
����������
�������

Citation: Xiao, M.; Skoglund, M.

Coding for Large-Scale Distributed

Machine Learning. Entropy 2022, 24,

1284. https://doi.org/10.3390/

e24091284

Academic Editor: H. Vincent Poor,

Onur Günlü, Rafael F. Schaefer and

Holger Boche

Received: 12 August 2022

Accepted: 8 September 2022

Published: 12 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Coding for Large-Scale Distributed Machine Learning

Ming Xiao * and Mikael Skoglund *

Division of Information Science and Engineering, Royal Institute of Technology, Malvinas Vag 10, KTH,
100-44 Stockholm, Sweden
* Correspondence: mingx@kth.se (M.X.); skoglund@kth.se (M.S.)

Abstract: This article aims to give a comprehensive and rigorous review of the principles and recent
development of coding for large-scale distributed machine learning (DML). With increasing data
volumes and the pervasive deployment of sensors and computing machines, machine learning has
become more distributed. Moreover, the involved computing nodes and data volumes for learning
tasks have also increased significantly. For large-scale distributed learning systems, significant
challenges have appeared in terms of delay, errors, efficiency, etc. To address the problems, various
error-control or performance-boosting schemes have been proposed recently for different aspects,
such as the duplication of computing nodes. More recently, error-control coding has been investigated
for DML to improve reliability and efficiency. The benefits of coding for DML include high-efficiency,
low complexity, etc. Despite the benefits and recent progress, however, there is still a lack of
comprehensive survey on this topic, especially for large-scale learning. This paper seeks to introduce
the theories and algorithms of coding for DML. For primal-based DML schemes, we first discuss the
gradient coding with the optimal code distance. Then, we introduce random coding for gradient-
based DML. For primal–dual-based DML, i.e., ADMM (alternating direction method of multipliers),
we propose a separate coding method for two steps of distributed optimization. Then coding schemes
for different steps are discussed. Finally, a few potential directions for future works are also given.

Keywords: error-control coding; gradient coding; random codes; ADMM

1. Background and Motivations

With the fast development of computing and communication technologies, and emerg-
ing data-driven applications, e.g., IoT (Internet of Things), social network analysis, smart
grids and vehicular networks, the volume of data for various intelligent systems with
machine learning has increased explosively along with the number of involved computing
nodes [1], i.e., in a large scale. For instance, learning systems based on MAPReduce [2]
have been widely used and may often reach the data volume of petabytes (1015 bytes),
which may be produced and stored in thousands of separated nodes [3,4]. Large-scale
machine learning is pervasive in our societies and industries. Meanwhile, it is inefficient
(sometimes even infeasible) to transmit all data to a central node for analysis. For the
reason, distributed machine learning (DML), which stores and processes all or parts of
data in different nodes, has attracted significant research interests and applications [1,3–16].
There are different methods of implementing DML, i.e., primal method (e.g., distributed
gradient descend [4,7], federated learning [5,6]) and primal–dual method (e.g., alternating
direction method of multipliers (ADMM)) [16]. In a DML system, participating nodes (i.e.,
agents or workers) normally process local data and send the learning model information to
other nodes for consensus. For instance, in a typical federated learning system [5,6], worker
nodes run multiple rounds of gradient descends (local epoch) with local data and received
global models. Then, the updated local models are sent to the server for aggregating into
new global models (normally weighted sum). The models are normally much shorter than
raw data. Thus, significant communication costs are saved by federated learning, and
meanwhile the transmission of models in general has better privacy than sending raw data
over networks. Actually, in addition to federated learning, other DML also has the benefits

Entropy 2022, 24, 1284. https://doi.org/10.3390/e24091284 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24091284
https://doi.org/10.3390/e24091284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5407-0835
https://orcid.org/0000-0002-7926-5081
https://doi.org/10.3390/e24091284
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24091284?type=check_update&version=2

Entropy 2022, 24, 1284 2 of 20

of communication efficiency and improved privacy since model information has, in general,
smaller volumes and better privacy than raw data.

Despite various benefits, there are severe challenges for the implementation of DML,
especially for large-scale DML. Ideally, DML algorithms have speedup gains, which should
scale linearly with the number of participating learning machines (computing nodes).
However, the practical speedup gain of DML is limited by various bottlenecks, and is still
far from the theoretical upper limits [17,18]. Among others, significant bottlenecks include
communication loads, security, global convergence, synchronization, slow computing
nodes, complex optimization functions, etc. For instance, due to the limitation of computing
capability and communication networks, a part of the computing nodes may have slow
response and become the bottleneck of DML systems if the fast-response nodes have to
wait for them. These nodes are often referred to as straggler nodes [4], and also called
system noise [19]. To efficiently combat the straggler nodes, many schemes have been
proposed, such as repetition nodes [20,21], blacklisting straggler nodes [22] and error-
control codes [4,8–14,23–25]. Blacklisting method detects the straggler nodes and will not
schedule more tasks to them. Thus, it is a type of after-event approach. The repetition of
computing nodes needs lots of resources and a suitable mechanism to detect straggler
nodes and find corresponding repetition nodes. Moreover, it is rather expensive to repeat
all computing tasks and related data. More recently, error-control coding was proposed for
DML by regarding straggler nodes as erasure, which can be corrected by coded data from
non-straggler nodes and are shown to be much more efficient than the schemes based on
replication. Error-control coding can correct the loss by straggler nodes of current learning
rounds and thus is a type of current-event approach.

In [8], more practical computing networks with hierarchical structures were studied.
For such networks, hierarchical coding schemes based on multiple MDS codes were pro-
posed to reduce computation time. In [9], each multiplication matrix was further divided
into sub-matrices, and all sub-matrices were encoded by MDS codes (e.g., Reed–Solomon
codes). Thus, the computed parts in straggler nodes can be exploited, and the comput-
ing time can be further reduced. However, as the number of nodes and sub-matrices
increases, the complexity of the MDS codes will increase substantially. In [25], the deter-
ministic construction of Reed–Solomon codes was proposed for gradient-based DML. The
generator matrix of the codes in [25] is sparse and well balanced, and thus the waiting
time is reduced for gradient computation. In [10], a new entangled polynomial coding
scheme was proposed to minimize the recover threshold of master–worker networks
with generalized configurations for matrix-multiplication-based DML. In [26,27], coding
schemes are considered for matrix multiplication in heterogeneous computing networks.
However, the complexity of coding in [26,27] is still very high for large-scale DML since
matrix inversion is used for decoding, and moreover, the coding matrix is pre-fixed and
is hard to adapt to varying networks. In [28], low-complexity decoding was proposed
for matrix multiplication for DML. However, the results in [28] are preliminary and hard
to be used for heterogeneous networks, and the communication load is still very high.
In [11], coding schemes based on the Lagrange polynomial are proposed to encode blocks
among worker nodes. The proposed codes may achieve optimal tradeoffs among redundancy
(against straggler nodes), security (against Byzantine modification) and privacy. However,
the coding scheme in [11] is also based on MDS codes, which may not be flexible and have
high complexity for large-scale DML. Furthermore, the existing coding schemes are mostly
for matrix multiplication (for distributed gradient descend), i.e., the primal method. Another
important class of large-scale DML is based on primal-dual methods, i.e., ADMM [16], for
which codes have seldom been studied. Thus, coding for ADMM based large-scale DML
should be developed to combat straggler nodes, reduce communication loads and increase
efficiency.

