
����������
�������

Citation: Olivares, R.; Soto, R.;

Crawford, B.; Riquelme, F.; Munoz,

R.; Ríos, V.; Cabrera, R.; Castro, C.

Entropy–Based Diversification

Approach for Bio–Computing

Methods. Entropy 2022, 24, 1293.

https://doi.org/10.3390/e24091293

Academic Editor: Daniel Abasolo

Received: 2 August 2022

Accepted: 3 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy–Based Diversification Approach for
Bio–Computing Methods
Rodrigo Olivares 1,* , Ricardo Soto 2 , Broderick Crawford 2 , Fabián Riquelme 1 , Roberto Munoz 1 ,
Víctor Ríos 1 , Rodrigo Cabrera 2 and Carlos Castro 3

1 Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile
2 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
3 Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
* Correspondence: rodrigo.olivares@uv.cl

Abstract: Nature–inspired computing is a promising field of artificial intelligence. This area is
mainly devoted to designing computational models based on natural phenomena to address complex
problems. Nature provides a rich source of inspiration for designing smart procedures capable of
becoming powerful algorithms. Many of these procedures have been successfully developed to treat
optimization problems, with impressive results. Nonetheless, for these algorithms to reach their
maximum performance, a proper balance between the intensification and the diversification phases
is required. The intensification generates a local solution around the best solution by exploiting a
promising region. Diversification is responsible for finding new solutions when the main procedure
is trapped in a local region. This procedure is usually carryout by non-deterministic fundamentals
that do not necessarily provide the expected results. Here, we encounter the stagnation problem,
which describes a scenario where the search for the optimum solution stalls before discovering a
globally optimal solution. In this work, we propose an efficient technique for detecting and leaving
local optimum regions based on Shannon entropy. This component can measure the uncertainty
level of the observations taken from random variables. We employ this principle on three well–
known population–based bio–inspired optimization algorithms: particle swarm optimization, bat
optimization, and black hole algorithm. The proposal’s performance is evidenced by solving twenty
of the most challenging instances of the multidimensional knapsack problem. Computational results
show that the proposed exploration approach is a legitimate alternative to manage the diversification
of solutions since the improved techniques can generate a better distribution of the optimal values
found. The best results are with the bat method, where in all instances, the enhanced solver with the
Shannon exploration strategy works better than its native version. For the other two bio-inspired
algorithms, the proposal operates significantly better in over 70% of instances.

Keywords: Shannon entropy; bio–computing methods; improved global search; multidimensional
knapsack problem

1. Introduction

In computer science and mathematical optimization, nature–inspired methods are
considered higher–level heuristics designed to find or generate potential solutions or to
select a heuristic (partial search algorithm). These methods may provide near–optimal
solutions in a limited amount of time. They properly work with incomplete or imperfect
information or with bounded computation capacity [1]. These metaheuristic algorithms are
inspired by interesting natural phenomena, such as the species’ selection and evolution
mechanisms [2], swarm intelligence like the pathfinding skills of ants [3] and the attraction
capabilities of fireflies [4], or the echolocation behavior of microbats [5]. Even physical [6]
and chemical [7] laws have also been studied to design metaheuristic methods. During
the last two decades, metaheuristics have attracted the scientific community’s attention

Entropy 2022, 24, 1293. https://doi.org/10.3390/e24091293 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24091293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0582-954X
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0000-0001-5500-0188
https://orcid.org/0000-0003-4491-0148
https://orcid.org/0000-0003-1302-0206
https://orcid.org/0000-0002-5578-272X
https://orcid.org/0000-0003-4149-7730
https://doi.org/10.3390/e24091293
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24091293?type=check_update&version=2

Entropy 2022, 24, 1293 2 of 28

due to their versatility and efficient performance when adapted to intractable optimization
problems [8]. Different metaphors have guided the design of uncountable metaheuristic
methods [9]. By grouping the metaheuristic algorithms according to their inspiration
source, it is possible to detect at least the bio–inspired computation class, swarm intelligence
methods, and genetic evolution. In this context, the literature has shown that when these
techniques come from similar analogies, they often share common behavioral patterns,
mainly in the initial parameter task and the intensification and diversification processes [10].

The evolutionary strategy of these bio–inspired techniques mainly depends on the ap-
propriate balance between the diversification and the intensification phases. Diversification
or exploration is the mechanism of entirely visiting new points of a search space. Intensifi-
cation or exploitation is the process of refining those points within the neighborhood of
previously visited locations to improve their solution quality [11]. When the diversification
phase operates, the resolution process reduces accuracy to improve its capacity to generate
new potential solutions. On the other hand, the intensification strategy allows refining
existing solutions while adversely driving the process to locally optimal solutions.

Although metaheuristic algorithms present outstanding performance [12], they suffer
from a common problem that arises when the exploration and exploitation process must
be balanced, even more so when the number of variables in the problem increases. The
greater the number of variables to handle, the more iterations will be necessary to find the
best solution, thus converging the search in a specific area of the solution space [13]. In
this context, all solutions are similar and can be considered good quality. Therefore, the
iterative process that tries to improve existing solutions stagnates as it cannot continue to
improve without leaving the feasible zone [1]. Different external methods have been used
to solve this problem, such as random walk [14,15], roulette wheel [16–18], tabu list [19,20],
among others. These mechanics allow the solution to be modified to move it from that
space area to another. This movement alters the solutions randomly. The non–deterministic
behavior that governs the update procedures lacks information to discriminate when to
operate and which part of the region to visit.

In this work, we propose an efficient exploration module for bio–inspired algorithms
based on Shannon entropy, a mathematical component to measure the average level of
uncertainty inherent in observations from random variables [21–23]. The objective is to
detect stagnation in local optimum, through a predictive entropy system, by computing
entropy values of each variable. Next, solutions are moved toward a feasible region
to find new and better solutions. This proposal is implemented and evaluated in three
well–known population–based metaheuristics: particle swarm optimization, black hole
algorithm, and bat optimization. The choice of these metaheuristics is supported by: (a) they
work similarly because they belong to the same type of algorithms based on the swarm
intelligence paradigm; (b) these population–based metaheuristics describe an iterative
procedural structure to evolve their individuals (solutions), followed by many bio–inspired
optimization algorithms; and (c) they have proven to be efficient optimization solvers
for complex engineering problems. However, hybrid techniques such as [24,25] are also
welcome. The Shannon diversification strategy runs as a background process and does not
have an invasive role in the principal method.

Finally, to evidence that the proposed approach is a viable alternative that improves
bio-inspired search algorithms, we evaluate it on a set of the most challenging instances
of the Multidimensional Knapsack Problem (MKP), which is a widely recognized NP–
complete optimization problem [26]. MKP was selected because it is suitable for Shannon’s
diversification strategy, it has a wide range of practical applications [27], and it continues
to be a hot topic in the operations research community [28,29]. Computational experiments
run on 20 of the most challenging instances of the MKP taken from OR–Library [30].
Generated results are evaluated with descriptive analysis and statistical inference, mainly a
hypothesis contrast by applying non–parametric evaluations.

The rest of this manuscript is structured as follows. Section 2 discusses the bib-
liographic search for relevant works in the field, fundamental concepts related to the

Entropy 2022, 24, 1293 3 of 28

diversification and the intensification phases, and it describes the information theory to
measure uncertainty levels in random variables. Section 3 exposes the formal statement
for the stagnation problem. Section 4 presents the developed solution, including the main
aspects of the three bio–computing algorithms and the integration with the Shannon en-
tropy. In Section 5, the experimental setup is detailed, while Section 5 discusses the main
obtained results. Finally, conclusions and future work are included in Section 8.

2. Related Work

During the last two decades, bio-inspired computing methods have attracted the
scientific community’s attention due to their remarkable ability to adapt search strategies
to solve complex problems [31]. They are considered solvers devoted to tackling large
instances of complex optimization problems [32,33]. These algorithms can be grouped
according to their classification. Here, we can observe a division into nature-inspired
vs. non-nature-inspired, population-based vs. single point search—or single solution—,
dynamic vs. static objective function, single neighborhood vs. various neighborhood
structures, and memory usage vs. memory-less methods, among many others [34–36].

Metaheuristics can usually provide near–optimal solutions in a limited time when no
efficient problem–specific algorithm pre–exists [32]. After studying several metaheuristics,
we can state that they operate similarly by combining local improvement procedures with
higher-level strategies to explore the space of potential solutions efficiently [37–39]. During
the last decades, metaheuristic algorithms have been analyzed by finding improved tech-
niques capable of solving complex optimization problems [40]. This evolution has enabled
them to merge theoretical principles from other science fields. For instance, Shannon
entropy [21–23] has been used in a population distribution strategy based on historical
information [41]. The study reveals a close relationship between the solutions’ diversity
and the algorithm’s convergence. Also, ref. [42] proposed a multi–objective version of the
particle swarm optimization algorithm enhanced by the Shannon entropy. The authors
propose an evolution index of the algorithm to measure its convergence. Results show
that the proposal is a viable alternative to boost swarm intelligence methods, even in
mono–objective procedures. Another work that deals with metaheuristics enhanced by the
Shannon entropy to treat multi–objective problems is [43]. Here, the uncertain information
was employed to choose the optimum solution from the Pareto front. Shannon’s strategy
was slightly lower than other proposed decision–making techniques.

Now, by considering smart alterations in search processes, we analyze [44], which
proposes an entropy–assisted particle swarm optimizer for solving various instances of an
optimization problem. This approach allows for adjusting the exploitation and exploration
phases simultaneously. The reported computational experiments show that this work
provides flexibility to the bio–inspired solver to self–organize its inner behaviors. Following
this line of research, in [45], a hybrid algorithm between Shannon entropy and two swarm
methods is introduced to improve the yield, memory, velocity, and, consequently, the move
update. In [46], Shannon entropy is integrated into a chaotic genetic algorithm for taking
data from solutions generated during the execution. This process runs in deterministic
time series and operates from the initial population strategy. Another work that develops
a similar proposal is detailed in [47]; here, the authors present a hybrid algorithm that
includes the Shannon entropy in the evolving process of particle swarm optimization. The
authors measure the convergence of solutions based on the distance between each solution
and the best overall solution. They conclude that the algorithm can satisfactorily obtain
outstanding results, especially regarding fitness evolution and convergence rate.

