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Abstract: In this paper, we focus on the nonsmooth composite optimization problems over networks,
which consist of a smooth term and a nonsmooth term. Both equality constraints and box constraints
for the decision variables are also considered. Based on the multi-agent networks, the objective
problems are split into a series of agents on which the problems can be solved in a decentralized
manner. By establishing the Lagrange function of the problems, the first-order optimal condition is
obtained in the primal-dual domain. Then, we propose a decentralized algorithm with the proximal
operators. The proposed algorithm has uncoordinated stepsizes with respect to agents or edges,
where no global parameters are involved. By constructing the compact form of the algorithm with
operators, we complete the convergence analysis with the fixed-point theory. With the constrained
quadratic programming problem, simulations verify the effectiveness of the proposed algorithm.

Keywords: nonsmooth optimization; decentralized optimization; primal-dual algorithm; uncoordinated
stepsizes; distributed signal processing; information processing

1. Introduction

Recently, the distributed data processing methods based on multi-agent networks
have received much attention. The traditional methods put all the data into one machine
and perform the computation centrally. However, as the size of data continues to grow, this
kind of centralized strategy is limited by the computing power of the hardware. In contrast
to this, the distributed methods distribute computing tasks to agents over decentralized
networks [1,2]. Each agent keeps an arithmetic unit and a memory unit. The agents interact
with each other through communication links, and this communication occurs only among
the neighboring agents. Under these conditions, the distributed methods can effectively
solve the optimization problems common to sensor networks [3], economic dispatch [4–6],
machine learning [7,8] and dynamic control [9].

The existing decentralized algorithms have included some successful results [10–15].
Previous works considered the problem models composed of a single function. With a
fixed stepsize, Shi et al. designed EXTRA [10], which can exactly converge to the optimal
solution. Lei et al. studied problems with bound constraints and proposed the primal-
dual algorithm [11]. In addition, recent works [16–18] investigated a general distributed
optimization with an objective function by designing decentralized subgradient-based
algorithms, but diminishing or non-summable step-sizes are utilized, which may cause
slow convergence rates [19].

In order to make full use of these special properties, some scholars have studied
the nonsmooth composite optimization problems, which possess smooth and nonsmooth
structures. By extending EXTRA to the nonsmooth combinational optimization, Shi et al.
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proposed PG-EXTRA [20]. Li et al. introduced the network-independent stepsize to PG-
EXTRA and then developed NIDS [21]. In addition, Aybat et al. proposed DPDA-D [22]
for time-varying networks. Considering the situation that the nonsmooth term cannot be
split, Xu et al. proposed the [23]. PG-ADMM [24] was designed based on the distributed
alternating direction multiplier method. Particularly, the nonsmooth combinational op-
timization problems also include a class of problems consisting of three functions and a
linear operator. This structure is mainly discussed in the centralized optimization [25–28],
and recently some distributed works also appear in [29,30]. In this paper, inspired by the
constrained optimization problem [31], we study the constrained nonsmooth composite
optimization problems over networks.

The contributions of this paper can be summarized as follows:

1. This paper focuses on an optimization problem with partially smooth and nonsmooth
objective functions, where the decision variable satisfies local equality and feasible
constraints, unlike these works [10,16,18–21] without considering any constraints.
Then, to solve this problem, we propose a novel decentralized algorithm by combin-
ing primal-dual frame with the proximal operators, which avoids the estimation of
subgradients for nonsmooth terms.

2. Different from existing node-based methods [16–21], the proposed algorithm adopts
an edge-based communication pattern that explicitly highlights the process of infor-
mation exchange among neighboring agents and further gets rid of the dependence
on Laplacians [13]. Such a consideration also makes it possible to use uncoordinated
stepsizes instead of commonly global or dynamic ones [10,12,16,18,19,21].

3. By employing the first-order optimal conditions and fixed-point theory of operators,
the convergence is proved, and its sublinear rate O(1/k) (k is the number of iteration);
i.e., at most, O(1/ε) iterations in order to reach an accuracy of ε is established.