Despite the progress in coding for straggler nodes [4,8–14,24,25], the results are still
preliminary and there are also various critical challenges for exploiting the advantages
of DML, especially for large-scale learning: (1) Reliability and complexity—though coding
has been proposed for addressing the straggler nodes to improve reliability, the existed

Entropy 2022, 24, 1284 3 of 20

schemes are mainly for the systems with a limited number of nodes or data. The coded
DML schemes based on existing optimal error-control codes (i.e., maximum distance
separable: MDS codes) [4,24,25] have very high encoding/decoding complexity when
the number of involved nodes or the data volume scales up. Moreover, MDS codes treat
every coding node equally and are not optimal for heterogeneous networks (e.g., IoT or
mobile networks). (2) Communication loads—with increasing nodes or data volumes, the
communication loads will quickly increase for exchanging model updates among learning
nodes. Thus, coding schemes efficient in communication loads are critical for large-scale
DML. (3) Limited learning functions—most of the existing coding schemes for DML are
for gradient descend (primal method), i.e., combining coding with matrix multiplication
and/or data shuffling [4,8–14,24,25]. Coding for many other important distributed learning
functions, e.g., primal–dual optimization functions (also may be non-smooth or non-
convex) in ADMM has seldom been explored. Moreover, existing coding for DML often
runs in a master–worker structure, which may not be efficient (or even infeasible) for
certain applications, e.g., those without master nodes. Thus, coding for fully decentralized
DML should be also investigated. By encoding the messages to (or/and from) different
destinations/sources in intermediate nodes, network coding shows the benefits of reducing
information flow in the networks [29,30]. Moreover, it has been shown that network coding
can improve the reliability and security of communication networks [12,31,32]. Thus, it is
also valuable to discuss the applications of network coding to DML.

In what follows, we first introduce the basics on DML in Section 2. Then we discuss
how error-control coding can help with the straggler problem in Section 3, the random
coding construction in Section 4, and coding for primal–dual-based DML (ADMM) in
Section 5. Finally, conclusions and discussion for future works are given in Section 6.

2. Introduction of Distributed Machine Learning

In general, DML will have two steps: (1) Agents learn local models from local data,
maybe combining with global models. This step may iterate multiple rounds, i.e., local
iterations, to produce a local model. (2) With local models, agents will reach consensus.
These two steps may also iterate multiple rounds, i.e., global iterations. There are also
different methods to implement the two steps, for instance, the primal and primal–dual
methods as mentioned above. There are different ways to achieve consensus, for instance,
through a central server, i.e., master–slave method or fully decentralized. For the former,
the implementation is relatively straightforward. Yet, for the latter, there are also different
approaches as will be discussed later on. For Step (1), the common local learning machine
includes, for example, linear (polynomial) regressions, classification and neural networks.
The common approach of these learning algorithms is to find the model parameters (e.g.,
weights in neural networks) that minimize the cost functions (such as mean-squared
errors/L2 loss, hinge loss and cross-entropy loss). In general, convex cost functions should
be chosen. For instance, for linear regression, we assume x, y as the input and output of
the training data, respectively, and w (normally a matrix or a vector) as the weight to be
optimized. If the mean-squared error cost functions are used, then the learning machine
works as

min
w
‖ xw− y ‖2 . (1)

To find the optimal w, one common approach is to use gradient descend, which is a
first-order iterative optimization algorithm for finding a local minimum of a differentiable
function. If the cost function is convex, then the local minimum is also the global mini-
mum [33]. For instance, in the training process of neural networks, gradient descend is
commonly used to find the optimized weight and bias iteratively. The gradient is found
by partial derivative of cost functions relative to optimizing variables (weight and bias of
training examples). For instance, for node i, the optimizing variables can be updated by

wi
t+1 = wi

t − γ∇F(wi
t, Di), (2)

Entropy 2022, 24, 1284 4 of 20

where t is the iteration step index, γ is the step size, Di is the data set (training samples)
in node i, F(wi

t) is the cost function with current optimizing variables, and ∇F(wi
t, Di)

denotes the gradients for given (wi
t, Di) (by partial derivatives). The training process is

normally performed in batches of data. Di can be further divided into subsets, e.g., N
subsets, i.e., Di = {D1

i , D2
i , · · · , DN

i }. If subsets are exclusive, the gradients from different
subsets are independent, i.e., ∇F(wi

t, Di) = {∇F(wi
t, D1

i),∇F(wi
t, D2

i), · · · ,∇F(wi
t, DN

i)}.
However, in many DML systems, e.g., those based on MAPReduce file systems, or sensor
nodes in neighboring areas, there may be overlapping data subsets, i.e., Dk

i = Dn
j for

certain k, n and i 6= j. Therefore, there may be identical gradients in different nodes.
These properties were recently exploited for coding. It it clear from (2) that for given
gradients, the steps of finding optimal parameters are mainly linear matrix operations
(matrix multiplications). Actually, in addition to neural networks, one core operation of
many other learning algorithms is also matrix multiplications, such as regression, power-
iteration-like algorithms, etc. [4]. Thus, one of the major coding schemes for DML is based
on the matrix multiplication of the learning process [4,8–14,24,25]. Clearly, major coding
schemes (forward error-control coding and network coding) are linear in terms of encoding
and decoding operations, i.e., C = M×W, where C, M and W are codeword (vectors),
coding matrix and information message, respectively. Since both learning and coding
operations are linear matrix operations, then the coding matrix and learning matrix can
be jointly optimized. On the other hand, coding can be optimized to provide efficient and
reliable information pipelines for DML systems. In such way, coding and DML matrices
are separately optimized. Separate optimization actually has been widely studied for many
years for existing systems due to the simpler design relative to joint design. There are
many works in the literature on the separate optimization of learning systems and coding
schemes. We will focus on joint design in this article.

3. Coding for Reliable Large-Scale DML

In this section, we will first give a review on the basic principles of coding for reliable
DML. Then, we will discuss two optimal construction of codes for DML.

One toy example of how coding can help to deal with stragglers can be found in
Figure 1 [34]. For instance, it can be a federated learning network with worker and server
nodes. There is partial overlapping for data segments in different worker nodes and thus
the partial overlapping of gradients. As in Figure 1, we divide the data set of a node into
multiple smaller sets to denote the partial overlapping of different nodes. Meanwhile,
multiple sets in a node are also necessary for encoding as shown in the figure since one
data set corresponds to one source symbol of the code. In the server node, a weight sum
of the gradient is needed. In the figure, three worker nodes have different data parts of
D1, D2, D3, which are used to compute gradients G1, G2, G3, respectively. In the server, an
individual gradient is not needed but only their sum Gs = G1 + G2 + G3. We can easily
see that gradients from any two nodes can calculate Gs. For instance, if worker3 is outage,
then Gs = 2(G1/2 + G2)− (G2 − G3) with two transmission coded blocks from worker1
and worker2. If there is no coding, then worker1 and worker2 have to transmit G1, G2, G3
separately with three blocks after the coordination operations. Thus, coding can save the
transmission and also coordination loads.

Though the idea of applying coding for DML is straightforward as shown in the
above toy example, the code design will be rather challenging for large-scale DML, i.e.,
when the numbers of nodes and/or gradients per node are very large. One big challenge
is how to construct encoding and decoding matrices, especially with limited complexity.
In what follows, we will first give a brief introduction of the MAPReduce file systems,
which are often used in DML. Then, we will discuss the coding schemes with deterministic
construction [34]. The random construction based on fountain codes is given in the next
section, which normally has lower complexity [13,14].

Entropy 2022, 24, 1284 5 of 20

Figure 1. Coded DML with a master–worker structure can tolerate any of one straggler node.

In large DML systems, MAPReduce is a commonly used distributed file storage
system. As shown in Figure 2, there are three stages for the MAPReduce file systems: map,
shuffling and reduce. In the system, data are stored in different nodes. In the map stage,
stored data are sent to different computing nodes (e.g., cloud computing nodes), according
to pre-defined protocols. In the shuffling stage, the computed results (e.g., gradients)
are exchanged among nodes. Finally, the end users will collect the computed results in
the reduce stage. MAPReduce can be used in federated learning, which was originally
proposed for the applications in mobile devices [5]. In such a scenario, data are first sent
to different worker nodes in the map stage, according to certain design principles. Then
in the shuffling stage, local model parameters are aggregated in the server node. Finally,
the aggregated models are obtained in the final iteration at the server. In such a way,
worker nodes have all necessary data for computing local models, sent from storage nodes.
However, there may be straggling worker nodes, due to either slow computing at the node
or transmission errors in the channels. In such scenario, gradient coding [34] can be used
to correct the straggler nodes.

