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Abstract: We use friction to simultaneously damp and excite a pendulum system. A Froude pen-
dulum attached to a suspension shaft is subjected to a frictional load. We investigate two types
of response of the system: regular and chaotic responses, depending on the excitation frequency.
A transient chaotic solution was also obtained. We identify the motions using phase portraits,
Poincaré maps, and Fourier spectra. Finally, the composite multiscaled entropy was estimated for the
specified cases to confirm the preliminary classification.
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1. Introduction

Pendulum systems are very popular non-linear systems used in scientific and other
applications. For example, the payload dynamics in overhead cranes or jib cranes can be
understood as examples of pendulums [1,2]. With suitable excitation and damping, such
systems are strongly non-linear, exhibiting a variety of solutions, including oscillations and
rotations. Possible solutions may be either periodic or non-periodic. The superposition rule,
well known in linear systems, is breached leading to non-trivial combinations of solutions,
manifest as intermittency and chaotic responses. Simultaneously, particular solutions are
difficult to control [3]. To achieve effective control, solution identification is needed. In our
work, we further develop the discussion of pendulum systems, including frictional drives.

In technical drive structures, friction is unavoidably present [4]. Friction occurring
between the contact surfaces of a rotating shaft and pendulum-like sliding objects may
induce vibration.

Froude pendulums subject to frictional loads have been investigated in detail in several
studies [5–11] using different simplified equations. Two coupled Froude pendula were also
investigated in [11,12]. However, in our work, the friction torque is variable depending on
the motion of the drive shaft. In the next sections, we provide a mathematical model of the
proposed system with selected solutions.

In this paper, we discuss the concept of multi-scaled entropy applied to response time
series of dynamical systems in the case of a pendulum with a frictional load (previous
related studies on mechanical systems include [13–16]). In the following sections, we define
the mathematical model, introduce the entropy approach and discuss simulation results. In
the final section, we identify solutions using composite multi-scaled entropy to express the
change in the complexity of various solutions.

2. Physical and Mathematical Models

The model examined consists of a physical pendulum suspended on a rotating shaft,
driven by harmonical torque through a friction coupling (Figure 1).
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Figure 1. Schematic view of a pendulum subjected to a frictional load of the suspension rotating shaft.

The system can be described as a Froude pendulum attached to a rotating suspension
shaft which is subjected to a frictional load. The dimensionless equation of motion can be
written as:

φ̈(t) + αφ̇(t) + γ sin(φ(t)) + µ sgn(A cos(ωt)− φ̇(t)) = 0 (1)

where α is a viscous damping coefficient, µ is the friction force, while γ is the non-linear
stiffness-to-mass ratio, and Ω is the variable excitation angular velocity driven harmonically
by frequency ω. A is the torsional excitation of the internal shaft.

3. Multiscaled Entropy

Information entropy was introduced by Shannon [17] to quantify disorder. This
concept is directly linked to the Boltzmann formula in the kinetic theory of gases in
statistical physics:

H = −η
n

∑
i=1

pi log2 pi, (2)

where H defines entropy, η is a positive constant depending on the unit of measurement
of entropy, and pi is the probability of occurrence of the i state. In the kinetic gas theory
η coincides with the Boltzmann constant k. The above formula can be applied to study
regularities in the patterns in various dimensional spaces. In particular, it can quantify
dynamical system responses where the corresponding time series can be organized in
periodic or non-periodic ways [18]. It is of note that, in non-linear systems, the coarse grain
time evolution possesses multiple timescales depending on the sampling time.

In the last 30 years, sample entropy analysis has become increasingly popular for
applications in time series analysis [19–24].

The method provides a relative level of complexity for a finite length time series [25]
containing multiple spatio-temporal correlations. The studied (input) signals can be
adopted from measurements or simulations. On the other hand, multi-scale entropy
is based on a coarse-graining procedure which provides a number of effective time series,
as averages of the original time points within non-overlapping windows of the increasing
scale factor τ.

Multi-scale entropy represents a measure of system complexity, which involves an
analysis of the response to excitation in terms of time sequence uncertainty.

