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Abstract: Community detection in semantic social networks is a crucial issue in online social network
analysis, and has received extensive attention from researchers in various fields. Different conven-
tional methods discover semantic communities based merely on users’ preferences towards global
topics, ignoring the influence of topics themselves and the impact of topic propagation in community
detection. To better cope with such situations, we propose a Gaming-based Topic Influence Perco-
lation model (GTIP) for semantic overlapping community detection. In our approach, community
formation is modeled as a seed expansion process. The seeds are individuals holding high influence
topics and the expansion is modeled as a modified percolation process. We use the concept of payoff
in game theory to decide whether to allow neighbors to accept the passed topics, which is more in
line with the real social environment. We compare GTIP with four traditional (GN, FN, LFM, COPRA)
and seven representative (CUT, TURCM, LCTA, ACQ, DEEP, BTLSC, SCE) semantic community
detection methods. The results show that our method is closer to ground truth in synthetic networks
and has a higher semantic modularity in real networks.

Keywords: semantic social networks; community detection; topic influence; percolation mechanics;
game theory

1. Introduction

In recent years, with the rapid development of mobile internet technology and the
continuous popularization of mobile terminal devices, social platforms such as Micro-blog,
WeChat, QQ, SNS, RSS, etc., have changed social interaction deeply. People can join or set
up their own community and update their status in the form of text, pictures, and videos to
realize the sharing, dissemination, and acquisition of personal information. According to
statistics from comScore, Inc. (Reston, VA, USA), as of 2018, an average of 395,833 people
logged in to WeChat per minute and 19,444 people were engaged in video or voice chat;
Sina Micro-blog sent or forwarded 64,814 microblogs per minute; Facebook users shared
an average of four billion dynamic items of information per day; Twitter processed 340
million items of data per day; Tumblr authors published an average of 27,000 new posts per
minute; and Instagram users shared an average of 3600 photos per day. Facing this data
explosion caused by the growing to social media data, the traditional topological space of
social networks is shifting towards a rich semantic form which poses great challenges to
the detection of social network communities.

Community detection can effectively improve the performance of social application
systems. For example, by analyzing the social behavior patterns of network users and
detecting the audience groups of social services, the commercial value of advertising and
product marketing can be significantly improved [1]. Han et al. [2] used community detec-
tion to realize information transfer between networks and solved the cold start problem of
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recommendation systems caused by network sparsity. In addition, community detection is
widely used in network embedding [3], public health [4], and link prediction [5].

In conventional community detection methods, the network is represented as a topol-
ogy graph and the nodes do not contain semantic information. Representative methods in
this field include the GN (Girvan–Newman) algorithm [6], FN (Fast Newman) algorithm [7],
CPM (Cluster Percolation Method) algorithm [8], and Louvain algorithm [9]. In recent
research, Qiao et al. [10] proposed Picaso, a parallel community discovery model which
uses the Mountain model to calculate the weight of each edge in the network and ap-
ply a gradient algorithm to discover the community structure. To solve the problem of
community detection in large-scale complex networks, Lu et al. [11] proposed an im-
proved label propagation algorithm using node importance ranking. Lyzinski et al. [12]
embedded graphs in Euclidean space to obtain their lower-dimensional representation,
then used non-parametric graph reasoning technology to identify the structural similarity
between communities. This method performed well in detecting fine-grained community
structures. Tagarelli et al. [13] integrated multi-layer network community modularity,
which retains multi-layer topology information and optimizes the edge connectivity of
multi-relational communities.

In semantic community detection tasks, the nodes are the basic components of the
topology graph as well as the carriers of semantic information which leads to fundamental
changes in the community’s form [14]. For example, after considering the document
attributes of nodes, the common topics between nodes play a decisive role in the formation
of the community. Two people who share a common topic may join the same community
even if they do not have a strong connection in the topology graph [15]. Therefore, the use
of semantic information to analyze the correlation between network nodes has become a
critical issue in this field.

The Probabilistic Topic Model (PTM) is a common semantic representation method
used for social network nodes [16]. For example, Xin et al. [17] defined the semantic feature
of nodes according to the similarity between user documents and a set of global topics,
then adopted multi-sampling to accelerate the convergence of the algorithm. He et al. [18]
transformed LDA (Latent Dirichlet Allocation) and Markov Random Field (MRF) into
a unified factor graph to form an end-to-end learning system for community detection,
then derived an effective propagation algorithm to train their parameters. Jin et al. [19]
stated that links in the network contain semantic information as well. They proposed
a new probabilistic model for link community detection, and developed a dual nested
Expectation Maximum (EM) algorithm to learn the model. Wang et al. [20] found that
there are correlations between topics which significantly affect community structures. They
proposed a Topic Correlations-based Community Detection (TCCD) model which can
simultaneously output the community structure and the semantic interpretation of nodes.
Node attributes can be used to address semantic data as well; for example, Fang et al. [21]
grouped nodes that satisfied both structure cohesiveness and keyword cohesiveness into
the same community.

Non-negative Matrix Factorization (NMF) has good performance in discovering im-
plicit patterns from high-dimensional data. Therefore, scholars have integrated semantic
information into the adjacency (or feature representation) matrix and used NMF to analyze
the correlation between nodes. For example, Pei et al. [22] proposed a clustering framework
based on Non-negative Matrix Tri-Factorization (NMTF) which can effectively identify both
user similarity and message similarity. Qin et al. [23] introduced an adaptive parameter to
control the contribution of the network topology and content information and use NMF
to discover semantic communities. Wang et al. [24] set the member matrix and attribute
matrix as two groups of parameters of NMF, which allows semantic interpretation for the
communities to be added. Yang et al. [25] introduced an adaptive weighted group for
sparse low-rank regularization in NMF in order to automatically obtain the number of
semantic communities.
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Deep learning has a natural advantage in attribute representation of high-dimensional
data; thus, researchers have begun to introduce semantic attributes into the feature di-
mension of deep learning models [26]. For example, Jin et al. [27] proposed a uniformed
graph representation of network topology and semantic information and developed a
multi-component network embedding approach via a deep autoencoder. Cao et al. [28]
designed a combination matrix consisting of a modularity matrix for linkage information
and a Markov matrix for content information. After matrix factorization, the matrix is
used as the input of the multi-layer deep auto-encoder framework for obtaining the deep
representation of the graph. Jin et al. [29] proposed that the words in user documents
have a hierarchical structure. They proposed a new Bayesian probability model which
can explain the multiplex semantic community more clearly. He et al. [30] developed
a co-learning strategy to jointly train the structure and semantic parts of the model by
combining a nested EM algorithm and belief propagation.

While the above methods have made a great many exploratory contributions to the
field of semantic community detection, there are several remaining deficiencies:

(1) When measuring the semantic relevance between nodes, each topic receives the same
status without considering the difference of topic influence.