Organization: The rest of this paper is organized as follows. In Section 2, the necessary
notations and basic knowledge are first provided, and then we describe the optimization
problem over the networks and necessary assumptions. Section 3 supplies the development
of the proposed decentralized algorithm. In Section 4, the convergence analysis for the
proposed algorithm is provided. In Section 5, we use the simulation experiments to verify
the theoretical analysis. Finally, conclusions are given in Section 6.

2. Preliminaries

In this section, we introduce the notations involved in this paper. Meanwhile, the
objective problem and its explanation are also supplied.

2.1. Graph Theory and Notations

The knowledge of graph theory is used to construct the mathematical model of the
communication network. Let G = (V , E) describe the network as a graph, where V is the
set of vertices and E ⊂ V ×V is the set of edges. For an agent i ∈ V ,Ni denotes the set of its
neighbors. Let the unordered pair (i, j) ∈ E represent the edge between agent i and agent j.
However, (i, j) or (j, i) is still order, i.e., the variables with respect to them are different.

Next, we explain the notations that appear in this paper. Let R represent the set of real
numbers. Therefore, Rn denotes the n-dimensional vector space, and Rn×m denotes the
set of all n-row and m-column real matrices. We define In as the n-dimensional identity
operator, 0n as the n-dimensional null vector, and 0n×n as the null matrix. If their dimen-
sions are clear from the context, we omit their subscript. Then, blkdiag{P, Q} is the block
diagonal matrix grouped by matrices P and Q. For a matrix P, let M be its transpose. We
denote ‖x‖P =

√
x>Px as the induced norm with matrix P. The subdifferential of function

f is ∂ f , where ∂ f (x) =
{

p|∀q ∈ Rn, f (x) + p>(q− x) ≤ f (q)
}

. The conjugate function
f ∗ is defined by f ∗(p) = supq∈Rn{〈p, q〉 − f (q)}. For a positive constant µ, the resolvent

of the proximal operator is proxµ f (y) = (I + µ∂ f )−1(y) = arg minx f (x) + 1
2µ‖x− y‖2,

while the resolvent with respect to the matrix M is proxM
f (y) =

(
I + M−1∂ f

)−1
(y) =
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arg minx f (x) + 1
2‖x− y‖2

M. Moreover, let S represent the optimal solution set of a solvable
optimization problem over networks.

2.2. Decentralized Optimization Problem

The constrained composite optimization problem over networks studied in this paper
is based on the network G = {V , E} with m agents. Specifically, the formulation of the
problem is established as follows:

min
x̃∈Rn

m

∑
i=1

fi(x̃) + gi(x̃), (1a)

s.t. Ai x̃ = bi, i = 1, · · · , m, (1b)

x̃ ∈
⋂m

i=1
Ωi. (1c)

In problem (1), x̃ ∈ Rn is the decision variable; fi : Rn → R ∪ {+∞} and gi : Rn →
R ∪ {+∞} are two private cost functions to agent i, where the former has the Lipschitz
continuous gradient, but the latter may be nonsmooth; bi ∈ Rr is a vector and Ai : Rn → Rr

is a linear operator. Convex set Ωi gives the box constraints to the decision variable of
agent i.

To clarify the properties of problem (1), the following necessary assumption is given.

Assumption 1. For any agent i ∈ V :

(i) The cost function fi is Lipschitz continuous and convex; i.e., if we consider the positive
Lipschitz constant βi, then it holds the inequality for the gradient ∇ fi:

‖∇ fi(x̃)−∇ fi(ỹ)‖2 ≤ βi(x̃− ỹ)>(∇ fi(x̃)−∇ f (ỹ)). (2)

(ii) The local cost function gi is a nonsmooth and convex function.
(iii) The optimal solution x̃∗ to objective problem (1) exists, which satisfies both the equality

constraints and the box constraints.
(iv) The graph G is undirected and connected.