Entropy 2022, 24, 1293 4 of 28

Following the integration between bio–inspired solvers and the Shannon entropy, we
analyze [48], where the information component allows measuring the population diversity,
the crossover probability, and the mutation operator to adjust the algorithm’s parameters
adaptively. Results show that it is possible to generate a satisfactory global exploration,
improve convergence speed, and maintain the algorithm’s robustness. The same approach
is explored in [49]. Again, the convergence speed and the population diversity are key
factors, balanced to improve the resolution procedure. Finally, in [50,51], the Shannon
entropy allows handling the instance of the optimization problem. The first work solves
the portfolio selection problem by minimizing the number of transactions, while the second
computes the minimum loss and cost of the reactive power planning.

3. Preliminaries

This section briefly defines Shannon entropy and explains the stagnation problem.

3.1. Shannon Entropy

Claude Elwood Shannon proposed a mathematical component capable of measuring
an information source’s uncertainty level based on the probability distribution followed by
the data that compose it [22]. This component is called entropy, and it applies to different
fields. In computer science, it is known as information entropy and is expressed by the
following formula [22,23]:

H(x) = −
n

∑
i=1

p(x) log2 p(x) (1)

where x corresponds to a possible system event, and p(x) represents the probability that
the event x occurs. The entropy of an information system is calculated from a set of possible
events occurring in the system, together with their occurrence probability. The formula
returns values between 0 to +∞, corresponding to the entropy level of the evaluated system.
Results close to 0 mean low entropy, so the system is considered more predictable. On
the contrary, the higher the result, the higher the entropy, and the system is considered
less predictable.

3.2. Stagnation Problem

Mono–objective optimization problems are commonly modeled as follows:

arg min
~x

f (~x)

subject to

gi(~x) ≤ 0, ∀ i = {1, 2, . . . , m}

hj(~x) = 0, ∀ j = {1, 2, . . . , p}

(2)

where ~x = 〈x1, x2, . . . , xn〉 is an n-dimensional vector that represents the set of decision
variables—or solutions—, f (~x) is the function to be optimized—or objective function—,
and both gi(~x) and hj(~x) are the constraint sets of the problem.

The fitness is the output value obtained from evaluating a solution in the objective
function. In a constrained optimization problem, the aim is to find the best fitness among
several solutions which satisfy all constraints. Over the decades, many techniques have
been developed to solve complex optimization problems. Recently, bio–inspired computing
methods—or metaheuristics—have emerged as solvers able to generate fitness near to
optimal values [9]. These nature–inspired mechanisms mimic the behavior of individuals
in their environment based on survival of the fittest. This strategy allows altering solutions
into new solutions that are potentially better than previous ones. The update is carried out
by interactive search procedures, such as exploration and exploitation [52]. The exploration
phase focuses on discovering new zones of non–visited heuristic spaces. The exploitation
phase intensifies the local search process in an already visited promising zone. In both

Entropy 2022, 24, 1293 5 of 28

cases, the evolutionary operators are mathematical formulas abstracted from the natural
phenomenon that inspires the algorithm, invoked for random time lapses.

Despite the outstanding performance of bio–inspired algorithms in solving complex
problems, they present a common problem: local optima stagnation. The stagnation
problem is formally defined as the premature convergence of an algorithm to a solution
that is not necessarily the best or close to it [53]. Widely proven techniques treat this topic
using internal characteristics, such as the memory of movements, prohibitive elements,
and random restart, among several other methods. These procedures generally operate
probabilistically, randomly alter solutions, and do not use the knowledge generated in
the resolution process [52,53]. This issue presents an interesting problem: How much can
we improve an algorithm if it internally considers the knowledge generated to recognize local
optima stagnation and escape from it during the search process? Currently, the information
produced by the optimization algorithms is not analyzed due to its uncertain and random
nature. Nevertheless, in the next section, we will see that this is possible and useful for
this problem.

4. Developed Solution

In this section, we detail how the Shannon entropy is applied to detect the stagnation
issue on bio–computing methods and how it is also employed to escape from this problem.

4.1. Bio–Inspired Methods

We employ three population–based metaheuristic algorithms: particle swarm opti-
mization, black hole algorithm, and bat optimization. These algorithms are among the
most popular swarm intelligence methods. The first one is inspired by the behavior of birds
flocking or fish schooling when they move from one place to another. The second one is
based on the black hole phenomenon when it attracts and absorbs stars of a constellation.
The third one imitates the echolocation phenomenon present in the microbats species,
allowing them to avoid obstacles while flying and locate food or shelter. In general terms,
the three metaheuristics work similarly. For example, solution positions are randomly
generated at the beginning of the algorithm and updated via an alteration of the velocity.

4.1.1. Particle Swarm Optimization

In particle swarm optimization (PSO), each bird or fish describes a particle—or
solution—with two components: position and velocity. A set of particles (the candi-
date solutions) forms the swarm that evolves during an iterative process giving rise to a
powerful optimization method [31]. The method works by altering velocity through the
search space and then updating its position according to its own experience and that of
neighboring particles.

The traditional particle swarm optimization is governed by two vectors, the velocity
~vi = 〈v1

i , v2
i , . . . , vj

i , . . . , vn
i 〉 and the position ~xi = 〈x1

i , x2
i , . . . , xj

i , . . . , xn
i 〉. First, the particles

are randomly positioned in an n-dimensional heuristic space with random velocity val-
ues. During the evolution process, each particle updates its velocity and position—see
Equation (3) and Equation (4), respectively—:

vj
i(t + 1) = wvj

i(t) + c1φ1(pBestj
i − xj

i(t)) + c2φ2(gBestj − xj
i(t)) (3)

xj
i(t + 1) = xj

i(t) + vj
i(t + 1) (4)

where w, c1, and c2 are acceleration coefficients to obtain the new velocity, φ1 and φ2 are
uniformly distributed random values in the range [0, 1], pBesti represents the previous best
position of ith particle, and finally, gBest is the global best position found by all particles
during the resolution process.

Entropy 2022, 24, 1293 6 of 28

4.1.2. Black Hole Algorithm

The black hole (BH) algorithm begins with randomly generated initial positions of
stars ~xi = 〈x1

i , x2
i , . . . , xj

i , . . . , xn
i 〉, each with a velocity of change ~vi = 〈v1

i , v2
i , . . . , vj

i , . . . , vn
i 〉.

Both vectors belong to an n-dimensional heuristic space for an optimization problem.
The best candidate is chosen at each iteration to become in the black hole. At this

moment, other solutions are pulling around the black hole, building the constellation of
stars. A star will be permanently absorbed when it gets too close to the black hole. A new
solution is randomly generated and located in the search space to keep the number of stars
balanced. The absorption of stars by the black hole is formulated in Equations (5) and (6):

vj
i(t + 1) = r(bhj − xj

i(t)) (5)

xj
i(t + 1) = xj

i(t) + vj
i(t + 1) (6)

where r is a uniformly distributed random value in the range [0, 1], and bh represents the
global best location—or black hole—found by all the stars during the resolution process.

This algorithm attempts to solve the stagnation problem using a random component
that acts when a participation probability is reached. This procedure is known as the event
horizon and plays an important role in controlling the global and local search. The black
hole will absorb every star that crosses the event horizon. The radius of the event horizon
is calculated by Equation (7):

E =
f (bh)

s

∑
i=1

f (xi)

(7)

where s represents the number of stars, f (bh) is the fitness value of the black hole, and
f (xi) is the fitness value of the ith star. When the distance between a ith star and the black
hole (di f fi) is less than the event horizon at an instant t, the star collapses into the black
hole. The distance between a star and a black hole is the Euclidean distance computed by
Equation (8) as follows:

di f fi(t) =

√
[bh1 − x1

i (t)]
2
+ [bh2 − x2

i (t)]
2
+ · · ·+ [bhj − xj

i(t)]
2
+ · · ·+ [bhn − xn

i (t)]
2 (8)

As mentioned above, this procedure operates under random criteria. If a real random
number between 0 and 1 is higher than an input parameter, the event horizon provides
diversity among solutions. Otherwise, solutions keep intensifying the current search area.

4.1.3. Bat Optimization

Naturally inspired, bat optimization (BAT) follows the behavior of microbats when
they communicate through bio–sonar, an inherent feature of this species. Bio–sonar, also
called echolocation, allows bats to determine distances and distinguish between food, prey,
and background obstacles. The algorithm extrapolates this characteristic, assuming that all
bats develop it. In this abstraction, a bat flies at a position xi with a velocity vi and emitters
sounds with a frequency fi, a loudness A0, and a pulse emission rate r ∈ [0, 1].

Similar to the previous metaheuristics, bat optimization is driven by two vectors, the
velocity ~vi = 〈v1

i , v2
i , . . . , vj

i , . . . , vn
i 〉 and the position ~xi = 〈x1

i , x2
i , . . . , xj

i , . . . , xn
i 〉. Again,

both vectors belong to an n–dimensional heuristic space. Furthermore, the frequency varies
in a range [fmin, fmax], and loudness can vary in many ways. It is assumed that it ranges
from a large (positive) value A0 to a minimum constant value Amin.

Entropy 2022, 24, 1293 7 of 28

The algorithm starts with an initial population of bat positions. The best position is
selected in each iteration according to its yield, called the global solution. To find new
solutions, the frequencies is computed by Equation (9), in order to adjust the new velocity,
which is updated via Equation (10) and thus, new position are generated by Equation (11).

fi = fmin + (fmax − fmin)β (9)

vj
i(t + 1) = (xj

best − xj
i(t)) fi (10)

xj
i(t + 1) = xj

i(t) + vj
i(t + 1) (11)

where β is a uniformly distributed random value in the range [0, 1], fmin is set to have a
small value, and fmax varies according to the max variance allowed in each time step. Next,
xbest describes the global best solution generated by all bats during the search process.

In bat optimization, the random walk trajectory governs the diversification phase to
alter a solution. The new solution is generated based on the bat’s current loudness Ai and
maximum allowed variance max(var) during a time step. This procedure is computed by
Equation (12).

xj
new = xj

old + εAimax(var) (12)

where ε is a random value in [−1, 1].
Finally, the variation between loudness and pulse emission drives the intensification

phase. This principle is given from hunter behavior when bats recognize prey. When it
occurs, they decrease loudness and increase the rate of pulse emission. This strategy is
calculated by Equation (13).

