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Scope and Goals of the Special Issue: There is a growing realization that despite be-
ing the essential tool of modern data-based scientific discovery and model testing, statistics
has major problems. The statistician Ionides speculated that most reported statistical results
are false. The perceived failure of scientific studies to reproduce “statistically significant”
results has scientists and statisticians alike wringing their hands and despairing of what has
been named the “replication crisis”. Public confidence in science is weakening, and perhaps
publicity about the replication crisis is contributing to this. Why have these problems
in statistics remained uncorrected for so long? There has been a struggle of Wagnerian
or titanic proportions between two schools of thought: classical statistics and Bayesian
statistics. Neither has prevailed because each school has virtues, and each school has flaws.
The virtues impel each school’s adherents to defend, while the flaws give both schools
ample opportunity to attack the other. This impasse has been dubbed by the philosopher
Deborah Mayo [1] the “Statistics Wars”. In our view, the way forward, the path between the
paradigms, is evidential statistics. For many years, there has been a growing understanding
of the importance of theory in Ecology and Evolution, with theory being an organized
complex of models [2–5]. Thus, a more model-centric approach to statistics seems appropri-
ate. Practically, science functions by comparing the relative fit of models to data. Science
advances when existing (possibly good) models are replaced with new (hopefully better)
models. Modern statistical evidence compares the relative support in scientific data for
mathematical models. The fundamental tool of model comparison is the evidence function.

In all of the relevant literatures (philosophical, statistical, and scientific) there is
frequent equivocation between the terms (and concepts) of “model” and “hypothesis”. In
our usage, a model is a mechanism to generate data or pseudo data. A model may be
mathematical, algorithmic, or even physical. A hypothesis, on the other hand, is a statement
that may be either true or false. Philosophers, statisticians, and scientists often use the two
terms interchangeably. We find this confusing. This is not to say that individual writers are
are necessarily confused. For example, the statistician Richard Royal in his ground breaking
1997 volume [6] is quite clear when he says on page 4 that “A simple statistical hypothesis is
one that complexly specifies the probability distribution of an observable random variable.”
He is describing what we would speak of as a model. However, for every model, there a
host of associated hypotheses such as: the model is true, the model describes reality within
a specified level of accuracy, the best value for a particular parameter fall within a specified
interval, and so forth.

Royall [7] has said “Statistics today is in a conceptual and theoretical mess.” He
noted [7,8] that there are three generic questions regarding models or hypotheses after data
have been collected:
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1. What do I believe, now that I have this observation?
2. What should I do, now that I have this observation?
3. What does this observation tell me about A versus B? (How should I interpret this

observation as evidence regarding A versus B?) (Royall, 1997 page 4).

Royall [6] identified the crux of problem in statistics as a failure of both the classi-
cal and Bayesian schools to address head-on a question fundamental to science: “when
does a given set of observations support one statistical hypothesis over another?” In his
1997 monograph [6], Royall sought to take a stream of thought running from Venn [9] to
Barnard [8] to Birnbaum [10] to Hacking [11] and finally to Edwards [12] elevate it to a
river of a paradigm. Royall [6] consciously tried to devise a system that retained virtues of
the contesting schools while jettisoning flaws. Royall axiomatically based his evidential
statistics on the law of likelihood [11] and the likelihood principle (LP) [10] and utilized
the likelihood ratio (LR) as the canonical measure of statistical evidence. This “leads to
statistical methods that have a compelling rationale and elegant simplicity” [6].

Unfortunately, the likelihood principle has been strongly critiqued by many. These crit-
icisms fall roughly into three categories: (1) Questions about the legitimacy of Birnbaum’s
1962 derivation (e.g., Mayo [13], but see Gardenberger [14]). (2) Examples where applica-
tion of the LP leads to paradoxical results (e.g., Cornfield [15]). Additionally, (3) questions
about the LP applicability to scientific inference [13,16–19], given that it was formulated
and proved under a perfect model specification scenario, a criterion that is rarely met, if at
all, in day-to-day scientific modeling settings.

The greatest problem with the LP is that it is an incredibly limited statement: It only
says that if the generating process is exactly given by a known parametric model, then
all the information for comparing parameter values is contained in their likelihoods. The
principle does not address many things necessary for the prosecution of science. The LP is
silent regarding the comparison of different model forms, it is silent as to what happens
when the model is misspecified, and it is silent on the quantification of error. Consequently,
the LP has been challenged as a foundational tool for scientific inference ever since it was
named [20]:

In advocating the likelihood principle as a basic proposition in the theory of inference, it is
necessary to emphasize that it is not proposed that it should be used uncritically unless
the model is known very precisely. [. . . ] If the model has to be guessed, then the nature of
the inference becomes much less precise than is suggested by the formal statement of the
likelihood principle. (Page 323, Barnard et al. 1962)

We argue that, because scientists are not omniscient, the model virtually always must
be “guessed” to some degree. Consequently, the most useful way to think about the LP
is as an instructive limiting case—an ideal gas law of sorts. It gives us ideas as to how to
fruitfully pursue inference in more realistic cases.