(2) There has been little exploration of the impact of topic propagation and influence
propagation in community detection.

(3) Methods based on deep learning require a large number of samples, high computa-
tional performance, and long training times. When the network evolves rapidly, these
methods cannot meet the online requirements of social systems.

To better cope with these situations, and inspired by the information dissemination in
social networks, we propose a user topic influence propagation model based on percolation
theory that uses the Nash equilibrium to generate communities in a game-based way.
Experiments with real social networks show that the proposed method has a high semantic
modularity [17] in social networks with rich semantic attributes. In addition, the algorithm
can converge in a short time without additional training. In summary, the contributions of
this paper include:

(1) Integrating topic influence into the correlation analysis of nodes, which makes the
community detection process conform to the law of information dissemination in
social networks.

(2) A proposed one-dimensional diffusion model in percolation mechanics that can
quantify the propagation of topic influence, which in turn can describe the impact
of nodes near the topic source in the semantic space more accurately and solve the
situation in which high-influence nodes in the network present a low influence score.

(3) Use of the Nash equilibrium from game theory to generate communities, thereby
identifying overlapping and non-overlapping communities at the same time and
identifying community structures with smaller granularity.

2. LDA Model of Semantic Social Networks
2.1. LDA Representation of Nodes

The semantic space representation of nodes is generated based on LDA, a three-tier
Bayesian probability model used for document-topic generation, including words, topics,
and documents. LDA considers documents to be composed of topics, and each topic can be
presented with a set of keywords. For example, technology topics have a high probability of
containing the keywords: “Chip” and “Artificial Intelligence”. The probability distribution
of the document on each topic shows the relevance of the document to each topic. The
mathematical symbols involved in LDA are shown in Table 1.

The LDA vector is stored as a triplet, (w, d, z), where wi, di and zi are the number, the
node number, and the topic number of keyword i, respectively [31]. Figure 1 shows the
data storage structure of the LDA vector, in which the shadow part represents the same
elements in the vector. For example, wi1 = wi2 = wi4 = wi5 indicates that wi1, wi2, wi4, wi5
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are the same words, di1 = di3 = di5 = di6 indicates that wi1, wi3, wi5, wi6 are the keywords
of the same node di1, and the keyword wi1 appears twice in di1. Additionally, zi1 = zi2 = zi6
indicates that zi1, zi2, zi6 belong to the same topic zi1, the keyword wi1 appears twice in zi1,
and zi1 belongs to di1 and di2, respectively. According to [31], the mathematical descriptions
of w, d, z are as follows:

(1) θ ∼ Dir (α); the topic distribution θ of nodes follows the Dirichlet distribution (noted
as Dir in the formula) with parameter α.

(2) zi|θ(di) ∼Multinomial (θ(di)); the probability of topic zi in node di under topic distri-
bution θ follows Multinomial distribution (noted as Multinomial in the formula).

(3) λ ∼ Dir (β); the keyword distribution follows the Dirichlet distribution with parame-
ter β.

(4) wi|zi, λ(zi) ∼ Multinomial (λ(zi)), the probability of keyword wi in topic zi under
keyword distribution λ follows Multinomial distribution.

To generate the LDA model, the first step is to extract the distribution of keywords
that satisfy λ ∼ Dir (β). Next, the topic distribution is extracted for each document in
the corpus, satisfying θ ∼ Dir (α). Finally, for each keyword, topics and keywords are
further extracted to satisfy zi|θ(di) ∼ Multinomial (θ(di)) and wi|zi, λ(zi) ∼ Multinomial
(λ(zi)), respectively.

Figure 1. Data storage structure of LDA vector.

Table 1. Description of notation.

Notation Description

G Semantic social network
|G| The number of nodes in G
N The total number of the keywords in G
Ni The number of keywords of node Gi
w Keyword vector
wi The i-th keyword in vector w
d Node number vector corresponding to w
di The node number to which wi belongs
z Topic number vector corresponding to w
zi The topic number to which wi belongs
θ(gi) The topic distribution probability of node i
λ(j) The distribution of keywords in topic j
λ
(j)
wi The probability that wi belongs to topic j

α Prior parameter of topic distribution for each node
β Prior parameter of keyword distribution within a topic

2.2. Gibbs Iterative Process

In statistics, Gibbs sampling is a Markov Monte Carlo (MCMC) algorithm which is
used to approximately extract sample sequence from a multivariate probability distribution
when it is difficult to directly sample. The key is to establish a posterior estimate for a
sample and perform Gibbs sampling on the posterior estimate expression.

The expression of the Bayesian relation of z and w is
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P(zi = j|wi)P(wj) = P(wi|zi = j)P(zi = j)

⇒ P(wi) =
|z|

∑
j=1

P(wi|zi = j)P(zi = j)
(1)

After transformation, we have

P(zi = j|z−i, wi)P(wj, w−i) =

P(wi|zi = j, z−i, w−i)P(zi = j|z−i)
(2)

P(zi = j|z−i, wi) ∝ P(wi|zi = j, z−i, wi)P(zi = j|z−i) (3)

The process of Gibbs sampling is as follows:
(1) zi is initialized as a random integer between 1 and K (i = [1, 2, ..., N]), which is the

initial state of the Markov chain.
(2) According to the literature [32], the right side of Equation (3) can be expanded as

P(wi|zi = j, z−i, w−i) =
f (wi)
−i,j + β

f (·)−i,j + |w|β
(4)

P(zi = j|z−i) =
∫

P(zi = j|θ(di))P(θ(di)|z−i)dθ(di)

=
f (di)
−i,j + α

f (di)
−i,· + |z|α

(5)

Therefore, we have

P(zi = j|z−i, wi) ∝
f (wi)
−i,j + β

f (·)−i,j + |w|β

f (di)
−i,j + α

f (di)
−i,· + |z|α

(6)

In Equation (6), |w| and |z| denote the number of keywords and topics, respectively,
f (wi)
−i,j represents the number of words assigned to topic j that are the same as wi, f (·)−i,j

represents the number of words assigned to topic j, f (di)
−i,j represents the number of words

assigned to topic j in node di, f (di)
−i,· represents the number of all the words assigned to a

topic in node di, and zi is updated iteratively according to Equation (6) .
(3) When step (2) has iterated enough times (when P(zi = j|z−i, wi) converges), the

process ends. We now normalize P(zi = j|z−i, wi) to obtain the keyword topic probability
matrix Bi,j, Bi,j = P(zi = j|w = i), Bi,· = 1.

2.3. Semantic Feature Representation of Nodes

In a semantic social network G = (V, E, T), the node set V represents the users in the
semantic social network, the edge set E represents the relationship between users, and T is
the document collection, representing the text information published by users.