Figure 2. A common realization of DML based on MAPReduce.

To construct gradient coding, we use A to denote the possible straggler pattern multi-
plied by the corresponding decoding matrix, and B to denote how different gradients (or
model parameters) are combined in the worker node. Thus, A denotes transmission matrix
multiplied by decoding matrices in some sense (as they recover transmitting gradients from
received coded symbols) and B can also be regarded as an encoding matrix. Assuming that
k is the number of different gradients (data partitions) in all nodes and there are a total of n
output channels in all nodes, the dimension of B is n× k. Denoting ḡ = [g1, g2, · · · , gk]

T as
the vector of all gradients, then worker node i transmits bi ḡ, where bi is the i-th row of B
and the encoding vector at node i. The dimension of A is k× n. A row of A corresponds to
an instance of straggling patterns, in which 0 means a straggler node and how the gradients
are reproduced in the server. Thus, all rows in A denote all possible ways of straggling.
Denoting f as the number of surviving workers (none-stragglers), there are at most n− f
0s in each row of A. In the example of Figure 1, we only need the sum of gradients from
worker nodes instead of the values of individual gradients. Thus, we have AB = 1k×k

Entropy 2022, 24, 1284 6 of 20

and each row of ABḡ is identically G1 + G2 + G3, where 1k×k denotes all 1 matrix. For the
example, we can easily see that

A =

0 1 2
1 0 1
2 −1 0

, and B =

1/2 1 0

0 1 −1
1/2 0 1

. (3)

Clearly, if we want individual values of ḡ, we should redesign A, B such that AB is
an identity matrix. Or if we want the weighted sum of gradients (weights more general
than 1), A, B should be also redesigned. From the description, we can see that the main
challenge of designing the gradient coding is to find suitable encoding matrix B such that
it can correct the straggling loss defined by A. In [34], two different ways of finding B
and corresponding A are given, i.e., fractional repetition and cyclic repetition schemes as
detailed in the following.

We denote n and s as the number of worker nodes and straggler nodes, respectively,
and assume n is a multiple of s + 1. Then, fractional repetition construction is described as
the following steps.

• Divide n workers into s + 1 groups of size n/(s + 1);
• In each group, divide all the data equally and disjointly, assigning s + 1 partitions to

each worker;
• All the groups are replicas of each other;
• After local computing, every worker transmits the sum of its partial gradient.

By the second step, in a group, the first worker obtains the first s + 1 partitions from the
map stage and computes the first s + 1 gradients, and the second worker obtains the second
s + 1 partition from the map stage and computes the second s + 1 gradient and so on. The
encoding of each group of workers can be denoted by a block matrix B̄block(n, s) ∈ R

n
s+1×n with

B̄block(n, s) =

11×(s+1) 01×(s+1) · · · 01×(s+1)
01×(s+1) 11×(s+1) · · · 01×(s+1)

...
...

. . .
...

01×(s+1) 01×(s+1) · · · 11×(s+1)

n

s+1×n

. (4)

Here 11×(s+1) and 01×(s+1) means 1× (s + 1) matrix of all 1 s and all 0 s (row vector),
respectively. Then B is obtained by replicating s + 1 copies of B̄block(n, s), i.e.,

B = B f rac =

B̄1

block(n, s)
B̄2

block(n, s)
...

B̄(s+1)
block (n, s)

, (5)

where B̄i
block(n, s) = B̄block(n, s), for i ∈ {1, · · · , s + 1}. In addition to the encoding matrix

B f rac, reference [34] also gives the algorithms of constructing the corresponding A matrix
as follows.

It was shown in [34] that by fractional repetition schemes, B = B f rac from (5) and A from
Algorithm 1 can correct any s straggler. It can be more formally stated as the following theorem.

Algorithm 1 Algorithm to compute A for fractional repetition coding.
Input: B = B f rac;
f ← binom(n, s) A← zeros(f , n) for I ⊆ [n], s.t.|I| = (n− s) do

a = zeros(1, k) x = ones(1, k)/B(I, :) a(I) = x A = [A; a]
Output: A s.t. AB = 1 f×k;

Entropy 2022, 24, 1284 7 of 20

Theorem 1. Consider B = B f rac from (5) for a given number of workers n and stragglers s(< n).
Then, the scheme (A, B f rac), with A from Algorithm 1 is robust to any s straggler.

Here, we refer the interested readers to [34] for the proof. In addition to fractional
repetition construction, another way of finding the B matrix is the cyclic repetition scheme,
which does not require n to be a multiple of s + 1. The algorithm to construct the cyclic
repetition B matrix is given as follows.

Actually, the resultant matrix B = Bcyc from Algorithm 2 has the following support
(non-zero parts):

supp(Bcyc) =

∗ ∗ · · · ∗ ∗ 0 0 · · · 0 0
0 ∗ ∗ · · · ∗ ∗ 0 · · · 0 0
...

...
...

...
...

...
.

...
...

0 0 · · · 0 0 ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
.

...
...

∗ · · · ∗ ∗ 0 0 · · · 0 0 ∗

, (6)

where ∗ is the non-zero entries in Bcyc, and in each row of supp(Bcyc), there are (s + 1)
non-zero entries. The position of non-zero entries is right shifted one step and cycled
around until the last row. The construction of A matrix follows Algorithm 1 also for Bcyc. It
was shown in [34] that cyclic repetition schemes can also correct any s stragglers:

Algorithm 2 Algorithm to construct B = Bcyc.

Input: n, s(< n);
H = binom(n, s) H = −sum(H(:, 1 : n− 1), 2) B = zeros(n) for i = 1 : n do

j = mod(i− 1 : s + i− 1, n) + 1 B(i, j) = [1;−H(:, j(2 : s + 1))] \ H(:, j(1))]
Output: B ∈ Rn×n with (s + 1) non-zeros in each row.

Theorem 2. Consider B = Bcyc from Algorithm 2, for a given number of workers n and stragglers
s(< n). Then, the scheme (A, Bcyc), with A from Algorithm 1 is robust to any s straggler.

Fractional repetition and cyclic repetition schemes provide specific methods of encod-
ing and decoding for master–worker DML for tolerating any s stragglers. More generally, it
was also shown in [34] the necessary conditions for matrix B for tolerating any s stragglers
if the following conditions are satisfied.

Condition 1 (B-Span): Consider any scheme (A, B) robust to any s stragglers, given
n(s < n) workers, then every subset (I) ⊆ span{bi|i ∈ (I)} is satisfied, where span{·} is
the span of vectors.

If A matrix is constructed by Algorithm 1, (A, B) with Condition 1 is also sufficient.

Corollary 1. If A matrix is constructed by Algorithm 1 and B satisfies Condition 1, (A, B) can
correct any s stragglers.

Numerical results: In Figure 3, the average time per iteration for different schemes
is compared from [34]. In naive scheme, the data are divided uniformly across all workers
without replication, and the master just waits for all workers to send their gradients.
In ignoring the s straggler scheme, the data distribution is the same as the naive scheme.
However, the master node only waits until n − s worker nodes successfully send their
gradients (no need to wait for all gradients). Thus, as discussed in [34], ignoring the
straggler scheme may lose in the generalization performance by ignoring a part of data sets
of straggler nodes. The running learning algorithms are based on logistic regression. The
training data are from the Amazon Employee Access dataset from Kaggle. The delay is
introduced by the computing latency of AWS clusters, and there is no transmission error.