The LR works well as an evidence measure when comparing two statistical models
with no unknown parameters under the correct model specification. Such models are
known in statistics as “simple hypotheses.” Difficulties arise when model misspecification,
model selection, and unknown parameters (including “nuisance parameters”) are involved.
In 2004 the statistician Subhash Lele [21] recognized that the log of the likelihood ratio,
logLR, between two simple models is an estimate of the contrast of Kullback–Leibler
divergences of each of the two models to the underlying generating process. From this
realization, he developed the concept of evidence functions as a generalization of the
logLR. Evidence functions are essentially contrasts of generalized entropy discrepancies.
Corrections can often be constructed, substituting measures that look like the LR or logLR,
but are not based entirely on pure likelihood ratios [22–25].

We feel that evidence functions have intuitive appeal and compelling rationale—exceeding
even that of the LR. Statistical evidence for one model over another model is just a data-
based estimate of the difference in discrepancies of each of two models to the unknown
underlying generative process. Furthermore, it is suggested that evidence functions should
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be developed in accordance with a list of desiderata, each chosen to confer good inferential
properties to evidence [21,26,27]. We feel that before proceeding to questions 1 and/or 2, an
analyst should endeavor to first answer the evidence question, that is to “let the data speak
for themselves” (This quote is often cited as stemming from R. J. Fisher, but we have not
been able to verify the attribution). The desiderata in Box 1 are constructed to promote this
goal in as clean a statistical fashion through the construction of sound evidence functions.

Box 1. Desiderata for evidence quoted, with minor emendations, from (Taper and Ponciano [26]).

D1. Evidence should be a data-based estimate of a contrast of the divergences of each of two
models from the data generating process.

D2. Evidence should be a continuous function of data. This means that there is no threshold that
must be passed before something is counted as evidence.

D3. The reliability of evidential statements should be quantifiable.
D4. Evidence should be public not private or personal.
D5. Evidence should be portable, that is it should be transferable from person to person.
D6. Evidence should be accumulable: If two data sets relate the same pair of models, then the

evidence should be combinable in some fashion, and any evidence collected should bear on
any future inferences regarding the models in question.

D7. Evidence should not depend on the personal idiosyncrasies of model formulation. By this we
mean that evidence functions should be both scale and transformation invariant.

D8. Consistency, evidence for the true model/parameter is maximized at the true value only if the
true model is in the model set, or at the best projection into the model set if it is not.

Using data, evidence functions estimate the relative divergence between models and
the generating process in some specific metric. Thus, evidence functions can be defined
using divergences other than the KL to deal with specific kinds of models, data, or types
of questions being asked [21,28]. For some of these cases, such as the important question
of choosing between parametric model families, the likelihood principle cannot hold by
definition, at least not without modification such as computing differences of expected
log-likelihood as suggested by Akaike [29].

This generalization of the LR to evidence functions does not represent any loss of
capacity as the LR and all of the substitute measures mentioned above can now be seen
as special cases of evidence functions. The log likelihood ratio still holds a place of pride.
Lele [21] observed that evidence functions based on other divergences have a lower prob-
ability of correct model identifications at every given sample size—under correct model
specification.

Royall [6] made at least two critical advances: First, was the elimination of the null
model/alternative model distinction, conceptually and statistically. Both models are treated
equally and symmetrically. Additionally, second, the accept/reject dichotomy is replaced
with a trichotomy. Possible outcomes are strong evidence for model 1, weak and inconclu-
sive evidence, and strong evidence for model 2. Taper et al. [19] suggest further dividing
the outcome continuum into strong evidence for model 1, prognostic evidence for model 1,
weak evidence not really favoring either model, prognostic evidence for model 2, and strong
evidence for model 2. Prognostic evidence is suggestive of a model, but not sufficiently
strong to stand on its own without collateral evidence.

Since then, modern evidential statistics has extended the concept of evidence to sta-
tistical cases with unknown parameters and misspecified models, but it realizes that a
frequentist error structure can be created for both pre-data design and post-data infer-
ence [15,19,23,30]. Further, both conditional uncertainty (i.e., uncertainty in evidence
given the data in hand) and unconditional uncertainty (i.e., uncertainty in evidence over
resampling of data) can be calculated [19,31].

Testing in classical statistics only conceives of the strength of evidence against a null
hypothesis as an error probability, either significance level or size of test. There are several
substantial improvements in the handling of errors in evidential statistics from that in
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classical statistics. First, the concepts of evidence and frequentist error are now distinct, and
their inferential impacts can be considered separately [30,32,33]. Second, the asymptotic
error structures for evidence, briefly explained below, are vastly superior to those found in
Neyman–Pearson hypothesis testing, NPHT.