We used Gensim (a topic generation toolkit in Python) to extract K topics in T as the
base of a K-dimensional semantic space. The coordinate mi of the node vi (vi ∈ V) in the
semantic space can be expressed by the mean value of the keywords in the document ti
(ti ∈ T) published by vi, which is shown in Equation (7) .

mi =
∑Ni

j=1 BNi,j ,·

Ni
(7)
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In Equation (7) , Ni represents the number of keywords (the words with the highest
cosine similarity to the topic that ti belongs to) in document ti, Ni,j represents the j-th
keyword in document ti, and BNi,j ,· represents the coordinate (expressed as the sequence
of the cosine similarity between the j-th keyword and K topics) of the j-th keyword in
document ti in the K-dimensional semantic space.

3. Modeling Topic Influence Based on Percolation Mechanics
3.1. Motivation

The flow of a fluid through porous media (soil voids or other permeable media) is
called percolation. Each percolation source point contains a certain amount of substance,
which diffuses to the area in a finite space that has not been penetrated. In the example
shown in Figure 2, the grid represents the percolation area. We assume that there are three
percolation source points in the figure, labeled red, blue, and green here. In real percolation
process, percolation occurs when the difference between the source point and the adjacent
area reaches a threshold, which is measured by the point source function. In this example,
we simply assume that the probability of percolation is 50%. After four infiltrations, the
percolation state changes from Figure 2a,b.

(a) (b)

Figure 2. The percolation process of the fluid. (a) Initial percolation state. (b) Percolation state after
time t.

It can be found that from the three source points the substance gradually penetrates
into the adjacent areas. Inspired by this, we propose to construct the semantic social
network topic percolation equation using percolation theory. Our motivation stems from
the following four perspectives. First, both fluid percolation and semantic percolation
need to be adjacent to the infiltration area. Second, similar to fluid percolation, in semantic
social networks, whether users receive topics from neighbors (i.e., semantic percolation) is
subject to a threshold, which in this paper is measured by the payoff concept from game
theory. Next, both fluid percolation and semantic percolation are multiple source points
percolating simultaneously, and this property can be simulated for community detection
using a seed expansion strategy. Finally, all source points have the same status, which
avoids the problem that nodes with less local influence cannot expand and promotes the
formation of local communities. The differences between fluid percolation and semantic
percolation are shown in Table 2.

Table 2. Differences between fluid percolation and semantic percolation.

Attribute Fluid Percolation Semantic Percolation

Percolation area Adjacent area Adjacent nodes
The percolation process Reversible Irreversible

Percolation direction Flow to percolation area From high Influence nodes to low Influence nodes
Percolation condition Contains fluid Determined by the game
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3.2. Modeling Topic Influence

In this section, we construct the topic percolation differential equation; the symbols
used are provided in Table 3. We propose topic influence percolation strength to measure
the capacity of topics to influence the percolation area. In our model, each node is a
fixed-size solid sphere filled with unequal topic influence in the semantic space. In the
model, S has a virtual dimension [λγ−1]. In the semantic space, the inner product mi ·mj
represents the semantic correlation between nodes vi and vi. The more similar the semantic
coordinates of vi and vi are, the larger mi ·mj is. We define Zi→j = 1/mi ·mj to represent
the topic propagation space coordinate of node vj with node vi as the source point, which
satisfies Zi→i = 0, and Zi→j → ∞ when mi ·mj → 0.

Table 3. Description of notations.

Notation Description

S The topic influence percolation strength
λ The dimension of topic influence
γ The sphere volume
Zi→j The topic propagation space coordinate
D The hops between the source point and the affected nodes
ηz The percolation coefficient of topic propagation
κ0 The initial topic influence value of the source point

We design three rules to construct the percolation dynamics of topic influence, based
on which the second-order partial differential equation of topic percolation Z is provided
in Equation (8)

(1) The topic influence of a percolation source point is greatest at the initial state, and
spreads outward with the percolation of topic influence.

(2) As the topic influence of the source point continuously penetrates into the sur-
rounding area, the influence of the source point on other nodes becomes smaller.

(3) While the nodes under the influence of the source point absorb and weaken the
topic influence of the source point, the influence of the topic contained in the source point
is enhanced.

∂2S
∂Z2 =

1
ηz

∂S
∂D

(8)

The initial condition of Equation (8) is as follows:

S(Z, 0) = κ0δ(Z) (9)

Here, δ(Z) is a Dirac function, which satisfies the requirement that the value of the
function (except source point a) be equal to 0 and the integral over the entire domain equal
to 1. The expression of δ(Z) is

δ(Z) = δ(Z− a), x 6= a,∫ +∞

−∞
δ(Z)dZ = 1, x = a

(10)

Here, S(Z, 0) denotes the topic influence percolation strength when the distance be-
tween the source point and the affected node is 0. At this point, the influence is concentrated
on the source point, S(Z, 0) = κ0.

The boundary conditions of Equation (8) are as follows:
S(∞, D) = 0

∂S(∞, D)

∂Z
= 0

(11)

Equation (11) indicates that S and the partial differential of S with respect to Z becomes
0 when Z → ∞.
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Because the partial differential equation is established using physical phenomena,
we use Dimensional Analysis (DA) to solve Equation (9). The basic principle of DA is
Buckingham π theorem. The theorem states that if the formula of a physical process
contains n physical quantities and k of them have independent dimensions, then the
formula can be transformed into an equivalent function containing n− k dimensionless
numbers πi composed of these physical quantities.

The topic influence percolation strength S is a function of κ, z, D and ηz. Suppose that
F(S, κ, Z, D, ηz) = 0; then, the dimension of S and κ is [λγ−1] and [λ], respectively, and S is
proportional to λ /

√
ηzD. Using Buckingham π theorem and selecting S, D, ηz as the basic

variable, we have

F(
κ

S
√

ηzD
,

Z√
ηzD

) = 0 (12)

√
4πηzd

κ
S(Z, d) = f (

Z√
4ηzd

) (13)

Next, we determine the undetermined function f . Let variable ψ = Z/
√

4ηzD; then,

S(Z, D) = f (ψ)
κ√

4πηzD
(14)

Combined with Equation (8), we have

d
dψ

(
d f
dψ

+ 2ψ f ) = 0 (15)

The boundary conditions of Equation (11) becomes
f (∞) = 0

d f (∞)

dψ
= 0

(16)

After simplification, we have

d f
dψ

+ 2ψ f = c (17)

Here, c is a constant. By substituting Equation (8) into Equation (17), we have c = 0;
therefore, the general solution of Equation (17) is f = ωoe−ψ2

. According to the hypothesis,
the topic influence of the source point is conserved; therefore,∫ +∞

−∞
SdZ = κ

∫ +∞

−∞
e−udu =

√
π (18)

As
∫ +∞
−∞ e−udu =

√
π, ω0 = 1, therefore,

S(Z, D) =
κ√

4πηzD
exp

{
− Z2

4ηzD

}
(19)

After the transposition of terms, we have

S(Z, D)

κ
=

1√
2π
√

2ηzD
exp

{
− Z2

2(
√

2ηzD)2

}
(20)

Equation (20) is a typical standard normal function with the topic propagation space
coordinate Z as the horizontal axis and the topic influence percolation strength S as the
vertical axis. According to the mathematical properties of the standard normal function,
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the instantaneous influence of the source point follows a normal distribution along the
Z direction at any D point in the strength field in one-dimensional unbounded semantic
space. With increasing distance D, the peak value of influence strength decreases while
the range of affected nodes becomes wider, and the distribution curve tends to become
more stable.

