob and Charlie for 0 ≤ µ ≤ 1√
3
;

(ii) If τ1
ABC is tripartite entangled, then ρABC is tripartite steerable from Alice to Bob and Charlie

for 0 ≤ µ ≤ 1√
3

.

The statements in Theorem 1 are equivalent to the following:

(i’) If ρABC is not genuine tripartite steerable from Alice to Bob and Charlie, then τ1
ABC is

bi-separable for 0 ≤ µ ≤ 1√
3
;

(ii’) If ρABC is not tripartite steerable from Alice to Bob and Charlie, then τ1
ABC is fully

separable for 0 ≤ µ ≤ 1√
3
.

Proof of Theorem 1. We prove the theorem by proving its converse negative proposition:
if ρABC is not a genuine tripartite steerable state from Alice to Bob and Charlie, then τ1

ABC is
a bi-separable state; if ρABC is not a tripartite steerable state from Alice to Bob and Charlie,
then τ1

ABC is a fully-separable state.

Firstly we give the (unnormalized) conditional quantum state δ
βγ
BC on Alice’s side

after Bob and Charlie perform measurements Mb
B and Mc

C on τ1
ABC . Then the Bloch sphere

representation of the conditional state can be expressed according to the joint probabilities.
Lastly from the condition that ρABC is not genuine steering or steering from Alice to Bob
and Charlie, we prove that δ

βγ
BC is the convex combination of some qubit quantum states if

µ satisfies certain conditions.
Step 1. From (14) we have the (unnormalized) conditional state on Alice’s side when

Bob and Charlie perform measurements Mb
B and Mc

C on τ1
ABC ,

δ
βγ
BC := TrBC[(I2 ⊗Mb

B ⊗Mc
C).τ

1
ABC ] = µTrBC[(I2 ⊗Mb

B ⊗Mc
C).ρABC ]

+ (1− µ)p(b, c|B, C, ρABC)
I2

2
=

1
2
(yI2 + ∑

i
riσi),
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where σi (i = 1, 2, 3) are Pauli matrices σx, σy and σz, respectively.
Step 2. y and ri (i = 1, 2, 3) are given by the joint probabilities,

y = Tr[δβγ
BC ] = µTr[TrBC[(I2 ⊗Mb

B ⊗Mc
C).ρABC ]] + (1− µ)p(b, c|B, C, ρABC)

= p(b, c|B, C, ρABC),

ri = Tr[δβγ
BC .σi] = Tr[δβγ

BC .(σ+
i − σ−i )] = µTr[TrBC [(I2 ⊗Mb

B ⊗Mc
C).ρABC ].(σ

+
i − σ−i )]

= µ(p(+, b, c, |σi, B, C, ρABC)− p(−, b, c, |σi, B, C, ρABC)),

with σ+
i and σ−i the eigenvectors of σi with respect to the eigenvalues 1 and −1 of σi

(i = 1, 2, 3), respectively.
Step 3. (I). If ρABC is not a genuine tripartite steerable state from Alice to Bob and

Charlie, the joint probabilities admit a hybrid LHV-LHS model as follows,

p(a, b, c|A, B, C) = ∑
λ

p1(λ)p1(a|A, λ)pQ(b, c|B, C, ρ
βγ
λ )

+ p2(λ)pQ(a, b|A, B)pQ(c|C, ρ
γ
λ)

+ p3(λ)pQ(a, c|A, C)pQ(b|B, ρ
β
λ),

p(b, c|B, C, ρABC) = ∑
λ

p1(λ)pQ(b, c|B, C, ρ
βγ
λ )

+ ∑
λ

p2(λ)pQ(c|C, ρ
γ
λ)pQ(b|B)

+ ∑
λ

p3(λ)pQ(b|B, ρ
β
λ)pQ(c|C),

where pQ(b|B) and pQ(c|C) are probabilities from qubit states ρ
β′

λ = TrA[ρ
αβ
λ ] and ρ

γ′

λ =
TrA[ρ

αγ
λ ] on Bob’s and Charlie’s sides, respectively.

p(±, b, c|σi, B, C) = ∑
λ

p1(λ)p1(±|σi, λ)pQ(b, c|B, C, ρ
βγ
λ )

+ p2(λ)pQ(±, b|σi, B)pQ(c|C, ρ
γ
λ)

+ p3(λ)pQ(±, c|σi, C)pQ(b|B, ρ
β
λ).

Step 4. We now prove that the following conditional state δ
βγ
BC is the convex combina-

tion of qubit quantum states when µ satisfies certain conditions,

δ
βγ
BC =∑

λ

p1(λ)pQ(b, c|B, C, ρ
βγ
λ )ρ1

λ + ∑
λ

p2(λ)pQ(c|C, ρ
γ
λ)pQ(b|B)ρ2

λ

+ ∑
λ

p3(λ)pQ(b|B, ρ
β
λ)pQ(c|C)ρ3

λ,

where
ρ1

λ =
1
2
(I2 + µ ∑

i
(p1(+|σi, λ)− p1(−|σi, λ))σi),

ρ2
λ =

1
2
(I2 + µ ∑

i

pQ(+, b|σi, B)− pQ(−, b|σi, B)
pQ(b|B)

σi),

ρ3
λ =

1
2
(I2 + µ ∑

i

pQ(+, c|σi, C)− pQ(−, c|σi, C)
pQ(c|C)