Ai = αAi, ri = rtime=0
i (1− e−γ(time=t)) (13)

where α and γ are ad-hoc constants to control the intensification phase. For 0 < α < 1 and
γ > 0, we get Ai → 0, ri → r(time=0)

i , t→ 0.

4.1.4. Common Behavior

Population–based metaheuristics work similarly. We present a common work scheme
(see Algorithm 1) to implement each bio–inspired solver. This scheme adapts the generali-
ties of the search process and the particularities of each bio-inspired phenomenon.

4.2. Solving Stagnation

Our proposal covers two scopes: detecting stagnation and escaping from it. For the
first step, we employ historical knowledge of metaheuristics while solving optimization
problems. Next, a new formula based on random work is used, which considers certain
information about the algorithm’s performance.

4.2.1. Stagnation Detecting

By considering a binary approach for each agent, this would remember the number of
times their status changes (zero to one and one to zero) into decision variables xj

i until a
time t. Figure 1 presents a history of changes for a solution vector of 5–dimension.

Entropy 2022, 24, 1293 8 of 28

Algorithm 1: Common work scheme used to implement the population–based
algorithms

1 Input: s: the population size; T: the maximum time; and parameters own of each
method

2 Output: the best solution reached by the method
3 Lower bound Lb and upper bound Ub limits, the n dimensionality, and the

instance data, all of them are taken from the problem
4 (f , n, Lb, Ub)← loadProblemData()
5 objective function f (~x), x = 〈x1, . . . , xn〉
6 //produce the first generation of s solutions, randomly
7 foreach solution i, (∀ i = {1, . . . , s}) do
8 foreach variable j, (∀ j = {1, . . . , n}) do
9 position xj

i(0)← Random[Lb, Ub];

10 velocity vj
i(0)← Random[Lb, Ub];

11 end
12 compute f (xi(0));
13 end
14 //produce T-generations of s solutions
15 t← 1;
16 while t < T do
17 foreach solution i, (∀ i = {1, . . . , s}) do
18 if the diversification process is invoked then
19 position xj

i(t + 1) is created to explore more promising regions
20 end
21 if the intensification process is invoked then
22 position xj

i(t + 1) is created through a randomly selection process,
among the best solutions

23 end
24 compute f (xi(t));
25 end
26 foreach solution i, (∀ i = {1, . . . , s}) do
27 foreach variable j, (∀ j = {1, . . . , n}) do
28 //generate new solutions;

29 new velocity vj
i(t + 1) is updated according its formula: Equation (3),

Equation (5), or Equation (10);
30 new position xj

i(t + 1) is found according its formula: Equation (4),
Equation (6), or Equation (11);

31 end
32 compute f (xi);
33 end
34 t← t + 1;
35 end
36 return post-process results and visualization;

Entropy 2022, 24, 1293 9 of 28

x1
i x2

i x3
i x4

i x5
i

t← 0 1 0 0 1 1

t← 1 0 0 1 1 0

t← 2 1 1 0 0 0

t← 3 1 0 0 1 0

t← 4 0 0 1 1 1

t← 5 1 1 1 0 1

t← 6 1 0 0 0 0

t← 7 1 1 0 1 1

Numbers of 0s 2 5 5 3 4

Numbers of 1s 6 3 3 5 4

Figure 1. Example of history of changes from a solution vector along to iterations.

The evolutionary operator updated this solution vector seven times. It was initially
generated in t← 0. Next, we computed the simple probability of occurrence for all decision
variables. With these values, we finally calculate and show the Shannon entropy of each
one in Figure 2:

x1
i x2

i x3
i x4

i x5
i

Probability of 0s 0.25 0.625 0.625 0.375 0.5

Probability of 1s 0.75 0.375 0.375 0.625 0.5

Shannon entropy 0.81 0.95 0.95 0.95 1

Figure 2. Probabilities and Shannon entropy values.

Entropy values close to 0.3 give us a trust value near 95%, i.e., when a solution vector
generates this occurrence level, we will be in the presence of stagnation. It is relevant to
note that the population of solutions is randomly instantiated under a uniform probability.
Hence, first iterations do not produce low entropy values. For the above example, the
Shannon entropy values 0.81, 0.95, 0.95, 0.95, and 1 are all far from 0.3, so the vector cannot
be considered as stagnated. We consider that a vector stagnates if the median value of the
Shannon entropy is at least 0.3. The procedure operation can be seen in Algorithm 2.

Algorithm 2: Shannon entropy module

1 Input: ~xi, n, t;
2 Output: median(H(~xi));
3 foreach variable j, (∀ j = {1, . . . , n}) do
4 contj ← contj + xj

i ;
5 prob← contj/t;

6 H(xj
i)← −[prob ∗ log2(prob) + (1− prob) ∗ log2(1− prob)];

7 end
8 return median(H);

The procedure requires the current solution vector ~xi, the number of decision variables
n, and the time t it was called. In the end, the module provides the element right in the
middle of the solution vector, which means at least half of the entropies reached the trust

Entropy 2022, 24, 1293 10 of 28

value. For that, Lines 3–6 compute the Shannon entropy values under the occurrence
probability of state changes.

From the spatial complexity point of view, the proposal uses historical data but
does not store it. Regarding temporal complexity, entropy values are computed after the
evolutionary operator, so the solution vector is linearly traversed at different time steps.

4.2.2. Stagnation Escaping

As mentioned above, bio–inspired algorithms use random modifiers to balance the
exploration and then avoid the stagnation problem. This strategy suggests that changes in
decision variables have the same distribution and are independent of each other. Therefore,
it assumes the past movement cannot be used to predict its future values [54,55]. Our
proposal goes the opposite way, applying the entropy value in a similar form to a random
walk but using historical data to make a decision. We propose to update only those decision
variables that we already know a priori that are stagnant. The latter is one of the main
differences in the random walk method. This modifier is formulated in Equation (14).

xj
new = xj

i + λH(xj
i) (14)

where λ is an uniformly distributed random integer value in the {−1, 0, 1}. A positive or
negative value for λ provides to explore new promising zones. Furthermore, setting H(xj

i)
as a smaller step size allows the exploration phase to not stray too far from the current
solution. This operation remains agnostic to bio–inspired algorithms, working on both
native solver systems and hybridized/improved versions.

5. Experimental Setup

To suitably evaluate the performance of the improved swarm intelligence methods, a
robust performance analysis is required. For that, we contrast the best solutions achieved by
metaheuristics to the best–known result of the benchmark. Figure 3 depicts the procedures
involved in thoroughly examining the enhanced metaheuristics. We design goals and
suggestions for the experimental phase to show that the proposed approach is a viable
alternative for enhancing the inner mechanisms of metaheuristics. Solving time is computed
to determine the produced gap when the Shannon strategy runs on the bio–inspired method.
We evaluate the best value as a vital indicator for assessing future results. Next, we use
ordinal analysis and statistical testing to evaluate whether a strategy is significantly better.
Finally, we detail the hardware and software used to replicate computational experiments.
Results will visualize in tables and graphics.

ó Q �

Selection of instances
The hardest instances

of combinatorial
problems are solved by
bio–inspired algorithms.

Measurement metrics
Quality of solutions

Robustness
Analysis

Reporting
Report results
Visualization
Discussions

Figure 3. Schema of the experimental phase applied to this work.

A set of optimization problem instances were solved for the experimental process
and, more specifically, to measure the algorithms’ performance. These instances come
from OR–Library, which J.E. Beasley originally described in 1990 [56]. This “virtual library”
has several test data sets of different natures with their respective solutions. We take
20 binary instances of the Multidimensional Knapsack Problem. Instances are identified by
a name and a number, in the form MKP1 to MKP20, respectively. Table 1 details the size of
each instance.

Entropy 2022, 24, 1293 11 of 28

Table 1. Instances of the Multidimensional Knapsack Problem.

Instance Name Best Known Knapsacks Objects

MKP01 - 6120 10 20
MKP02 - 12400 10 28
MKP03 - 10618 5 39
MKP04 - 16537 5 50
MKP05 SENTO2 [57–59] 8722 30 60
MKP06 WEING5 [57–59] 98796 2 28
MKP07 WEING6 [57–59] 130623 20 28
MKP08 WEING7 [57–59] 1095445 2 105
MKP09 WEISH03 [58,59] 4115 5 30
MKP10 WEISH07 [58,59] 5567 5 40
MKP11 WEISH08 [58,59] 5605 5 40
MKP12 WEISH17 [58,59] 8633 5 60
MKP13 PB1 [58,59] 3090 4 27
MKP14 PB5 [58,59] 2139 10 20
MKP15 HP1 [58,59] 3418 4 28
MKP16 HP2 [58,59] 3186 4 34
MKP17 - unknown 5 100
MKP18 - unknown 5 100
MKP19 - unknown 5 100
MKP20 - unknown 5 100

The exact methods have not solved the instances from MKP17 to MKP20. For this
reason, we use unknown to describe that this value has not yet been found.

The MKP is formally defined in Equation (15):

max
n

∑
j=1

vjxj

subject to
n

∑
j=1

wjkxj ≤ bk, ∀ k ∈ {1, . . . , K}

xj ∈ {0, 1}

(15)

where xj describes whether the object is included or not in a knapsack, and the n value
defines the total number of objects. Each object has a real value vj that represents its profit
and is used to compute the objective function. Finally, wjk stores the weight for each object
in a knapsack k with maximum capacity bk. As can be seen, this is a combinatorial problem
between including or not an object. The execution of continuous metaheuristics in a binary
domain requires a binarization phase after the solution vector changes [60]. A standard
Sigmoid function compared to a uniform random value δ between 0 and 1 was employ as a

transformation function, i.e., [1/(1 + e−xj
i)] > δ, then a discretization method is employed,

in this case, if xj
i ← 1. Otherwise, xj

i ← 0.
The performance of each algorithm is evaluated after solving each instance 30 times on

it. Once the complete set of outputs of all the executions and instances has been obtained, an
outliers analysis is performed to study possible irregular results. Here, we detect influence
outliers using the Tukey test, which takes as a reference the difference between the first
quartile (Q1) and the third quartile (Q3), or the interquartile range. In our case, in box
plots, an outlier is considered to be 1.5 times that distance from one of those quartiles
(mild outlier) or three times that distance (extreme outlier). This test was implemented

Entropy 2022, 24, 1293 12 of 28

by using a spreadsheet, so the statistics are calculated automatically. Thus, we remove
them to avoid distortion of the samples. Immediately, a new run is launched to replace the
eliminated solution.