According to the 3σ principle, the probability of topic influence of each node outside
(µ + 3σ, µ− 3σ) is less than 0.3%. Therefore, µ− 3σ < Z ≤ µ + 3σ can be regarded as the
actual range of random variable Z, and the topic influence of nodes is only valid within the
range of 3σ = 3

√
2ηzD.

4. The Game Process of Topic Influence Percolation

In social networks, each individual has free will and can decide whether to join a
community after weighing the advantages and disadvantages, which is consistent with
the behavior of the players in game theory. In semantic social networks, users influence
people around them with their preferred topics and are influenced in turn by the topics
held by others. When affected by different topics, people react differently. For high-impact
topics that they prefer and are hotly discussed by the public, they continue to track the
progress of these topics and further spread them. On the contrary, they do not pay further
attention. From the perspective of game theory, all social individuals are considered to be
rational and selfish players and follow certain rules to join the semantic community with
greater influence and closer to their preferred topics in order to maximize their payoffs and
achieve Nash equilibrium.

4.1. Basic Elements

The basic elements of our game model are as follows.
(1) Players: all nodes except the seed nodes (unequilibrium nodes) in semantic

social networks.
(2) Strategy Pi: each player chooses a single strategy; Pi = 1 (Pi = 0) means that after

being affected by the topic, node vi does (does not) spread the topic and joins (refuses to
join) the community to which the topic belongs.

(3) Payoff Ui: in the percolation dilemma game model, the payoff of node vi is defined
as follows:

Ui(Pi, Pj) = Sji − ξ (21)

Here, Ui(Pi, Pj) represents the payoffs of vi of spreading topics from vj, Sji represents
the percolation strength of the topic from vj to vi, and ξ represents the topic percolation
loss. The correlation between Pi and Ui is as follows.:

Pi =

{
0, i f Ui(Pi, Pj) ≤ 0,

1, i f Ui(Pi, Pj) > 0.
(22)

In a semantic social network, if there is a node with greater topic influence than node vi
in the percolation area, vi is percolated by topic influence, and the percolation with smaller
strength is covered by percolation with higher strength. On the contrary, the influence
percolation strength Si of node vi in this area is considered infinite. Si is defined as follows:

Si =

{
max{Sji}, j ∈ G, κ(i)0 < κ(j)0,

+∞, κ(i)0 > κ(j)0.
(23)

In this way, it is only necessary to calculate the payoffs of spreading the topic of nodes
that can percolate vi, instead of calculating the payoffs of the global nodes. To calculate
faster, the topic influence percolation strength S is stored in a large root heap.

In Equation (23), the nodes only propagate one topic and join one community. How-
ever, communities in real semantic social networks generally overlap. If joining multiple
communities can increase payoffs, players join multiple communities. Joining multiple
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communities results in a loss of payoffs. For semantic overlapping communities, the payoff
is defined as follows:

UG(i) = ∑
j∈G

Ui(Pi, Pj)− ζ(|R(i)| − 1)

⇒ ζ =
1
|R(i)| ∑

j∈G
Ui(Pi, Pj)

(24)

Here, ζ is the loss factor, |R(i)| represents the number of different topics spread by
node vi, and Ui(Pi, Pj) represents the payoffs of vi spreading only one topic. Obviously,
spreading more topics results in the loss of ζ.

Players pursue the maximization of payoffs as well as the maximization of efficiency.
In generally, the payoff of joining multiple communities is higher than that of joining a
small number of communities; in certain cases, joining a small number of high payoff
communities can obtain the equivalent payoffs of joining a large number of low-payoff
communities. To maximize the payoff and efficiency at the same time, we define a payoff
satisfaction function ρ(i), which is

ρ(i) =


1
N

N

∑
k=1

∑
j∈G,j 6=i

Uk(Pk, Pj), i f Ni > 1,

1
2

Ui(Pi, Pj), i f Ni = 1.

(25)

Here, Ni represents the number of communities that node vi has joined. When Ni = 1,
ρ(i) is set as Ui/2 to avoid that the initial payoff satisfaction of node vi is too large to
join other communities. When N > 1, the payoff satisfaction is the average of the payoff
function. If UG(i) < ρ(i), this means that joining the new community results in decreased
payoff. In this case, vi chooses strategy Pi = 0.

4.2. Slecting the Source Point

Random selection of the source point may result in percolation failure due to the low
influence of the selected node and cause additional time cost. Based on the PageRank
algorithm, a source point selection algorithm for topic influence maximization is proposed.

(1) Initialize seedSet, hashMap, and outlink[vi], where seedSet stores the ranked topic
influence, hashMap stores the feature pairs (node ID and topic in f luence), and outlink[vi]
is an array that stores the pointing nodes of vi.

(2) According to different transfer probabilities, the node percolates its influence to the
pointing nodes. We construct the following transfer matrix

Pi,j =


M(i, j)

∑
vk∈outlink[vi ]

M(i, k)
, outlink[vi] 6= 0,

M(i, j) = 0, others.

(26)

to represent the probability of influence passing from vj to vi, where M(i, j) is a weighted
adjacent matrix with the formula shown in Equation (27).

M(i, j) =

{
mi ·mj, i→ j,

0, others.
(27)

If node vi points to node vj, the edge weight of arc (i, j) is mi ·mj; otherwise, the edge
weight is 0.

(3) The influence of each node depends on the influence of the nodes that point to it.
In the iteration process, we use vector vec to store the influence score of each node, which
is updated based on Equation (28).
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αPTvec + (1− α)
τ

N
→ vec, τ = (1, 1 · · · 1)T (28)

Here, α is the damping factor, which is used to prevent excessive influence of nodes,
while τ/N is the self-restart vector, which establishes the transition probability for the
node pair that does not have direct link. Equation (28) is repeated until the entire network
converges.

(4) We define conversion coefficient ε and multiply the influence score of each node by
ε to obtain the topic influence κ, then update hashMap and seedSet. The pseudo-code of the
ranking procedure is provided in Algorithm 1.