σi).
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Since |p1(+|σi, λ)− p1(−|σi, λ)| ≤ 1, | pQ(+,b|σi ,B)−pQ(−,b|σi ,B)
pQ(b|B) | ≤ 1 and

| pQ(+,c|σi ,C)−pQ(−,c|σi ,C)
pQ(c|C) | ≤ 1, when 0 ≤ µ ≤ 1√

3
ρ1

λ, ρ2
λ and ρ3

λ are semi-definite positive

matrices with trace one. They are quantum states when 0 ≤ µ ≤ 1√
3
. Therefore,

p(a, b, c|A, B, C, τ1
ABC) = Tr[Ma

Aδ
βγ
BC ] = ∑

λ

p1(λ)pQ(b, c|B, C, ρ
βγ
λ )pQ(a|A, ρ1

λ)

+ ∑
λ

p2(λ)pQ(c|C, ρ
γ
λ)pQ(b|B)pQ(a|A, ρ2

λ)

+ ∑
λ

p3(λ)pQ(b|B, ρ
β
λ)pQ(c|C)pQ(a|A, ρ3

λ)

= ∑
λ

p1(λ)pQ(b, c|B, C, ρ
βγ
λ )pQ(a|A, ρ1

λ)

+ ∑
λ

p2(λ)pQ(c|C, ρ
γ
λ)pQ(a, b|, A, B, ρ

αβ′

λ )

+ ∑
λ

p3(λ)pQ(b|B, ρ
β
λ)pQ(a, c|, A, C, ρ

αγ′

λ ),

with pQ(b|B) = Tr[Mb
B.ρβ′

λ ] and pQ(c|C) = Tr[Mc
C.ργ′

λ ], and ρ
αβ′

λ = ρ2
λ ⊗ ρ

β′

λ and ρ
αγ′

λ =

ρ3
λ ⊗ ρ

γ′

λ . From (13) τ1
ABC is a bi-separable state. Namely, if τ1

ABC is genuine tripartite
entangled, then ρABC is genuine tripartite steerable from Alice to Bob and Charlie for
0 ≤ µ ≤ 1√

3
.

Step 3’. (II). If ρABC is not tripartite steerable from Alice to Bob and Charlie, the joint
probabilites admit LHV-LHS model,

p(a, b, c|A, B, C) = ∑
λ

p(λ)p(a|A, λ)pQ(b|B, τ
β
λ )pQ(c|C, τ

γ
λ ),

p(b, c|B, C, ρABC) = ∑
λ

p(λ)pQ(b|B, τb
λ)pQ(c|C, τ

γ
λ )

and
p(±, b, c|σi, B, C) = ∑

λ

p(λ)p(±|σi, λ)pQ(b|B, τ
β
λ )pQ(c|C, τ

γ
λ ). (15)

Step 4’. Therefore, δ
βγ
BC is given by the convex combination of some qubit quantum

states when µ satisfies certain condition,

δ
βγ
BC = ∑

λ

p(λ)pQ(b|B, τ
β
λ )pQ(c|C, τ

γ
λ )τ

α
λ ,

where τα
λ = 1

2 (I2 + µ ∑
i
(p1(+|σi, λ)− p1(−|σi, λ))σi). Since |p1(+|σi, λ)− p1(−|σi, λ| ≤ 1

for i = 1, 2, 3, when 0 ≤ µ ≤ 1√
3
, τα

λ is a semi-definite positive matrix when 0 ≤ µ ≤ 1√
3
.

Therefore, τα
λ is a quantum state when 0 ≤ µ ≤ 1√

3
. Since

p(a, b, c|A, B, C, τ1
ABC) = Tr[Ma

Aδ
βγ
BC ] = ∑

λ

p(λ)pQ(a|A, τα
λ )pQ(b|B, τ

β
λ )pQ(c|C, τ

γ
λ ),

from (12), τ1
ABC is fully separable. Hence, if τ1

ABC is tripartite entangled, ρABC must be
tripartite steerable from Alice to Bob and Charlie for 0 ≤ µ ≤ 1√

3
.
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Theorem 2. Let ρABC be a three-qubit state and

τ2
ABC = µρABC + (1− µ)

I4

4
⊗ ρC , (16)

where ρC = TrABρABC and I4 is the 4× 4 identity matrix. We have
a) If τ2

ABC is genuine tripartite entangled, then ρABC is genuine tripartite steerable from Alice and
Bob to Charlie for 0 ≤ µ ≤ 1

9 ;
b) If τ2

ABC is tripartite entangled, then ρABC is tripartite steerable from Alice to Bob and Charlie for
0 ≤ µ ≤ 1

3 .

The proof of Theorem 2 is given in Appendix A. The statements in Theorem 2 are also
equivalent to the following:

(a’) If ρABC is not genuine tripartite steerable from Alice and Bob to Charlie, then τ2
ABC is

bi-separable for 0 ≤ µ ≤ 1
9 ;

(b’) If ρABC is not tripartite steerable from Alice to Bob and Charlie, then τ2
ABC is fully

separable for 0 ≤ µ ≤ 1
3 ).

Next, we illustrate our theorems with detailed examples.

Example 1. Consider ρABC = |GHZ〉〈GHZ|, where |GHZ〉 = a|000〉+
√

1− a2|111〉. The
τ1
ABC defined in Theorem 1 is a 8× 8 matrix with entries τij, i, j = 1, 2, . . . , 8. The state τ1

ABC is
genuine entangled if |τ18| >

√
τ22τ77 +

√
τ33τ66 +

√
τ44τ55 [39], and τ1

ABC is entangled if one of the
following three inequalities is satisfied: |τ18| >

√
τ22τ77, |τ18| >

√
τ33τ66 or |τ18| >

√
τ44τ55 [40].