In the end, descriptive and statistical analyses of these results are performed. For the
first one, metrics such as max and min values, mean, standard quasi–deviation, median, and
interquartile range are used to compare generated results. The second analysis corresponds
to statistical inference. Two hypotheses are contracted to evidence a major statistical
significance: (a) test of normality with Shapiro–Wilk and (b) test of heterogeneity by
Wilcoxon–Mann–Whitney. Furthermore, it is essential to note that given the independent
nature of instances, the results obtained in one of them do not affect others. The repetition
of an instance neither involves other repetitions of the same instance.

Finally, all algorithms were coded in Java 1.8 programming language. The infrastruc-
ture was a workstation running Windows 10 Pro operating system with eight processors i7
8700, and 32 GB of RAM. Parallel implementation was not required.

6. Discussion

The first results are illustrated in Table 2, which is divided into three parts: (a) number
of best reached, (b) minimum solving time, and (c) maximum solving time. Results show
that modified methods (S–PSO, S–BAT, and S–BH) exhibit better performance achieving
greater optimum values than their native versions.

Regarding the minimum and maximum solving times, PSO and S–PSO have similar
performance, and a significant difference is not appreciable, being who better yield shows
of all studied techniques. When BAT and S–BAT are contrasted, we again note that the
Shannon Entropy strategy does not cause a significant increase in required solving time by
the bio–solver algorithm, except in a few instances where BAT needs less time than S–BAT.
Now, let us compare the results generated by the black hole optimizer and the improved
S–BH. It is possible to observe that, in general terms, there is no significant difference
between the minimum solving times required by the original bio–inspired method and its
enhanced version.

To robust the experimental phase, we evaluate the quality of solutions based on the
number of optimal findings. Thus, taking the generated data, we note that the modified
algorithms S–PSO, S–BAT, and S–BH perform better than their native versions. Based on
the result in Table 3 regarding the solution quality, S–PSO has a better performance than
PSO. The latter is because S–PSO has a smaller maximum RPD, implying that his solutions
are larger. Moreover, considering the standard deviations, we can see that values achieved
by PSO are usually lower than those generated by S–PSO. Therefore, the results distribution
and their differentiation concerning the average is better in the algorithm based on the
Shannon entropy.

The result of PSO in the median RPD is equal to or slightly lower than S–PSO. Thus,
PSO has a slightly better performance. For the average RPD, both S–PSO and PSO had a
similar performance. Finally, considering that the proposed approach S–PSO found a more
significant number of optima, with a higher quality of solutions and a lower deviation,
then we can conclude that S–PSO has a better general performance than native PSO.

The results shown in Table 4 show how S–BAT presents a much higher general per-
formance than his native version. S–BAT has, for the 20 instances, maximum, mean, and
average RPDs equal to, or less than, those presented by the native bat optimizer, in ad-
dition to having a smaller standard deviation for their values. This set of characteristics
implies that the solutions found by S–BAT are significantly larger than those found by
the bat algorithm, and, therefore, have a higher general performance compared to its
native version.

Concerning Table 5, we can infer that S–BH algorithm has a higher general perfor-
mance than the BH algorithm. There are no significant differences between both algorithms
in the mean RPD and average RPD, but the maximum RPD in 18 of the 20 instances is
lower in S–BH. The above means that the solutions found by S–BH have a larger size and,

Entropy 2022, 24, 1293 13 of 28

therefore, a better performance. On the other hand, concerning its standard deviations, in
13 of the 20 instances, the native version of the algorithm has a lower variation. Therefore,
both algorithms generally present a high dispersion in their data. Since both algorithms
have a similar widespread distribution, based on the number of optima found, we can
conclude that the S–BH algorithm has a higher overall performance because it can find a
more significant number of better quality optima.

Figure 4 shows the convergence of the solutions found by PSO and S–PSO. The above
indicates how the solution changes as the iterations go by (increases its value).

For all instances, in early iterations, S–PSO has at least a similar performance to PSO.
As the execution progresses, S–PSO gradually acquires higher–value solutions. In MKP
instances 2, 7, 9, 10, and 11, both algorithms have the same final performance. S–PSO is
superior in all other instances (15 of 20).

Also, Figure 5 shows the dispersion of the values found by both algorithms. The
above allows knowing how close the values found are to their respective medians and their
quartiles and extreme values. A better spread is smaller in size (more compact) and/or
has larger medians and tails. As with convergences, the spreads of the S–PSO algorithm
are usually at least similar to those of PSO. For MKP instances 3, 4, 5, 8, 10, and 12, the
S–PSO spread is slightly lower. In MKP instances 1 and 9, both algorithms have the same
dispersion. For the remaining 12 instances, S–PSO has values with lower dispersion and/or
higher median. Therefore, it is considered to have better performance.

Figure 6 shows the convergence of the solutions found by BAT and S–BAT. In 19 of the
20 instances, S–BAT outperforms BAT. BAT is superior only in the MKP 15 instance. Both
algorithms present similar values in early iterations, but S–BAT overlaps significantly as
the execution progresses. On the other hand, Figure 7 shows the dispersion of the values
found by both algorithms. In the 20 instances, the dispersion of the values found by S–BAT
is smaller, presenting larger values and closer to their medians. Given the above, S–BAT
has a significantly higher overall performance than BAT.

Figure 8 shows the convergences of the solutions found by BH and S–BH. For MKP
instances 1, 3, 6, 16, 17, and 18, both algorithms present similar final values, with S–BH
slightly higher. Only in three instances (MKP 2, 9, and 11) is the native BH algorithm slightly
superior to S–BH. In the remaining eleven instances S–BH presents values significantly
higher than BH.

Furthermore, Figure 9 shows the dispersion of the values found by both algorithms.
Because the behavior of these algorithms is more similar to each other than the previously
seen ones (PSO and BAT), it is necessary to highlight that our performance approach is
based on the largest values (maximization problem). Given the above, considering the MKP
instances 1, 2, 5, 9, 17, 18, 19, and 20, we can say that S–BH has a better dispersion than BH.
The above is because it has a median slightly higher than BH or larger extreme values. For
MKP 6, 8, and 11 instances, native BH has superior performance for similar reasons. In
the MKP 14 instance, both algorithms have the same dispersion. For the remaining eight
instances, S–BH has a significantly higher dispersion in quality.

Finally, considering everything mentioned above, we can say that approximately half
of the S–BH instances have at least a dispersion equal to or higher (quality) than that of BH.
Therefore, it is considered to have better performance.

Entropy 2022, 24, 1293 14 of 28

Table 2. Experimental results.

ID
(a) Number of Best Reached (b) Minimum Solving Time (c) Maximum Solving Time

PSO S–PSO BA S–BAT BH S–BH PSO S–PSO BA S–BAT BH S–BH PSO S–PSO BA S–BAT BH S–BH

MKP01 30 30 0 25 4 4 62 93 35 60 121 209 82 128 93 104 149 251

MKP02 20 28 1 9 0 0 64 99 30 46 251 82 78 127 100 79 95 104

MKP03 1 3 0 0 0 0 81 128 36 81 107 114 96 178 82 2821 131 137

MKP04 0 0 0 0 0 0 127 188 53 128 157 187 141 237 133 276 205 225

MKP05 0 0 0 0 0 0 412 421 8520 7503 13,827 13,649 517 535 162,779 60,468 18,624 17,446

MKP06 23 26 0 4 0 0 143 154 495 1099 2490 2536 180 203 1694 4872 2918 2772

MKP07 18 15 0 4 0 0 81 90 53 123 244 255 114 113 155 243 321 314

MKP08 0 0 0 0 0 0 120 159 57 109 110 150 148 199 120 174 145 191

MKP09 25 25 0 17 1 1 342 513 15,036 69,286 74,270 66,888 484 660 75,748 297,611 86,125 76,488

MKP10 23 23 2 16 0 0 559 456 12,909 32,863 41,213 38,791 456 696 323,688 213,580 53,025 47,676

MKP11 13 18 1 7 0 0 271 408 4639 6238 15,006 13,445 309 504 42,215 32,245 21,913 15,735

MKP12 0 0 0 7 0 0 304 216 240,867 821 2836 304 216 393 14,146,516 1955 3476 393

MKP13 1 4 1 4 0 4 51 89 35 99 82 89 76 131 101 142 100 131

MKP14 8 8 1 6 8 8 110 154 106 667 500 122 148 153 303 306 612 153

MKP15 6 7 0 1 0 3 52 90 54 49 77 87 75 133 177 123 110 162

MKP16 8 10 0 2 0 10 114 180 184 401 660 180 144 238 487 1322 795 238

MKP17 0 0 0 0 0 0 131 159 97 954,304 122 177 167 198 191 78,392,197 158 226

MKP18 0 0 0 0 0 0 132 165 98 177 123 129 188 202 233 415 150 206

MKP19 0 0 0 0 0 0 130 164 111 141 125 180 166 196 305 318 154 282

MKP20 0 0 0 0 0 0 112 155 105 167 127 184 174 203 467 541 161 214

Entropy 2022, 24, 1293 15 of 28

Table 3. Experimental results of Shannon PSO against its native version.

