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Abstract: Precise iris segmentation is a very important part of accurate iris recognition. Traditional
iris segmentation methods require complex prior knowledge and pre- and post-processing and have
limited accuracy under non-ideal conditions. Deep learning approaches outperform traditional
methods. However, the limitation of a small number of labeled datasets degrades their performance
drastically because of the difficulty in collecting and labeling irises. Furthermore, previous approaches
ignore the large distribution gap within the non-ideal iris dataset due to illumination, motion blur,
squinting eyes, etc. To address these issues, we propose a three-stage training strategy. Firstly,
supervised contrastive pretraining is proposed to increase intra-class compactness and inter-class
separability to obtain a good pixel classifier under a limited amount of data. Secondly, the entire
network is fine-tuned using cross-entropy loss. Thirdly, an intra-dataset adversarial adaptation is
proposed, which reduces the intra-dataset gap in the non-ideal situation by aligning the distribution
of the hard and easy samples at the pixel class level. Our experiments show that our method improved
the segmentation performance and achieved the following encouraging results: 0.44%, 1.03%, 0.66%,
0.41%, and 0.37% in the Nice1 and 96.66%, 98.72%, 93.21%, 94.28%, and 97.41% in the F1 for UBIRIS.V2,
IITD, MICHE-I, CASIA-D, and CASIA-T.

Keywords: contrastive learning; adversarial adaptation; iris segmentation; deep learning

1. Introduction

With the increasing importance of information security in the information society,
physiological feature recognition technology and behavioral feature recognition technology
have emerged. They are used on a large scale in access control, identity recognition, and
other scenarios. The main biometric features currently studied in academia and industry
are fingerprint, face, voice, and iris [1].

The iris is an internal organ of the human body [2], and Figure 1a shows the iris in
the eye along with other periocular structures [3]. Fingerprints can extract only a few
feature points, faces have a dozen, while irises can extract more than two hundred feature
points [4]. Therefore, the iris has been widely used in our daily life as one of the most
accurate, trustworthy, and promising biometric technologies [5].

Iris recognition usually consists of five steps: iris acquisition, iris quality evaluation,
iris segmentation, iris feature extraction, and iris feature matching. Iris segmentation plays
a very important role in iris recognition [6], and the final recognition rate depends on the
performance of segmentation [7]. Iris segmentation is divided into generalized segmenta-
tion and narrow segmentation. Narrow iris segmentation is used to generate a binary mask
to extract the iris pixel region as shown in Figure 1b, where the green region indicates the
valid iris pixels. Our approach focuses on the latter, i.e., iris semantic segmentation.
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Since the errors in iris segmentation are passed to the subsequent feature extraction
and feature matching [8], it is of great significance to develop effective and efficient iris
segmentation methods. Currently, the two types of traditional methods that exist are
divided into two major categories. One category is the group of boundary-based methods
represented by the integral differential method [9] and the Hough transform method [10].
They separate the iris region of interest by locating the boundaries of the pupil, sclera,
and eyelid. The other category is the group of pixel-based methods such as extracting
Zernike moments to construct SVM to discriminate iris pixels [11] and designing location
and color features using ANN for iris pixel classification [12]. However, these traditional
methods require complex prior knowledge and extensive pre- and post-processing and are
not suitable for non-ideal iris acquisition environments.

With the great success of deep learning techniques represented by convolutional
neural networks (CNNs) in computer vision, it has become popular to design end-to-
end iris segmentation networks with better segmentation performance than traditional
methods. However, deep learning techniques applied to iris semantic segmentation face
two challenging problems:

1. Training of deep convolutional neural networks requires a large amount of data,
whereas the available dataset of iris images is very limited and is not enough to
effectively train the network [7]. In addition, labeling data for the iris semantic
segmentation task is expensive and time-consuming as it requires dense pixel-level
annotations. The common practice for training with limited annotated data is to first
pretrain using commonly used large classical databases such as ImageNet [13] and
then fine-tune the network. However, ImageNet is designed for academic research
and not for commercial applications. It may be not suitable for developing practical
iris recognition products. In addition, ImageNet does not effectively help the semantic
segmentation problem of non-natural images [14];

2. Iris acquisition is usually unconstrained and non-cooperative, so the quality of the
obtained images is very limited, which can lead to degraded performance of segmen-
tation [15]. For example, the images may contain non-uniform illumination, bokeh,
blurring, reflections, and eyelid/eyelash occlusion [16].

Most of the existing deep-learning-based iris segmentation methods [17–21] do not
solve the above problems well, and the ideal segmentation performance of [18–20] is heav-
ily dependent on large-scale data. These data must be iris pixels accurately labeled by hand,
which is time-consuming and expensive. The studies [19,20] use several augmentation
technologies including cropping, resizing with interpolation, horizontal flipping, horizontal
translation, and vertical translation to expand the data by 12 times. These studies signifi-
cantly increase the computational complexity and the storage overhead of model training.
Study [17] captures local texture details and global structural information from multiple
scales but may misclassify for some similar noisy pixels. Study [21] only learns irregular iris
shapes using dense blocks, and its segmentation performance is degraded by illumination
variations. The studies [17,21] ignore the differences in the feature distribution of the dataset
itself. They cannot overcome the degraded performance in the face of the non-ideal iris
acquisition condition. To better address the above problems, motivated by self-supervised
learning [22,23], we designed a pretraining paradigm for iris semantic segmentation. It
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increases the separability of inter-class pixels and the compactness of intra-class pixels by
modeling the relationship between similar and dissimilar pixels in the feature space in
different images. We did not use additional ImageNet and data augmentation to improve
the segmentation performance of a limited amount of annotated dataset. According to
domain adaptation in transfer learning, a big distribution gap between the source domain
data and the target domain data can lead to a decrease in the generalization ability of the
model. The performance of the model also decreases when there are also differences in
the distribution within the dataset [24]. Reference [25] argues that the source and target
domain data have different distributions due to the domain gap, which in turn leads to
different output entropy values for the same model in different domains. The entropy
minimization objectives push the model’s decision boundaries toward the low-density
regions of the target domain distribution in the prediction space. For some iris datasets
acquired in unconstrained environments, the distribution of iris images within the dataset
is inconsistent. Motivated by entropy minimization, we used entropy to encode the output
space of the model to define the level of difficulty of samples with different distributions.
We assumed that the model produces a high entropy value for the segmentation output of
hard samples that contain more noise, i.e., the output of the model is of low confidence. The
model produces a low entropy value for the segmentation output of clean easy samples,
i.e., the output of the model is of high confidence. Therefore, we used the entropy-based
intra-dataset adversarial adaptation at the level of pixel class to reduce the gap between low-
and high-quality iris feature distributions within the database to improve the segmentation
performance in unconstrained environments.

In summary, our main contributions are summarized as:

(1) We propose a three-stage iris segmentation training algorithm. It offers an alternative
training pipeline for iris segmentation networks on small and non-ideal datasets;

(2) The supervised contrastive learning is proposed to pretrain the iris segmentation
feature extraction model to bring features of similar pixels close to each other and to
keep the features of dissimilar pixels away from each other. It reduces the need for
large amounts of dense pixel-level labeled data and additional large-scale data such
as ImageNet;

(3) Intra-dataset adversarial adaptation is proposed to align the distribution of sample
features with different noise levels, improving the robustness of the model on non-
ideal datasets;

(4) Our approach achieves state-of-the-art results in some metrics such as F1 score, Nice-1,
mIoU, etc. on several commonly used datasets including those with few samples;

(5) To the best of our knowledge, this work pioneers the use of contrastive learning and
domain adaptation to improve iris segmentation performance.