Note that the cost functions fi and gi are separable. Hence, we introduce the con-
sensus constraint to transform problem (1) into the structure that can be computed in a
decentralized manner:

min
x1,··· ,xm

m

∑
i=1

fi(xi) + gi(xi), (3a)

s.t. Aixi = bi, i = 1, · · · , m, (3b)

xi = xj, i = 1, · · · , m, j ∈ Ni, (3c)

xi ∈ Ωi. (3d)

Define the set Ai = {z ∈ Rn|Aiz = bi } and consider the indicator function

δC(e) =

{
0, e ∈ C,

+∞, e /∈ C,

such that Problem (3) can be processed by the penalty function method. For i ∈ V and
j ∈ Ni, let Cij = I if i < j and Cij = −I otherwise. Thus, Problem (3) is equivalent to the
following problem:

min
x1,··· ,xm

m

∑
i=1

fi(xi) + gi(xi) + δAi (xi) + δΩi (xi), (4a)

s.t. Cijxi + Cjixj = 0, i = 1, · · · , m, j ∈ Ni. (4b)
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Then, let x = col(x1, . . . , xm) be the global variable. For i ∈ V and j ∈ Ni, we introduce
a linear operator N(i,j) : x 7→ ((Cijxi)

>, (Cjixj)
>)>, which generates the edge-based variable

from x. With the set C(i,j) =
{
(z>1 , z>2 )

>|z1 + z2 = 0
}

, the constraint in the problem (4)
can be transformed into another penalty function. Therefore, the problem (1) is finally
equivalent to the following problem:

min
x1,··· ,xm

m

∑
i=1

fi(xi) + gi(xi) + δAi (xi) + δΩi (xi) +
m

∑
i=1

∑
(i,j)∈E

δC(i,j)

(
N(i,j)x

)
. (5)

Based on the problem (5), we design a novel decentralized algorithm to solve the
constrained composite optimization problem over networks in the next section.

3. Algorithm Development

The introduction with respect to the design process of the proposed algorithm is
provided in this section.

Notice that Problem (5) is an unconstrained problem. According to [32] (Proposition
19.20), we obtain the following Lagrangian function:

L =
m

∑
i=1

(
fi(xi) + gi(xi) + vT

i xi − δ∗Ai
(vi) + uT

i xi − δ∗Ωi
(ui)

)
+

m

∑
i=1

∑
(i,j)∈E

(
wT
(i,j)N(i,j)x− δ∗C(i,j)

(
w(i,j)

))
,

(6)

where vi ∈ Rn, ui ∈ Rn and w(i,j) ∈ R2n are dual variables, and δ∗Ai
, δ∗Ωi

and δ∗C(i,j)
are the

conjugate functions of δAi , δΩi , δC(i,j) , respectively. Notice that w(i,j) = (w>ij , w>ji )
> ∈ R2n is

an edge-based variable, where wij ∈ Rn is the local variable of agent i and wji ∈ Rn is for
agent j. Then, the last term of the Lagrangian function (6) satisfies:

m

∑
i=1

∑
(i,j)∈E

(
wT
(i,j)N(i,j)x− δ∗C(i,j)

(
w(i,j)

))
=

m

∑
i=1

∑
j∈Ni

(
wT
(i,j)N(i,j)x− δ∗C(i,j)

(
w(i,j)

))
,

Thus, the Lagrangian function (6) can also be written as

L =
m

∑
i=1

(
fi(xi) + gi(xi) + vT

i xi − δ∗Ai
(vi) + uT

i xi − δ∗Ωi
(ui)

)
+

m

∑
i=1

∑
j∈Ni

(
wT
(i,j)N(i,j)x− δ∗C(i,j)

(
w(i,j)

))
,

(7)

Taking the partial derivatives of the Lagrangian function (7) and combining the opera-
tor splitting method [29], we propose a new update flow as follows:
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w̄k
(i,j) = proxω(i,j)δ

∗
C(i,j)

(
wk
(i,j) + ω(i,j)

(
N(i,j)x

k
))

,

ūk
i = proxµiδ

∗
Ωi

(
uk

i + µixk
i

)
,

v̄k
i = proxσiδ

∗
Ai

(
vk

i + σixk
i

)
,

xk+1
i = proxγi gi

(
xk

i − γi∇ fi

(
xk

i

)
− γi v̄k

i − γiūk
i − γi ∑j∈Ni

C>ij w̄k
ij

)
,

wk+1
(i,j) = w̄k

(i,j) + ω(i,j)