Entropy 2022, 24, 1284 8 of 20

As shown in the figure, the naive scheme performs the worst. With increasing stragglers,
coding schemes also perform better than ignoring straggler schemes as expected.

Figure 3. Comparison average time per iteration on Amazon employee access dataset [34].

4. Random Coding Construction for Large-Scale DML

The gradient coding in [34] works well for the DML scheme with a master–worker
structure with limited sizes (finite number of nodes and limited data partitions). However,
the deterministic construction of encoding and decoding matrices may be challenging
when the number of nodes or data partitions (e.g., n or k) is large. The first challenge is the
complexity of encoding and decoding, both of which are based on matrix multiplication,
which may be rather complex, especially for decoding (e.g., based on Gaussian elimination).
Though DML with MDS codes is optimal in terms of code distance (i.e., the degree of
tolerance to the amount of straggler nodes), the coding complexity will be rather high
with the increasing number of participating nodes, i.e., for hundreds or even thousands of
computing nodes. For instance, Reed–Solomon codes normally need to run in non-binary
fields, which are of high complexity. Another challenge is lack of flexibility. Both factional
repetition and cyclic repetition coding schemes assume static networks (worker nodes
and data). However, in practice, the participating nodes may be varying in mobile nodes
or sensors, for example. In the mobile computing scenario, the number of participating
nodes may be unknown. It will rather difficult to design deterministic coding matrices
(A or B) in such a scenario. Similarly, if the data are from sensors, the amount of data
may also be varying. Thus, the deterministic construction of coding is hard to adapt to
these scenarios, which, however, are very common in large-scale learning networks. Thus,
coding schemes efficient in varying networks and of low complexity are preferable for
large-scale DML. In [13,14], we investigated the random coding for DML (or distributed
computing in general) to address the problems. Our coding scheme is based on fountain
codes [35–37]. The coding scheme is introduced as follows.

Encoding Phase: As shown in Figure 4, we consider a network with multiple storage
and computing/fog nodes. Let FN f denote the f -th fog node and let SUs denote the s-th
storage unit with f ∈ {1, 2, · · · , F} and s ∈ {1, 2, · · · , S}, respectively. Let D f denote the
dataset node f needed to finish a learning task. D f will be obtained from the storage
units available to node f . For instance, in a DML with wireless links as in Figure 4, D f
means the data union for all the storage units within the communication range of FN f (i.e.,
within R f). Similar to federated learning, FN f will use the current model parameters to
calculate gradients, namely, intermediate gradients, denoted as g f = [g f ,1, g f ,2, · · · , g f ,|D f |],
where g f ,a means the gradient trained by data a(a ∈ D f) and |D f | is the size of D f .
Meanwhile, fog nodes need to calculate the intermediate model parameters (e.g., weight)
w f = [w f ,1, w f ,2, · · · , w f ,|w f |], where |w f | is the length of model parameters learned at FN f .
Then the intermediate gradients and model parameters will be sent out to other fog nodes
(or the central sever if there is one) for further processing after encoding. The coding
process for g f is as follows.

• A number dg is selected according to degree distribution Ω(x) = ∑
|D f |
dg=1 Ωdg xdg with

probability Ωdg xdg ;

Entropy 2022, 24, 1284 9 of 20

• Then, dg intermediate gradients are selected uniformly at random from g f to encode
into one coded intermediate gradient;

• The above two steps repeated until Qg
f = (1 + η f)|D f | coded intermediate gradients

are formed, where η f (≥ 0) is the expanding coefficient of the fountain codes (denoting
redundancy).

Ω(x) can be optimized by the probability of straggling (regarded as erasure) due
to channel errors, slow computing, etc. The optimization of the degree distribution for
distributed fountain codes can be found in, for example, [38], and we will not discuss it
here for space limitation. With the above coding process, the resulted coded intermediate
gradients are

cg
f = [g f ,1, g f ,2, · · · , g f ,|D f |]G

g
f = g f Gg

f , (7)

where Gg
f is the generator matrix at fog node FN f . The encoding process for w f is the

same as that of g f with a possibly different degree distribution µ(x) = ∑
w f
dw=1 µdw xdw . The

formed Qw
f = (1 + η f)w f coded intermediate parameters can be written as cw

f = w f Gw
f ,

where Gw
f is the generator matrix at FN f for model parameters.

Figure 4. Distributed machine learning with multiple data storage and computing/fog nodes.

Exchanging Phase: The coded intermediate gradients cg
f and model parameters cw

f ,
(f ∈ {1, 2, · · · , N}) are exchanged among fog nodes. Let M be the total number of all dif-
ferent data in all F nodes, M ≤ ∑F

f=1 |D f |. The equality holds only if F datasets are disjoint.
Decoding Phase: The generator matrices for the received coded intermediate gradients

and model parameters from fog node FNi(i ∈ {1, 2, · · · , F}) \ { f } at FN f are G̃g
i, f with

size |G| × Qg
i, f and G̃w

i, f with size wi × Qw
i, f , respectively, where Qg

i, f = (1− εi, f)Q
g
i and

Qw
i, f = (1− εi, f)Qw

i . Here εi, f denotes the straggling probability from FNi to FN f due to var-
ious reasons, e.g., physical-layer erasure, slow computing, and congestion. Thus, the gener-
ator matrices corresponding to the received coded intermediate gradient and model param-
eters at FN f can be written as G̃g

f = [11G̃g
1, f , · · · , 1 f−1G̃g

f−1, f , 1 f+1G̃g
f+1, f , · · · , 1FG̃g

F, f and

G̃g
f = [11G̃g

1, f , · · · , 1 f−1G̃g
f−1, f , 1 f+1G̃g

f+1, f , · · · , 1FG̃g
F, f and G̃w

f = [11G̃w
1, f , · · · , 1 f−1G̃w

f−1, f ,

Entropy 2022, 24, 1284 10 of 20

1 f+1G̃w
f+1, f , · · · , 1FG̃w

F, f , respectively. Here I = {11, · · · , 1F} is an indicator parameter. Let
λ be the probability of straggling. Then, I f , (f ∈ {1, 2, · · · , F}) can be evaluated as

I f =

{
1, with probability 1− λ,
0, with probability λ.

(8)

Then fog node FN f decodes the received coded intermediate parameters from G̃g
i, f

and G̃w
i, f , (i ∈ {1, 2, · · · , F} \ { f }), and tried to decode N − |D f | new gradients and

Γw ∑i∈{1,2,··· ,F}\{ f } wi model parameters, where Γw ∈ [0, 1] is a parameter determined
by specific learning algorithms. For the benefits of fountain codes (e.g., LT or Raptor codes),
the iterative decoding is feasible if the numbers of received coded gradients or model
parameters are slightly larger than those of gradients and models in transmitting fog nodes.
Clearly, to optimize the code degree distribution and task allocation, it is critical for a node
to know the number of received intermediate gradients and model parameters at the node.
For the purpose, we have the following analysis.

Assume γa,b as the overlapping ratio of the dataset in FNa and FNb, then for all fog
nodes, we have the overlapping ratio as follows:

γ =

1 γ1,2 · · · γ1,F

γ2,1 1 · · · γ2,F
...

...
. . .

...
γF,1 γF,2 · · · 1

. (9)

If γa,b = 0, then node FNa and FNb has disjoint datasets. At FN f , |D f | intermediate
gradients are known. Thus, A = N − |D f | new intermediate gradients are required for
updating model parameters w f . Then, we have the following result:

Theorem 3. The total number of new intermediate gradients received from the other fog nodes
at FN f can be calculated by ∆ = ∑F−1

πi ,i=1 1πi ((1− γπi , f)ϕ(i, f)) · |Dπi |, where ϕ(i, f) can be
written as

ϕ(i, f)) =
{

1, if i = 1,
Πi−1

a=1(1− γπi ,πi−πa |Θa, f), if 2 ≤ i ≤ F− 1,
(10)

where Θa, f is a set formed by the indices of fog nodes, and it can be evaluated by

Θa, f =

{
{ f }, if a = 1,
{ f , π1, · · · , πa−1}, if a > 1.