In the case of a vector character of studied signals, there is a natural phase space
(from calculations or reconstruction) representation which defines the i (Equation (1)) states’
evolution.

Alternatively, to obtain the multiple resolution of scalar signals, we consider their short
finite sequences by introducing ”sampling entropy”, as used by Richman and Moorman
(SampEn) [23].

For the time series Xi = {x1, x2, ..., xn}, with the length of N points, one may de-
fine so-called m-measurement chains of vectors v(i) = {xi, xi+1, . . . , xi+m−1} and v(j) =
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{xj, xj+1, . . . , xj+m−1}. Afterwards, one may define the similarity between the vectors
v(i) and v(j). The above vectors are similar to each other if their d(i, j) < r, where r is a
certain tolerance level [26] and d(i, j) = max{|x(i + κ)− x(j+ κ)| : 0 6 κ 6 m− 1} defines
the maximum vector element difference of the considered vectors.

The sampling entropy refers here to the information of the v vectors for one scale
which is defined by the chain parameter m > 2. To estimate the complexity of the signal
examined at a larger scale, the multi-scale entropy was introduced [21]. This entropy is not
calculated by directly comparing v vectors, but by comparing newly created y(τ) vectors at
a so-called scale factor τ. The vectors are created from coarse-grained time series as follows:

y(τ)j =
1
τ

i=jτ

∑
i=(j−1)τ+1

xi, 1 6 j 6 N/τ, (3)

where τ = 1, 2, 3.... In accordance with the above formula, y(τ=1)
j = xi. For the non-zero τ,

the analysed series Xi is a part of the average chain N/τ, where each one has the length
of τ. The average value of the calculated chains according to Equation (3) now constitutes
a new coarse-grained time series y(τ).

In Figure 2, a coarse-graining procedure is presented for τ = 2 and τ = 3. The averag-
ing procedure introduces the smoothing of newly created y(τ) vectors, based on the original
time series Xi.

x2 x3 x4 x5 x6 x7 xi xi+1 xi+2x1

x2 x3 x4 x5 x6 x7 xi xi+1 xi+3x1 xi+4xi+2

y2 y3

y1     (3)

yj

y2
     (3)

yj
    (3)

y1

=y}{

=y    (2)

    (3)

}{

Figure 2. Diagram of coarse-graining procedure for the scale factor τ = 2 and τ = 3 in MSE.

The multi-scale entropy for scales m (chain representation) and τ (averaging scale)
from the coarse-grained vector y(τ) is defined by the following formula:

MSE(x, τ, m, r) = SampEn
(

y(τ), m, r
)

. (4)

Whereas, SampEn
(

y(τ), m, r
)

in Equation (4) is defined as follows:

SampEn
(

y(τ), m, r
)
= ln

(
Nn

Nd

)
. (5)

Values Nd and Nn are calculated from the previously prepared coarse-grained data
y(τ) by the following algorithm:

Nd = Nn = 1,

i f |y(τ)(i)− y(τ)(j)| < r & |y(τ)(i + 1)− y(τ)(j + 1)| < r

Nn = Nn + 1, (6)

i f |y(τ)(i + 2)− y(τ)(j + 2)| < r

Nd = Nd + 1.



Entropy 2022, 24, 1269 4 of 10

The result of Equation (4) is the probability of occurrence in the next points of the
time chain series with lengths m, which are similar to each other within the tolerance r.
In the literature, recommended values of the parameters m and r are provided [27] for
use in calculations of multi-scale entropy. In the case study, these parameters are selected
according to the sampling procedure and the length of the time series.

For our analysis of the time series, m = 2 was accepted, whereas the tolerance of
probability r = 0.2 σx, where σx is a standard deviation of the original time series of the
Xi vector. For introduced values, the whole scope of the scale factor parameter τ, at a level
of tolerance r, is established as constant [28].