Algorithm 1 Slecting SeedSet.
Input: Network G =< V, E, T >
Output: seedSet, hashmap
1: 0→ seedSet, 0→ hashMap;
2: Initialize outlink[vi], vi ∈ V;
3: Construct M(i, j) and Pi,j using Equations (27) and (26);
4: while (not converged)
5: for vi ∈ V do
6: Update the influence score based on Equation (28);
7: end for
8: end while
9: Ranking vec→ seedSet;

10: Feature pairs of vec→ hashMap;

4.3. Game Rules for Overlapping Community Detection

Based on the topic influence percolation, we propose a game algorithm for overlapping
community detection.

(1) A strategy combination is considered to be in Nash equilibrium if no player can
increase their payoff by changing decisions unilaterally. In the initial stage, the nodes in the
semantic social network are isolated, no payoff is generated, and all local communities are
in a state of unequilibrium.

(2) The percolation is a local movement; therefore, choosing a reasonable propagation
range (hops) can ensure the effectiveness of the influence and the fast convergence of the
algorithm. According to the 3σ principle of Equation (20), the topic propagation space
coordinate Z satisfies

µ− 3
√

2ηzD < Z ≤ µ + 3
√

2ηzD (29)

Here, Zi→j = 1/mi ·mj, mi ·mj ∈ (0, 1). When mi ·mj = 0.2, |Z|max = 3
√

2ηzD = 5,
Dmax = 3 (after rounding). The experiments in Section 5.3.1 show that the community
quality decreases rapidly when Dmax > 3. Therefore, to speed up the algorithm, we assume
that there is no percolation between vi and vj when mi ·mj < 0.2.

(3) Select nodes sequentially from the head of seedSet; if the node is marked as “di-
vided” in hashMap, select new nodes from seedSet until the node is marked as “not di-
vided”, making it the source point of the percolation.

(4) For vi within three hops of source point vj, if vi does not join any community,
calculate the non-overlapping payoff function Ui(Pi, Pj). If Ui(Pi, Pj) > 0, then vi joins
vj community and marks vi as “divided” in hashMap, the number of hashMap elements
minus 1. If Ui(Pi, Pj) < 0, skip vi and analyze the next node.

(5) If vi has joined a community and is not in the same community as vj, calculate
the cosine similarity between vj and the source point of vi community; the expression is
as follows:
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sim(mseed(i), mj) =
mseed(i) ·mj

|mseed(i)||mj|

=

k
∑

g=1
mseed(i)mj,g√

k
∑

g=1
m2

seed(i),g

k
∑

g=1
m2

j,g

(30)

Here, we use ς(vi) to represent the community collection of vi if sim(mseed(i), mj) > 0.8,
merging ς(vi) and ς(vj). If sim(mseed(i), mj) ≤ 0.8 and the payoff is greater than the payoff
satisfaction (UG(i) ≥ ρ(i)), we add vi to vj’s community; otherwise, skip vi and find the
next node.

(6) When performing an optimal strategy can improve the payoff, the node acts to
achieve local Nash equilibrium. Next, we select nodes from the seedSet to play the game
until the whole network reaches Nash equilibrium.

(7) When the seedSet is empty and there are elements marked "not divided" in the
hashMap, we can accelerate the convergence of the algorithm by randomly assigning these
elements to the nearest community.

(8) Nodes affected by the same source point and meeting the game conditions are
assigned to the same community, and the semantic community ς = ς1, ς2, ..., ςN is output.
The pseudo-code is shown in Algorithm 2.

4.4. a Practical Case

Figure 3a shows a directed weighted network Ga with six nodes v1, v2, ..., v6 where
the direction of the edge points to the source of percolation and the weight of the edge
represent the difficulty of topic influence percolation.

(a) Initial Social Networks (b) Divided Social Networks

Figure 3. Community detection with GTIP algorithm.

According to Equations (26) and (27), the weighted adjacent matrix of Ga is

M(i, j) =



3 0 0 0 0 0
0 0 0 0 0 0
1 4 0 0 1 2
0 0 2 0 0 4
0 0 0 1 0 3
0 0 0 0 0 0

 (31)
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and the transfer matrix of Ga is

P(i, j) =



1 0 0 0 0 0
0 0 0 0 0 0

1/8 1/2 0 0 1/8 1/4
0 0 1/3 0 0 2/3
0 0 0 1/4 0 3/4
0 0 0 0 0 0

 (32)

Algorithm 2 GTIP Algorithm.
Input: Network G =< V, E, T >, seedSet, hashMap.
Output: Divided communities ς = ς1, ς2, ..., ςN

1: while seedSet 6= ∅
2: j = seedSet.top();
3: seedSet.pop();
4: if hashMap[j] == f alse then
5: repeat step 2 and step 3;
6: for all nodes vi within 3-hops of seed node vj do
7: if |ς(vi)| = 1 then
8: if payoff Ui(Pi, Pj) > 0 then
9: πk ← vi, |ς(vi)|++;

10: hashMap[i]← f alse;
11: hashMap.count−−;
12: else
13: continue;
14: end if
15: else if ς(vi) 6= ∅ and ς(vi) ∩ ς(vj) = ∅ then
16: if sim(mseed(i), mj) > 0.8 then
17: merging community ς(vi) and ς(vj);
18: else
19: if UG(i) > 0 then
20: ςk ← vi;
21: hashMap[i]← f alse;
22: hashMap.count−−;
23: else
24: continue;
25: end if
26: end if
27: end if
28: end for
29: end while
30: while hashMap.count > 0
31: hashMap[k]→ ςk;
32: end while
33: return ς1, ς2, ..., ςN

The topic propagation space coordinate Zi→j = 1/mi ·mj; therefore, the coordinate
matrix of Ga is

Zi,j =



0 3 5 2 2/5 1
3 0 1 1/2 2/3 1
5 1 0 0 1 1/2
2 1/2 0 0 1 1/4

2/5 2/3 1 1 0 1/3
1 1 1/2 1/4 1/3 0

 (33)
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The topic influence score of the nodes in Ga is shown in Table 4.

Table 4. The topic influence score of nodes in Ga.

Node ID Topic Influence Score

1 11.51
2 25.44
3 12.99
4 10.13
5 11.51
6 28.41

First, the most influential node v6 in Table 4 is selected as the source point of percola-
tion. Due to the small amount of data, we assume that the influence range of the topic is
one hop, i.e., d = 1.

The nodes affected by v6 include v3, v4 and v5. For v3, it is affected by v6, v2, and
v5. Let the percolation coefficient ηz = 0.5 and the dimensionless number π = 3. Ac-
cording to Equation (19), the percolation strength of v6, v2, and v5 to v3 are S6,3 = 11.60×
exp{−0.125} = 10.237, S2,3 = 10.38× exp{−0.5} = 6.296, and S5,3 = 4.70× exp{−0.5} =
2.849, respectively. Therefore, the node with the greatest influence on v3 is v6. Assum-
ing that the cost of propagating topics to v3 is the topic influence of v3 itself, therefore,
U6(P6, P3) > 0, and v3 accepts and continues to spread the topic of v6 and joins v6 commu-
nity. Similarly, v4 and v5 are divided into v6 community.