ID Zopt

Native PSO Shannon PSO

Zmax RPDmax Zmed RPDmed Zavg RPDavg Zsd Zmax RPDmax Zmed RPDmed Zavg RPDavg Zsd

MKP01 6120 6120 0.00 6120 0.00 6120 0.00 0.00 6120 0.00 6120 0.00 6120 0.00 0.00

MKP02 12,400 12,240 0.00 12,400 0.00 12,396.45 0.00 4.86 12,240 0.00 12,400 0.00 12,399.03 0.00 3.01

MKP03 10,618 10,618 0.00 10,572 0.00 10,562.70 0.00 31.92 10,618 0.00 10,561 0.00 10,565.51 0.00 31.29

MKP04 16,537 16,516 0.13 16,408 0.00 16,407.2 0.00 55.97 16,517 0.12 16,403 0.00 16,410.58 0.00 47.90

MKP05 8722 8674 0.55 8612 0.01 8609.90 0.01 27.63 8705 0.19 8608 0.01 8607.45 0.01 34.73

MKP06 98,796 98,796 0.00 98,796 0.00 97,473.16 0.01 1735.06 98,796 0.00 98,796 0.00 97,998.61 0.00 1503.18

MKP07 130,623 130,623 0.00 130,623 0.00 130,459.45 0.00 273.16 130,623 0.00 130,233 0.00 130,360.41 0.00 345.60

MKP08 1,095,445 1,074,459 1.92 1,063,435 0.02 1,063,110.38 0.02 5623.42 1,080,226 1.39 1,060,724 0.03 1061215.71 0.03 6497.72

MKP09 4115 4115 0.00 4115 0.00 4104.83 0.00 23.55 4115 0.00 4115 0.00 4105.74 0.00 21.94

MKP10 5567 5567 0.00 5567 0.00 5561.70 0.00 9.30 5567 0.00 5567 0.00 5561.67 0.00 9.34

MKP11 5605 5605 0.00 5603 0.00 5600.64 0.00 5.68 5605 0.00 5605 0.00 5601.45 0.00 5.43

MKP12 8633 8592 0.47 8523 0.01 8513.03 0.01 42.43 8595 0.44 8508 0.01 8507.32 0.01 42.17

MKP13 3090 3090 0.00 3060 0.00 3055.51 0.01 13.00 3090 0.00 3076 0.00 3063.06 0.00 22.04

MKP14 2139 2139 0.00 2122 0.00 2118.03 0.00 20.81 2139 0.00 2122 0.00 2118.70 0.00 17.56

MKP15 3418 3418 0.00 3388 0.00 3385.41 0.00 27.38 3418 0.00 3404 0.00 3382 0.01 26.40

MKP16 3186 3186 0.00 3173 0.00 3154.83 0.00 22.95 3186 0.00 3173 0.00 3165.03 0.00 25.08

MKP17 unknown 57,415 - 57,261 - 56,711.51 - 288.09 57,821 - 57,165 - 57,167.87 - 276.97

MKP18 unknown 60,421 - 59,544 - 59,505.48 - 342.39 60,423 - 59,743 - 59,766.22 - 268.25

MKP19 unknown 58,481 - 57,477 - 57,442.41 - 290.47 58,550 - 57,982 - 57,991.45 - 262.92

MKP20 unknown 58,880 - 58,325 - 58,321.22 - 338.59 59,021 - 58,363 - 58,336.61 - 318.37

Entropy 2022, 24, 1293 16 of 28

Table 4. Experimental results of Shannon BAT against its native version.

ID Zopt

Native BAT Shannon BAT

Zmax RPDmax Zmed RPDmed Zavg RPDavg Zsd Zmax RPDmax Zmed RPDmed Zavg RPDavg Zsd

MKP01 6120 6110 0.16 6010 0.01 5904.04 0.03 0.00 6120 0.00 6100 0.00 6017.61 0.01 0.00

MKP02 12,400 12,240 0.00 11,930 0.03 11,984.35 0.03 183.74 12,240 0.00 12,370 0.00 12,253.87 0.01 177.02

MKP03 10618 10,520 0.92 10,359 0.02 10,359.96 0.02 4.79 10,604 0.13 10,481 0.01 10,462.77 0.01 4.50

MKP04 16,537 16357 1.09 16,088 0.02 15,836.74 0.04 22.34 16,511 0.16 16,382 0.00 16,302.12 0.01 27.41

MKP05 8722 8568 1.77 8410 0.03 8405.77 0.03 42.56 8711 0.13 8663 0.00 8657.03 0.00 41.11

MKP06 98,796 94,348 4.50 91,618 0.07 89,691.32 0.09 196.63 98,796 0.00 94,738 0.04 95,067.19 0.03 35.85

MKP07 130,623 124,530 4.66 120,399 0.07 11,9467.67 0.08 4368.55 130,623 0.00 125,360 0.04 125,990.06 0.03 3655.85

MKP08 1,095,445 1,088,227 0.66 1,066,018 0.02 106,5867.29 0.02 4676.20 1,095,206 0.02 1,090,905 0.00 1,090,574.74 0.00 109.14

MKP09 4115 4080 0.85 4013 0.02 3983.96 0.03 56.62 4115 0.00 4115 0.00 4084.16 0.00 43.97

MKP10 5567 5567 0.00 5412 0.02 5398 0.03 1358.46 5567 0.00 5567 0.00 5545.80 0.00 224.29

MKP11 5605 5605 0.00 5452 0.02 5425.70 0.03 63.94 5605 0.00 5592 0.00 5557.51 0.00 20.02

MKP12 8633 8633 0.00 8410 0.02 8404.83 0.02 86.32 8633 0.00 8619 0.00 8612.48 0.00 41.79

MKP13 3090 3090 0.00 3008 0.02 3006 0.02 52.02 3090 0.00 3076 0.00 3063.06 0.00 52.16

MKP14 2139 2139 0.00 2079 0.02 2075.96 0.02 49.58 2139 0.00 2085 0.02 2097.74 0.01 56.23

MKP15 3418 3388 0.88 3316 0.02 3314.12 0.03 83.68 3418 0.00 3335 0.02 3330.09 0.02 92.92

MKP16 3186 3119 2.10 3073 0.02 3066.38 0.03 11210.30 3186 0.00 3094 0.02 3101.03 0.02 2991.02

MKP17 unknown 58,192 - 56,908 - 56,948.19 - 101.16 42,406 - 58,821 - 58,749.51 - 55.13

MKP18 unknown 60,502 - 59,380 - 59,374.67 - 92.26 60,423 - 61,098 - 61,041.671 - 56.33

MKP19 unknown 58,639 - 58,025 - 57,967.83 - 82.14 60,018 - 59,484 - 59,468.61 - 13.03

MKP20 unknown 59,402 - 58,089 - 58,048.77 - 40.61 60,654 - 60,151 - 60,105.80 - 13.47

Entropy 2022, 24, 1293 17 of 28

Table 5. Experimental results of Shannon BH against its native version.

ID Zopt

Native BH Shannon BH

Zmax RPDmax Zmed RPDmed Zavg RPDavg Zsd Zmax RPDmax Zmed RPDmed Zavg RPDavg Zsd

MKP01 6120 6110 0.00 6090 0.00 6083.22 0.00 30.48 6120 0.00 6090 0.00 6083.22 0.00 31.82

MKP02 12,400 12,240 1.29 12,100 0.02 12,084.03 0.02 98.62 12,360 0.32 12,100 0.02 12,091.77 0.02 118.87

MKP03 10,618 10,584 0.32 10,374 0.02 10,385.54 0.02 57.29 10,532 0.81 10,388 0.02 10,394.45 0.02 52.43

MKP04 16,537 16,234 1.83 16,017 0.03 16,046.80 0.02 97.87 16,252 1.72 16,028 0.03 16,038.03 0.03 84.18

MKP05 8722 8293 4.92 8124 0.06 8128.12 0.06 76.63 8417 3.50 8123 0.06 8140.32 0.06 113.49

MKP06 98,796 94,348 4.50 92,942 0.05 92,906.19 0.05 644.72 98,346 0.46 92,777 0.06 92,927.83 0.05 1330.35

MKP07 130,623 127,943 2.05 123,910 0.05 124,179.48 0.04 1937.12 127,953 2.04 124,462 0.04 124,476.41 0.04 2036.33

MKP08 1,095,445 998,864 8.82 1,006,919 0.08 1,007,945.67 0.07 12,822.05 999,278 8.78 1,001,572 0.08 1,004,224.58 0.08 10,919.46

MKP09 4115 4115 0.00 4024 0.02 4014.70 0.02 63.56 4115 0.00 4024 0.02 4030.93 0.02 50.38

MKP10 5567 5381 3.34 5214 0.06 5227.35 0.06 61.07 5407 2.87 5233 0.05 5251.25 0.05 81.32

MKP11 5605 5494 1.98 5308 0.05 5317.06 0.05 76.91 5450 2.77 5282 0.05 5301.03 0.05 62.07

MKP12 8633 8170 5.36 7902 0.08 7891.19 0.08 129.37 8595 0.44 8508 0.01 8507.32 0.01 42.17

MKP13 3090 3059 1.00 3026 0.02 3024.16 0.02 19.43 3090 0.00 3076 0.00 3063.06 0.00 22.04

MKP14 2139 2139 0.00 2122 0.00 2115.48 0.01 19.06 2139 0.00 2122 0.00 2118.70 0.00 17.56

MKP15 3418 3388 0.88 3356 0.01 3351.22 0.01 20.72 3418 0.00 3388 0.00 3382 0.01 23.39

MKP16 3186 3114 2.26 3070 0.03 3071.96 0.03 20.53 3186 0.00 3173 0.00 3165.03 0.00 25.08

MKP17 unknown 56,455 - 55,719 - 55,784.29 - 303.38 56,633 - 55,784 - 55,865.22 - 340.99

MKP18 unknown 58,921 - 58,149 - 58,132.38 - 264.85 59,097 - 58,102 - 58,192.51 - 342.95

MKP19 unknown 57,653 - 56,699 - 56,681.19 - 341.39 57,859 - 56,740 - 56,859 - 370.84

MKP20 unknown 57,337 - 56,861 - 56,859.54 - 280.80 57,597 - 56,948 - 56,908.64 - 345.66

Entropy 2022, 24, 1293 18 of 28

52
00

54
00

56
00

58
00

60
00

62
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP01

10
,0

00
10

,5
00

11
,0

00
11

,5
00

12
,0

00
12

,5
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP02

85
00

90
00

95
00

10
,0

00
10

,5
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP03

14
,5

00
15

,0
00

15
,5

00
16

,0
00

16
,5

00
Fi

tn
es

s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP04

50
00

60
00

70
00

80
00

90
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP05

60
,0

00
70

,0
00

80
,0

00
90

,0
00

10
0,

00
0

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP06

90
,0

00
10

0,
00

0
11

0,
00

0
12

0,
00

0
13

0,
00

0
Fi

tn
es

s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP07

70
0,

00
0

80
0,

00
0

90
0,

00
0

1,
00

0,
00

0
1,

10
0,

00
0

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP08

30
00

35
00

40
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP09

35
00

40
00

45
00

50
00

55
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP10

40
00

45
00

50
00

55
00

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP11

60
00

65
00

70
00

75
00

80
00

85
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP12

26
00

27
00

28
00

29
00

30
00

31
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP13

18
00

19
00

20
00

21
00

22
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP14

26
00

28
00

30
00

32
00

34
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP15

26
00

28
00

30
00

32
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP16

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP17

40
,0

00
45

,0
00

50
,0

00
55

,0
00

60
,0

00
Fi

tn
es

s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP18

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP19

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-PSO PSO

Convergence of MKP20

Figure 4. Convergence charts of PSO vs. Shannon PSO.