2. Related Work

With the growing demand for identification and access control, the rapid development
of iris recognition technology has been promoted. As one of the key parts, iris segmentation
exists in two major categories of methods, including traditional image processing methods
and deep-learning-based data-driven methods. These methods are summarized in Table 1.
Traditional image processing methods can be subdivided into two categories: boundary-
based methods and pixel-based methods.

The boundary-based approaches locate the inner and outer iris boundaries based on
the presence of gradient changes in the borders of the iris and pupil, iris, and sclera, and the
geometry of the borders. John Daugman uses the integro-differential operator to integrate
the gradient in the circumference along the radial direction, and the parameters correspond-
ing to the maximum value of the integration are used as the iris boundary parameters [9].
In the system of Wildes et al., the Hough transform is used to segment the iris region by
binarizing the edge points and using the edge points to vote on the boundary parameters.
In addition, the parameters with the most votes are determined as the parameters of the
iris boundary [10]. Radman et al. use both the integro-differential operator and Hough
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transform to segment the iris region in the visible light environment [26]. The Hough
transform has been further improved in [27,28]. Study [27] reduces the parametric search
space of the Hough transform without reducing the accuracy and accelerates the detection
of boundaries using the one-dimensional space of the radius. Uhl A et al. apply an adaptive
Hough transform to find the center of the most discriminative concentric circle using both
gradient direction and gradient magnitude [28].

Table 1. The summary of the related work.

Methods Category Characteristics

Daugman, J [9] Boundary-based Integro-differential operator and gradient
Wildes et al. [10] Boundary-based Hough transform and vote

Radman et al. [26] Boundary-based Integro-differential operator and Hough transform
Bendale et al. [27] Boundary-based Improved Hough transform by one-dimensional space

Uhl et al. [28] Boundary-based Adaptive Hough transform
Pundlik et al. [29] Pixel-based Graph cut based on entropy minimization
Banerjee et al. [30] Pixel-based Geometry of garbcut
Radman et al. [31] Pixel-based HOG-SVM and cellular automata through GrowCut

Tan et al. [32] Boundary-based and Pixel-based Eight-neighbor connection based clustering and
integrodifferential constellation

Kumar et al. [33] Boundary-based and Pixel-based Random walker and graph-based modeling
Liu et al. [17] Deep learning HCNNS and MFCNS without pre- and post-processing

Bazrafkan et al. [18] Deep learning Merged networks by SPDNN at layer level
Wang et al. [15] Deep learning Multi-task learning and parameterized inner and outer boundaries
Chen et al. [34] Deep learning Mask images by the DADCNET as GTs
Wang et al. [35] Deep learning A light network for mobile iris segmentation
Miron et al. [36] Deep learning A U-Net with model downscaling

Unlike the boundary-based approaches, the pixel-based approaches classify iris pixels
and non-iris pixels by a binary classifier based on images with rich pixel features such as
texture, color, and location. Well-known pixel-based methods rely mainly on low-level-
intensity pixel features to discriminate iris pixels from other pixels by graph cut based on
entropy minimization [29]. Banerjee et al. represent the image as a Markov random domain
and obtain the localization results using ellipse fitting based on the geometry of a modified
graph cut version of garbcut [30]. Radman et al. use HOG-SVM to obtain some columns of
labeled pixels, and the segmentation results of the iris are obtained by cellular automata
which evolved through GrowCut [31].

It is worth noting that boundary-based approaches rely on the contrast at regional
transitions and thus localize borders using gradients and contours. However, pixel-based
approaches focus on low-level visual features to build binary classifiers. Some methods
combine the advantages of both approaches to obtain better segmentation results. Tan et al.
use an eight-neighbor connection-based clustering method to roughly label iris pixels and
non-iris pixels. In addition, a novel integrodifferential constellation is used to precisely
locate the inner and outer iris boundaries [32]. On the contrary, Kumar et al. use the
random walker method to coarsely localize the boundaries and graph-based modeling to
accurately distinguish iris regions [33].

However, current traditional image processing methods require a series of complex
pre-processing and post-processing operations, which are not conducive to developing
practical iris recognition products. Manual features relying on a priori knowledge lack
generalizability in the face of different acquisition environments. In addition, segmentation
errors generated when faced with unconstrained scenes are passed to subsequent steps,
leading to a dramatic decrease in iris recognition rate.

In recent years, artificial intelligence and deep learning have made great progress
in image processing tasks due to the strong increase in GPU computing power. In addi-
tion, more and more deep convolutional neural networks have achieved SOTA on large
datasets [37–40]. The neural network architecture search for designing effective and efficient
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networks for semantic segmentation has also attracted the attention of researchers [41]. In
addition to applications in natural images, deep learning is beneficial for building powerful
diagnostic and predictive systems using CT scan images such as early prediction of lung
cancers [42]. Transformers as alternative architectures for CNNs can effectively address any
image segmentation task (panoptic, instance, or semantic) [43]. They have made progress
in biomedical image segmentation [44]. Study [45] presents a comprehensive review of the
important loss functions for biomedical image segmentation. Deep learning algorithms
have also been widely applied to iris segmentation, which far outperform traditional image
processing algorithms in terms of segmentation performance. Liu et al. [17] propose hierar-
chical convolutional neural networks (HCNNS) and multiscale fully convolutional neural
networks (MFCNS) for end-to-end optimization without pre- and post-processing. MFCNS
fuse shallow local features and deep global features to capture coarse and fine details and
are more robust in the face of noise than HCNNS. Bazrafkan et al. [18] merge four different
full convolutional networks by SPDNN at the layer level using graph theory calculation and
graph contraction to obtain a U-net-like network without pooling facing low-quality iris
images. Wang et al. [15] propose an elaborate partitioned network with attention modules
to obtain masked and parameterized inner and outer boundaries by optimizing a unified
multitasking network. The double attention densely connected network (DADCNET)
proposed by Chen et al. [34] contains two attention modules and improves skip connec-
tions that replace the corresponding GT images using mask images segmented by deep
learning methods. Wang et al. [35] propose a lightweight fully connected neural network,
using a weighted loss, multi-level-feature dense-fusion module, with multi-supervised
training of a multi-scale image, and a generative adversarial network to improve mobile
iris segmentation performance. Miron et al. [36] propose a U-net convolutional neural
network that contains model downscaling to improve efficiency.

Most of the above deep learning approaches work on designing a complex dedicated
network for iris segmentation to solve the non-cooperative environment problem and
designing a complex dedicated network for iris segmentation increases the difficulty of iris
recognition system development. Some expand a large amount of training data and use the
additional large-scale dataset to avoid model overfitting, which increases the storage and
computational pressure. Most of them don’t consider the distribution gap within the uncon-
strained dataset. Adversarial adaptation can effectively align the domain distribution [46].
Study [47] achieves global cross-domain alignment and generates reliable pseudo-labels
for the target domain. Study [48] learns the domain-invariant feature for visual location
via adversarial adaptation. Our proposed approach achieves good performance on a small
amount of data without data expansion on existing network models using only a simpler
contrastive training strategy that is generalizable. Secondly, the feature distribution gap of
different noise-level samples within the dataset is reduced by an adversarial adaptation
framework, which is robust in the face of unconstrained environments.