The local area covered by the influence of v6 reaches Nash equilibrium. Next, v2
is selected as the source point of percolation. The influence of v2 covers v1 and v3; v3
is marked as “divided”, therefore, we need to compare the topic similarity between v2
and the source point of v3 community (i.e., v6) according to Equation (30). Suppose that
m2 ·m6 = 1, |m2| = 2, |m6| = 1; then, we have U(m2, m6) = m2 ·m6/|m2||m6| = 0.5. Thus,
U(m2, m6) < 0.8, the communities of v2 and v6, are not merged. According to Equations (24)
and (25) , the payoff and payoff satisfaction of v3 are UG(3) = 10.237+ 6.296− 8.267 = 8.266
and ρ(3) = 5.119, respectively. UG(3) > ρ(3); thus, v3 joins v2 community, forming an
overlapping structure. Similarly, we can calculate the topic influence of v2 on v1 to make
the local region reach Nash equilibrium. The community detection result of Ga is shown in
Figure 3b.

5. Experimental Results and Analysis
5.1. Experimental Settings
5.1.1. Experimental Environment

All experiments in this paper were performed on a computer with an Intel (R) Core
(TM) i5-7500 CPU, 3.40 GHz, and Yuzhan 16GB DDR4 RAM. All the proposed and com-
pared algorithms were programmed in Python.

5.1.2. Compared Algorithms

For complex networks, GTIP was compared to four traditional community detection
algorithms: GN (Girvan Newman) [6], FN (Fast GN) [7], LFM (Lancichinetti Fortunato
Method) [33], and COPRA (Community Overlap Propagation Algorithm) [34]. GN and
FN are non-overlapping community detection algorithms, while LFM and COPRA are
overlapping community detection algorithms.

For semantic networks, GTIP was compared to seven semantic community detection
algorithms: CUT (Community User Topic) [35], TURCM (Topic User Recipient Community
Models) [36], LCTA (Latent Community Topic Analysis) [37], ACQ (Attributed Community
Query) [21], DEEP (Deep Learning Method) [28], BTLSC (Background and Two-Level Se-
mantic Community) [29], and SCE (Single Chromosome Evolutionary) [14]. CUT, TURCM,
and LCTA generate communities based on Topic Probability Model; ACQ is an attribute
graph community detection method; DEEP and BTLSC are both Deep Learning-based
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semantic community detection methods; and SCE is a new semantic community detection
method based on Single-Chromosome Evolutionary.

5.1.3. Evaluation Criteria

Shen et al. [38] introduced Extension Q-modularity (EQ) to evaluate the quality of
algorithms for identifying highly clustered communities; it is defined as follows:

EQ =
1
M ∑

t
∑

i∈Ct ,j∈Ct

1
OiOj

[Ai,j −
KiKj

M
] (34)

where Ki is the degree of node vi, M = ∑
j
i Aij is the total degree of the network nodes,

Ai,j is the adjacent matrix of the network, and Oi is the number of communities to which
vi belongs.

In a semantic social network, the community structure should satisfy both the link
density and semantic cohesion between nodes. Xin et al. [17] introduced Semantic Q-
modularity (SQ) to evaluate the semantic cohesion of the community structure, which is
defined as follows:

SQ =
1
M ∑

t
∑

i∈Ct ,j∈Ct

sim(mi, mj)

OiOj
[Ai,j −

KiKj

M
] (35)

In Equation (35), mi and mj is the coordinate of node vi and node vj in semantic feature
space, sim(mi, mj) is the cosine similarity between vi and vj (Equation (30)), and the range
of EQ and SQ is (0, 1); the closer this value is to 1, the higher the quality of the community.

Lancichinetti et al. [33] introduced Normalized Mutual Information (NMI) to compare
the similarity between the ground truth and the detected communities. The normalized
mutual information between partition CX and CY is defined as follows:

NMI = 1− 1
2

(
H(CX |CY )

H(CX)
+

H(CY|CX )

H(CY)

)
(36)

where H(CX) is the entropy of CX and H(CX |CY ) is the variation of information between
CX and CY. In the experiments, NMI is used to compare the communities discovered by
the algorithm with the ground-truth communities in the artificial network.

5.2. Datasets
5.2.1. Artificial Networks

For our experiments, we produced ten artificial networks with ground-truth commu-
nities using the LFR (Lancichinetti Fortunato Radicchi) benchmark [33]. The parameter
settings of the LFR benchmark are provided below.

The number of nodes in the network was set to n = 10, 000. The average node degree
of the network was set to d̄ = 5. The minimum and maximum size of the community were
set to |C|min = 5 and |C|max = 500, respectively. The overlap degree of each overlapping
node was set to Om = 2. The number of overlapping nodes in the network was set to
On = 500. The mixing parameter µ was set to {0.1 : 0.1 : 0.8}, that is, the value of µ varied
within the range from 0.1 to 0.8 with a span of 0.1. As µ increases, community boundaries
become blurred and communities in the network become less identifiable.

5.2.2. Complex Networks

Complex networks are used to validate the performance of GTIP and traditional
community detection methods.

(1) The College Football Network. This network contains 115 nodes and 616 edges,
where the nodes in the network represent the football team and the edge between two
nodes indicates that there has been a game between the two teams.



Entropy 2022, 24, 1274 16 of 23

(2) The Political Book Network. This network is generated by the sales records of
political books on Amazon.com during the president election in the early 21st century, and
consists of 105 nodes and 441 edges. The nodes represent the book and the edge represents
co-purchasing of books by the same buyers. The network forms three natural communities,
“liberal”, “neutral”, and “conservative”.

(3) The Dolphin Family Network. The network consists of two dolphin families with 62
nodes and 159 edges. The nodes in the network represent dolphins and the edge represents
the frequency of contact between two dolphins.

5.2.3. Real-World Networks

Real-world networks were used to validate the performance of GTIP and semantic
community detection methods. The five semantic-rich real-world networks used in the
experiment can be downloaded from https://www.aminer.cn (accessed on 1 August 2022)
and https://snap.stanford.edu/data/index.html (accessed on 1 August 2022). (1) Aca-
demic Social Network (ASN): this dataset includes paper information, paper citations,
author information, and author collaboration, and contains 1,712,433 authors (nodes) and
4,258,615 collaboration relationships (edges).

(2) Youtube social network: Youtube is a video-sharing website where users can estab-
lish friendships and create groups. This dataset contains 1,134,890 nodes and 2,987,624 edges.