(
N(i,j)x

k+1 − N(i,j)x
k
)

,

uk+1
i = ūk

i + µi

(
xk+1

i − xk
i

)
,

vk+1
i = v̄k

i + σi

(
xk+1

i − xk
i

)
,

(8)

where w̄(i,j) = (w̄>(i,j), w̄>(j,i))
> ∈ R2n, ūi ∈ Rn, v̄i ∈ Rn are the auxiliary variables, and γi, σi,

and µi are positive stepsizes. Notice that the stepsizes are uncoordinated, which can be
selected independently related to different agents and enjoy their own acceptable ranges.
Additionally, the edge-based parameters ω(i,j) can be seen as inherent parameters of the
communication network, revealing the quality of the communication.

The steps related to the edge-based variables in update flow (8) cannot be conducted
directly, so we next replace them with the agent-based variables. We apply the Moreau
decomposition to the first step in update flow (8) such that for the second term on the right
side, we have

prox
ω−1
(i,j)δC(i,j)

(
ω−1
(i,j)w

k
(i,j) + N(i,j)x

k
)
= arg min

y∈C(i,j)

{∥∥∥y−
(

ω−1
(i,j)w

k
(i,j) + N(i,j)x

k
)∥∥∥}. (9)

Define (9) as the projection PC(i,j)
(

ω−1
(i,j)w

k
(i,j) + N(i,j)xk

)
. Then, according to the defini-

tion of the set C(i,j), the projection has the following explicit expression:

PC(i,j)

[
a1
a2

]
=

1
2

[
a1 − a2
a2 − a1

]
.

Thus, for i ∈ V , j ∈ Ni, the update step for w̄(i,j) can be decomposed into

w̄k
ij =

1
2

(
wk

ij + wk
ji

)
+

ω(i,j)

2

(
Cijxk

i + Cjixk
j

)
. (10)

Moreover, the update step for w(i,j) can be replaced by

wk+1
ij = w̄k

ij + ω(i,j)Cij

(
xk+1

i − xk
i

)
. (11)

Combining the update flow (8), (10) and (11), we finally propose the decentralized
algorithm for Problem (1) in Algorithm 1.

Here, we directly give the stepsize condition of Algorithm 1 in the following assump-
tion. The specific theoretical origin of this condition can be found in the convergence
analysis section.

Assumption 2. (Stepsize conditions)
For any agent i ∈ V and j ∈ Ni, the stepsizes γi, µi, σi and ω(i,j) are positive. Let the

following condition hold:

γi <
1

βi
2 + µi + σi + ∑

j∈Ni

ω(i,j)

,

where βi is the Lipschitz constant for the gradient ∇ fi.
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Algorithm 1 The Decentralized Algorithm

Initialization : For each agent i ∈ V and all j ∈ Ni, let w̄0
ij ∈ Rn, ū0

i ∈ Rn, v̄0
i ∈ Rn,

x0
i ∈ Rn, w0

ij ∈ Rn, u0
i ∈ Rn and v0

i ∈ Rn.
For k = 0, 1, 2, · · · do
Each agent i repeats, for all j ∈ Ni,

w̄k
ij =

1
2

(
wk

ij + wk
ji

)
+

ω(i,j)

2

(
Cijxk

i + Cjixk
j

)
,

ūk
i = proxµiδ

∗
Ωi

(
uk

i + µixk
i

)
,

v̄k
i = proxσiδ

∗
Ai

(
vk

i + σixk
i

)
,

xk+1
i = proxτi gi

(
xk

i − γi∇ fi

(
xk

i

)
− γiūk

i − γi v̄k
i − γi ∑j∈Ni

C>ij w̄k
ij

)
,

wk+1
ij = w̄k

ij + ω(i,j)Cij

(
xk+1

i − xk
i

)
,

uk+1
i = ūk

i + µi

(
xk+1

i − xk
i

)
,

vk+1
i = v̄k

i + σi

(
xk+1

i − xk
i

)
.