3. Technical Details
3.1. Overview of the Proposed Method

The complete flowchart of our iris segmentation algorithm training is shown in
Figure 2, which is divided into three stages: supervised contrastive pretraining of the
iris segmentation network, finetuning of the iris segmentation network, and intra-dataset
adaptation of the iris segmentation network. Instead of using a pixel-wise cross-entropy
loss, a pixel-wise contrastive loss is used to pretrain the iris segmentation network in the
first stage. The model consists of the feature extraction part of the existing segmentation
network as an encoding module, a feature extractor followed by a projection module, and
a prediction module followed by a projection module. To better learn the representation
of the image, a channel attention mechanism is added between the encoding module and
the projection module, and between the projection module and the prediction module [49].
In addition, the purpose of this stage is to make intra-class pixels compact and inter-class
pixels separable with a limited amount of labeled data. The second stage adds a pixel-wise
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softmax classifier to the encoder obtained in the first stage and uses a cross-entropy loss to
fine-tune the whole network. The third stage uses an intra-dataset adversarial adaptation
framework, where the entire network in the second stage acts as a generator to obtain
the full image as input and outputs a semantic segmentation mask map. In addition, a
discriminator is used to predict the labels of the difficult and easy samples. This phase
trains the generator and discriminator iteratively to align the feature distributions of iris
images of different quality. It reduces the internal gap of the dataset, and further improves
the performance of the segmentation model.
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3.2. Supervised Contrastive Learning for Iris Segmentation Pretraining

The purpose of recent self-supervised learning is to obtain the representation of images,
and the representation is obtained by deep-convolutional-neural-network output. It mainly
uses the auxiliary task (pretext) to mine the self-supervised information from large-scale
unsupervised data so that the network can learn valuable representations for downstream
tasks [50–52]. Specifically, they use an enhanced version of instances to form positive pairs
and other randomly sampled instances to form negative pairs to compensate for contrastive
loss [51]. Simsiam [53] is a relatively simple framework that does not require negative
sample pairs, large batches, and momentum encoders [23]. In addition, it outperforms
the optimal self-supervised learning and supervised learning algorithms on ImageNet
image classification tasks at a lower epoch iteration of training. We extend the existing
image level-based contrastive self-supervised learning algorithm to the pixel-based level,
which is more suitable for the dense prediction of image semantic segmentation. The entire
model framework is shown in Figure 3. The framework for supervised contrastive learning
consists mainly of the following:

(1) Data enhancement module: Given a batch of iris images and segmentation GTs, a
series of spatial geometric transformations, color jitter, and drop and blurring operations
are used to process the batch data as Random Transform. The iris images are first randomly
cropped with the segmentation mask in the ratio [0.5,2.0] relative to the size of the original
image and are then resized to 513 × 513 using a bilinear interpolation algorithm. The iris
images and GTs are also randomly flipped left and right at the same time. Color jitter is to
randomly adjust the brightness, contrast, saturation, and hue of the image. The color drop
is a random graying of the image. The random blur operation uses a mean filter, gaussian
blur, median blur, bilateral filter, and box blur.
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(2) Encoding network module: Unlike previous self-supervised learning architec-
tures [22,23,53] that use ResNet as the backbone, we directly use DeepLabV3 [37] based on
ResNet50 [54] without the last convolutional layer as the backbone to ensure highly stable
pixel mapping feature representation. The output feature space resolution of the encoding
network module is 1/8 of the input, and the output feature channel, i.e., the dimension of
the feature representation per pixel, is 128.

(3) Projection network module: We use three 1 × 1 convolution layers with BN and
128 channels. Each convolutional layer uses Leaky-ReLu, except for the third convolutional
layer.

(4) Prediction network module: The module consists of two 1 × 1 convolution layers
with BN, the first with 32 output channels and the second with 128 output channels.

(5) Attention module: The channel attention mechanism [49] is inserted between the
encoding network module and the projection network module, and between the projection
network module and the prediction network module. The importance of different channel
features can be automatically learned between the modules.

(6) Supervised pixel-wise contrastive loss: To extend the self-supervised learning
image classification to dense prediction tasks at the pixel level, the data samples in our
contrastive loss calculation are the pixels in the image. Given the input sample image I,
two views I1 and I2 of the sample image I are obtained by the data enhancement module.
Next, the encoding network module takes two views as the input to extract feature maps f1
and f2, respectively. Continually, feature maps f1 and f2 are fed to the attention module
and the projection module to obtain feature maps z1 and z2. It continues to obtain feature
maps p1 and p2 through the attention module and the prediction network module. The
cosine similarity function is used to measure the similarity between pixel feature vectors
and is formulated as:

H
(

pi
1, zj

2

)
=

pi
1

‖ pi
1 ‖2
·

zj
2

‖ zj
2 ‖2

(1)

where pi
1 denotes the feature vector on p1 corresponding to the original image I at pixel i,

and zj
2 denotes the feature vector on z2 corresponding to I at pixel j. To avoid the problem

of pattern collapse, we borrowed stop-gradient, an important component of Simsiam [53].
It is formulated as follows:

H
(

pi
1, stopgrad

(
zj

2

))
(2)
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where stopgrad indicates that I2 cannot receive the gradient from z2. Our supervised
learning pixel-wise contrastive loss is formulated as:

Lpixel−wise contrastive = − 1
N I1

N I1

∑
i

1
N I2

y
I1
i

N I2

∑
j=1

1
[
yI1

i = yI2
j

]
log

{
exp
(

H
(

pi
1,stopgrad

(
zj

2

)))
∑NI2

k=1 H(pi
1,stopgrad(zk

2))

}

− 1
N I2

N I2

∑
i

1
N

I1

y
I2
i

N I1

∑
j=1

1
[
yI1

i = yI2
j

]
log

{
exp
(

H
(

pi
2,stopgrad

(
zj

1

)))
∑NI1

k=1 H(pi
2stopgrad(zk

1))

} (3)

where N I1 denotes the total number of pixels of I1, yI1
i denotes the label of the ith pixel of

I1, N I2

y
I1
i

denotes the number of labels of the ith pixel of I1 in I2, and 1
[
yI1

i = yI2
j

]
denotes

that when the label of the ith pixel of I1 is equal to the label of the jth pixel of I2, it takes 1,
otherwise, it takes 0.

The training strategy of contrastive learning is as follows: the framework is given
a batch of full images and corresponding GTs of the raw training set as the input. In
addition, the output of the prediction network module and the corresponding GTs after
the data augmentation module are used to compute Lpixel−wise contrastive to train the whole
framework. After the contrastive learning is completed, we only use the encoding network
module as the iris semantic segmentation feature extractor. A convolution layer is added as
the pixel-wise classifier to construct the overall iris segmentation network. It takes the full
images and corresponding GTs of size 513 × 513 as the input on the original training set,
and we fine-tune the overall iris segmentation network using pixel-wise cross-entropy loss.

3.3. Intra-Dataset Adaptation for Iris Segmentation
3.3.1. Global Spatial Level Adaptation

To solve the problem of degraded iris segmentation performance due to the large
gap in feature distribution caused by noise factors such as uneven illumination, spectral
reflection, eyelid occlusion, eye hair interference, and off-axis within the dataset, we
draw on adversarial domain adaptation [1]. Study [1] argues that the source and target
domain data have different distributions due to the domain gap, which in turn leads to
different output entropy values for the same model in different domains. Since the hard
and easy sample data share a strong similarity in semantic layout, we define the feature
distribution of the hard and easy samples indirectly through the entropy value of the model
structure space output. An adversarial training approach is used to make the entropy
distribution of the noisy samples within the dataset similar to that of the clean samples,
while keeping the entropy value of the segmentation feature map of the low-noise samples
at a low level. The approach reduces the distribution gap within the dataset, forcing the
dataset to approximately satisfy the independent identical distribution and improving the
performance of the segmentation.