(11)

If γ is known at each fog node (or at least from the transmitted neighbors at each
receiving node), then ∆ can be evaluated, and the computation and communication loads
can be optimized through proper task assignment and code degree optimization. Theorem 3
is for gradients, and a similar analysis also holds for model parameters. In Figure 5, we
show the coding gains in terms of communication loads, which are defined as the ratio of
the total number of data transmitted by all the fog nodes to the data required at these fog
nodes. As we can see from the figure, if the number of nodes F or straggler probability
increases, the coding gains increase as expected.

Entropy 2022, 24, 1284 11 of 20

Figure 5. Ratio of coding gains relative to uncoded systems in communication loads.

We note that both deterministic codes in Section 3 and random construction coding
here are actually a type of network coding [29,30], which can reduce communication loads
by computing at intermediate nodes (fog nodes) [3,4]. More recently, one type of special
network codes, i.e., BATS (batched sparse) codes, was proposed with two layered codes as
shown in Figure 6. For outer codes, we can use error control codes such as fountain codes
in MAP phase. For inner codes, network codes can be used such as random linear network
codes in data shuffling stage. In [12], we studied BATS codes for fog computing networks.
As shown in Figure 7, numerical results demonstrate that the BATS codes can achieve a
lower communication load than uncoded and deterministic codes (network codes) if the
computing load is lower than certain thresholds. Here, we skip further details and refer
interested readers to [12].

Figure 6. Large-scale distributed machine learning (DML) with BATS codes.

Entropy 2022, 24, 1284 12 of 20

Figure 7. Communication load comparison among BATS codes, coded computing (deterministic
codes) and uncoded [12]. eF denotes the channel erasure probability and corresponds to straggling
probability. The computing load is defined as involved computing nodes and thus corresponds to
expanding coefficients.

5. Coding for ADMM
5.1. Introduction and System Setup

As a primal–dual optimization method, ADMM is shown to be able to generally
converge at a rate of O(1/t) for convex functions, where t is the iteration number [16],
which is often faster than the schemes based on primal methods. Meanwhile, ADMM also
has the benefits of robustness to non-smooth/non-convex functions and being adaptive
to fully decentralized implementation. Thus, ADMM is especially suitable for large-scale
DML and has attracted substantial research interests. For DML, especially for the fully
decentralized learning system without a central server, we can denote the learning network
as G = (N , E), where N = {1, . . . , N} is the set of agents (computing nodes) and E is
the set of links. For ADMM, agents aim at solving the following consensus optimization
problem collaboratively:

min
x

N

∑
i=1

fi(x;Di), (12)

where fi : Rp → R is the local optimization function of agent i, and Di is the data set of
agent i. All the agents share a global optimization variable x ∈ Rn. Data sets of different
agent may have overlapping, i.e., Di ∩ Dj 6= ∅, for a part or all i 6= j. This can happen,
for instance, among the sensors of nearby areas for weathers, traffic, smart grids, etc., or
if MAPReduce is used, the same data are mapped to different agents. For ADMM, (12) is
solved iteratively by a two-step process:

• Step (a), local optimization of fi on receiving updated global variable and with Di
(normally by augmented Lagrangian as detailed below);

• Step (b), global variable x reaches consensus.

With DML, there are also straggler nodes and unreliable-link challenges for ADMM,
especially for large-scale and heterogeneous networks or with wireless links. However,
with primal–dual optimization, it is very hard (if possible) to transfer ADMM optimization
process into a linear function (e.g., matrix multiplication as in gradient descend). Thus,
coding schemes based on linear operations (e.g., matrix multiplication in [4,8–11,24,25])
are impossible to be directly used in ADMM and there are very few results on coding
for ADMM so far, to our best knowledge. To address the problem, one solution is to use
coding separately for two steps of ADMM. For instance, error control coding can be used
for local optimization if the data are stored in different locations for an agent. For the global

Entropy 2022, 24, 1284 13 of 20

consensus, network coding can be used to reduce the communication loads and increase
reliability. In [15], we preliminarily investigated how coding (MDS codes) can be used in
local optimization (step (a)). A more detailed introduction is given as follows.

As depicted in Figure 8, a distributed computing system consists of multiple agents,
each of which is connected with several edge computing nodes (ECNs). Agents can
communicate with each other through links. ECNs are capable of processing data collected
from sensors, and transferring desired messages (e.g., model updates) back to the connected
agent. Based on the agent coverage and computing resources, the ECNs connected to agent
i(∈ N) are denoted as Ki = {1, . . . , Ki}. This model is common in current intelligent
systems, such as smart factories or homes.

Figure 8. ADMM with multiple agents, each of which collect trained models from multiple ECNs
with sensed data. Agents are connected via Hamiltonian networks.

The multi-agent system seeks to find out the optimal solution x∗ by solving (12). Di is
allocated to dispersed ECNs Ki. The formulation of decentralized optimization problem
can be described as follows. By defining x = [x1, . . . , xN] ∈ RpN×d and introducing a
global variable z ∈ Rp×d, problem (12) can be reformulated as

(P-1) : min
x,z

N

∑
i=1

fi(xi;Di), s.t. 1⊗ z− x = 0, (13)

where 1 = [1, . . . , 1]T ∈ RN , and ⊗ is the Kronecker product. In the following, fi(xi,Di) is
denoted as fi(xi) for simplifying illustration.

In what follows, we will present communication-efficient and straggler-tolerant de-
centralized algorithms, by which the agents can collaboratively find an optimal solution
through local computations and limited information exchange among neighbors. In the
scheme, local gradients are calculated in dispersed ECNs, while variables, including primal
and dual variables and global variables z, are updated in the corresponding agent. For
illustration purpose, we will first present stochastic ADMM (sI-ADMM) and then coded
version of sI-ADMM (i.e., csI-ADMM). Both of them are proposed in [15]. The standard
incremental ADMM iterations for decentralized consensus optimization will be reviewed
first. The augmented Lagrangian function of problem (P-1) is

Lρ(x, y, z) =
N

∑
i=1

fi(xi) + 〈y, 1⊗ z− x〉+ ρ

2
‖1⊗ z− x‖2, (14)

Entropy 2022, 24, 1284 14 of 20

where y = [y1, . . . , yN] ∈ RpN×d is the dual variable, and ρ > 0 is a penalty parameter.

With incremental ADMM (I-ADMM) [39,40], with guaranteeing ∑N
i=1(x1

i −
y1

i
ρ) = 0 (e.g.,

initialize x1
i = y1

i = 0), the updates of x, y and z at the (k + 1)-th iteration follow:

xk+1
i :=

arg min

xi
fi(xi) +

ρ

2

∥∥∥∥∥zk − xi +
yk

i
ρ

∥∥∥∥∥
2

, i = ik;

xk
i , otherwise;

(15a)

yk+1
i :=

yk
i + ρ

(
zk − xk+1

i

)
, i = ik;

yk
i , otherwise;

(15b)

zk+1 := zk +
1
N

[(
xk+1

ik
− xk

ik

)
− 1

ρ

(
yk+1

ik
− yk

ik

)]
. (15c)

For ADMM, solving augmented Lagrangian especially for the x-update above may
lead to rather high computational complexity. To achieve fast computation for x-update,
first-order approximation and mini-batch stochastic optimization in (15a) can be adapted.
Furthermore, a quadratic proximal term with parameter τk is proposed in [15] to stabilize
the convergence behavior of the inexact augmented Lagrangian method. Ref. [15] also
introduces the updating step-size γk for the dual update. Both parameters τk and γk can
be adjusted with iteration k. Finally, the updates of x and y at the (k + 1)-th iteration are
presented as follows:

xk+1
i :=

arg min

xi

〈
Gi(xk

i ; ξk
i), xi − xk

i

〉
+
〈

yk
i , zk − xi

〉
+

ρ

2

∥∥∥zk − xi

∥∥∥2
+

τk

2

∥∥∥xi − xk
i

∥∥∥2
, i = ik;

xk
i , otherwise;

(16a)

yk+1
i :=

yk
i + ργk

(
zk − xk+1

i

)
, i = ik;

yk
i , otherwise;

(16b)

where Gi(xk
i ; ξk

i) is the mini-batch stochastic gradient, which can be obtained through
Gi(xk

i ; ξk
i) =

1
M ∑M

l=1∇Fi(xk
i ; ξk

i,l). To be more specific, M is the mini-batch size of sampling
data, ξk

i = {ξk
i,l}M denotes a set of independent and identically distributed randomly

selected samples in one batch, and ∇Fi(xk
i ; ξk

i,l) corresponds to the stochastic gradient of a
single example ξk

i,l .