Therefore, from Theorem 1 we have that when 0 < a < 1 this state ρABC is tripartite steerable
and also genuine tripartite steerable from Alice to Bob and Charlie. Similarly, according to the
entanglement of τ2

ABC , from Theorem 2 we obtain that ρABC is tripartitely steerable from Alice and
Bob to Charlie when 0 < a < 1. While in [36], genuine tripartite steering from Alice to Bob and
Charlie is detected only when 0.5 < a < 0.85.

Example 2. Consider ρABC = 1−p
8 I8 + p|GHZ〉〈GHZ| with |GHZ〉 = 1√

2
(|000〉 + |111〉).

Similar to Example 1, by using the entanglement criteria given in [39,40] and Theorem 1, we have
that τ1

ABC is genuine tripartite entangled when p > 0.672, and thus ρABC is genuine tripartite
steerable from Alice to Bob and Charlie. When p > 0.406 τ1

ABC is an entangled state, and ρABC
is tripartite steerable from Alice to Bob and Charlie. Furthermore, from the entanglement of τ2

ABC
and Theorem 2, we have that ρABC is tripartitely steerable from Alice and Bob to Charlie when
p > 0.6. While in [36] ρABC is proved to be tripartite steerable from Alice to Bob and Charlie when
p > 0.74 and genuine tripartite steerable from Alice to Bob and Charlie when p > 0.95. In [35]
ρABC is shown to be tripartite steerable from Alice to Bob and Charlie when p > 0.35 and genuine
steerable when p > 0.71. ρABC is tripartite steerable from Alice and Bob to Charlie when p > 0.5
and genuine steerable when p > 0.71. In [37] ρABC is shown to be tripartite steering from Alice
to Bob and Charlie when p > 0.8631 for two measurement settings, and p > 0.7642 for three
measurement settings. ρABC is tripartite steering from Alice and Bob to Charlie when p > 0.6751
for two measurement settings, and p > 0.5514 for three measurement settings. Hence, in the case of
detecting genuine tripartite steering from Alice to Bob and Charlie, our proposed method is stronger
compared with the criteria given in [35–37], and in the case of tripartite steering from Alice to Bob
and Charlie, our proposed method is stronger with respect to the criteria in [36,37]. The results are
listed in Table 1.
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Table 1. Critical values to white noise p for example 2 by our theorems and the criteria in [35–37],
here, S represents tripartite steering and GMS represents genuine tripartite steering.

Steering A to B & C (S) A to B & C (GMS) A & B to C (S) A & B to C (GMS)
our result 0.406 0.672 0.6

[35] 0.35 0.71 0.5 0.71
[36] 0.74 0.95
[37] 0.7642 0.5514

Next, instead of the criteria given in [39,40] we first present improved separability
criteria. Consider a three-qubit state |ψ〉. Let σij be the entries of the matrix σ = |ψ〉〈ψ|. If
the state σ = |ψ〉〈ψ| is bi-separable, we have |σ25| ≤ 1

2 (σ11 + σ66), |σ35| ≤ 1
2 (σ11 + σ77) and

|σ23| ≤ 1
2 (σ22 + σ33) under the bipartition A|BC; |σ23| ≤ 1

2 (σ11 + σ44), |σ35| ≤ 1
2 (σ11 + σ77)

and |σ25| ≤ 1
2 (σ22 + σ55) under the bi-partition B|AC; |σ23| ≤ 1

2 (σ11 + σ44), |σ25| ≤ 1
2 (σ11 +

σ66) and |σ35| ≤ 1
2 (σ33 + σ55) under the bi-partition C|AB. Hence for any pure bi-separable

quantum state σ, we have |σ23|+ |σ25|+ |σ35| ≤ 1
2 (2σ11 + σ44 + σ66 + σ77) +

1
2 (σ22 + σ33 +

σ55). The above inequalities are also satisfied for bi-separable mixed states by the convex
roof construction. Therefore, we have

Proposition 1. Let τABC be any three-qubit state and τij the entries of the 8× 8 matrix τABC .
Then τABC is genuine tripartite entangled if

|τ23|+ |τ25|+ |τ35|

>
1
2
(2τ11 + τ44 + τ66 + τ77) +

1
2
(τ22 + τ33 + τ55).

(17)

Example 3. Let us consider now ρABC =
1−p

8 I8 + p|W〉〈W| with |W〉 = 1√
3
(|001〉+ |010〉+

|100〉). Using the inequality (17), we have that the state τ1
ABC defined in Theorem 1 is genuine

tripartite entangled when p > 0.816, whereas from the result |τ23|+ |τ25|+ |τ35| >
√

τ11τ44 +√
τ11τ66 +

√
τ11τ77 +

1
2 (τ22 + τ33 + τ55) given in [39,40], τ1

ABC is genuine tripartite entangled
when p > 0.862. Hence, from Theorem 1 when p > 0.816, ρABC is genuine tripartite steerable
form Alice to Bob and Charlie. Concerning the tripartite steerability, it has been shown in [41]
that τ1

ABC is tripartite entangled if (Γ⊗ I4)τ
1
ABC is not a positive semi-definite matrix, where Γ

is the transpose with respect to subsystems A, B or C. From this criterion we have that τ1
ABC is

tripartite entangled when p > 0.31, i.e., ρABC is tripartite steerable form Alice to Bob and Charlie
for p > 0.31. Similarly from the τ2

ABC given in Theorem 2 and the criteria given [41], we have
that ρABC is tripartite steerable form Alice and Bob to Charlie when p > 0.621. While in [36],
ρABC is proved to be tripartitely steerable from Alice to Bob and Charlie when p > 0.85 and no
genuine tripartite steerability is detected. In [37], ρABC is shown to be tripartite steering from Alice
to Bob and Charlie when p > 0.9814 for two measurement settings, and p > 0.8366 for three
measurement settings. ρABC is tripartite steering from Alice and Bob to Charlie when p > 0.75
for two measurement settings, and p > 0.623 for three measurement settings. Hence, in the case
of detecting tripartite steering and genuine tripartite steering from Alice to Bob and Charlie, our
proposed method is stronger with respect to the criteria in [35–37]. The results are listed in Table 2.