It is certainly desirable that inferences should get better as the sample size, n, increases.
This is not the case for NPHT—even under correct model specification. Inferences are
bound to error rates, and Type I error rates (α) are constant over all sample sizes. In
evidence, the error rates are the probabilities: (a) of misleading evidence, Mi, and (b) of
weak evidence, W. The quantities M1 and M2 for two models = are roughly analogous to
the Type I and Type II error rates α and β in NPHT. In an evidential analysis, under correct
model specification, both M1 and M2, along with W, go to zero as sample size increases,
in strong contrast to the error structure of NPHT. Further, the evidential approach allows
an experimenter to control the error by setting a priori the level of evidence, k, that will
be considered strong [6,23]. Presetting k is analogous to setting α before conducting an
experiment to be analyzed using NPHT.

Model misspecification is deleterious to the error control of both NPHT and evidential
model comparisons, but the impacts are much worse for NPHT than for evidence. NPHT
realized error rates can be less than, equal to or greater than the nominal size, α, depending
on the nature of misspecification, which is disastrous for a procedure that relies entirely on
its nominal error rate for inference. To make things even worse, in some realistic situations,
realized error rates will actually increase with increasing sample size—eventually reaching
a certainty of error [30]. Interestingly, the geometry of the model space is estimable [34] and
influences the model identification error probabilities [30]. Further, if nonparametric esti-
mates of data entropy are available then absolute distances from the generating process to
models are calculable, not just relative distances [34]. See [19,30,34] for detailed discussions
of the impact of model misspecification on evidential assessment.

Under misspecification, the maximum error rates for evidential model identification
can be as large as 50%. This occurs when two distinct models are equally divergent from the
generating process, an intuitive result. However, for all model comparisons except for this
limiting case, both evidential error rates (M and W) decline to zero as sample size increases.

Another interesting tool for assessing uncertainty in an evidential analysis is the
confidence interval for your evidence. Evidence is for comparing models; your evidence
is a point estimate of the differences of the divergences each model from the true data
generating process. Even when models are mis-specified, interval estimates for evidence with
valid coverage properties can be produced whenever bootstrapping is possible [19].

Thus far, we have compared the evidential approach to statistics with the classical
approach, but what about Bayesianism? Bayesian statistical thinking is not a monolith,
but a complex stew of shading opinions. I. J. Good [35] waggishly argued that there are at
least 46,657 different kinds of potential Bayesians. In seeking some principle common to
all he said, “All Bayesians, as I understand the term, believe that it is usually meaningful
to talk about the probability of a hypothesis”. It follows from this characterization that
Bayesians fundamentally do not address the evidence question because the evidence
question is always comparative, see Royall’s question 3 above. For extensive discussion of
the confirmation/evidence distinction see [36,37]. While seeking to confirm one’s beliefs is
a natural tendency, it runs the risk of being smacked in the head by reality [8]:

The advantages of odds are even more striking in relation to hypotheses. To speak of
the probability of a hypothesis implies the possibility of an exhaustive enumeration of
all possible hypotheses, which implies a degree of rigidity foreign to the true scientific
spirit. We should always admit the possibility that our experimental results may be
best accounted for by a hypothesis which never entered our own heads. (Barnard, 1949
page 136)

We can broadly categorize Bayesians into three classes: subjective Bayesians, objective
Bayesians, and empirical Bayesians. Further we feel that the empirical Bayes is substantively
different from the other two and only Bayes by a historical fluke of nomenclature, as the
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method could have been just as accurately described as a mixture model or semiparametric
likelihoodism if the prior is estimated nonparametrically.

The distinction between empirical Bayes on one hand and subjective and objective
Bayes on the other hand is that the results of an empirical Bayes analysis are invariant to
the transformation of the parameters while analyses using subjective or objective Bayes
are not. This lack of invariance is not just a philosophical problem but has real world
consequences [38].

There is a tendency among scientists to use “noninformative priors”, perhaps because
personal idiosyncrasy of subjective priors seems somehow inappropriate for science. We
applaud this impulse but point out that the solution is apocryphal. A corollary to the
problem of transformation dependence in Bayesian analysis is that noninformative priors
do not really exist except for categorical models. Every noninformative prior is informative
for another transformation of the parameters and, conversely, every informative prior
is non-informative on an appropriately transformed parameter space [38]. Even more
cryptically, the induced priors on functions of parameters are generally, informative even
though priors on the original parameter space are non-informative.

Another difficulty with Bayesian inference is that parameter non-identifiablity is
masked in the posterior distribution. It can happen for certain situations of model and
data that the likelihood surface is flat, or nearly so, in a particular region of the parameters.
Thus, the data give no, or little, information on parameter values so the posterior is entirely,
or mostly, dependent on the prior [38]. This is particularly a problem for complex situations
where non-identifiability may not be easily recognizable [39,40].