5.2. Mini-Batch Stochastic I-ADMM

For above setup of ADMM, response time is defined as the execution time for updating
all variables in each iteration. In the updates, all steps, including x-update, y-update
and z-update, are assumed to be in agents rather than ECNs. In practice, the update is
often computed in a tandem order, which leads to a long response time. With the fast
development of edge/fog computing, it is feasible to further reduce the response time
since computing the local gradients can be dispersed to multiple edge nodes, as shown in
Figure 8. Each ECN computes a gradient using local data and shares the result with its
corresponding agent, and no information is directly exchanged among ECNs. Agents can
be activated in a predetermined circulant pattern, e.g., according to a Hamiltonian cycle,
and ECNs are activated whenever the connected agent is active, as shown in Figure 8. A
Hamiltonian cycle based activation pattern is a cyclic pattern through a graph that visits
each agent exactly once (i.e., 1 → 2 → 4 → 5 → 3 in Figure 8). Correspondingly, the
mini-batch stochastic incremental ADMM (sI-ADMM) [15] is presented in Algorithm 3. At
agent ik, global variable zk+1 gets updated and is passed as a token to the next agent ik+1 via

Entropy 2022, 24, 1284 15 of 20

a pre-determined traversing pattern, as shown in Figure 8. Specifically, in the k-th iteration
with cycle index m = bk/Nc, agent ik is activated. Token zk is first received and then the
active agent broadcasts the local variable xk

i to its attached ECNs Ki. According to batch
data with index Ik

i,j, new gradient gi,j is calculated in each ECN, followed by the gradient
update, x-update, y-update and z-update in agent ik, via steps 21–24 in Algorithm 3. At
last, the global variable zk+1 is passed as a token to its neighbor ik+1. In Algorithm 3, the
stopping criterion is reached when

∥∥∥zk − xk
i

∥∥∥ ≤ εpri and
∥∥∥Gi(xk

i ; ξk
i)− yk

i

∥∥∥ ≤ εdual , ∀i ∈ N ,

where εpri and εdual are two pre-defined feasibility tolerances.

Algorithm 3 Mini-batch stochastic I-ADMM (sI-ADMM)

1: initialize: {z1 = x1
i = y1

i = 0, |i ∈ N}, batch size M;
2: LocalDataAllocation:
3: for agent i ∈ N do
4: divide Di labeled data into Ki equally disjoint partitions and denote each partition

as ξ i,j, j ∈ Ki;
5: for ECN j ∈ Ki do
6: allocate ξ i,j to ECN j;
7: partition ξ i,j examples into multiple batches with each size M/Ki;
8: end for
9: end for

10: UpdatingProcess:
11: for k = 1, 2, . . . do
12: StepsofActiveAgenti = ik = (k− 1) mod N + 1:
13: receive token zk;
14: broadcast local variable xk

i to ECNs Ki;
15: ECNj ∈ Kicomputesgradientinparallel:
16: receive local primal variable xk

i ;
17: select batch Ik

i,j = m mod b|ξ i,j| · Ki/Mc;

18: update gradient gi,j =
Ki
M ∑

M
Ki
l=1∇Fi(xk

i ; ξk
i,l);

19: transmit gi,j to the connected agent;
20: until the Ki-th responded message is received;
21: update gradient via gradient summation:

Gi(xk
i ; ξk

i) =
1
Ki

Ki

∑
j=1

gi,j; (17)

22: update xk+1 according to (16a);
23: update yk+1 according to (16b);
24: update zk+1 according to (15c);
25: send token zk+1 to agent ik+1 via link (ik, ik+1);
26: until the stopping criterion is satisfied.
27: end for

5.3. Coding for Local Optimization for sI-ADMM

With less reliable and limited computing capability of ECNs, straggling nodes may be
a significant performance bottleneck in the learning networks. To address this problem,
error control codes can be used to mitigate the impact of the straggling nodes by leveraging
data redundancy. Similar to Section 3, two MDS-based coding methods over real fieldR,
i.e., fractional repetition scheme and cyclic repetition scheme, can be adopted and integrated
with sI-ADMM for reducing the responding time in the presence of straggling nodes. The
coded sI-ADMM (csI-ADMM) approach is presented in Algorithm 4. Denote the minimum
required ECNs number by Ri and the maximum number of stragglers the system can
tolerate by Si. Different from sI-ADMM, in csI-ADMM, encoding and decoding processes

Entropy 2022, 24, 1284 16 of 20

are used in each ECN j ∈ Ki and its corresponding agent i, respectively. Gi(xk
i ; ξk

i) will be
updated via steps 15–20, where the local gradient is calculated in ECN j ∈ Ki in parallel
via selected (Si + 1)M/Ki batch samples, and the gradient summation can be recovered
in active agent ik with the responded messages from any Ri out of Ki ECNs to combat
slow links and straggler nodes. As in steps 22–26 of sI-ADMM, activated agent ik then
updates local variables successively. Computation redundancy is introduced, but agent i
can tolerate any (Si = Ki − Ri) stragglers.

Algorithm 4 Coded sI-ADMM (csI-ADMM)

1: initialize: {z1 = x1
i = y1

i = 0|i ∈ N}, batch size M;
2: LocalDataAllocation:
3: for agent i ∈ N do
4: divide Di labeled data based on repetition schemes in [34] and denote each partition

as ξ i,j, j ∈ Ki;
5: for ECN j ∈ Ki do
6: allocate ξ i,j to ECN j;
7: partition ξ i,j examples into multiple batches with each size (Si + 1)M/Ki;
8: end for
9: end for

10: UpdatingProcess:
11: for k = 1, 2, . . . do
12: StepsofActiveAgenti = ik = (k− 1) mod N + 1:
13: run steps 13–14 of Algorithm 3
14: ECNj ∈ Kicomputesgradientinparallel:
15: run step 16 of Algorithm 3
16: select batch

Ik
i,j = m mod b|ξ i,j| · Ki/(Si + 1)Mc; (18)

17: update gi,j via encoding function pj
enc(·);

18: transmit gi,j to the connected agent;
19: until the Ri-th fast responded message is received;
20: update gradient via decoding function qi

dec(·);
21: run steps 22–26 of Algorithm 3;
22: end for

5.4. Simulations for Coded Local Optimization

Both computed-generated and real-world datasets are used to evaluate the perfor-
mance of the coded stochastic ADMM algorithms. The experimental network G consists of
N agents and E = N(N−1)

2 η links, where η is the network connectivity ratio. For agent i,
Ki = K ECNs with the same computing power (e.g., computing and memory) are attached.
To reduce the impact of token traversing patterns, both the Hamiltonian cycle-based and
non-Hamiltonian cycle-based (i.e., the shortest path cycle-based [41]) token traversing
methods are evaluated for the proposed algorithms.