Table 2. Critical values to white noise p for example 3 by our theorems and the criteria in [35–37],
here, S represents tripartite steering and GMS represents genuine tripartite steering

Steering A to B & C (S) A to B & C (GMS) A & B to C (S) A & B to C (GMS)
our result 0.31 0.816 0.621
[35]
[36] 0.85
[37] 0.8366 0.623
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One point to be stressed here is that, instead of the numerical results based on a semi-
definite program in [34], our results are derived analytically. For the GHZ state and W state
mixed white noise, our criteria are powerful in detecting the genuine tripartite steering from
Alice to Bob and Charlie. Nevertheless, the criteria can not detect any genuine tripartite
steering from Alice and Bob to Charlie, which illustrates that the genuine multipartite
steering from Alice and Bob to Charlie is a kind of stronger quantum correlation and some
more powerful criteria are needed.

3. Conclusions

The tripartite steerability and genuine tripartite steerability can be detected by detect-
ing the multipartite entanglement and genuine multipartite entanglement of the newly
constructed state analytically. Some examples show that the criteria are powerful to detect
tripartite steering from Alice to Bob and Charlie, Alice and Bob to Charlie, and genuine
tripartite steering from Alice to Bob and Charlie. Besides, we give the relationship of fully
separable states, non-tripartite steerable states in a one-to-two scenario and a two-to-one
scenario, bi-separable states, and non-GMS states in two scenarios. More analytical power-
ful criteria will be studied to detect genuine multipartite steering from Alice and Bob to
Charlie in future research.
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Appendix A

Proof of Theorem 2. The proof of Theorem 2 is similar to that of Theorem 1. We prove
Theorem 2 also by proving the converse negative proposition: if ρABC is not a genuine
tripartite steerable state from Alice and Bob to Charlie, then τ2

ABC is a bi-separable state;
if ρABC is not a tripartite steerable state from Alice and Bob to Charlie, then τ2

ABC is a
fully-separable state.

Firstly we give the (unnormalized) conditional quantum state δ
γ
C on Alice’s and

Bob’s sides after Charlie performs measurements Mc
C on τ2

ABC . Then the Bloch sphere
representation of the conditional state δ

γ
C can be expressed by the joint probabilities. Lastly

from the condition that ρABC is not genuine steering or steering from Alice and Bob to
Charlie, the theorem is proved by proving that δ

γ
C is the convex combination of some 2-qubit

quantum states when µ satisfies certain condition.
Step 1. From (16) we have the (unnormalized) conditional quantum state on Alice’s

and Bob’s sides after Charlie performs measurements Mc
C on τ2

ABC ,

δ
γ
C =TrC [(I4 ⊗Mc

C)τ
2
ABC ]

=µTrC [(I4 ⊗Mc
C)ρABC ] + (1− u)p(c|C, ρABC)

I4

4

=
1
4
(xI4 + ∑

i
aiσi ⊗ I2 + I2 ⊗∑

i
biσi + ∑

ij
cijσi ⊗ σj).
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Step 2. The bloch representation are given by the joint probabilities, x = Tr[δC ] =
µTr[(I4 ⊗Mc

C)ρABC ] + (1− µ)p(c|C, ρABC) = p(c|C, ρABC),

ai =Tr[((σ+
i − σ−i )⊗ I2).δ

γ
C ]

=µTr[(σ+
i ⊗ I2 ⊗Mc

C).ρABC ]− µTr[(σ−i ⊗ I2 ⊗Mc
C).ρABC ]

=µ(p(+, c|σAi , C, ρABC)− p(−, c|σi
A, C, ρABC))

=µ(2p(+, c|σAi , C, ρABC)− p(c|C, ρABC)),

bi =Tr[(I2 ⊗ (σ+
i − σ−i )).δγ

C ]

=µTr[(I2 ⊗ σ+
i ⊗Mc

C).ρABC ]− µTr[(I2 ⊗ σ−i ⊗Mc
C).ρABC ]

=µ(p(+, c|σBi , C, ρABC)− p(−, c|σBi , C, ρABC))

=µ(2p(+, c|σBi , C, ρABC)− p(c|C, ρABC))

and

cij =Tr[(σ+
i − σ−i )⊗ (σ+

j − σ−j )δγ
C ]

=µTr[((σ+
i − σ−i )⊗ (σ+

j − σ−j )⊗Mc
C).ρABC ]

=µ[p(+,+, c|σAi , σBj , C, ρABC)− p(+,−, c|σAi , σBj , C, ρABC)

− p(−,+, c|σAi , σBj , C, ρABC) + p(−,−, c|σAi , σBj , C, ρABC)]

=µ(2p(+,+, c|σAi , σBj , C, ρABC) + 2p(−,−, c|σAi , σBj , C, ρABC)− p(c|C, ρABC)).