Entropy 2022, 24, 1293 19 of 28

61
19

61
21

Distribution of MKP01

S-PSO PSO

12
,3

90
12

,3
92

12
,3

94
12

,3
96

12
,3

98
12

,4
00

Distribution of MKP02

S-PSO PSO

10
,5

00
10

,5
50

10
,6

00
10

,6
50

Distribution of MKP03

S-PSO PSO

16
,3

00
16

,3
50

16
,4

00
16

,4
50

16
,5

00
Distribution of MKP04

S-PSO PSO

85
50

86
00

86
50

87
00

Distribution of MKP05

S-PSO PSO

95
,0

00
96

,0
00

97
,0

00
98

,0
00

99
,0

00

Distribution of MKP06

S-PSO PSO

12
9,

00
0

12
9,

50
0

13
0,

00
0

13
0,

50
0

Distribution of MKP07

S-PSO PSO

1.
1e

+
06

1.
1e

+
06

1.
1e

+
06

1.
1e

+
06

Distribution of MKP08

S-PSO PSO

40
40

40
60

40
80

41
00

41
20

Distribution of MKP09

S-PSO PSO

55
40

55
50

55
60

55
70

Distribution of MKP10

S-PSO PSO

55
90

55
95

56
00

56
05

Distribution of MKP11

S-PSO PSO

84
00

84
50

85
00

85
50

86
00

Distribution of MKP12

S-PSO PSO

30
00

30
20

30
40

30
60

30
80

31
00

Distribution of MKP13

S-PSO PSO

20
80

21
00

21
20

21
40

Distribution of MKP14

S-PSO PSO

33
20

33
40

33
60

33
80

34
00

34
20

Distribution of MKP15

S-PSO PSO

30
80

31
00

31
20

31
40

31
60

31
80

Distribution of MKP16

S-PSO PSO

56
,0

00
56

,5
00

57
,0

00
57

,5
00

58
,0

00

Distribution of MKP17

S-PSO PSO

58
,5

00
59

,0
00

59
,5

00
60

,0
00

60
,5

00

Distribution of MKP18

S-PSO PSO

57
,0

00
57

,5
00

58
,0

00
58

,5
00

Distribution of MKP19

S-PSO PSO

57
,0

00
57

,5
00

58
,0

00
58

,5
00

59
,0

00

Distribution of MKP20

S-PSO PSO

Figure 5. Distribution charts of PSO vs. Shannon PSO.

Entropy 2022, 24, 1293 20 of 28

52
00

54
00

56
00

58
00

60
00

62
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP01

90
00

10
,0

00
11

,0
00

12
,0

00
13

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP02

80
00

85
00

90
00

95
00

10
,0

00
10

,5
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP03

14
,5

00
15

,0
00

15
,5

00
16

,0
00

16
,5

00
Fi

tn
es

s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP04

50
00

60
00

70
00

80
00

90
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP05

70
,0

00
75

,0
00

80
,0

00
85

,0
00

90
,0

00
95

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Distribution ofcMKP06
10

0,
00

0
11

0,
00

0
12

0,
00

0
13

0,
00

0
Fi

tn
es

s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP07

70
0,

00
0

80
0,

00
0

90
0,

00
0

1,
00

0,
00

0
1,

10
0,

00
0

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP08

34
00

36
00

38
00

40
00

42
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP09

40
00

45
00

50
00

55
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP10

45
00

50
00

55
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP11

60
00

65
00

70
00

75
00

80
00

85
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP12

28
50

29
00

29
50

30
00

30
50

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP13

18
50

19
00

19
50

20
00

20
50

21
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP14

30
00

31
00

32
00

33
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP15

26
00

27
00

28
00

29
00

30
00

31
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP16

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP17

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP18

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iterations

S-BAT BAT

Convergence of MKP19

45
,0

00
50

,0
00

55
,0

00
60

,0
00

Fi
tn

es
s

0 100 200 300 400 500
Iteraciones

S-BAT BAT

Convergence of MKP20

Figure 6. Convergence charts of BAT vs. Shannon BAT.

Entropy 2022, 24, 1293 21 of 28

5
2

0
0

5
4

0
0

5
6

0
0

5
8

0
0

6
0

0
0

6
2

0
0

Distribution of MKP01

S-BAT BAT

11
,6

00
11

,8
00

12
,0

00
12

,2
00

12
,4

00

Distribution of MKP02

S-BAT BAT

10
,2

00
10

,3
00

10
,4

00
10

,5
00

10
,6

00

Distribution of MKP03

S-BAT BAT

14
,5

00
15

,0
00

15
,5

00
16

,0
00

16
,5

00
Distribution of MKP04

S-BAT BAT

80
00

82
00

84
00

86
00

88
00

Distribution of MKP05

S-BAT BAT

70
,0

00
80

,0
00

90
,0

00
10

00
00

Distribution of MKP06

S-BAT BAT

10
5,

00
0

11
0,

00
0

11
5,

00
0

12
0,

00
0

12
5,

00
0

13
0,

00
0

Distribution of MKP07

S-BAT BAT

1.
0e

+
06

1.
1e

+
06

1.
1e

+
06

1.
1e

+
06

Distribution of MKP08

S-BAT BAT

37
00

38
00

39
00

40
00

41
00

Distribution of MKP09

S-BAT BAT

50
00

52
00

54
00

56
00

Distribution of MKP10

S-BAT BAT

50
00

52
00

54
00

56
00

Distribution of MKP11

S-BAT BAT

50
00

60
00

70
00

80
00

90
00

Distribution of MKP12

S-BAT BAT

29
00

29
50

30
00

30
50

31
00

Distribution of MKP13

S-BAT BAT

20
00

20
50

21
00

21
50

Distribution of MKP14

S-BAT BAT

31
50

32
00

32
50

33
00

33
50

34
00

Distribution of MKP15

S-BAT BAT

29
50

30
00

30
50

31
00

31
50

32
00

Distribution of MKP16

S-BAT BAT

56
,0

00
57

,0
00

58
,0

00
59

,0
00

60
,0

00

Distribution of MKP17

S-BAT BAT

58
,0

00
59

,0
00

60
,0

00
61

,0
00

62
,0

00

Distribution of MKP18

S-BAT BAT

57
,0

00
58

,0
00

59
,0

00
60

,0
00

Distribution of MKP19

S-BAT BAT

57
,0

00
58

,0
00

59
,0

00
60

,0
00

61
,0

00

Distribution of MKP20

S-BAT BAT

Figure 7. Distribution charts of BAT vs. Shannon BAT.

Entropy 2022, 24, 1293 22 of 28

45
00

50
00

55
00

60
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP01

10
,0

00
11

,0
00

11
,5

00
12

,0
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP02

90
00

95
00

10
,0

00
10

,5
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP03

13
,5

00
14

,0
00

14
,5

00
15

,0
00

15
,5

00
16

,0
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP04

50
00

60
00

70
00

80
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP05

70
,0

00
75

,0
00

80
,0

00
85

,0
00

90
,0

00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP06
10

0,
00

0
11

0,
00

0
12

0,
00

0

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP07

75
0,

00
0

80
0,

00
0

85
0,

00
0

90
0,

00
0

95
0,

00
0

1,
00

0,
00

0

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP08

25
00

30
00

35
00

40
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP09

35
00

40
00

45
00

50
00

55
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP10

35
00

40
00

45
00

50
00

55
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP11

60
00

65
00

70
00

75
00

80
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP12

26
00

27
00

28
00

29
00

30
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP13

19
50

20
00

20
50

21
00

21
50

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP14

28
00

30
00

32
00

34
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP15

24
00

26
00

28
00

30
00

32
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP16

40
,0

00
45

,0
00

50
,0

00
55

,0
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP17

48
,0

00
50

,0
00

52
,0

00
54

,0
00

56
,0

00
58

,0
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP18

40
,0

00
45

,0
00

50
,0

00
55

,0
00

60
,0

00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP19

45
,0

00
50

,0
00

55
,0

00
60

,0
00

0 100 200 300 400 500
Iterations

S-BH BH

Convergence of MKP20

Figure 8. Convergence charts of BH vs. Shannon BH.

Entropy 2022, 24, 1293 23 of 28

60
00

60
50

61
00

61
50

Distribution of MKP01

S-BH BH

11
,8

00
12

,0
00

12
,2

00
12

,4
00

Distribution of MKP02

S-BH BH

10
,3

00
10

,4
00

10
,5

00
10

,6
00

Distribution of MKP03

S-BH BH

15
,9

00
16

,0
00

16
,1

00
16

,2
00

16
,3

00
Distribution of MKP04

S-BH BH

79
00

80
00

81
00

82
00

83
00

84
00

Distribution of MKP05

S-BH BH

90
,0

00
92

,0
00

94
,0

00
96

,0
00

98
,0

00

Distribution of MKP06

S-BH BH

12
0,

00
0

12
2,

00
0

12
4,

00
0

12
6,

00
0

12
8,

00
0 Distribution of MKP07

S-BH BH

98
0,

00
0

1.
0e

+
06

1.
0e

+
06

1.
0e

+
06

Distribution of MKP08

S-BH BH

98
0,

00
0

1.
0e

+
06

1.
0e

+
06

1.
0e

+
06

Distribution of MKP08

S-BH BH

51
00

52
00

53
00

54
00

Distribution of MKP10

S-BH BH

51
00

52
00

53
00

54
00

55
00

Distribution of MKP11

S-BH BH

76
00

78
00

80
00

82
00

84
00

86
00

Distribution of MKP12

S-BH BH

29
50

30
00

30
50

31
00

Distribution of MKP13

BH

20
80

21
00

21
20

21
40

Distribution of MKP14

S-BH BH

33
00

33
50

34
00

34
50

Distribution of MKP15

S-BH BH

30
00

30
50

31
00

31
50

32
00

Distribution of MKP16

S-BH BH

55
,0

00
55

,5
00

56
,0

00
56

,5
00

57
,0

00

Distribution of MKP17

S-BH BH

57
,5

00
58

,0
00

58
,5

00
59

,0
00

Distribution of MKP18

S-BH BH

56
,0

00
56

,5
00

57
,0

00
57

,5
00

58
,0

00

Distribution of MKP19

S-BH BH

56
,0

00
56

,5
00

57
,0

00
57

,5
00

S-BH BH

Distribution of MKP20

Figure 9. Distribution charts of BH vs. Shannon BH.