Agent i sends wk+1
ij , w̄k

ij, Cijxk+1
i to all of its neighbors.

End
Output : The sequence

(
xk

i

)∞

k=1
to estimate the optimal solution.

4. Convergence Analysis

In this section, we first establish the compact form with operators of the proposed
algorithm. Then, the results of the theoretical analysis are provided.

For i ∈ V , j ∈ Ni, we make the following definitions. Let w and w̄ represent the vari-
ables stacked by w(i,j) and w̄(i,j), respectively. Define vectors u = col (u1, u2, . . . , um), v =
col (v1, v2, . . . , vm), ū = col (ū1, ū2, . . . , ūm) and v̄ = col (v̄1, v̄2, . . . , v̄m). Then, we let W =

blkdiag
{

ω(i,j) I2n

}
(i,j)∈E

, Γ = blkdiag{γi In}i∈V , Σ = diag{σi In}i∈V and

M = blkdiag{µi In}i∈V be the stepsize matrices. Then C = ∏(i,j)∈E C(i,j), Ω = ∏i∈V Ωi
and A = ∏i∈V Ai hold such that there exist δC = ∑(i,j)∈E δC(i,j) , δΩ = ∑i∈V δΩi and

δA = ∑i∈V δAi . The linear operator N : x 7→
(

N(i,j)x
)
(i,j)∈E

is stacked by N(i,j). Considering

the resolvent of the proximal operator, the update flow (8) leads to the following equalities:

∂δ∗C

(
w̄k
)
+ W−1w̄k = W−1wk + Nxk,

∂δ∗Ω

(
ūk
)
+ M−1ūk = M−1uk + xk,

∂δ∗A

(
v̄k
)
+ Σ−1v̄k = Σ−1vk + xk,

∂g
(

x̄k
)
+ Γ−1 x̄k + ūk + v̄k + N>w̄k = Γ−1xk −∇ f

(
xk
)

,

wk+1 = w̄k + WNx̄k −WNxk,

uk+1 = ūk + Mx̄k −Mxk,

vk+1 = v̄k + Σx̄k − Σxk,

(12)

where x̄k = xk+1 is the auxiliary variable.
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Define two variables U = col(w, u, v, x) and Ū = col(w̄, ū, v̄, x̄). Based on the equalities
in (12), Algorithm 1 is equivalent to the following compact form described by the operators:Ūk = (TH + TA)

−1(TH − TQ − TD
)
Uk,

Uk+1 = Uk + T−1
S
(
TH − TQ

)(
Ūk −Uk

)
,

(13)

where the operators are given as follows:

TH : U 7→
((

W−1w
)>

,
(

M−1u
)>

,
(

Σ−1v
)>

,
(

N>w + u + v + Γ−1x
)>)>

,

TA : U 7→
(

∂δ∗C(w)>, ∂δ∗Ω(u)>, ∂δ∗A(v)
>, ∂g(x)>

)>
,

TQ : U 7→
(
(−Nw)>,−u>,−v>,

(
N>w + u + v

)>)>
,

TD : U 7→
(

0n, 0n, 0n,∇ f (x)>
)>

,

TS : U 7→
(
(Ww)>, (Mu)>, (Σv)>, (Γx)>

)>
.

Consider one iteration of the proposed algorithm as an operator T. Then we let U∗ =
col(x∗, w∗, u∗, v∗) be the fixed point of the operator T such that U∗ = TU∗. Next, we
conduct the convergence analysis.

Lemma 1. (Optimal analysis) Let Assumption 1 be satisfied. The fixed point U∗ related to the
operator T meets the first-order optimal conditions of the objective problem, and x∗ ∈ S is an
optimal solution.

Proof. Substituting the fixed point into (12), we have the following set of equalities:
∂δ∗C(w

∗)− Nx∗ = 0,

∂δ∗Ω(u∗)− x∗ = 0,

∂δ∗A(v
∗)− x∗ = 0,

∂g(x∗) +∇ f (x∗) + u∗ + v∗ + N>w∗ = 0,

which is also the KKT condition of the Lagrangian function (6). Therefore, x∗ is an optimal
solution to problem (1).