The estimation of complexity of the signal in terms of the multi-scale entropy MSE
may be affected by error, depending on the multiple choice of the neighboring points in the
averaging procedure. This depends on the accepted length of the index of scale factor τ [29].
Therefore, the authors of [29] introduced a modified form of entropy, which eliminates the
error, termed composite multi-scale entropy (CMSE). If the calculations are conducted for
the parameter τ ∈ (0–20), then the error is small and both results, the MSE and the CMSE,
are accepted as consistent.

The composite multi-scale entropy (CMSE), in comparison with the diagram presented
in Figure 2 and Equation (3), describing the coarse-graining process, coincides only in the
first grained series y(τ=1)

j = xj, where k = 1. To calculate CMSE, the all coarse-grained
time series are included into the following form:

y(τ)k,j =
1
τ

i=jτ+k−1

∑
i=(j−1)τ+k

xi, 1 6 j 6 N/τ, 1 6 k 6 τ. (7)

Then the formula which defines the composite multi-scale entropy CMSE takes
the form:

CMSE(x, τ, m, r) =
1
τ

τ

∑
k=1

SampEn
(

y(τ)
k , m, r

)
. (8)

The algorithm of the composite multi-scale entropy is presented in Figure 3.

Figure 3. The algorithm of composite multi-scale entropy. x is the original time series element, k
denotes the consecutive point of the time series, τ is the averaging scale, and y(τ)k is the element of
the effective (scaled) time series.

The numerical procedure of entropy estimation (from experiments and mathematical
models), in the forms presented above, have been applied to physical phenomena in the
field of physiology [19–23], medicine [27,30], mechanics [13,14,16,18], and thermodynam-
ics [15], etc. In the present paper, the CMSE is applied to signals of a pendulum system
with a friction effect. The results of simulations and corresponding analyses are presented
in the next section.
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4. Results and Discussion

The investigated system is based on a pendulum. There are different responses that can
be expected, including rotations and oscillations, as well as chaotic or regular movements.
To obtain various types of pendulum behavior, we assumed the following set of system
parameters:

α = 0.0, γ = 1, A = 5.2, µ = 0.5. (9)

It should be noted that α = 0 determines a nodal linear damping but that the fairly
large amplitude A provides damping and excitation of the same level through a friction
phenomenon.

Note that a friction phenomenon occurs in two ways with addition and removal of
mechanical energy, depending on the relative motions of the pendulum and the shaft.

In the present simulations, we changed the frequency ω = 0.5, 0.7, 0.8, 1.0, and 1.5.
The results of the time histories (angular displacement and angular velocity), the phase
portraits, and the Fourier spectra of angular velocity are presented in Figures 4–8. They are
marked with subfigure labels of (a), (b), (c), and (d), respectively. In the Runge–Kutta (of
the fourth order) integration of Equation (1), we used a single set of the initial conditions
(φ0, φ̇0) = (0.0, 0.1); the integration time step was variable, with sampling of results δt
fixed to 2π/ω/100. Such a sampling is sufficient for solution identification, taking into
account the timescales in the system.

(a) (b)

(c) (d)

Figure 4. Results for ω = 0.5: oscillation. Time series (a,b), phase portrait (by green dots) and
Poincaré points (by black dots) (c) and FFT (d).
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(a) (b)

(c) (d)

Figure 5. Results for ω = 0.7: rotation and oscillation. Time series (a,b), phase portrait (by green
dots) and Poincaré points (by black dots) (c) and FFT (d).

(a) (b)

(c) (d)

Figure 6. Results for ω = 0.8: rotation and oscillation. Time series (a,b), phase portrait (by green
dots) and Poincaré points (by black dots) (c) and FFT (d).
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(a) (b)

(c) (d)

Figure 7. Results for ω = 1.0: oscillation. Time series (a,b), phase portrait (by green dots) and
Poincaré points (by black dots) (c) and FFT (d).

(a) (b)

(c) (d)

Figure 8. Results for ω = 1.5: oscillation. Time series (a,b), phase portrait (by green dots) and
Poincaré points (by black dots) (c) and FFT (d).