As shown in Figure 4i, the framework is given an iris sample X ∈ RH×W×3 with a pixel
label map Y ∈ {0, 1}H×W . Y(h,w) denotes a label of a pixel (h, w) as a one-hot vector. The
iris sample X is input to the segmentation model G to generate a soft segmentation feature
map P = so f tmax(G(X)), which is the predicted probability of the pixel category. Given
X and the corresponding Y, the segmentation network G is optimized using pixel-wise
cross-entropy loss as follows:

Lseg
cross(X) = −

H

∑
h

W

∑
w

K

∑
c

Y(h,w,c) · log
(

P(h,w,c)
)

(4)

where K = 2 indicates that the number of categories for pixel classification is 2, i.e., iris
regions and non-iris regions.
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Figure 4. Two intra-dataset adaptation frameworks.

The quality of the images of the iris samples in the dataset is difficult to annotate
manually. To quantify the difficulty of the iris samples, we draw on Shannon’s information
entropy principle [55]. Therefore, the entropy value of the soft segmentation output of the
segmentation model at the pixel (h, w) is defined as follows:

E(h,w)(X) = −
K

∑
c
−P(h,w,c) · log

(
P(h,w,c)

)
(5)

To define the relationship between the value of the output entropy map and the
distribution of easy and hard samples, we rank the confidence levels of the iris samples
using the following formula:

S = h·w

√√√√ h

∏
i=1

w

∏
j=1

E(i,j) (6)

We set a ratio coefficient γ =
|Xeasy|
|X| for dividing the hard and easy samples, where |X|

denotes the total number of samples in the entire iris training dataset, and
∣∣Xeasy

∣∣ denotes
the number of easy samples. Using γ, we then divide the iris training dataset based on the
S sort into easy and hard samples.

To align the distribution shift of features of the easy and difficult samples within the
dataset, we train a binary discriminator D to predict the domain labels of the easy and
difficult samples in the dataset. We set the domain labels of the easy samples to 0 and
the domain labels of the difficult samples to 1. The loss function of the discriminator is
formulated as:

Ladv
global

(
Xeasy, Xhard

)
= log(1− D(Ehard)) + log

(
D
(
Eeasy

))
(7)

where Ehard = ∑
h,w

E(h,w)(Xhard) denotes the entropy map of difficult samples and D(Ehard)

denotes the sigmoid output obtained by using the entropy map Ehard as the input to
the discriminator.

The entire adversarial adaptation learning process at the global level is as follows: The
iris segmentation network is used as G in adversarial adaptive learning. We firstly freeze G,
min

D
Ladv

global to train D. Second, we freeze D, min
G

Lseg
cross + max

G
Ladv

global to train G. Finally, we
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repeat the above steps until the model converges. The learning process is summarized in
Algorithm 1.

Algorithm 1: Global spatial level adaptation

Input: iris data X, pixel label Y, segmentation network G, training epochs T, ratio coefficient γ

Initialize: binary discriminator D
For t = 1, . . . ,T do

Unfreeze the D and freeze the G
Compute the logit maps : P = so f tmax(G(X))

Compute the entropy : E(h,w)(X) = −
K
∑
c
−P(h,w,c) · log

(
P(h,w,c)

)
Sort the logit maps P based the S = h·w

√
∏h

i=1 ∏w
j=1 E(i,j)

Split the iris data X corresponding to sorted P into Xhard and Xeasy by ratio coefficient γ

Compute the D’s loss: Ladv
global

(
Xeasy, Xhard

)
= log(1− D(Ehard)) + log

(
D
(
Eeasy

))
min

D
Ladv

global to train D

Unfreeze the G and freeze the D
Compute the cross− entropy : Lseg

cross(X) = −∑H
h ∑W

w ∑K
c Y(h,w,c) · log

(
P(h,w,c)

)
min

G
Lseg

cross + max
G

Ladv
global to train G

3.3.2. Pixel Class Level Adaptation

The entropy distribution of difficult samples is indirectly minimized by making the
entropy distribution of difficult samples similar to that of easy samples. The feature
distribution of the samples in the global feature space is aligned, but the feature distribution
in the pixel class space is not considered. Previous work [56] argues that aligning only
the edge feature distribution, i.e., the global feature space distribution, does not guarantee
a significant reduction in the expected error in the target domain. Study [57] also points
out that the global feature distribution of the two domains is aligned, but some samples
are still misclassified. To solve the above problem, we exploited the class information
of iris and non-iris regions in the adversarial training framework. Hence the feature
distribution shift at the pixel class level is aligned. In the adversarial training process, the
discriminator models the complex structural information at the pixel class level in addition
to distinguishing between difficult and easy samples to obtain the class-level alignment.

As shown in Figure 4ii, we extend the domain label output of discriminator D from a
one-dimensional vector to an output of the same size as the discriminator input with 2K
channels, and the extended discriminator is Dpixel .

The class constraint knowledge is extracted from the output logits of the segmentation
network. It is used as a supervisory signal to enable the global distribution of features of
the hard and easy samples to be aligned while considering fine-grained alignments at the
class level. The class constraint knowledge can be formulated as:

µi =
eai/T

∑K
j=1 eaj/T (8)

where ai denotes the ith channel map of logits output from the segmentation network and
T is a hyperparameter making the class constrain the salience of knowledge.

After adding class-level adaptation to global-level adaptation, the loss function of
optimizing the discriminator is formulated as:

LDpixel
(
Xeasy, Xhard

)
= −

K

∑
i=1

µ
(easy)
i log P(i)

Dpixel

(
Eeasy

)
+

K

∑
j=1

µ
(hard)
j log P(j+K)

Dpixel
(Ehard) (9)
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where P(i)
Dpixel

denotes the ith channel of the soft output of the discriminator Dpixel and

µ
(easy)
i denotes the ith channel of the category-constrained knowledge of easy samples.

By fooling the discriminator with the output of the segmentation network, class-level
adversarial loss allows the segmentation network to learn distribution-invariant features of
the hard and easy samples at the global level and class level. The class-level adversarial
loss is formulated as:

Ladv
class

(
Xeasy, Xhard

)
= −

K

∑
j=1

µ
(hard)
j log P(j+K)

Dpixel
(Ehard) (10)

The whole adversarial adaptation learning process at the pixel class level is that the iris
segmentation network as G, min

Dpixel
LDpixel and min

G
Lseg

cross + Ladv
class iteratively optimize Dpixel

and G. The learning process is summarized in Algorithm 2.