The relationship between the fixed point and the optimal solution is ensured by
Lemma 1. Split the operator TH as TH = TP + TK, where we let

TP =


W−1 0 0 1

2 N
0 M−1 0 1

2 I
0 0 Σ−1 1

2 I
1
2 N> 1

2 I 1
2 I Γ−1

,

TK =


0 0 0 − 1

2 N
0 0 0 − 1

2 I
0 0 0 − 1

2 I
1
2 N> 1

2 I 1
2 I 0

,



Entropy 2022, 24, 1278 8 of 14

and further define another linear operator

TP̃ =


W−1 0 0 − 1

2 N
0 M−1 0 − 1

2 I
0 0 Σ−1 − 1

2 I
− 1

2 N> − 1
2 I − 1

2 I Γ−1

.

With these definitions above, the following lemma provides the property of the opera-
tor T for convergence analysis.

Lemma 2. Under Assumption 1, there exists the following inequality for U∗:(
Ūk −U∗

)>
TD

(
Uk −U∗

)
≥ −1

4

∥∥∥xk − x̄k
∥∥∥2

B
,

where B = blkdiag{βi In} for i ∈ V is the Lipschitz parameter matrix.

Proof. With the definition of operator TD, we have the equality(
Ūk −U∗

)>
TD

(
Uk −U∗

)
= −

(
xk − x̄k

)>(
∇ f
(

xk
)
−∇ f (x∗)

)
+
(

xk − x∗
)>(
∇ f
(

xk
)
−∇ f (x∗)

)
. (14)

According to [32] (Theorem 18.16), for i ∈ V , ∇ fi is cocoercive, i.e., it holds∥∥∥∇ f
(

xk
)
−∇ f (x∗)

∥∥∥2

B−1
≤
(

xk − x∗
)>(
∇ f
(

xk
)
−∇ f (x∗)

)
. (15)

Note that for any vector a and b in the same dimension and a diagonal positive definite
matrix V, then there exists the inequality x>y ≤ ‖x‖2

V + 1
4‖y‖

2
V−1 . Hence, we have(

xk − x̄k
)>(
∇ f
(

xk
)
−∇ f (x∗)

)
≤
∥∥∥∇ f

(
xk
)
−∇ f (x∗)

∥∥∥2

B−1
+

1
4
‖xk − x̄k‖2

B. (16)

Combining (14)–(16), we can obtain the objective inequality and end the proof.

Lemma 3. Under Assumption 1, there exists the following inequality for U∗:∥∥∥Uk+1 −U∗
∥∥∥2

TS
−
∥∥∥Uk −U∗

∥∥∥2

TS
≤
∥∥∥Uk+1 −Uk

∥∥∥2

TS−2TP̃

+
1
2

∥∥∥xk − x̄k
∥∥∥2

B
, (17)

where TP̃ is defined before Lemma 2.

Proof. Considering the change of the optimal residual before and after one iteration, we have∥∥∥Uk+1 −U∗
∥∥∥2

TS
−
∥∥∥Uk −U∗

∥∥∥2

TS

= −
∥∥∥Uk+1 −Uk

∥∥∥2

TS
+ 2
(

Uk+1 −U∗
)>

TS

(
Uk+1 −Uk

)
=

∥∥∥Uk+1 −Uk
∥∥∥2

TS
+ 2
(

Uk −U∗
)>

TS

(
Uk+1 −Uk

)
. (18)

From the second step of the update flow (13), there exists

TS

(
Uk+1 −Uk

)
=
(
TH − TQ

)(
Ūk −Uk

)
,
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such that the equality (18) leads to∥∥∥Uk+1 −U∗
∥∥∥2

TS
−
∥∥∥Uk −U∗

∥∥∥2

TS

=
∥∥∥Uk+1 −Uk

∥∥∥2

TS

+ 2
(

Ūk −U∗
)>(

TH − TQ
)(

Ūk −Uk
)

− 2
(

Ūk −Uk
)>(

TH − TQ
)(

Ūk −Uk
)

≤
∥∥∥Uk+1 −Uk

∥∥∥2

TS

+ 2
(

Ūk −U∗
)>(

TH − TQ
)(

Ūk −Uk
)

− 2
(

Ūk −Uk
)>

TP

(
Ūk −Uk

)
.