Entropy 2022, 24, 1293 24 of 28

7. Statistical Analysis

To evidence a statistical significance between the native bio-inspired algorithm and
its improved version by the Shannon strategy, we perform a robust analysis that includes
normality assessment and contrast of hypotheses to determine if the samples come or
not from an equidistributed sequence. Firstly, Shapiro–Wilk is required to study the
independence of samples. It determines if observations (runs per instance) draw a Gaussian
distribution. Then, we establish H0 as samples follow a normal distribution. Therefore, H1
assumes the opposite. The traditional limit of p-value is 0.05, for which results under this
threshold state the test is said to be significant (H0 rejects). Table 6 shows p-values obtained
by native algorithms and their enhanced versions for each instance. Note that ∼0 indicates
a small p-value near 0, and the hyphen means the test was not significant.

Table 6. Test Shapiro–Wilk for native algorithms and their enhanced versions.

ID
Native Methods Shannon Strategy

PSO BAT BH S–PSO S–BAT S–BH

MKP01 ∼0 – 0.00367 – – –
MKP02 – 0.04057 – ∼0 ∼0 ∼0
MKP03 ∼0 – 0.00291 – ∼0 –
MKP04 ∼0 ∼0 ∼0 0.00065 – ∼0
MKP05 – – ∼0 0.00982 – –
MKP06 ∼0 0.00083 ∼0 ∼0 0.00072 ∼0
MKP07 ∼0 0.00065 ∼0 ∼0 0.0026 ∼0
MKP08 ∼0 – ∼0 0.0002 – –
MKP09 – 0.0005 – 0.0082 ∼0 ∼0
MKP10 ∼0 – ∼0 0.00712 0.00033 –
MKP11 ∼0 0.00629 – ∼0 0.00037 ∼0
MKP12 – – ∼0 – 0.00001 –
MKP13 0.00036 0.0034 – 0.00036 0.00126 0.00126
MKP14 0.00011 ∼0 0.00086 0.00011 0.00266 0.00015
MKP15 0.01802 – 0.00917 0.01802 – 0.00257
MKP16 0.00002 ∼0 0.0054 0.00002 ∼0 0.00002
MKP17 – ∼0 ∼0 0.0006 0.03037 –
MKP18 ∼0 ∼0 – 0.00054 0.00076 ∼0
MKP19 ∼0 0.00658 ∼0 0.06661 0.0012 ∼0
MKP20 ∼0 0.0054 ∼0 0.0004 ∼0 –

About 63% of the results confirm that the samples do not follow a normal distribu-
tion, so we decide to employ the non-parametric test Mann—Whitney—Wilcoxon. The
idea behind this test is the following: if the two compared samples come from the same
population, by joining all the observations and ordering them from smallest to largest, it
would be expected that the observations of one and the other sample would be randomly
interspersed [61].

To develop the test, we assume H0 as the null hypothesis that affirms native methods
generate better (smaller) values than their versions improved by the Shannon entropy.
Thus, H1 suggests otherwise. Table 7 exposes results of contrasts. Again, we use 0.05 as
the upper threshold for p-values and smaller values allow us to reject H0 and, therefore,
assume H1 as true. To detail the results obtained by the test, we deployed more significant
digits, and we applied hyphens when the test was not significant.

Entropy 2022, 24, 1293 25 of 28

Table 7. Test Mann–Whitney–Wilcoxon for native algorithms against their enhanced versions.

ID PSO vs. S–PSO BAT vs. S–BAT BH vs. S–BH

MKP01 – 2.9581384 × 10−9 –
MKP02 0.00014 3.9834857 × 10−7 –
MKP03 – 6.1540486 × 10−6 –
MKP04 – 2.9163915 × 10−11 –
MKP05 – 6.6611161 × 10−12 –
MKP06 0.00573 1.5107026 × 10−12 –
MKP07 – 9.5509242 × 10−8 –
MKP08 – 1.4444445 × 10−2 –
MKP09 – 4.7065594 × 10−9 –
MKP10 – 3.1609970 × 10−11 –
MKP11 – 4.9246126 × 10−6 –
MKP12 – 1.1318991 × 10−10 6.6650018 × 10−13

MKP13 0.00908663513 5.1131699 × 10−9 4.8034849 × 10−8

MKP14 – 0.0037256 –
MKP15 – 0.0208799 1.5990313 × 10−5

MKP16 – 0.0049714 5.8935079 × 10−12

MKP17 2.6426213 × 10−9 6.6571193 × 10−12 –
MKP18 1.4444445 × 10−12 1.0824563 × 10−12 –
MKP19 2.9162619 × 10−9 6.6688876 × 10−12 –
MKP20 1.0321732 × 10−11 7.3535622 × 10−12 –

Finally, and consistent with the previous results, the test strongly establishes that the
bat optimizer is the bio–inspired method that benefits the most from the Shannon strategy
(see Figures 6 and 7). The robustness of this test is also evident with PSO and BH. We can see
that the best results are adjusted to those already shown. For example, S–PSO on MKP02
and MKP06 instances is noticeably better than its native version (see Figures 4 and 5).
Similarly, S–BH on MKP12, MKP13, MKP15, and MKP16 instances performs better than
the original version (see Figures 8 and 9).

8. Conclusions

Despite the efficiency shown over the last few years, bio-inspired algorithms tend to
stagnate in local optimal when facing complex optimization problems. During iterations,
one or more solutions are not modified; therefore, resources are spent without obtaining
improvements. Various methods, such as Random Walk, Levy Flight, and Roulette Wheel,
use random diversification components to prevent this problem. This work proposes a
new exploration strategy using the Shannon entropy as a movement operator on three
swarm bio-inspired algorithms: particle swarm optimization, bat optimization, and black
hole algorithm. The mission of this component is first to recognize stagnated solutions by
applying information given by the solving process and then provide a policy to explore new
promising zones. To evidence the reached performances by three optimization methods,
we solve twenty instances of the 0/1 multidimensional knapsack problem, which is a
variation of the well–known traditional optimization problem. Regarding the solving
time, the results show that including an additional component increases the required time
to reach the best solutions. However, in terms of accuracy to achieve optimal solutions,
there is no doubt that this component significantly improves the resolution process of
metaheuristics. We performed a statistical study on the results to ensure this conjecture was
correct. As samples are independent and do not follow a normal distribution, we employ
the Wilcoxon—Mann—Whitney test, a non-parametric statistical evaluation, to contrast
the null hypothesis that the means of two populations are equal. Effectively, the swarm

Entropy 2022, 24, 1293 26 of 28

intelligence methods improved by the Shannon entropy exhibit significantly better yields
than their original versions.

In future work, we propose comparing this proposal against other entropy methods,
such as linear, Rényiand, or Tsallis, because they work an occurrence probability similar to
Shannon. On the other hand, this research opens a challenge to analyze data generated by
metaheuristics when internal search mechanisms operate. For example, the local search,
exploration, or exploitation processes can converge on common ground. If this information
is used correctly, we can be in front of powerful self-improvement techniques. In this
scenario, we can design data-driven optimization algorithms capable of solving the problem
and self-managing to perform this resolution in the best possible way.

Author Contributions: Formal analysis, R.O., R.S., B.C., F.R. and R.M.; investigation, R.O., R.S., B.C.,
F.R., R.M., V.R., R.C. and C.C.; methodology, R.O., R.S. and C.C.; resources, R.S. and B.C.; software,
R.O., V.R. and R.C.; validation, R.S., B.C., F.R., R.M. and C.C.; writing—original draft, R.O., V.R. and
R.C.; writing—review & editing, R.O., R.S., B.C., F.R., R.M., V.R., R.C. and C.C. All the authors of this
paper hold responsibility for every part of this manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: Broderick Crawford and Ricardo Soto, both are supported by grant ANID/FONDECYT/
REGULAR/1210810. Roberto Muñoz is supported by grant ANID/FONDECYT/REGULAR/1211905.
Fabián Riquelme is partially supported by grant ANID/FONDECYT/INICIACIÓN/11200113.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the reviewers for their thoughtful comments and efforts
toward improving our manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
2. Reeves, C.R. Genetic Algorithms. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 109–139. [CrossRef]
3. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
4. Yang, X.S. Nature-Inspired Metaheuristic Algorithms: Second Edition; Luniver Press: Frome, UK, 2010.
5. Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [CrossRef]
6. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
7. Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Dordrecht,

The Netherlands, 1987; pp. 7–15.
8. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng.

2019, 137, 106040. [CrossRef]
9. Kar, A.K. Bio inspired computing—A review of algorithms and scope of applications. Expert Syst. Appl. 2016, 59, 20–32.

[CrossRef]
10. Glover, F.; Samorani, M. Intensification, Diversification and Learning in metaheuristic optimization. J. Heuristics 2019, 25, 517–520.

[CrossRef]
11. Cuevas, E.; Echavarría, A.; Ramírez-Ortegón, M.A. An optimization algorithm inspired by the States of Matter that improves the

balance between exploration and exploitation. Appl. Intell. 2013, 40, 256–272. [CrossRef]
12. Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A Survey of Swarm Algorithms Applied to Discrete Optimization Problems.