Algorithm 2: Pixel class level adaptation

Input: iris data X, pixel label Y, segmentation network G, training epochs ϕ, ratio coefficient γ

Initialize: extended discriminator Dpixel
For t = 1, . . . , ϕ do

Unfreeze the Dpixel and freeze the G
Compute the logit maps : P = so f tmax(G(X))

Extract class constraint knowledge: µi =
eai /T

∑K
j=1 eaj /T

Compute the Dpixel ’s loss: LDpixel
(
Xeasy, Xhard

)
= −∑K

i=1 µ
(easy)
i log P(i)

Dpixel

(
Eeasy

)
+

∑K
j=1 µ

(hard)
j log P(j+K)

Dpixel
(Ehard)

min
Dpixel

LDpixel to train Dpixel

Unfreeze the G and freeze the Dpixel

Compute the cross− entropy : Lseg
cross(X) = −∑H

h ∑W
w ∑K

c Y(h,w,c) · log
(

P(h,w,c)
)

Compute the class level adversarial loss: Ladv
class

(
Xeasy, Xhard

)
= −∑K

j=1 µ
(hard)
j log P(j+K)

Dpixel
(Ehard)

min
G

Lseg
cross + Ladv

class to train G

4. Experiments
4.1. Datasets

To validate our proposed method more fairly and effectively, we used two visible
light datasets, MICHE-I [58] and UBIRIS.v2 [59], and three near-infrared light datasets,
IITD [60], CASIA-Iris-Distance [61], and CASIA-Iris-Thousand [61], which are commonly
used in the literature. Figures 5–9 show some sample images. These datasets except
CASIA-Iris-Thousand were all acquired in unconstrained environments, and CASIA-Iris-
Thousand dataset contains rich noise such as illumination variation and spectacle occlusion.
In addition, all the datasets are small, which are very suitable for verifying the effective-
ness of our proposed algorithm. We followed a consistent data division protocol in the
biometrics community.
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UBIRIS.v2, containing 11,102 iris samples from 261 subjects, has a low aggressive
acquisition increasing the heterogeneity of the dataset, e.g., iris occlusion, reflection, dec-
lination, motion blur rotation, etc. We took 2250 images from 50 subjects and randomly
selected 1575 images as the training set and the remaining 675 images as the test set.

MICHE-I, a multiracial dataset, was acquired by iris-owning selfies using a mobile
device under uncontrolled conditions, in which 1262 images were acquired using an iPhone
5, 1297 images were acquired by a Samsung Galaxy S4, and 632 images were acquired by
a Samsung Galaxy Tab2. Similar to UBIRISV2, there were multiple noises. We randomly
selected 680 images as the training set and 191 images as the test set.

IITD, which contains 2240 iris samples from 224 subjects, has dense eyelash occlu-
sion noise in the iris region because the collected race is Indian. We randomly selected
1568 images as the training set and 672 images as the test set.

CASIA-D, an abbreviation of CASIA-Iris-Distance, contains 2576 iris samples from
142 subjects, collected at a distance of more than 3 m. In addition, the subjects had moving
behaviors during the collection, as well as glasses obscuration. We randomly selected
296 images as the training set and 99 images as the test set.

CASIA-T, an abbreviation of CASIA-Iris-Thousand, contains 20,000 iris samples from
1000 subjects whose images contain noise such as glasses, spectral changes, and so on. We
randomly selected 14,000 images as the training set and 6000 images as the test set.
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4.2. Implementation Details
4.2.1. Evaluation Metrics

We used four metrics, MIOU, F1, pixel accuracy (PA), and Nice1, commonly used in the
literature on iris segmentation, to evaluate the performance of the segmentation algorithm.

For MIOU, we need to calculate IOU for each category of pixels first. IOU calculates
the ratio of the intersection and the concatenation between the set of the predicted number
of pixel categories and the set of the number of pixel categories of the real label. For a
particular category of pixels, the IOU of pixels in that category is calculated as follows:

IOUk =
NTP

NTP + NFP + NFN
(11)

where the class of IOU for which the class k is calculated is labeled as a positive class and
the other classes are labeled as a negative class, NTP denotes the number of pixels that are
correctly predicted as a positive class, NFP denotes the number of pixels that are incorrectly
predicted as a positive class, and NFN denotes the number of pixels incorrectly predicted
as a negative class.

After we calculate the IOU of each category, we take the average value to calculate
MIOU. The range of this value is [0, 1]. The larger the value is, the higher the performance
of segmentation is. The formula of MIOU is as follows:

MIOU =
1
K

K−1

∑
k=0

IOUk (12)

where K is the total number of categories that represent pixels.
The F1 score measures the change in pixel prediction of false positives and false

negatives, and the range of this value is [0, 1]. A larger F1 indicates a smaller percentage of
incorrect pixel predictions and a better performance of segmentation. It can be calculated
from precision and recall. The precision measures the purity of positive predictions about
the ground truth, and the recall measures the completeness of positive predictions about
the ground truth. Precision, recall, and F1 are calculated as follows:

precision =
NTP

NTP + NFP
(13)

recall =
NTP

NTP + NFN
(14)

F1 =
2 · precision · recall
precision + recall

(15)

The Nice-1 metric, which is an evaluation protocol of the NICE-I Contest [62], measures
the average segmentation error rate by calculating the pixel-wise logical heterogeneous
operations of Ground Truth and predicted Mask. In addition, the smaller the value is, the
better the segmentation performance is. The Nice-1 metric is calculated as follows:

Nice1 =
1

T ·M · N
T

∑
t=0

M

∑
m=0

N

∑
n=0

Gt(m, n)⊗Mt(m, n) (16)

where T denotes the number of images, M denotes the height of the image, N denotes
the width of the image, Gt(m, n) denotes the Ground Truth of the pixel value of the mth
column and nth row of the tth image, Mt(m, n) denotes the predicted Mask of the pixel of
the mth column and nth row of the tth image, and ⊗ denotes the logical XOR operation,
i.e., 0 for equal pixel values, 1 for unequal ones.
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4.2.2. Model Structure

The segmentation network G used for our adaptation at the global spatial level and
class level is DeeplabV3 based on ResNet50 with a softmax classifier. The discriminator
D at the global spatial level consists of 6 convolutional layers with channel numbers
{16, 32, 64, 128, 256, 1}, 4 × 4 kernels, stride of 2, and padding of 1. Each convolution layer
is followed by a Leaky-ReLU operation parameterized by 0.2 except for the last layer. The
discriminator Dpixel at the pixel class level consists of four convolutional layers. Firstly,
the entropy map is first passed through two convolutional layers with channel numbers
{64,32}, 3 × 3 kernels, stride of 1 and padding of 1, and the output is then input to two
convolutional layers with channel numbers of {2,2}, 3 × 3 kernels, stride of 1, and padding
of 1 in parallel, and finally the two output feature maps are concatenated in the direction of
the channel to obtain the output with 4 channels.

4.2.3. Training Setup

The training stage is performed on a training set of each of the five datasets. When
performing supervised contrastive learning, we use an Adam optimizer with batch size of
32, a base learning rate of 5× 10−5, beta1 of 0.9, and beta2 of 0.999. CosineAnnealingDecay
is used to decay the learning rate. The network does not load a pretrained model but is
trained from scratch. After supervised contrastive learning, pixel-wise cross-entropy is
used to finetune the network with an SGD optimizer with batch size of 16, a fixed learning
rate of 0.0001, momentum of 0.9, and weight decay of 10−5. When performing global spatial
level adaption, we train the discriminator D using an Adam optimizer with a fixed learning
rate of 10−4, beta1 of 0.9, and beta2 of 0.999, and we train the segmentation network G
using an SGD optimizer with a fixed learning rate of 2× 10−4, momentum of 0.9, and
weight decay of 10−4. When adapting at the pixel class level, we train the discriminator
Dpixel using an Adam optimizer with a base learning rate of 10−4, beta1 of 0.9, and beta2
of 0.999, and we train the segmentation network G using an SGD optimizer with a base
learning rate of 2× 10−4, momentum of 0.9, and weight decay of 10−4. The discriminator
Dpixel and segmentation network G both are trained using the Poly learning rate decay
strategy, and the difficulty sample scaling factor is set to γ = 0.6. More importantly, iris
semantic segmentation has a remarkable imbalance between the number of iris pixels and
the number of non-iris pixels, which is prone to pixel prediction bias [18]. Therefore, we use
modified pixel-wise cross-entropy with category frequency weights, where the category
frequency is calculated by computing the median of the pixel frequencies, called Media
Frequence Balancing [63]. In addition, the category frequency weights for each dataset
are shown in Table 2. To make the experimental results more statistically significant, we
performed five training sessions for each experiment, and the test results of all evaluation
indicators are the mean values of the five training sessions.