From the first step of the update flow (13), it holds that(
TH − TQ

)(
Ūk −Uk

)
= −

(
TDUk + TQŪk + TAŪk

)
.

Thus, we further have∥∥∥Uk+1 −U∗
∥∥∥2

TS
−
∥∥∥Uk −U∗

∥∥∥2

TS

≤
∥∥∥Uk+1 −Uk

∥∥∥2

TS
− 2
(

Ūk −Uk
)>

TP

(
Ūk −Uk

)
− 2
(

Ūk −U∗
)>(

TDUk + TQŪk + TAU∗
)

− 2
(

Ūk −U∗
)>(

TAŪk − TAU∗
)

. (19)

Then, we discuss the right side of (19). Note that Lemma 1 proves the equivalence
between the fixed point and the optimal solution. Substituting the property of fixed points
into the update flow (13), we obtain U∗ = Ū∗ and

TAU∗ = −TQU∗ − TDU∗.

Hence, the third term on the right side of (19) satisfies(
Ūk −U∗

)>(
TDUk + TQŪk + TAU∗

)
=
(

Ūk −U∗
)>

TD

(
Uk −U∗

)
+
(

Ūk −U∗
)>

TQ

(
Ūk −U∗

)
≥ −1

4

∥∥∥xk − x̄k
∥∥∥2

B
+
(

Ūk −U∗
)>

TQ

(
Ūk −U∗

)
, (20)

where the inequality is based on Lemma 2. Notice that the operator TA is monotone [32]
(Theorem 21.2 and Proposition 20.23), i.e., it holds(

Ūk −U∗
)>(

TAŪk − TAU∗
)
≥ 0. (21)

Since the linear operator TQ is a skew-symmetric matrix, it is monotone [29]. Combin-
ing (19)–(21), we obtain
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∥∥∥Uk+1 −U∗
∥∥∥2

TS
−
∥∥∥Uk −U∗

∥∥∥2

TS

≤
∥∥∥Uk+1 −Uk

∥∥∥2

TS
− 2
(

Ūk −Uk
)>

TP

(
Ūk −Uk

)
+

1
2

∥∥∥xk − x̄k
∥∥∥2

B
. (22)

From the second step of the update flow (13), it holds

Ūk −Uk =
(
TH − TQ

)−1TS

(
Uk+1 −Uk

)
,

where TH , TQ and TS are the linear operators. Considering that TP is also a linear operator,
the second term on the right side of (22) has an equivalent form:(

Ūk−Uk
)>

TP

(
Ūk−Uk

)
=
(

Uk+1−Uk
)>

TP̃

(
Uk+1−Uk

)
. (23)

Substituting (23) into (22), we complete the proof.

Summarizing the above lemmas, the following theorem supplies the convergence results.

Theorem 1. When Assumption 1 and 2 are satisfied, for the sequence
(

Uk
)

k≥0
generated by the

operator T, we have∥∥∥Uk+1 −U∗
∥∥∥2

Ts
−
∥∥∥Uk −U∗

∥∥∥2

Ts
≤ −

∥∥∥Uk+1 −Uk
∥∥∥2

2(TP̃−B̃)−TS
, (24)

where B̃ = blkdiag
{

0n×n, 0n×n, 0n×n, 1
4 B
}

. Then, the sequence
(

Uk
)

k≥0
has sublinear rate

O(1/k), and the sequence
(

xk
)

k≥0
converges to an optimal solution x∗ ∈ S .