In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–191. [CrossRef]
13. Nanda, S.J.; Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 2014,

16, 1–18. [CrossRef]
14. Révész, P. Random Walk in Random and Non-Random Environments; World Scientific: Singapore, 2005.
15. Weiss, G.H.; Rubin, R.J. Random walks: Theory and selected applications. Adv. Chem. Phys. 1983, 52, 363–505.
16. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley Longman Publishing Co.,

Inc.: Boston, MA, USA, 1989; ISBN 0201157675.

http://doi.org/10.1007/978-1-4419-1665-5_5
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1016/j.eswa.2016.04.018
http://dx.doi.org/10.1007/s10732-019-09409-w
http://dx.doi.org/10.1007/s10489-013-0458-0
http://dx.doi.org/10.1016/b978-0-12-405163-8.00007-7
http://dx.doi.org/10.1016/j.swevo.2013.11.003

Entropy 2022, 24, 1293 27 of 28

17. Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. Stat. Mech. Appl. 2012, 391, 2193–2196.
[CrossRef]

18. Blickle, T.; Thiele, L. A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 1996, 4, 361–394.
[CrossRef]

19. Glover, F. Tabu search—Part I. Orsa J. Comput. 1989, 1, 190–206. [CrossRef]
20. Glover, F. Tabu search—Part II. Orsa J. Comput. 1990, 2, 4–32. [CrossRef]
21. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics; The Regents of the University of California: Oakland, CA, USA, 1961.
22. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
23. Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory

2004, 50, 1220–1228. [CrossRef]
24. Naderi, E.; Narimani, H.; Pourakbari-Kasmaei, M.; Cerna, F.V.; Marzband, M.; Lehtonen, M. State-of-the-Art of Optimal Active

and Reactive Power Flow: A Comprehensive Review from Various Standpoints. Processes 2021, 9, 1319. [CrossRef]
25. Naderi, E.; Azizivahed, A.; Asrari, A. A step toward cleaner energy production: A water saving-based optimization approach for

economic dispatch in modern power systems. Electr. Power Syst. Res. 2022, 204, 107689. [CrossRef]
26. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1979.
27. Liu, J.; Wu, C.; Cao, J.; Wang, X.; Teo, K.L. A Binary differential search algorithm for the 0–1 multidimensional knapsack problem.

Appl. Math. Model. 2016, 40, 9788–9805. [CrossRef]
28. Cacchiani, V.; Iori, M.; Locatelli, A.; Martello, S. Knapsack problems—An overview of recent advances. Part II: Multiple,

multidimensional, and quadratic knapsack problems. Comput. Oper. Res. 2022, 143, 105693. [CrossRef]
29. Rezoug, A.; el den, M.B.; Boughaci, D. Application of Supervised Machine Learning Methods on the Multidimensional Knapsack

Problem. Neural Process. Lett. 2021, 54, 871–890. [CrossRef]
30. Beasley, J.E. Multidimensional Knapsack Problems. In Encyclopedia of Optimization; Springer: Berlin/Heidelberg, Germany, 2009;

pp. 1607–1611. [CrossRef]
31. Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications.

Swarm Evol. Comput. 2017, 33, 1–17. [CrossRef]
32. Gendreau, M.; Potvin, J.Y. (Eds.) Handbook of Metaheuristics; Springer: New York, NY, USA, 2010.
33. Panos, M.; Pardalos, M.G.R. Handbook of Applied Optimization; Oxford University Press: Oxford, UK, 2002.
34. Voß, S.; Dreo, J.; Siarry, P.; Taillard, E. Metaheuristics for Hard Optimization. Math. Methods Oper. Res. 2007, 66, 557–558.

[CrossRef]
35. Voß, S.; Martello, S.; Osman, I.H.; Roucairol, C. (Eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization;

Springer: New York, NY, USA, 1998.
36. Vaessens, R.; Aarts, E.; Lenstra, J. A local search template. Comput. Oper. Res. 1998, 25, 969–979. [CrossRef]
37. El-Henawy, I.; Ahmed, N. Meta-Heuristics Algorithms: A Survey. Int. J. Comput. Appl. 2018, 179, 45–54. [CrossRef]
38. Baghel, M.; Agrawal, S.; Silakari, S. Survey of Metaheuristic Algorithms for Combinatorial Optimization. Int. J. Comput. Appl.

2012, 58, 21–31. [CrossRef]
39. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2018, 52,

2191–2233. [CrossRef]
40. Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: hybridizing metaheuristics with machine learning for optimization

with dynamic inputs. Open Math. 2017, 15, 261–280. [CrossRef]
41. Pires, E.; Machado, J.; Oliveira, P. Dynamic shannon performance in a multiobjective particle swarm optimization. Entropy 2019,

21, 827. [CrossRef]
42. Pires, E.J.S.; Machado, J.A.T.; de Moura Oliveira, P.B. Entropy diversity in multi-objective particle swarm optimization. Entropy

2013, 15, 5475–5491. [CrossRef]
43. Weerasuriya, A.; Zhang, X.; Wang, J.; Lu, B.; Tse, K.; Liu, C.H. Performance evaluation of population-based metaheuristic

algorithms and decision-making for multi-objective optimization of building design. Build. Environ. 2021, 198, 107855. [CrossRef]
44. Guo, W.; Zhu, L.; Wang, L.; Wu, Q.; Kong, F. An Entropy-Assisted Particle Swarm Optimizer for Large-Scale Optimization

Problem. Mathematics 2019, 7, 414. [CrossRef]
45. Jamal, R.; Men, B.; Khan, N.H.; Raja, M.A.Z.; Muhammad, Y. Application of Shannon Entropy Implementation Into a Novel

Fractional Particle Swarm Optimization Gravitational Search Algorithm (FPSOGSA) for Optimal Reactive Power Dispatch
Problem. IEEE Access 2021, 9, 2715–2733. [CrossRef]

46. Vargas, M.; Fuertes, G.; Alfaro, M.; Gatica, G.; Gutierrez, S.; Peralta, M. The Effect of Entropy on the Performance of Modified
Genetic Algorithm Using Earthquake and Wind Time Series. Complexity 2018, 2018, 4392036. [CrossRef]

47. Muhammad, Y.; Khan, R.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. Design of Fractional Swarm Intelligent Computing
With Entropy Evolution for Optimal Power Flow Problems. IEEE Access 2020, 8, 111401–111419. [CrossRef]

48. Zhang, H.; Xie, J.; Ge, J.; Lu, W.; Zong, B. An Entropy-based PSO for DAR task scheduling problem. Appl. Soft Comput. 2018,
73, 862–873. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2011.12.004
http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1287/ijoc.2.1.4
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TIT.2004.828057
http://dx.doi.org/10.3390/pr9081319
http://dx.doi.org/10.1016/j.epsr.2021.107689
http://dx.doi.org/10.1016/j.apm.2016.06.002
http://dx.doi.org/10.1016/j.cor.2021.105693
http://dx.doi.org/10.1007/s11063-021-10662-z
http://dx.doi.org/10.1007/0-306-48332-7_318
http://dx.doi.org/10.1016/j.swevo.2016.12.005
http://dx.doi.org/10.1007/s00186-007-0180-y
http://dx.doi.org/10.1016/S0305-0548(97)00093-2
http://dx.doi.org/10.5120/ijca2018916427
http://dx.doi.org/10.5120/9391-3813
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1515/math-2017-0029
http://dx.doi.org/10.3390/e21090827
http://dx.doi.org/10.3390/e15125475
http://dx.doi.org/10.1016/j.buildenv.2021.107855
http://dx.doi.org/10.3390/math7050414
http://dx.doi.org/10.1109/ACCESS.2020.3046317
http://dx.doi.org/10.1155/2018/4392036
http://dx.doi.org/10.1109/ACCESS.2020.3002714
http://dx.doi.org/10.1016/j.asoc.2018.09.022

Entropy 2022, 24, 1293 28 of 28

49. Chen, J.; You, X.M.; Liu, S.; Li, J. Entropy-Based Dynamic Heterogeneous Ant Colony Optimization. IEEE Access 2019,
7, 56317–56328. [CrossRef]

50. Mercurio, P.J.; Wu, Y.; Xie, H. An Entropy-Based Approach to Portfolio Optimization. Entropy 2020, 22, 332. [CrossRef]
51. Khan, M.W.; Muhammad, Y.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. A New Fractional Particle Swarm Optimization with

Entropy Diversity Based Velocity for Reactive Power Planning. Entropy 2020, 22, 1112. [CrossRef]
52. Xu, J.; Zhang, J. Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis. In Proceedings of the 33rd Chinese

Control Conference, Nanjing, China, 28–30 July 2014; pp. 8633–8638.
53. Binitha, S.; Sathya, S.S. A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2012, 2, 137–151.
54. Montero, M. Random Walks with Invariant Loop Probabilities: Stereographic Random Walks. Entropy 2021, 23, 729. [CrossRef]
55. Villarroel, J.; Montero, M.; Vega, J.A. A Semi-Deterministic Random Walk with Resetting. Entropy 2021, 23, 825. [CrossRef]

[PubMed]
56. Beasley, J. OR-Library. 1990. Available online: http://people.brunel.ac.uk/~mastjjb/jeb/info.html (accessed on 6 September 2022).
57. Khuri, S.; Bäck, T.; Heitkötter, J. The zero/one multiple knapsack problem and genetic algorithms. In Proceedings of the 1994

ACM Symposium on Applied Computing, Phoenix, AZ, USA, 6–8 March 1994; pp. 188–193.
58. Dammeyer, F.; Voß, S. Dynamic tabu list management using the reverse elimination method. Ann. Oper. Res. 1993, 41, 29–46.

[CrossRef]
59. Drexl, A. A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing 1988, 40, 1–8. [CrossRef]
60. Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting Continuous Metaheuristics to Work in Binary Search

Spaces. Complexity 2017, 2017, 8404231. [CrossRef]
61. Fagerland, M.W.; Sandvik, L. The Wilcoxon-Mann-Whitney test under scrutiny. Stat. Med. 2009, 28, 1487–1497. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2900029
http://dx.doi.org/10.3390/e22030332
http://dx.doi.org/10.3390/e22101112
http://dx.doi.org/10.3390/e23060729
http://dx.doi.org/10.3390/e23070825
http://www.ncbi.nlm.nih.gov/pubmed/34203494
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://dx.doi.org/10.1007/BF02022561
http://dx.doi.org/10.1007/BF02242185
http://dx.doi.org/10.1155/2017/8404231
http://dx.doi.org/10.1002/sim.3561

	Introduction
	Related Work
	Preliminaries
	Shannon Entropy
	Stagnation Problem

	Developed Solution
	Bio–Inspired Methods
	Particle Swarm Optimization
	Black Hole Algorithm
	Bat Optimization
	Common Behavior

	Solving Stagnation
	Stagnation Detecting
	Stagnation Escaping

	Experimental Setup
	Discussion
	Statistical Analysis
	Conclusions
	References