Therefore,

δ
γ
C =

1
4
[p(c|C, ρABC)I4 + µ ∑

i
(2p(+, c|σAi , C, ρABC)− p(c|C, ρABC))σi ⊗ I2

+ µ ∑
i
(2p(+, c|σBi , C, ρABC)− p(c|C, ρABC))I2 ⊗ σi

+ µ ∑
ij
(2p(+,+, c|σAi , σBj , C, ρABC) + 2p(−,−, c|σAi , σBj , C, ρABC)

− p(c|C, ρABC))σi ⊗ σj].

Step 3. (I) If ρABC is not genuine steerable from Alice and Bob to Charlie, we have
that the joint probabilities admit a hybrid LHV-LHS model as follows,

p(a, b, c|A, B, C, ρABC) = ∑
λ

[p1(λ)p(a, b|A, B, λ)pQ(c|C, ρ
γ
λ)

+ p2(λ)p(a|A, λ)pQ(b, c|B, C)

+ p3(λ)p(b|B, λ)pQ(a, c|A, C)].

(A1)

Specially,

p(c|C, ρABC)

=∑
λ

[p1(λ)pQ(c|C, ρ
γ
λ) + p2(λ)PQ(c|C, ρ

γ′

λ ) + p3(λ)PQ(c|C, ρ
γ′′

λ )]
(A2)

with PQ(c|C, ρ
γ′

λ ) and PQ(c|C, ρ
γ′′

λ ) the distributions from Charlie’s measurement Mc
C on

ρ
γ′

λ = Trβ[ρ
βγ
λ ] and ρ

γ′′

λ = Trα[ρ
αγ
λ ], respectively.
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p(±, c|σAi , C, ρABC) = ∑
λ

[p1(λ)p(±|σAi , λ)pQ(c|C, ρ
γ
λ)

+ p2(λ)p(±|σAi , λ)pQ(c|C, ρ
γ′

λ )

+ p3(λ)pQ(±, c|σAi , C)]

(A3)

p(±, c|σBi , C, ρABC) = ∑
λ

[p1(λ)p(±|σBi , λ)pQ(c|C, ρ
γ
λ)

+ p2(λ)pQ(±, c|σBi , C)

+ p3(λ)p(±|σBi , λ)pQ(c|C, , ρ
γ′′

λ )]

(A4)

and
p(±,±, c|σAi , σBj , C) = ∑

λ

[p1(λ)p(±,±|σAi , σBj , λ)pQ(c|C, ρ
γ
λ)

+ p2(λ)p(±|σAi , λ)pQ(±, c|σBj , C)

+ p3(λ)p(±|σBj , λ)pQ(±, c|σAi , C)].

(A5)

Substituting Equations (A2)–(A5) into the expressions of x, ai, bi and cij (i, j = 1, 2, 3),
we have

x = ∑
λ

p1(λ)pQ(c|C, ρ
γ
λ) + p2(λ)pQ(c|C, ρ

γ′

λ ) + p3(λ)pQ(c|C, ρ
γ′′

λ ),

ai = µ ∑
λ

[2p1(λ)p(+|σAi , λ)pQ(c|C, ρ
γ
λ) + 2p2(λ)p(+|σAi , λ)pQ(c|C, ρ

γ′

λ )

+ 2p3(λ)pQ(+, c|σAi , C)

− p1(λ)pQ(c|C, ρ
γ
λ)− p2(λ)pQ(c|C, ρ

γ′

λ )− p3(λ)pQ(c|C, ρ
γ′′

λ )],

= µ ∑
λ

[p1(λ)pQ(c|C, ρ
γ
λ)(2p(+|σAi , λ)− 1) + p2(λ)pQ(c|C, ρ

γ′

λ )(2p(+|σAi )− 1)

+ p3(λ)pQ(c|C, ρ
γ′′

λ )× (2
pQ(+, c|σAi , C)

pQ(c|C, ρ
γ′′

λ )
− 1)]

= µ ∑
λ

[p1(λ)pQ(c|C, ρ
γ
λ)(2p(+|σAi , λ)− 1) + p2(λ)pQ(c|C, ρ

γ′

λ )(2p(+|σAi )− 1)

+ p3(λ)pQ(c|C, ρ
γ′′

λ )×
pQ(+, c|σAi , C)− pQ(−, c|σAi , C)

pQ(c|C, ρ
γ′′

λ )
],

bi = µ ∑
λ

[2p1(λ)p(+|σBi , λ)pQ(c|C, ρ
γ
λ) + 2p2(λ)pQ(+, c|σBi , C)

+ 2p3(λ)p(+|σBi , λ)pQ(c|C, ρ
γ′′

λ )

− p1(λ)pQ(c|C, ρ
γ
λ)− p2(λ)pQ(c|C, ρ

γ′

λ )− p3(λ)pQ(c|C, ρ
γ′′

λ )]

= µ ∑
λ

[p1(λ)pQ(c|C, ρ
γ
λ)(2p(+|σBi , λ)− 1) + p3(λ)pQ(c|C, ρ

γ′′

λ )(2p(+|σBi , λ)− 1)

+ p2(λ)pQ(c|C, ρ
γ′

λ )×
pQ(+, c|σBi , C)− pQ(−, c|σBi , C)

pQ(c|C, ρ
γ′

λ )
]
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cij = µ ∑
λ

{[2p1(λ)p(+,+|σAi , σBj , λ)pQ(c|C, ρ
γ
λ) + 2p2(λ)p(+|σAi , λ)

× pQ(+, c|σBj , C) + 2p3(λ)p(+|σBj , λ)pQ(+, c|σAi , C)]