(3) DBLP collaboration network: the DBLP computer science bibliography provides a
comprehensive list of research papers in computer science. This dataset contains 317,080 nodes
and 1,049,866 edges.

(4) Amazon product co-purchasing network: this network was collected by crawl-
ing the Amazon website. If a product i is frequently co-purchased with product j, the
graph contains an undirected edge from i to j. This dataset contains 334,863 nodes and
925,872 edges.

(5) Enron email network: this dataset was originally made public and posted to the
web by the Federal Energy Regulatory Commission during its investigation of Enron; it
contains 36,692 nodes and 183,831 edges.

5.3. Parameter Analysis
5.3.1. Analysis on the Influence Range of Percolation

We use the parameter jump to represent the influence range of percolation, which can
affect the aggregation of nodes inside communities.

In non-artificial network experiments (Tables 5 and 6), when jump increases the
number of detected communities decreases and the quality (EQ and SQ) of communities
declines, especially when jump > 3. According to Equation (29), the source point has a
great influence on the nodes within three hops. Beyond this range there is uncertainty in
percolation, which leads to the fragmentation of the community and reduces the quality of
the community structure. In comparison, the decay rate of SQ is slightly faster than that
of EQ. Comparing with Equations (34) and (35), changes in percolation range are more
likely to affect the similarity between nodes within the community than that community’s
proportion of internal and external links.

Table 5. The EQ value on non-artificial networks with Jump range from 1 ro 6.

Jump Football Book Dolphin ASN Youtube DBLP Amazon Enron

1 0.5125 0.4847 0.4656 0.4251 0.3621 0.7015 0.8982 0.8322
2 0.5531 0.5022 0.4738 0.4315 0.3625 0.7088 0.9011 0.8414
3 0.4203 0.4291 0.3928 0.4422 0.3638 0.7147 0.9132 0.8543
4 0.2103 0.2159 0.2112 0.2133 0.2191 0.2189 0.2176 0.2102
5 0.0054 0.0098 0.0085 0.0073 0.0025 0.0018 0.0032 0.0047
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

https://www.aminer.cn
https://snap.stanford.edu/data/index.html
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Table 6. The SQ value on non-artificial networks with Jump range from 1 ro 6.

Jump ASN Youtube DBLP Amazon Enron

1 0.4206 0.3539 0.7132 0.8149 0.8101
2 0.4142 0.3393 0.6930 0.8273 0.8266
3 0.3968 0.3207 0.6865 0.8076 0.8064
4 0.1074 0.1071 0.1089 0.1101 0.1106
5 0.0032 0.0028 0.0035 0.0048 0.0045
6 0.0000 0.0000 0.0000 0.0000 0.0000

In artificial network experiments (Table 7), the performance of GTIP varies with
parameter µ. As µ increases, communities in the network become less identifiable and the
NMI score gradually decreases. The performance of GTIP continues to decrease rapidly
when j > 3. In contrast to non-artificial network experiments, the difference in NMI
score for j = 1, j = 2, and j = 3 is not significant. One possible reason for this is that the
link distribution of the non-artificial network is relatively uniform, which decreases the
difference in node influence within three hops.

Table 7. The NMI value on artificial networks with Jump range from 1 ro 6.

Jump µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8

1 0.6291 0.3847 0.2264 0.1537 0.1324 0.0759 0.0235 0.0128
2 0.6213 0.3796 0.2201 0.1471 0.1294 0.0712 0.0212 0.0117
3 0.6185 0.3713 0.2165 0.1406 0.1235 0.0673 0.0196 0.0087
4 0.0017 0.0015 0.0014 0.0012 0.0011 0.0008 0.0006 0.0004
5 0.0005 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

In summary, the performance of GTIP is weak when Jump = 3, and the percolation is
ineffective when Jump > 3. Without loss of generality, we set Jump = 3 in the following
experiments.

5.3.2. Analysis on the Number of Topics

The number of topics (#Topics) in a document collection T can affect the size of the
base of the semantic space; therefore, we verified the change in community quality when
the number of topics was T = 1, 2, ..., 20.

The experiment results are shown in Figures 4–6. It can be seen that when #Topics
ranges from 0 to 8, the quality (EQ, SQ and NMI) of communities increases exponentially.
When #Topics ranges from 8 to 12, the quality of communities tends to be stable. When
#Topics ranges from 12 to 20, the quality of communities decreases rapidly. The reason
for this is that when #Topics increases, the difference in the semantic space coordinate
of each node becomes larger, which increases the possibility of community division. In
this experiment, EQ, SQ, and NMI reach the optimal value when the number of topics
is around 10. In addition, the SQ values of community structures are higher in networks
with obvious topic attributes. For example, the topics in the Enron email network mostly
focus on finance, stock price, and energy transportation, which makes the community have
strong topic consistency. To better demonstrate the performance of our algorithm, we set
#Topics = 10 in the following experiments.
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Figure 4. The EQ value on non-artificial networks with #Topics range from 1 ro 20.
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Figure 5. The SQ value on non-artificial networks with #Topics range from 1 ro 20.
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Figure 6. The NMI score on non-artificial networks with #Topics range from 1 ro 20.

5.4. Experimental Results on Artificial Networks

We executed eleven community detection algorithms on LFR artificial networks and
recorded the NMI values. From Table 8, it can be seen that complex network community
detection methods (GN, FN, LFM, and COPRA) have lower NMI values, while the NMI
values slowly decreases when µ becomes large. In comparison, COPRA performs better
and remains effective in mining the community structure when the community boundaries
are blurred (µ = 0.6, 0.7 and 0.8). As the community boundaries become clearer, the
performance of the semantic community discovery algorithm improves. When µ = 0.4
and 0.5, ACQ and CUT have a higher NMI value. GTIP and DEEP perform better when
µ = 0.1, 0.2 and 0.3. However, because DEEP requires a large number of ground-truth
communities as samples, its NMI decays faster as µ grows larger. In comparison, GTIP has
better performance. The reason for this is that when the community boundary is clearer,
node cohesiveness and central tendency are stronger, which is more consistent with the
community generation principle of GTIP.

Table 8. The NMI value on artificial networks.