Table 2. Class weights of different datasets.

Dataset Non-Iris Weight Iris Weight

UBIRIS.v2 0.53 7.37
MICHE-I 0.52 9.94

IITD 0.70 1.72
CASIA-D 0.51 14.33
CASIA-T 0.53 4.42

4.3. Ablation Experiments

To verify that our proposed supervised contrastive learning and intra-dataset adap-
tation training methods are effective in improving the performance of iris segmentation,
we designed three sets of experiments: supervised contrastive learning vs. ImageNet
Pretraining, global spatial level adaptation vs. pixel class level adaptation, and the effect of
the combination of different strategies on segmentation performance.
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4.3.1. Impact of Supervised Contrastive Learning on Segmentation Performance

From Scratch indicates training with cross-entropy loss as the target on the iris seg-
mentation dataset without using any pretrained model. ImageNet+FineTune indicates that
the ResNet50-based backbone of the segmentation network uses the pretrained model from
ImageNet and then the entire network is fine-tuned with cross-entropy loss. SCL+FineTune
indicates that the segmentation network is first pretrained using supervised contrastive
learning, and then fine-tuning of the entire network is performed on the iris segmentation
training set with cross-entropy loss. The cross-entropy training process for the third method
is the same as that for the first two methods. The evaluation results obtained by inference of
the trained model on the test set are shown in Table 3. For all dataset scenarios, supervised
contrastive pretraining significantly improved on every evaluation metric compared to
learning from scratch without pretraining. Compared to ImageNet pretraining, super-
vised contrastive pretraining was higher on IITD, CASIA-D, MICHE-I, and CASIA-T for
all metrics. In addition, in the UBIRIS.v2 dataset, F1 and MIOU were higher except for
PA, which was slightly lower by 0.02, but F1 could more comprehensively evaluate the
performance of the segmentation algorithm. From the F1 metric, compared with learning
from scratch without pretraining, SCL+FineTune had the largest improvement of 7.27%
on dataset CASIA-D and a decent improvement of only 0.91% on dataset CASIA-T. The
CASIA-T training set had a much larger number of samples than CASIA-D. Therefore,
it can be intuitively shown that our supervised contrastive pretraining algorithm could
significantly alleviate the overfitting problem of the model in the case of a limited number
of the dataset. These results clearly show the effectiveness of our supervised contrastive
pretraining algorithm.

Table 3. Impact of attention-supervised contrastive learning on segmentation performance.

Dataset Method PA(%) F1(%) MIOU(%)

UBIRIS.v2
From Scratch 98.57 88.28 88.87

ImageNet+FineTune (↑0.55)99.12 (↑4.94)93.22 (↑4.46)93.24
SCL+FineTune (↑0.52)99.09 (↑5.05)93.33 (↑4.52)93.30

IITD
From Scratch 95.98 93.36 91.16

ImageNet+FineTune (↑1.55)97.53 (↑2.32)95.95 (↑3.20)94.36
SCL+FineTune (↑1.90)97.88 (↑2.94)96.57 (↑4.07)95.17

CASIA-D
From Scratch 98.90 84.19 85.83

ImageNet+FineTune (↑0.40)99.30 (↑6.32)90.51 (↑5.16)90.99
SCL+FineTune (↑0.45)99.35 (↑7.27)91.46 (↑5.97)91.80

MICHE-I
From Scratch 98.85 88.50 89.15

ImageNet+FineTune (↑0.37)99.22 (↑3.45)91.95 (↑3.01)92.16
SCL+FineTune (↑0.40)99.25 (↑3.73)92.23 (↑3.26)92.41

CASIA-T
From Scratch 99.30 95.26 95.11

ImageNet+FineTune (↑0.13)99.43 (↑0.86)96.13 (↑0.87)95.98
SCL+FineTune (↑0.14)99.44 (↑0.91)96.17 (↑0.91)96.02

4.3.2. The Impact of Intra-Dataset Adaptation on Segmentation Performance

GLA denotes global spatial level adaptation, and From Scratch+GLA denotes the
global spatial level adaptation is performed after learning with cross-entropy loss by no Im-
ageNet pretraining first. CLA denotes pixel class level adaptation, and From Scratch+GLA
denotes the pixel class level adaption is performed after learning with cross-entropy loss
by no ImageNet pretraining first. As shown in Table 4, on all data sets, both adaptation
algorithms improved their values on each evaluation metric compared to From Scratch.
In addition, the pixel class-level adaption outperformed the global spatial level adaption
in all metrics on all datasets. Because these datasets all have a lot of noise, there was a
distribution gap between samples. Once the feature distributions of the samples with more
noise and less noise were registered, the dataset was forced to approximately satisfy the



Entropy 2022, 24, 1276 16 of 27

independent and identical distribution. Thus, the intra-dataset adaptation improved the
segmentation performance.

Table 4. The impact of intra-dataset adaptation on segmentation performance.

Dataset Method PA(%) F1(%) MIOU(%)

UBIRIS.v2
From Scratch 98.57 88.28 88.87

From Scratch+GLA (↑0.28)98.85 (↑2.99)91.27 (↑2.55)91.42
From Scratch+CLA (↑0.56)99.13 (↑4.53)92.81 (↑4.03)92.90

IITD
From Scratch 95.98 93.36 91.16

From Scratch+GLA (↑0.97)96.95 (↑1.31)94.94 (↑1.91)93.07
From Scratch+CLA (↑1.27)97.25 (↑1.88)95.51 (↑2.67)93.83

CASIA-D
From Scratch 98.90 84.19 85.83

From Scratch+GLA (↑0.25)99.15 (↑3.89)88.08 (↑3.12)88.95
From Scratch+CLA (↑0.29)99.19 (↑4.50)88.69 (↑3.64)89.47

MICHE-I
From Scratch 98.85 88.50 89.15

From Scratch+GLA (↑0.23)99.08 (↑2.43)90.93 (↑2.08)91.23
From Scratch+CLA (↑0.33)99.18 (↑3.05)91.55 (↑2.66)91.81

CASIA-T
From Scratch 99.30 95.26 95.11

From Scratch+GLA (↑0.03)99.33 (↑0.25)95.51 (↑0.24)95.35
From Scratch+CLA (↑0.06)99.36 (↑0.41)95.67 (↑0.41)95.52

4.3.3. Comparison of Performance under Different Strategies

The effect of the combination of different strategies on the segmentation performance
is shown in Table 5. The three 7 represents that the segmentation model was trained
from scratch without loading the pretrained model. For all datasets, all metrics of the
segmentation performance were maximized when we used the combined SCL + GLA
strategy. This was because the combined strategy not only increased the compactness
of intra-class pixels and separability of inter-class pixels, but also aligned the feature
distribution at the class pixel level among samples of different noise degrees. Therefore,
the segmentation performance for iris images was greatly improved.