+ ∑
λ

[2p1(λ)p(−,−|σAi , σBj , λ)pQ(c|C, ρ
γ
λ) + 2p2(λ)p(−|σAi , λ)pQ(−, c|σBj , C)

+ 2p3(λ)p(−|σBj , λ)pQ(−, c|σAi , C)]

−∑
λ

[p1(λ)pQ(c|C, ρ
γ
λ) + p2(λ)pQ(c|C, ρ

γ′

λ ) + p3(λ)pQ(c|C, ρ
γ′′

λ )]}

= µ ∑
λ

{p1(λ)pQ(c|C, ρ
γ
λ)(2p(+,+|σAi , σBj , λ) + 2p(−,−|σAi , σBj , λ)− 1)

+ p2(λ)pQ(c|C, ρ
γ′

λ )

× [2
p(+|σAi , λ)pQ(+, c|σBj , C) + p(−|σAi , λ)pQ(−, c|σBj , C)

pQ(c|C, ρ
γ′

λ )
− 1]

+ p3(λ)pQ(c|C, ρ
γ′′

λ )

× [2
p(+|σBj , λ)pQ(+, c|σAi , C) + p(−|σBj , λ)pQ(−, c|σAi , C)

pQ(c|C, ρ
γ′′

λ )
− 1]}

= µ ∑
λ

{p1(λ)pQ(c|C, ρ
γ
λ)(2p(+,+|σAi , σBj , λ) + 2p(−,−|σAi , σBj , λ)− 1)

+ p2(λ)pQ(c|C, ρ
γ′

λ )(2p(+|σAi )− 1)
pQ(+, c|σBj , C)− pQ(+, c|σBj , C)

pQ(c|C, ρ
γ′

λ )

+ p3(λ)pQ(c|C, ρ
γ′′

λ )[(2p(+|σBj )− 1)
pQ(+, c|σAi , C)− pQ(−, c|σAi , C)

pQ(c|C, ρ
γ′′

λ )
]}.

Step 4. Denoting ∆1, ∆2 and ∆3 the terms related to p1(λ), p2(λ) and p3(λ) in δ
γ
C ,

respectively, we have
∆1 =∑

λ

p1(λ)pQ(c|C, ρ
γ
λ)ρ

αβ
λ

with

ρ
αβ
λ =

1
4
[I4 + µ ∑

i
(2p(+|σAi , λ)− 1)σi ⊗ I2 + µ ∑

i
(2p(+|σBi , λ)− 1)I2 ⊗ σi

+ µ ∑
ij
(2p(+,+|σAi , σBj , λ) + 2p(−,−|σAi , σBj , λ)− 1)σi ⊗ σj].

∆2 =
1
4 ∑

λ

p2(λ)pQ(c|C, ρ
γ′

λ )[I4 + µ ∑
i
(2p(+|σAi , λ)− 1)σi ⊗ I2

+ µ ∑
j

pQ(+, c|σBj , C)− pQ(−, c|σBj , C)

pQ(c|C, ρ
γ′

λ )

× [I2 + ∑
i
(2p(+|σAi )− 1)σi]⊗ σj]

=
1
4 ∑

λ

p2(λ)pQ(c|C, ρ
γ′

λ )[I4 + µ ∑
i
(αiσi ⊗ I2 + βiI2 ⊗ σi) + µ ∑

i
αiσi ∑

j
β jσj]

≡∑
λ

p2(λ)pQ(c|C, ρ
γ′

λ )Ω
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with αi = 2p(+|σAi , λ)− 1 and βi =
pQ(+,c|σBi ,C)−pQ(−,c|σBi ,C)

pQ(c|C,ργ′
λ )

, and Ω = 1
4 [I4 + µ ∑

i
(αiσi ⊗

I2 + βiI2 ⊗ σi) + µ ∑
i

αiσi ∑
j

β jσj].

∆3 =
1
4 ∑

λ

p3(λ)pQ(c|C, ρ
γ′′

λ )[I4 + µ ∑
i
(α′iσi ⊗ I2 + I2 ⊗ β′iσi) + µ ∑

i
α′iσi ⊗∑

j
β′jσj]

≡∑
λ

p3(λ)pQ(c|C, ρ
γ′′

λ )ω

with α′i =
pQ(+,c|σi

A ,C)−pQ(−,c|σi
A ,C)

pQ(c|C,ργ′′
λ )

, β′i = 2p(+|σBi , λ)− 1, and ω = 1
4 [I4 + µ ∑

i
(α′iσi ⊗ I2 +

I2 ⊗ β′iσi) + µ ∑
i

α′iσi ⊗∑
j

β′jσj].

Step 5. We now prove that ρ
αβ
λ in ∆1, Ω in ∆2 and ω in ∆3 are quantum states when µ

satisfies certain conditions.
As for ∆1, ρ

αβ
λ can be proved to be quantum states by decomposing 1, 2p(+|σAi , λ)− 1,

2p(+|σBj , λ)− 1 and 2p(+,+|σAi , σBj , λ) + 2p(−,−|σAi , σBj , λ)− 1 into joint probabilities

that Alice and Bob perform the measurements Ma
A and Mb

B, respectively. Noting that

1 =
1
9 ∑

ij
(p(+,+|σAi , σBj , λ) + p(+,−|σAi , σBj , λ) + p(−,+|σAi , σBj , λ)

+ p(−,−|σAi , σBj , λ)),

2p(+|σAi , λ)− 1

=p(+,+|σAi , σBj , λ) + p(+,−|σAi , σBj , λ)− p(−,+|σAi , σBj , λ)− p(−,−|σAi , σBj , λ),