It has been repeatedly pointed out that the posteriors of any Bayesian analysis (subjec-
tive or objective, but excluding empirical) is ineluctably a distribution of belief [16,26,41].
No amount of data changes this fact. To many, this seems a philosophical nicety that is
completely overwhelmed by the ability to provide estimates for difficult problems. Latent
variable and other hierarchical models can be particularly challenging to a likelihood ap-
proach because their optimization requires repeated calculation of multiple integrals of
very high order [42,43]. Monte Carlo Markov chain methods allow the estimation of the
posterior distributions of complicated Bayesian problems through simulation [42,43]. A
great deal of milage has been made of the Walker [44] theorem, which proves that for i.i.d.
data a Bayesian posterior distribution of an identifiable parameter vector θ converges to
the sampling distribution of θ̂ (the maximum likelihood estimate) as sample size goes to
infinity (e.g., Yamamura [45]).

Unfortunately, real-world inference is not asymptotic. While simple models often
achieve near-asymptotic behavior with quite small sample sizes, model complexities and
prior infelicities can make the approach to asymptotic behavior quite slow. There is no way
of knowing if a Bayesian analysis has converged to its large sample behavior except to data
clone [46,47]. Data cloning is an algorithmic device to eliminate the influence of the prior
from a Bayesian estimation. Data cloning provides a full range of frequentist/evidential
statistical tools including maximum likelihood estimation, hypothesis testing, confidence
intervals (Wald and profile), model identification via information criteria, and diagnostics
for parameter identifiability [48–51].

A Bayesian analysis requires that the prior belief distribution integrates to 1. Thus,
fundamentally, but implicitly, a Bayesian analysis assumes that the generating model is in
the model set. When the generating process is not in the model set, a Bayesian analysis will
be overconfident [52]. We agree with Barnard [8] (see quote above) and Box [53,54], who
asserted repeatedly that “all models are wrong” and argue strongly that the generating
process is almost never in any real scientific model set. Some Bayesians [55] address
this problem by placing priors on models; this creates a plausible personal probability.
However, this means that model probabilities are conditional on the model set. Bayesian
scientists are faced with the dilemma of either claiming to be omniscient or accepting that
the overarching idea of a probability for a model, that Good [35] (see quote above) felt was
the common glue that held all Bayesians together, has shrunk so small that it can sleep in a
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teacup. All Bayesian probabilities, all Bayesian confirmations are only consistent with the
real world (that is a world with model misspecification) as comparative concepts [37,56].
Some Bayesian statisticians and scientists fruitfully acknowledge these limitations and
see Bayesian computation as an estimation device for complex models that needs to be
followed by non-Bayesian calibration, confidence, and model-checking [57].

The aim of this special feature in the journal Entropy is to continue the development
and dissemination of evidentilstatistics, building on the recent research topic in Frontiers
in Ecology and Evolution (https://www.frontiersin.org/research-topics/7282/evidential-
statistics-model-identification-and-science accessed 25 August 2022). We believe that
evidential statistics presents an opportunity for increased clarity in scientific inference. The
evidential project draws strengths from both of the opposing camps in the “Statistics Wars”
while simultaneously rejecting some of the flaws of each. The evidential approach promotes
efficient scientific progress by encouraging more active (yet controlled) exploration of model
space [26,34]. We also believe that widespread adoption of evidential practices should act
to alleviate many of the deleterious social behaviors of the scientific community that are
partial causes of the replication crisis. These include “cherry picking”, “HARKing”, “the
file drawer problem”, and of course misunderstanding and/or misrepresentation of the
kind of uncertainty being reported [58].

We are soliciting papers that convey basic concepts and papers that convey technical
subtleties sufficient to conduct real scientific research, as well as practical advice that can
be incorporated into the teaching of undergraduate and graduate courses. Additionally,
this special feature would benefit from application to science beyond simple examples
imbedded within formulations, proofs, computer code, or logical arguments. Specifically,
we are seeking papers that use the evidentialist approach to address pressing scientific
questions or demonstrate the strengths and limitations of the evidentialist approach in
scientific research [26,59].

The topic will consist of a mix of new original research, reviews, mini-reviews, opin-
ions, and commentaries and perspectives on topics related to evidential statistics. New
statistical work is encouraged, nevertheless, all papers will need to spend significant effort
to explain goals, utility, and application of methods to working scientists. To further this
goal, collaboration among statisticians and more empirical scientists is also encouraged. In
the interest of sharpening the discussion, papers by Bayesians, likelihoodists, NP testers,
severe testers, and others that explicitly critique the modern evidential project and any or
all points touched on above are also welcome.
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