To demonstrate the advantages of the coding schemes, csI-ADMM algorithms are
compared with uncoded sI-ADMM algorithms with respect to the accuracy [42], which is
defined as

accuracy =
1
N

N

∑
i=1

∥∥∥xk
i − x∗

∥∥∥∥∥x1
i − x∗

∥∥ , (19)

where x∗ ∈ Rp×d is the optimal solution of (P-1), and the test error [43], which is de-
fined as the mean square error loss. For demonstrating the robustness against straggler
nodes, distributed coding schemes, including cyclic and fractional repetition methods and
the uncode method, are used for comparison. For fair comparison, the parameters for
algorithms are tuned and kept the same in different experiments. Moreover, unicast is

Entropy 2022, 24, 1284 17 of 20

considered among agents, and the communication cost per link is 1 unit. The consumed
time for each communication among agents is assumed to follow a uniform distribution
U (10−5, 10−4) seconds. The response time of each ECN is measured by the computation
time, and the overall response time of each iteration is equal to the execution time for
updating all variables in each iteration. All experiments were performed using Python on
an Intel CPU @2.3 GHz (16 GB RAM) laptop.

To show the benefit of coding, in Figure 9, we compare the accuracy vs. running
time for both coded and uncoded sI-ADMM. In simulation, the maximum delay εi,
(i = 1, 2, 3) for stragglers in each iteration is considered. For illustration purpose, we
set up different εi with ε1 > ε2 > ε3 in simulation. For showing the benefits of coding
to the convergence rate, convergence vs. straggler nodes trade-off for csI-ADMM, the
impact of the number of straggler nodes on the convergence speed is shown in Figure 10.
In simulations, 10 independent experiment runs are performed with the same simulation
setup on synthetic data and take an average for presentation. We can see that, with an
increasing number of straggler nodes, the convergence speed decreases. This is because
increasing the number of straggler nodes decreases the allowable mini-batch size allocated
in each iteration and therefore affects the convergence speed.

10-4 10-2 100 102

running time (s)

0.7

0.8

0.9

1

ac
cu

ra
cy

Figure 9. Comparison of coded and uncoded ADMM in accuracy and running time.

0.01 0.02 0.03 0.04 0.05

running time (s)

0.2

0.4

0.6

0.8

a
c
c
u

ra
c
y

500 600 700 800 900 1000

communication cost

0

2

4

6

8

te
s
t

e
rr

o
r

10
-4

Figure 10. Impact of number of straggler nodes on the convergence rate of the proposed csI-ADMM
on synthetic dataset.

5.5. Discussion

Above, we discuss the application of error-control coding in the local optimization step
of ADMM. In the agent consensus step, there are also straggling or transmission errors for
updating global variables. To improve reliability in the consensus step, we can use linear
network error correction codes [31] or BATS codes [32] based on LT codes. For the latter,
the global variable (vector) is divided into many smaller vectors. The encoding process
continues until certain stopping criteria are reached (e.g., feedback from other nodes or time
out). There are quite a few papers on applying network coding for consensus; see [44,45].

Entropy 2022, 24, 1284 18 of 20

Since there is no significant difference between the consensus process of the global variables
of ADMM or other types of messages, interested readers are referred to these papers for
further reading. We note that network coding can improve both the reliability and security
of the consensus, i.e., as secure network codes [46].

6. Conclusions and Future Work

We discussed how coding can be used to improve the reliability and reduce the
communication loads for both primal- and primal–dual-based DML. We discussed both
deterministic (and optimal) and random construction of error-control codes for DML. For
the low-complexity and high flexibility, the latter may be more suitable for large-scale DML.
For primal-dual based DML (i.e., ADMM), we discussed separate coding process for the
two steps of ADMM, i.e., in local optimization and consensus processes separately. We
introduced the algorithms on how to use codes for the local optimization of ADMM.

For emerging applications of increased interest, DML will be more and more common.
Another interesting area for applying coding for DML is security. Though DML has a
certain privacy-preserved capability (compared to transmit raw data), a higher security
standard may be needed for sensitive applications. Secure coding has been an active topic
for years; see [47]. We also have preliminary results on improving privacy by artificial noise
in DML [40]. However, a further study is largely needed for improving performance and
general scenarios.

Another interesting area for future work may be further studying coding for primal–
dual methods. Though separate coding for the two steps of ADMM may solve the problem
partly, the coding efficiency may be low and system complexity may be high. As discussed
in Section 5, directly applying error control codes to ADMM may be infeasible. Another
potential approach may be to simplify the optimization functions without significant
performance loss, and error-control codes can be used.

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported partly by Swedish Research Council (VR) project entitled
“Coding for large-scale distributed machine learning” (Project ID: 2021-04772).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This is an invited contribution. The authors acknowledge the effort of Guest
Editors and reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, M.; Fu, W.; He, X.; Hao, S.; Wu, X. A Survey on Large-scale Machine Learning. IEEE Trans. Knowl. Data Eng. 2021, 34,

2574–2594. [CrossRef]
2. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the 11th USENIX Symposium

on Operating Systems Design and Implementation, Santa Clara, CA, USA, 10–12 July 2004; pp. 137–150.
3. Li, M.; Andersen, D.; Park, J.; Smola, A.J.; Ahmed, A.; Josifovski, V.; Long, J.; Shekita, E.J.; Su, B.-Y. Scaling Distributed Machine

Learning with the Parameter Server. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation
(OSDI), Broomfield, CO, USA, 6–8 October 2014; pp. 137–150. Available online: http://www.usenix.org/events/osdi04/tech/
dean.html (accessed on 7 September 2022).

4. Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding up distributed machine learning using codes.
IEEE Trans. Inf. Theory 2018, 64, 1514–1529. [CrossRef]

5. Konecny, J.; McMahan, H.; Ramage, D.; Richtarik, P. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. arXiv 2016, arXiv:1610.02527.

6. McMahan, B.; Ramage, D. Federated Learning: Collaborative Machine Learning without Centralized Training Data. 2017.
Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 7 September 2022).

7. Li, S.; Maddah-Ali, M.; Avestimehr, A. Coding for distributed fog computing. IEEE Commun. Mag. 2017, 55, 34–40. [CrossRef]

http://doi.org/10.1109/TKDE.2020.3015777
http://www.usenix.org/ events/osdi04/tech/dean.html
http://www.usenix.org/ events/osdi04/tech/dean.html
http://dx.doi.org/10.1109/TIT.2017.2736066
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://dx.doi.org/10.1109/MCOM.2017.1600894

Entropy 2022, 24, 1284 19 of 20

8. Park, H.; Lee, K.; Sohn, J.; Suh, C.; Moon, J. Hierarchical coding for distributed computing. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1630–1634.

9. Kiani, S.; Ferdinand, N.; Draper, S. Exploitation of stragglers in coded computation. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1988–1992.

10. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Straggler mitigation in distributed matrix multiplication: Fundamental limits and
optimal coding. arXiv 2018, arXiv:1801.07487v2.

11. Yu, Q.; Li, S.; Raviv, N.; Kalan, S.; Soltanolkotabi, M.; Avestimehr, A. Lagrange Coded Computing: Optimal Design for Resiliency,
Security and Privacy. arXiv 2018, arXiv:1801.07487v2.

12. Yue, J.; Xiao, M.; Pang, Z. Distributed Fog Computing Based on Batched Sparse Codes for Industrial Control. IEEE Trans. Ind.
Inform. 2018, 14, 4683–4691. [CrossRef]

13. Yue, J.; Xiao, M. Coded Decentralized Learning with Gradient Descent for Big Data Analytics. IEEE Commun. Lett. 2020,
24, 362–366. [CrossRef]

14. Yue, J.; Xiao, M. Coding for Distributed Fog Computing in Internet of Mobile Things. IEEE Trans. Mob. Comput. 2021,
20, 1337–1350. [CrossRef]

15. Chen, H.; Ye, Y.; Xiao, M.; Skoglund, M.; Poor, H.V. Coded Stochastic ADMM for Decentralized Consensus Optimization with
Edge Computing. IEEE Internet Things J. 2021, 8, 5360–5373. [CrossRef]

16. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122.

17. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Ng, A.; et al. Large
Scale Distributed Deep Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Kottayam, India, 2012; pp. 1223–1231.

18. Grubic, D.; Tam, L.; Alistarh, D.; Zhang, C. Synchronous Multi-GPU Training for Deep Learning with Low-Precision Communi-
cations: An Empirical Study. In Proceedings of the 21st International Conference on Extending Database Technology, Vienna,
Austria, 26–29 March 2018; pp. 145–156.

19. Dean, J.; Barroso, L.A. The tail at scale. Commun. ACM 2013, 56, 74–80. [CrossRef]
20. Ananthanarayanan, G.; Ghodsi, A.; Shenker, S.; Stoica, I. Effective straggler mitigation: Attack of the clones. In Proceedings of

the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13), Lombard, IL, USA, 2–5 April 2013;
Volume 13, pp. 185–198.

21. Wang, D.; Joshi, G.; Wornell, G. Using straggler replication to reduce latency in large-scale parallel computing. ACM Sigmetrics
Perform. Eval. Rev. 2015, 3, 7–11. [CrossRef]

22. Yadwadkar, N.J.; Choi, W. Proactive straggler avoidance using machine learning. In White Paper; University of Berkeley: Berkeley,
CA, USA, 2012; Volume 2012.

23. Karakus, C.; Sun, Y.; Diggavi, S.; Yin, W. Redundancy Techniques for Straggler Mitigation in Distributed Optimization and
Learning. J. Mach. Learn. Res. 2019, 20, 2619–2665.

24. Li, S.; Maddah-Ali, M.; Avestimehr, A. A Fundamental Tradeoff Between Computation and Communication in Distributed
Computing. IEEE Trans. Inf. Theory 2018, 64, 109–128. [CrossRef]

25. Halbawi, W.; Azizan, N.; Salehi, F.; Hassibi, B. Improving Distributed Gradient Descent Using Reed–Solomon Codes. In
Proceedings of the IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 2027–2031.

26. Reisizadeh, A.; Prakash, S.; Pedarsani, R.; Avestimedhr, S. Coded Computation over Heterogeneous Clusters. In Proceedings of
the IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2408–2412.

27. Fan, X.; Soto, P.; Zhong, X.; Xi, D.; Wang, Y.; Li, J. Leveraging Stragglers in Coded Computing with Heterogeneous Servers. In
Proceedings of the IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), Hang Zhou, China, 15–17 June 2020.

28. Wang, S.; Liu, J.; Shroff, N. Coded Sparse Matrix Multiplication. In Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5152–5160.

29. Ahlswede, R.; Cai, N.; Li, S.Y.R.; Yeung, R.W. Network information flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [CrossRef]
30. Koetter, R.; Medard, M. An Algebraic Approach to Network Coding. IEEE/ACM Trans. Netw. (TON) 2003, 11, 782–795. [CrossRef]
31. Yeung, R.W.; Cai, N. Network Error Correction, Part I, Part II. Commun. Inf. Syst. 2006, 6, 37–54.
32. Yang, S.; Yeung, R. Batched sparse codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [CrossRef]
33. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
34. Tandon, R.; Lei, Q.; Dimakis, A.; Karampatziakis, N. Gradient Coding: Avoiding Stragglers in Distributed Learning. In

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh,
Y.W., Eds.; Proceedings of Machine Learning Research, PMLR: Cambridge, MA, USA, 2017; Volume 70, pp. 3368–3376.

35. Byers, J.; Luby, M.; Mitzenmacher, M.; Rege, A. A digital fountain approach to reliable distribution of bulk data. ACM SIGCOMM
Comput. Commun. Rev. 1998, 28, 56–67. [CrossRef]

36. Luby, M. LT codes. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC,
Canada, 16–19 November 2002; pp. 271–280.

37. Shokrollahi, A. Raptor codes. IEEE Trans. Inform. Theory 2006, 52, 2551–2567. [CrossRef]
38. Hussain, I.; Xiao, M.; Rasmussen, L. Buffer-based Distributed LT Codes. IEEE Trans. Commu. 2014, 62, 3725–3739. [CrossRef]
39. Ye, Y.; Xiao, M.; Skoglund, M. Randomized Neural Networks based Decentralized Multi-Task Learning via Hybrid Multi-Block

ADMM. IEEE Trans. Signal Process. 2021, 69, 2844–2857. [CrossRef]

http://dx.doi.org/10.1109/TII.2018.2857203
http://dx.doi.org/10.1109/LCOMM.2019.2930513
http://dx.doi.org/10.1109/TMC.2019.2963668
http://dx.doi.org/10.1109/JIOT.2021.3058116
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/2847220.2847223
http://dx.doi.org/10.1109/TIT.2017.2756959
http://dx.doi.org/10.1109/18.850663
http://dx.doi.org/10.1109/TNET.2003.818197
http://dx.doi.org/10.1109/TIT.2014.2334315
http://dx.doi.org/10.1145/285243.285258
http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.1109/TCOMM.2014.2362111
http://dx.doi.org/10.1109/TSP.2021.3078625

Entropy 2022, 24, 1284 20 of 20

40. Ye, Y.; Chen, H.; Xiao, M.; Skoglund, M.; Poor, H.V. Privacy-preserving Incremental ADMM for Decentralized Consensus
Optimization. IEEE Trans. Signal Process. 2020, 68, 5842–5854. [CrossRef]

41. Mao, X.; Gu, Y.; Yin, W. Walk Proximal Gradient: An Energy-Efficient Algorithm for Consensus Optimization. IEEE Internet
Things J. 2018, 6, 2048–2060. [CrossRef]

42. Li, W.; Liu, Y.; Tian, Z.; Ling, Q. Communication-Censored Linearized ADMM for Decentralized Consensus Optimization. IEEE
Trans. Signal Inf. Process. Netw. 2020, 6, 18–34. [CrossRef]

43. Hazan, E.; Levy, K.; Shalev-Shwartz, S. Beyond convexity: Stochastic quasi-convex optimization. Adv. Neural Inf. Process. Syst.
2015, 28, 1594–1602.

44. Cebe, M.; Kaplan, B.; Akkaya, K. A Network Coding Based Information Spreading Approach for Permissioned Blockchain in IoT
Settings. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, New York, NY, USA, 5–7 November 2018.

45. Braun, M.; Wiesmaier, A.; Alnahawi, N.; Geibler, J. On Message-based Consensus and Network Coding. In Proceedings of the
12th International Conference on Network of the Future (NoF), Coimbra, Portugal, 6–8 October 2021.

46. Rouayheb, S.; Soljanin, E.; Sprintson, A. Secure network coding for wiretap networks of type II. IEEE Trans. Inf. Theory 2012,
58, 1361–1371. [CrossRef]

47. Cai, N.; Yeung, R.W. Secure Network Coding on a Wiretap Network. IEEE Trans. Inf. Theory 2011, 57, 424–435. [CrossRef]

http://dx.doi.org/10.1109/TSP.2020.3027917
http://dx.doi.org/10.1109/JIOT.2018.2875057
http://dx.doi.org/10.1109/MSP.2020.3003845
http://dx.doi.org/10.1109/TIT.2011.2173631
http://dx.doi.org/10.1109/TIT.2010.2090197

	Background and Motivations
	Introduction of Distributed Machine Learning
	Coding for Reliable Large-Scale DML
	Random Coding Construction for Large-Scale DML
	Coding for ADMM
	Introduction and System Setup
	Mini-Batch Stochastic I-ADMM
	Coding for Local Optimization for sI-ADMM
	Simulations for Coded Local Optimization
	Discussion

	Conclusions and Future Work
	References