2p(+|σBj , λ)− 1

=p(+,+|σAi , σBj , λ)− p(+,−|σAi , σBj , λ) + p(−,+|σAi , σBj , λ)− p(−,−|σAi , σBj , λ),

2p(+,+|σAi , σBj , λ) + 2p(−,−|σAi , σBj , λ)− 1

=p(+,+|σAi , σBj , λ)− p(+,−|σAi , σBj , λ)− p(−,+|σAi , σBj , λ) + p(−,−|σAi , σBj , λ),

we have

∆1 =
1
4 ∑

λ

p1(λ)pQ(c|C, ρ
γ
λ)

×∑
ij
[p(+,+|σAi , σBj , λ)(

1
9

I4 + µ(
1
3

σi ⊗ I2 +
1
3

I2 ⊗ σj + σi ⊗ σj))

+ p(+,−|σAi , σBj , λ)(
1
9

I4 + µ(
1
3

σi ⊗ I2 −
1
3

I2 ⊗ σj − σi ⊗ σj))

+ p(−,+|σAi , σBj , λ)(
1
9

I4 + µ(−1
3

σi ⊗ I2 +
1
3

I2 ⊗ σj − σi ⊗ σj))

+ p(−,−|σAi , σBj , λ)(
1
9

I4 + µ(−1
3

σi ⊗ I2 −
1
3

I2 ⊗ σj + σi ⊗ σj))].

When 0 ≤ µ ≤ 1
9 , the matrices 1

9 I4 + µ(± 1
3 σi ⊗ I2 ± 1

3 I2 ⊗ σi ± σi ⊗ σi), i = 1, 2, 3, are

semi-definite positive matrices. Hence, ρ
αβ
λ is a quantum state shared by Alice and Bob. By

direct numerical calculation ρ
αβ
λ is a quantum state when 0 ≤ µ ≤ 0.23.
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Ω in ∆ can be proved to be a quantum state by decomposing ∑
i

αiσi, ∑
i

βiσi and I4 into

the eigenvectors of ∑
i

αiσi and ∑
i

βiσi. Since

∑
i

αiσi = |α0|(|φ〉A〈|φ| − |φ⊥〉A〈|φ⊥|)

∑
i

βiσi = |β0|(|ψ〉B〈|ψ| − |ψ⊥〉B〈|ψ⊥|)

with |α0| =
√

∑
i

α2
i , |β0| =

√
∑
i

β2
i and I4 = (|φ〉A〈|φ| + |φ⊥〉A〈|φ⊥|) ⊗ (|ψ〉B〈|ψ| +

|ψ⊥〉B〈|ψ⊥|), concerning ∆2 we have

∆2 =
1
4 ∑

λ

p2(λ)pQ(c|C, ρ
γ′

λ )[(1 + µ(|α0β0|+ |α0|+ |β0|))|φ〉A〈φ| ⊗ |ψ〉B〈ψ|

+ (1 + µ(−|α0β0|+ |α0| − |β0|))|φ〉A〈φ| ⊗ |ψ⊥〉B〈ψ⊥|
+ (1 + µ(−|α0β0| − |α0|+ |β0|))|φ⊥〉A〈φ⊥| ⊗ |ψ〉B〈ψ|
+ (1 + µ(|α0β0| − |α0| − |β0|))|φ⊥〉A〈φ⊥| ⊗ |ψ⊥〉B〈ψ⊥|]

≡∑
λ

p2(λ)pQ(c|C, ρ
γ′

λ )Ω.

Let q1(λ) =
1
4 (1 + µ(|α0β0|+ |α0|+ |β0|)), q2(λ) =

1
4 (1 + µ(−|α0β0|+ |α0| − |β0|)),

q3(λ) =
1
4 (1 + µ(−|α0β0| − |α0|+ |β0|)) and q4(λ) =

1
4 (1 + µ(|α0β0| − |α0| − |β0|)), ρα,i

λ =

|φ〉A〈φ| or |φ⊥〉A〈φ⊥| and ρ
β′ ,i
λ = |ψ〉B〈ψ| or |ψ⊥〉B〈ψ⊥|. Since |αi| ≤ 1 and |βi| ≤ 1

(i = 1, 2, 3), |α0| ≤
√

3 and |β0| ≤
√

3, the maximum value of q1(λ) is 1
4 (1 + µ(3 + 2

√
3)),

the minimum values of q2(λ) and q3(λ) are 1
4 (1− 3µ) and the minimum value of q4(λ)

is 1
4 (1−

√
3µ). One verifies that when 0 ≤ µ ≤ 1

3 , the coefficients qi(λ) (i = 1, · · · , 4) are
all positive, and their summation is one. The matrix Ω is a quantum state with the first
subsystem determined by party A and the second subsystem determined by parties B and

C. Denote Ω = ∑
i

qi(λ)ρ
α,i
λ ⊗ ρ

β′ ,i
λ with ∑

i
qi(λ) = 1.

Similarly, we can prove that

∆3 =
1
4 ∑

λ

p3(λ)pQ(c|C, ρ
γ′′

λ )[I4 + µ ∑
i
(α′iσi ⊗ I2 + I2 ⊗ β′iσi) + µ ∑

i
α′iσi ⊗∑

j
β′jσj]

≡∑
λ

p3(λ)pQ(c|C, ρ
γ′′

λ )ω

with α′i =
pQ(+,c|σAi ,C)−pQ(−,c|σAi ,C)

pQ(c|C,ργ′′
λ )

and β′i = 2p(+|σBi , λ)− 1. When 0 ≤ µ ≤ 1
3 we verify

that ω is a quantum state determined by parties A, C and B. We denote ω = ∑
i

q′i(λ)ρ
α′ ,i
λ ⊗

ρ
β,i
λ satisfying ∑

i
q′i(λ) = 1.