Proof. With the definition of B̃, we have the following equality:

1
4

∥∥∥xk − x̄k
∥∥∥2

B
=
∥∥∥Uk+1 −Uk

∥∥∥2

B̃
. (25)

Substituting (25) into (17), we obtain the inequality (24). Note that under Assumption 2,
the matrix 2

(
TP̃ − B̃

)
− TS is positive definite. Hence, the sequence

(
Uk
)

k≥0
converges to

the fixed point U∗. Meanwhile, utilizing [10] (Proposition 1) results in the O(1/k) rate, and
based on Lemma 1, the convergence of

(
xk
)

k≥0
holds.

In Theorem 1, the positive definite property is needed for the induced matrices, which
leads to the stepsize conditions in Assumption 2.

5. Numerical Simulation

The correctness of the theoretical analysis is verified through numerical simulation on
a constrained optimization problem over networks in this section.

The constrained quadratic programming problem [33] is considered in the experiments,
which has the formulation as follows:

min
x̃

m

∑
i=1
‖x̃‖2

Ei
+ e>i x̃ + ρi‖x̃‖1, (26a)

s. t. Ai x̃ = bi, i ∈ V , (26b)

x̃min ≤ x̃ ≤ x̃max, i ∈ V , (26c)
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where matrix Ei ∈ Rn×n is diagonal and positive definite, ei ∈ Rn is a vector, and ρi is the
penalty factor. Both xmin

i and xmax
i are vectors with constants, which give the bounds of the

decision variable x̃. In the light of (1), we can set fi(x̃) = ‖x̃‖2
Ei
+ eT

i x̃ and gi(x̃) = ρ1‖x̃‖1.
In this case, the dimension of the decision variable is set as n = 4, and we let r = 1. For

i ∈ V , the paramount data of Problem (26) are selected randomly. The elements of matrix
Ei are in [1, 2], and the elements of the linear operator Ai are in [1, 15]. Both vectors ei and
bi take values in [−5, 5]. The box constraints are considered as [−2.5, 2.5]. Then, we set the
uncoordinated setpsizes randomly as γi ∈ [0.005, 0.006], while σi, µi and ω(i,j) are in [5, 6].
The numerical experiments are performed over the generated network with eight agents,
which is displayed in Figure 1. The simulations are carried by running the distributed
algorithms on a laptop with Intel(R) Core i5-5500U CPU @ 2.40 GHz, 8.0 GB of RAM, and
Matlab R2016a on Windows 10 operating system.

Figure 1. The 8-agents communication network.

The simulation results are shown in Figures 2 and 3. The transient behaviors of
each component of xk

i is displayed in Figure 2, in which a node-based consensus algo-
rithm [34] is introduced as a comparative profile. Note that the obtained optimal solu-
tion from the proposed algorithm is in line with that of the node-based consensus one,
i.e., x∗ = [0.6900, 0.6270, 0.8046, 0.4400]T, but the latter achieves a stable consensus after
15,000 iterations. Figure 3 shows that our proposed algorithm outperforms the node-based
and subgradient algorithms [35] in terms of convergence performance by evaluating the
relative errors ∑m

i=1 ‖xk
i − x̃∗‖/m‖x̃∗‖.
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Figure 2. Trajectory of variable xk
i . (a) Proposed algorithm. (b) Node-based consensus algorithm.
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Figure 3. Convergence performance comparison.

6. Conclusions

In this paper, a distributed algorithm based on proximal operators has been designed
to deal with discussed a class of distributed composite optimization problems, in which
the local function has a smooth and nonsmooth structure and the decision variable abides
by both affine and feasible constraints. Distinguishing attributes of the proposed algorithm
include the use of uncoordinated stepsizes and the edge-based communication that avoids
the dependency on Laplacian weight matrices. Meanwhile, the algorithm has been verified
in theory and simulation. However, there are still some aspects worthy of improvement
in this paper. For example, it is worth adopting efficient accelerated protocols (such as
the Nesterov-based method and heavy ball method) to improve the convergence rate and
developing asynchronous distributed algorithms to deal with the issue of communication la-
tency. In addition, more general optimization models and more efficient algorithms should
be investigated in order to address potential applications, e.g., [36–38] with nonconvex
objectives, coupled and nonlinear constraints.
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