Table 5. Impact of different strategies on segmentation performance.

Dataset
Method

PA(%) F1(%) MIOU(%)
SCL GLA CLA

UBIRIS.v2

7 7 7 98.57 88.28 88.87
X 7 7 (↑0.52)99.09 (↑5.05)93.33 (↑4.52)93.30
7 X 7 (↑0.28)98.85 (↑2.99)91.27 (↑2.55)91.42
7 7 X (↑0.56)99.13 (↑4.53)92.81 (↑4.03)92.90
X X 7 (↑0.79)99.36 (↑7.18)95.46 (↑6.45)95.32
X 7 X (↑0.99)99.56 (↑8.38)96.66 (↑7.67)96.54

IITD

7 7 7 95.98 93.36 91.16
X 7 7 (↑1.90)97.88 (↑2.94)96.57 (↑4.07)95.17
7 X 7 (↑0.97)96.95 (↑1.31)94.94 (↑1.91)93.07
7 7 X (↑1.27)97.25 (↑1.88)95.51 (↑2.67)93.83
X X 7 (↑2.30)98.28 (↑3.86)97.22 (↑4.91)96.07
X 7 X (↑2.99)98.97 (↑5.36)98.72 (↑6.72)97.88

MICHE-I

7 7 7 98.85 88.50 89.15
X 7 7 (↑0.40)99.25 (↑3.73)92.23 (↑3.26)92.41
7 X 7 (↑0.23)99.08 (↑2.43)90.93 (↑2.08)91.23
7 7 X (↑0.33)99.18 (↑3.05)91.55 (↑2.66)91.81
X X 7 (↑0.44)99.29 (↑4.26)92.76 (↑3.74)92.89
X 7 X (↑0.49)99.34 (↑4.71)93.21 (↑4.11)93.26

CASIA-D
7 7 7 98.90 84.19 85.83
X 7 7 (↑0.45)99.35 (↑7.27)91.46 (↑5.97)91.80
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4.4. Qualitative Result and Analysis

As shown in Figures 10–14, we visualized the segmentation results of the proposed
method for some samples in UBIRIS.v2, IITD, MICHE-I, CASIA-D, and CASIA-T datasets.
To compare the segmentation results of the proposed algorithm with the corresponding
GroundTruth masks more intuitively in these plots, the first column represents the original
image, the second column represents the corresponding GroundTruth mask, the third col-
umn represents the segmentation mask, and the fourth column represents the segmentation
results. In the fourth column, we marked in red the pixels that belonged to an iris in the
GroundTruth mask and were incorrectly classified as a non-iris by the proposed algorithm,
we marked in green the pixels that belonged to a non-iris and were incorrectly classified
as an iris by the proposed algorithm, and we marked in black the pixels that belonged to
an iris and were correctly classified as an iris by the proposed algorithm. The red marked
pixels were called false negative pixels, the green marked pixels were called false positive
pixels and the black marked pixels were called true positive pixels. Moreover, we labeled
the segmentation metrics Nice1, F1, and MIOU for each sample.
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Figure 10. The segmentation result from UBIRIS.v2 achieved by our proposed method. (A) original
image, (B) Groundtruth mask, (C) segmentation mask, (D) segmentation result, whose green pixels,
red pixels, and black pixels represent false positive pixels, false negative pixels, and true positive
pixels, respectively.



Entropy 2022, 24, 1276 18 of 27

As can be observed in Figure 10, on UBIRIS.v2, our proposed algorithm still achieved
good segmentation results even in off-axis scenarios and scenarios with occlusion with
eyeglass, eyelash, and eyelid interference. F1 and MIOU exceeded 97% except for the
Nice1 of the second row, which was 0.44% because the iris region accounted for a larger
percentage, and the Nice1 of other samples were all less than 0.2%.

As shown in the results obtained by our proposed algorithm on IITD in Figure 11, the
misidentification rate, i.e., Nice1, for each image exceeded 1%. There are some possible
reasons. The eyelash was not correctly labeled in the manually labeled GroundTruth, while
our proposed algorithm could correctly identify eyelash interference as non-iris pixels.
The Groundtruth did not correctly label the iris pixels near the non-iris region, while our
proposed algorithm could correctly identify the iris pixels near the non-iris region.
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Figure 11. The segmentation result from IITD achieved by our proposed method. (A) original
image, (B) Groundtruth mask, (C) segmentation mask, (D) segmentation result, whose green pixels,
red pixels, and black pixels represent false positive pixels, false negative pixels, and true positive
pixels, respectively.
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Figure 12 shows the result from MICHE-I. From the fifth row, we can observe that
the segmentation result of a low quality was blurred, and the off-axis sample had a larger
percentage of false positive pixels, yielding an F1 value of 92.73%. Our proposed algorithm
could correctly identify such pixels as iris pixels, while the manually labeled Groundtruth
could not.

Entropy 2022, 24, 1276 20 of 28 
 

 

 

Figure 12. The segmentation result from MICHE-I achieved by our proposed method. (A) original 

image, (B) Groundtruth mask, (C) segmentation mask, (D) segmentation result, whose green pixels, 

red pixels, and black pixels represent false positive pixels, false negative pixels, and true positive 

pixels, respectively. 

The results of our method on CASIA-T are shown in Figure 14. Since the dataset was 

obtained in a cooperative environment with less noise and interference information, the 

results our proposed algorithm obtain were highly consistent with GroundTruth, obtain-

ing F1 and MIOU of more than 97%. It is worth noting that GroundTruth did not delicately 

label the iris-pupil border and the iris-sclera border as circles, so our proposed algorithm 

produced few false positive pixels and false negative pixels. 

Figure 12. The segmentation result from MICHE-I achieved by our proposed method. (A) original
image, (B) Groundtruth mask, (C) segmentation mask, (D) segmentation result, whose green pixels,
red pixels, and black pixels represent false positive pixels, false negative pixels, and true positive
pixels, respectively.

We observed the results from CASIA-D shown in Figure 13. As shown in the first
and second rows, F1 and MIOU were slightly lower when there was more interference
information with thin eyelashes. GroundTruth did not precisely label these regions, while
our proposed algorithm coudl successfully identify the region as a non-iris region.
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Figure 13. The segmentation result from CASIA-D achieved by our proposed method. (A) original
image, (B) Groundtruth mask, (C) segmentation mask, (D) segmentation result, whose green pixels,
red pixels, and black pixels represent false positive pixels, false negative pixels, and true positive
pixels, respectively.

The results of our method on CASIA-T are shown in Figure 14. Since the dataset was
obtained in a cooperative environment with less noise and interference information, the
results our proposed algorithm obtain were highly consistent with GroundTruth, obtaining
F1 and MIOU of more than 97%. It is worth noting that GroundTruth did not delicately
label the iris-pupil border and the iris-sclera border as circles, so our proposed algorithm
produced few false positive pixels and false negative pixels.

In summary, our method overcame the interference caused by unrestricted factors in
most cases and obtained promising results.
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Figure 14. The segmentation result from CASIA-T achieved by our proposed method. (A) original
image, (B) Groundtruth mask, (C) segmentation mask, (D) segmentation result, whose green pixels,
red pixels, and black pixels represent false positive pixels, false negative pixels, and true positive
pixels, respectively.