Therefore,

p(a, b, c|MA, MB, MC) =Tr[Ma
A ⊗Mb

B ⊗Mc
C.τ2
ABC ] = Tr[Ma

A ⊗Mb
B.δc

C]

=∑
λ

p1(λ)pQ(a, b|A, B, ρ
αβ
λ )pQ(c|C, ρ

γ
λ)

+ ∑
λ′

p′2(λ
′)pQ(a|A, ρα

λ′)pQ(b, c|B, C, ρ
βγ′

λ′ )

+ ∑
λ′′

p′3(λ
′′)pQ(a, c|A, C, ρ

αγ′

λ′′ )pQ(b|B, ρ
β
λ′′)
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with p′2(λ
′) = p2(λ)qi(λ), pQ(b, c|B, C, ρ

βγ′

λ′ ) = pQ(c|C, λ, ρ
γ′

λ )pQ(b|B, ρ
β′ ,i
λ ), ρα

λ′ = ρα,i
λ and

p′3(λ
′′) = p3(λ)q′i(λ), pQ(a, c|A, C, ρ

αγ′

λ′′ ) = pQ(c|C, λ, ρ
γ′′

λ )pQ(a|A, ρα′ ,i
λ ), ρ

β
λ′′ = ρ

β,i
λ . Since

∑
λ

qi(λ) = 1 and ∑
λ

q′i(λ) = 1, ∑
λ

p1(λ) + ∑
λ′

p′2(λ
′) + ∑

λ′′
p′3(λ

′′) = 1. Namely, if ρABC is not

genuine tripartite steerable from Alice and Bob to Charlie, then τ2
ABC is bi-separable for

0 ≤ µ ≤ 1
9 analytically.

Step 3’. (II) We next prove that δ
γ
C is the convex combination of some quantum states

when µ satisfies certain conditions for tripartite steering from Alice and Bob to Charlie. If
ρABC is not tripartite steerable from Alice and Bob to Charlie, we have the joint probabilities
admiting LHV-LHS models,

p(a, b, c|A, B, C) = ∑
λ

p(λ)p(a|A, λ)p(b|B, λ)pQ(c|C, τ
γ
λ ). (A6)

Specially,
p(c|C) = ∑

λ

p(λ)pQ(c|C, τ
γ
λ ), (A7)

p(±, c|σAi , C) = ∑
λ

p(λ)p(±|σAi , λ)pQ(c|C, τ
γ
λ ), (A8)

p(±, c|σBj , C) = ∑
λ

p(λ)p(±|σBj , λ)pQ(c|C, τ
γ
λ ), (A9)

and
p(±,±, c|σAi , σBj , C) = ∑

λ

p(λ)p(±|σAi , λ)p(±|σBj , λ)pQ(c|C, τ
γ
λ ) (A10)

Substituting Equations (A7)–(A10) into the expressions of x, ai, bi and cij(i = 1, 2, 3,
j = 1, 2, 3), we have

x = ∑
λ

p(λ)pQ(c|C, τ
γ
λ ),

ai = µ ∑
λ

[2p(λ)p(+|σAi )pQ(c|C, τc
λ)− p(λ)pQ(c|C, τ

γ
λ )],

bi = µ ∑
λ

[2p(λ)p(+|σBi )pQ(c|C, τc
λ)− p(λ)pQ(c|C, τ

γ
λ )],

cij = µ ∑
λ

[2p(λ)p(+|σAi , λ)p(+|σj
B , λ)pQ(c|C, τ

γ
λ )

+ 2p(λ)p(−|σAi , λ)p(−|σBj , λ)pQ(c|C, τ
γ
λ )− p(λ)pQ(c|C, ρ

γ
λ)].

Therefore,

δ
γ
C =

1
4 ∑

λ

p(λ)pQ(c|C, τc
λ)(I4 + µ ∑

i
(2p(+|σAi )− 1)σi ⊗ I2

+ µ ∑
i
(2p(+|σBi )− 1)I2 ⊗ σi

+ µ ∑
ij
(2p(+|σAi )p(+|σBj ) + 2p(−|σAi )p(−|σBj )− 1)σi ⊗ σj).

Since
∑
ij

2p(+|σAi , λ)p(+|σBj , λ) + 2p(−|σAi , λ)p(−|σBj , λ)− 1

=∑
i
(2p(+|σAi , λ)− 1)∑

j
(2p(+|σBj , λ)− 1),

δ
γ
C can be written as

δ
γ
C = p(λ)pQ(c|C, τc

λ)χ, (A11)
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where χ = 1
4 [I4 + ∑

i
a′′i σi ⊗ I2 + ∑

i
b′′i σiI2 ⊗ σi + ∑

i
a′′i σi ⊗ I2 ∑

j
b
′′
j σjI2 ⊗ σi] with

a
′′
i = 2p(+|σAi ) − 1 and b

′′
i = 2p(+|σBi ) − 1(i = 1, 2, 3). With ∆2 and ∆3 in Step 5 , we

can prove that δc
C is a quantum state when 0 ≤ µ ≤ 1

3 , which implies that τ2
ABC is fully

separable. Namely, if ρABC is not tripartite steerable from Alice to Bob and Charlie, then
τ2
ABC is fully separable for 0 ≤ µ ≤ 1

3 ).
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