Algorithms µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8

GN 0.1823 0.0836 0.0551 0.0179 0.0064 0.0037 0.0006 0.0000
FN 0.1912 0.0861 0.0573 0.0167 0.0066 0.0029 0.0003 0.0000

LFM 0.2107 0.1684 0.1357 0.1122 0.0638 0.0311 0.0103 0.0043
COPRA 0.5158 0.3988 0.3342 0.2801 0.2466 0.2272 0.2168 0.1707

CUT 0.4758 0.3864 0.3561 0.2806 0.2653 0.2232 0.1837 0.1332
TURCM 0.5066 0.4213 0.3722 0.2313 0.1892 0.1534 0.1108 0.0606

LCTA 0.3851 0.3762 0.3097 0.2885 0.2204 0.1818 0.1390 0.0923
ACQ 0.4344 0.4099 0.3768 0.3159 0.2351 0.2111 0.1792 0.1017
DEEP 0.5932 0.4645 0.3536 0.2837 0.1963 0.0992 0.0103 0.0008
BTLSC 0.5022 0.3269 0.2851 0.2022 0.1733 0.1431 0.1005 0.0520

SCE 0.4224 0.3861 0.3236 0.2619 0.2052 0.1337 0.0838 0.0153
GTIP 0.6185 0.4713 0.4065 0.2406 0.1235 0.0673 0.0196 0.0087

5.5. Experimental Results on Complex Networks

We chose the Football, Books, and Dolphins networks as the experimental datasets.
The algorithms used for the comparison included GN [6], FN [7], LFM [33], and COPRA [34].
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GN and FN are non-overlapping community detection algorithms, while LFM and COPRA
are overlapping community detection algorithms. We compared the EQ and SQ of each
algorithm on the three complex networks described in Section 5.2.2.

Table 9 shows the EQ and SQ score of each algorithm. GN and FN discover communi-
ties by cutting edges and if communities do not overlap, their EQ values are lower. LFM
and COPRA aim to increase the proportion of internal and external links of the community,
therefore, the EQ value of the two algorithms is higher than that of GTIP (5.229% higher
on average). The goal of GTIP is semantic similarity among nodes in the community,
therefore, the SQ value of GTIP is higher than the other four algorithms (27.153% higher on
average). The COPRA algorithm has the highest EQ value in the experiment; its SQ value,
however, is lower than GTIP algorithm (8.184% lower on average). In general, traditional
non-semantic community detection algorithms have high performance in mining commu-
nities based on topology structure and poor performance in community detection with rich
semantic information.

Table 9. Performance comparison with traditional community detection algorithms.

Algorithm Criteria Football Book Dolphin

GN EQ 0.2977 0.3084 0.3165
SQ 0.2821 0.2927 0.3002

FN EQ 0.2876 0.2988 0.3153
SQ 0.2774 0.2831 0.3032

LFM EQ 0.4207 0.4266 0.4137
SQ 0.3831 0.3515 0.3604

COPRA EQ 0.4858 0.4672 0.4003
SQ 0.4115 0.3728 0.3948

GTIP EQ 0.4203 0.4291 0.3928
SQ 0.4326 0.4364 0.4066

Horizontal comparison shows that the EQ value of the classical community detection
algorithms is higher than the SQ value (10.169% higher on average). COPRA and GTIP
show good performance on complex networks. Both of them discover communities based
on information diffusion, which indicates that accurately simulating the interaction behav-
ior of social individuals is an effective way to detect communities with tight structure and
semantic cohesion.

5.6. Experimental Results on Real-World Networks

In this section, we compare GTIP with seven semantic community detection algo-
rithms: CUT [35], TURCM [36], LCTA [37], ACQ [21], DEEP [28], BTLSC [29], and SCE [14].
We used the five real-world networks described in Section 5.2.3 as the experiment data; the
results are shown in Tables 10 and 11 .

Table 10. The EQ value on real-world networks.

Networks CUT TURCM LCTA ACQ DEEP BTLSC SCE GTIP

ASN 0.2466 0.3867 0.3580 0.3458 0.3623 0.4435 0.4295 0.4422
Youtube 0.3278 0.3445 0.4362 0.3287 0.4494 0.4224 0.5159 0.4638

DBLP 0.6048 0.6413 0.6082 0.4846 0.5846 0.6520 0.6953 0.7147
Amazon 0.7221 0.8128 0.7090 0.6940 0.8017 0.8043 0.8910 0.9132

Enron 0.6436 0.7405 0.6512 0.6332 0.8013 0.6712 0.8261 0.8543

Table 11. The SQ value on real-world networks.

Networks CUT TURCM LCTA ACQ DEEP BTLSC SCE GTIP

ASN 0.2012 0.3357 0.3106 0.2977 0.3212 0.4062 0.3862 0.3968
Youtube 0.2918 0.3014 0.3931 0.2856 0.4041 0.3762 0.4728 0.4207

DBLP 0.5766 0.6153 0.5841 0.4564 0.5639 0.6262 0.6723 0.6865
Amazon 0.6127 0.7072 0.6068 0.5833 0.6925 0.7011 0.7854 0.8076

Enron 0.5936 0.6957 0.6012 0.5831 0.7534 0.6233 0.7761 0.8064
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BTLSC and SCE have better performance on ASN and Youtube networks. For example,
in the EQ comparison experiment, BTLSC and SCE outperform GTIP by 0.294% and
11.233%, respectively. In the SQ comparison experiment, BTLSC and SCE outperform GTIP
by 2.369% and 12.384%, respectively. On the DBLP, Amazon, and Enron networks, GTIP
has a definite performance advantage. In the EQ and SQ comparison experiment, GTIP
outperforms the other algorithms by an average of 18.386% and 19.973%, respectively. The
reason for this is that the nodes in these three networks generally have a high propensity
for topics. Taking the Enron network as an example, Figure 7 depicts the word clouds of the
Enron network. It can be seen that the network has a strong topic concentration containing
six distinct topics, which enhances the accuracy of the GTIP algorithm in selecting the
source point of percolation. Additionally, in networks with rich semantic information SQ is
typically lower than EQ. The reason for this is that in a semantic social network, although
two users may focus on the same topic, different sentiment tendencies concerning the topic
can lead to a split in the community.

(a) (b) (c) (d)

(e) (f)

Figure 7. Word clouds of six topics on Enron network: (a) California power, (b) Gas_trans, (c) Trading,
(d) Deals, (e) Stock, (f) Finance.

6. Conclusions

This paper proposes GTIP, a semantic community detection method based on topic
influence percolation. First, we modeled topic propagation in semantic social networks as
the flow of a fluid through porous media based on percolation mechanics, then constructed
a partial differential equation to solve the percolation intensity of topic influence. Second,
based on game theory, the rules of accepting and forwarding topics were formulated
to maximize the benefits of users and achieve Nash equilibrium. Finally, a semantic
community was generated based on the seed expansion process.

We conducted experiments on artificial networks, complex networks, and semantic
social networks. Our results show that when community boundaries are obvious and
the corpus is rich, the modularity and NMI scores of GTIP are significantly better than
other comparison algorithms. This shows that GTIP can capture the structural density and
semantic cohesion of the network and has a high performance advantage in networks with
high topic concentration.

In fact, users have different emotional perceptions of different topics, and even if we
gather users with similar topics into one community, the community has the potential to
split. In future work, we intend to integrate the sentiment attributes into the base of the
semantic space in order to improve the structural stability of the detected communities.
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