4.5. Comparison with Other State-of-the-Art Iris Segmentation Methods

To further verify how advanced and encouraging the proposed method was, we
compared it with a large number of state-of-the-art methods, which are divided into two
main categories, one being non-deep-learning traditional methods [7,11,27,32,64–68], and
the other being CNN-based deep learning methods [15,17,19,20,34,35,69–72]. It can be
observed from Tables 6–10 that the deep learning methods outperformed the traditional
methods, and our proposed method was the optimal method among the deep learning
methods. Our proposed method overcame the problem of a limited annotated iris dataset
without ImageNet pretraining and data augmentation. Moreover, it reduced the distri-
bution gap within the no-ideal dataset to improve the performance in unconstrained and
uncooperative iris acquisition conditions.
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As can be seen from Table 6, on the UBIRIS.v2 dataset we obtained the best results,
0.44% in the Nice1 metric, 96.66% in the F1, and 96.54% in the MIOU. Our proposed method
outperformed the best traditional method, obtaining a great improvement over TVBM [7]
of 63.64% in the Nice1. Our proposed method significantly outperformed the best deep
learning method of Miron and Pasarica [36], which obtained the results of Nice1 = 0.53%,
F1 = 96.14%, and MIOU = 92.56%.

Table 6. The performance of different algorithms on UBIRIS.V2.

Dataset Method Nice1 (%) F1(%) MIOU(%)

UBIRIS.v2 Osiris [64] N/A 18.65 N/A
WAHET [28] N/A 23.68 N/A

IFFP [65] N/A 28.52 N/A
GST [66] N/A 39.93 N/A
TVBM [7] 1.21 N/A N/A

MFCN [17] 0.90 N/A N/A
FCDNN [16] N/A 93.90 N/A

DADCNet [34] N/A 96.14 N/A
IrisParseNet [15] 0.84 91.78 N/A

Wang and Meng [35] 0.70 N/A 95.35
FCEDN-Bay [70] 3.06 84.07 72.51

Miron and Pasarica [36] 0.53 96.14 92.56
Ours 0.44 96.66 96.54

Table 7 shows the results of the different methods on the IITD dataset. Our proposed
method achieved the largest F1 value of 98.72% and MIOU value of 97.88%. It is note-
worthy that although our proposed method obtained the second largest Nice1 value of
1.03%, the MIOU and F1 metrics, i.e., the combination of recall and precision, provide a
more comprehensive evaluation of the stability and accuracy of the segmentation model.
Moreover, unlike Miron and Pasarica [36], which uses data augmentation to expand the
training set, we did not expand any data, so there was a slight decrease in the Nice1 of
0.13%. Therefore, our proposed algorithm was superior to Miron and Pasarica [36].

Table 7. The performance of different algorithms on IITD.

Dataset Method Nice1(%) F1(%) MIOU(%)

IITD Osiris [64] 4.37 92.23 85.52
WAHET [28] N/A 87.02 N/A

IFFP [65] N/A 85.83 N/A
GST [66] N/A 86.6 N/A

DADCNet [34] N/A 98.43 N/A
IrisSeg [68] N/A 94.37 N/A

FCEDN-B [70] 5.39 84.92 80.05
IrisDenseNet [19] N/A 97.56 N/A

FRED-Net [20] N/A 97.61 N/A
RefineNet [71] 1.50 97.40 94.93

Miron and
Pasarica [36] 0.90 98.48 97.09

Ours 1.03 98.72 97.88

It can be seen from Table 8 that for the dataset MICHE-I, our proposed method
achieved the highest Nice1 value of 0.66, which was equal to IrisParseNet [15]. Our F1 value
was 0.02% higher than the previous best method, DADCNet [34]. Both IrisParseNet [15]
and DADCNet [34] use the same data augmentation strategy, which expands the training
set by a factor of five, whereas our proposed method did not use data augmentation and
still alleviated the overfitting problem, validating the superiority of our method.
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Table 8. The performance of different algorithms on MICHE-I.

Dataset Method Nice1(%) F1(%) MIOU(%)

MICHE-I DADCNet [34] N/A 93.19 N/A
TVBM [7] 1.21 79.24 N/A

Haindl and
Krupička [67] 3.86 70.17 N/A

MFCN [17] 0.74 92.01 N/A
RefineNet [71] 0.80 91.41 N/A

IrisParseNet [15] 0.66 93.05 N/A
Ours 0.66 93.21 93.26

Table 9 presents the results for CASIA-D. Our proposed method, without any data aug-
mentation expansion, obtained the same Nice1 value as the current state-of-the-art method
IrisParseNet [15] on just 296 training samples of CASIA-D and exceeded IrisParseNet by
0.02% in the F1 metric.

Table 9. The performance of different algorithms on CASIA-D.

Dataset Method Nice1(%) F1(%) MIOU(%)

CASIA-D Tan and Kumar
TIP2012 [11] 1.13 N/A N/A

RefineNet [71] 0.56 92.27 N/A
Tan and Kumar

TIP2013 [33] 0.81 N/A N/A

TVBM [7] 0.68 87.55 N/A
MFCN [17] 0.59 93.09 N/A

IrisParseNet [15] 0.41 94.25 N/A
Ours 0.41 94.28 94.38

Table 10 presents the results achieved from CASIA-T. Our proposed method obtained
the best values of Nice1 = 0.37%, F1 = 97.41%, and MIOU = 97.28%, which significantly
outperformed the best deep learning method by 0.01%, 0.77%, and 3.78%, and outperformed
the best traditional method by 1.03%, 9.65%, and 19.10% in Nice1, F1, MIOU, respectively.

Table 10. The performance of different algorithms on CASIA-T.

Dataset Method Nice1(%) F1(%) MIOU(%)

CASIA-T Osiris [64] 1.34 87.76 78.18
IrisSeg [68] 0.95 91.39 84.14
Miron and

Pasarica [36] 0.38 96.64 93.50

FCN [72] 0.61 94.42 89.42
FCDNN [16] N/A 95.94 N/A

Ours 0.37 97.41 97.28

4.6. Storage and Computational Time

Our proposed method had 37.28 M parameters and 154.61 G FLOPs relative to the
shape of 513 × 513 × 3. It occupied 149.15 MB of storage space. We used an NVIDIA Tesla
V100 32 G GPU to test the inference speed. Our model needed to execute approximately
0.036 s of processing per frame. The contribution of this paper aimed to provide an
alternative pipeline for training iris segmentation and the initial intention was to relieve the
pressure of iris pixel annotation and to compensate for the distribution differences between
non-ideal data. Therefore, the storage and computational overheads need to be further
optimized, which will be the focus of our future research.
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5. Conclusions

In this paper, our proposed method utilized supervised contrast learning to overcome
the problem of limited annotated iris datasets. Furthermore, we developed an entropy-
based adversarial adaptation to reduce the distribution gap within the no-ideal dataset
to improve the robustness in non-ideal environments. Extensive experiments showed
our three-stage approach performed experiments that outperformed state-of-the-art deep
learning methods and traditional methods on both vis-light and near-infrared light datasets.

In the future, we will consider the use of self-supervision and domain adaptation
to address the more difficult multi-source heterogeneous scenes. Efficient and accurate
deep learning models will be designed using methods such as neural network architecture
search, knowledge distillation, and model quantization.
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