Entropy 2022, 24, 1269 8 of 10

The results show that the pendulum can move in periodic (Figures 4 and 6–8) and
non-periodic (Figure 5) ways. Note also that the non-periodic transient are always present
in the initial stage of motion. Note that the angular displacement was transformed to
a modulo [−π, π] function to express the cylindrical angular variables. In the lower
ω (ω = 0.5, 0.7, 0.8, 1.0) simulation, the results start from simulations, while for ω = 1.5,
the initial transient motion is the oscillation mode. Note that the phase portraits with
Poincaré points (Figures 4–8c) are smeared because of the inclusion of transients; however,
it is possible to distinguish the periodic from chaotic tendencies. In the case of the non-
periodic (chaotic− ω = 0.7) solution, the Poincaré points are formed into a strange attractor.
In the periodic cases (ω = 0.5, 0.8, 1.0, 1.5), the organization of Poincaré points are attracted
by singular points (the most common regular periodic attractor). Simultaneously, the phase
portraits form closed loops. In the case of the chaotic attractor, the loops are lines which are
looped incorrectly and can be considered open.

In the next analysis, the Fourier spectra of the particular cases are compared. The FTT
was calculated using angular velocity histories to avoid results manipulation by the modulo
function in the results of the angular displacement variable.

As expected, the cases ω = 0.5, 0.7, 1.0, 1.5 have strong discrete frequency lines in their
Fourier spectra, with various harmonics, including superharmonics in the case of ω = 0.5,
1.0, 1.5, and subharmonics in the case of ω = 0.8. In the linear vertical scale the relative
heights of the main peaks are clearly visible. Note that the excitation frequency is always
present in the response spectrum as expected.

All the regular response cases (ω = 0.5, 0.8, 1.0, 1.5) are slightly disturbed by the
transient initial phases of responses and show some low level of the continuous spectrum.
On the other hand, the non-periodic solution (at about ω = 0.7) shows a rather continuous
high level frequency spectrum. The discrete line at ω/3 is shown to make clear that this is
the leading subharmonic trend in generally non-periodic behavior.

Finally, we performed an analysis of multiscale entropy. The results are presented in
Figure 9. For this purpose, we examined the stationary intervals of the cases studied.

(a) (b)

Figure 9. (a) Composite multiscale entropy CMSE results, corresponding to the signal of velocity for
the whole signals (25,000 velocity points selected four times per excitation period). Note that the
regular solutions (ω = 0.5, 1.0, and 1.5) have a much lower level of entropy reducing to almost zero
at several τ, while chaotic (ω = 0.7) and transient-chaotic (ω = 0.8) response entropies are fairly
large for almost the whole scope of τ. (b) CMSE calculated for the last 120 velocity points for ω = 0.7
and 0.8.

The results of composite multi-scale entropy calculations are provided for similarity
factor r = 0.2σ to show the different CMSE values by increasing the scale factor τ (see
Figure 9a). The higher values of CMSE reflect the greater complexity of the analysed signal.
It can be clearly seen that the periodic signals are characterized by lower levels of entropy
as a function of the scale factor τ. For modulated multiharmonic signals (ω = 0.5), the
entropy can oscillate, reaching small values for selected τ expressed in the sampling periods.
On the other hand, the chaotic solution has a large entropy level for the whole range of τ.
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Interestingly, the case ω = 0.8 shows long transient chaos due to the short length of the
time series being investigated. Therefore, the cases ω = 0.7 and 0.8 are similar in terms
of entropy. For enhanced clarity, we show (Figure 9b) the CMSE results for stationary
solutions (after transient cut-off). Note that the case ω = 0.8 shows an oscillatory character
with touching CMSE = 0, while the case ω = 0.7 manifests a quasi hyperbolic shape, as for
a stochastic white noise signal [22].

5. Conclusions

We examined a non-linear pendulum system with multiple solutions. Simulations
performed exhibited single and multiple excitation periodic responses, as well as chaotic
behavior for the chosen parameters. For practical reasons (control as well as vibration
mitigation), it is necessary to identify the type of solutions. Our investigations show that
CMSE is a valuable tool in assessing the periodicity and non-periodicity of the investigated
system responses for relatively short time series with transient states.

In the next stage, we plan to investigate the signaled bifurcations in more detail.
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