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Abstract: In this paper, a novel image encryption algorithm is proposed based on hyperchaotic
two-dimensional sin-fractional-cos-fractional (2D-SFCF), called sin-fractional-cos-fractional image-
encryption (SFCF-IE). The 2D-SFCF is constructed from two one-dimensional cosine fractional
(1-DCFs), and it has a more complex chaotic behavior with a larger parameter space than one-
dimensional chaotic systems. Compared with the two-dimensional (2D) chaotic system, the 2D-SFCF
has a simple structure, and the parameter space in the chaotic state is continuous, which is beneficial
to generating the keystream in the cryptosystem. Therefore, in the novel image encryption algorithm,
we use the 2D-SFCF to generate the keystream of the cryptosystem. The encryption algorithm is a
process of scrambling and diffusion. Different from common diffusion methods, the diffusion starting
position of the SFCF-IE is randomly generated, enhancing the algorithm’s security. Simulation
experiments show that the image encrypted by this algorithm has better distribution characteristics
and can resist common attack methods.

Keywords: chaotic image encryption; chaos theory; hyperchaotic; cryptography

1. Introduction

Images are the basis of human vision. Since digital images are vivid and intuitive, the
most important means for people to obtain information is to obtain information from images
in daily life [1,2]. With the accelerated development of the Internet, the study of ensuring the
secure transmission of images in the network has become one of the hot issues [3–5]. Compared
with text information, the image has a two-dimensional structure and the adjacent pixels have
a strong correlation. Therefore, text information encryption algorithms are unsuitable for image
encryption, such as 3DES and AES [6].

Many image protection methods have been proposed, such as image hiding technology,
image watermarking technology, and image encryption technology [7–11]. Among these
image protection techniques, image encryption is the most direct way, which converts the
original plaintext information into a noisy image. The image encryption algorithm consists
of two steps, scrambling and diffusion. The scrambling part is to change the position of
the original plaintext pixel value, and the diffusion algorithm is to change the value of the
original plaintext pixel [12,13].

Because the chaotic system is highly sensitive to the change of the initial value, a large
number of excellent pseudorandom sequences can be generated by the chaotic system,
which is consistent with the keystream required for scrambling and diffusion of image
encryption. Therefore, the image encryption algorithm combined with chaos theory has
gradually become the main research method for image encryption algorithms [14–20]. In
Ding’s algorithm, two chaotic systems are used to generate the keystream, fractional-order
Henon is used for shuffling, and the keystream generated by the 4D hyperchaotic system is
used in the diffusion stage [15]. Li et al. proposed a fractional-order chaotic system and
simulated it on the DSP platform, then proposed a new image encryption algorithm using
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this fractional-order chaotic system [17]. Chai et al. used a Four-wing hyperchaotic system
to generate a keystream and used DNA technology in image encryption. The experimental
results verified that the algorithm has good performance. However, the efficiency of DNA
decoding and encoding operations in computer simulations is slow [20].

For the chaotic image encryption algorithm, the security is mainly related to the per-
formance of the chaotic system. Chaotic systems are divided into low-dimensional and
high-dimensional chaotic systems [21–23]. The structure of low-dimensional chaotic systems is
simple and easy to generate, and many image encryption methods based on low-dimensional
chaos have been proposed [24–26]. However, low-dimensional systems have the disadvan-
tages of small parameter space and no complex dynamic behavior, and their trajectories are
easily estimated on computer platforms with limited precision [27,28]. Compared with low-
dimensional chaotic systems, high-dimensional chaotic systems have larger parameter spaces,
more complex structures, and better dynamic behavior. Many high-dimensional chaos-based
image encryption methods have been proposed today [29–31]. However, due to the com-
plex structure of the high-dimensional mixed-degree system, the efficiency of generating the
keystream is slow, and it is difficult to achieve in industrial production.

To balance the disadvantages and advantages of high-dimensional chaotic systems and
low-dimensional chaotic systems. We propose a new two-dimensional chaotic system called
2D-SFCF. The 2D-SFCF evolved from two 1-DCFs [32]. The 2D-SFCF has a larger parameter
space and better dynamic behavior than one-dimensional chaotic systems. The 2D-SFCF
is a hyperchaotic system. Compared with chaotic behavior, hyperchaotic behavior is a
more complex state. Compared with high-dimensional chaotic systems, the 2D-SFCF has
a simpler structure, and this simple structure can also evolve complex dynamic behavior,
and the speed of the 2D-SFCF generating keystream is fast.

Based on the excellent performance of the 2D-SFCF, we designed a new image en-
cryption algorithm called SFCF-IE. The SFCF-IE is a scramble-to-diffusion process. A
hash function generates the key of the SFCF-IE, which is converted into the initial value
and parameters of the 2D-SFCF to generate the keystream required for scrambling and
diffusion. The scrambling adopts a random scrambling method. In the diffusion algorithm,
the starting position of the diffusion is randomly generated, not the starting position of
the image pixel value. This diffusion method enhances the security of the encryption
algorithm. In addition, the SFCF-IE only needs one round of encryption to achieve the
security required by the cryptosystem, and the image encrypted by the SFCF-IE has good
distribution characteristics.

2. 2D-SFCF

In this paper, a new 2D-SFCF is proposed, mathematical expression of the 2D-SFCF is
shown in Equation (1), {

xi+1 = cos( πα
yi

β )

yi+1 = sin( πα
xi

β )
(1)

There are two inputs and two outputs in the 2D-SFCF. α and β are the control parame-
ters of the 2D-SFCF, α ∈ R+ and β ∈ N+. xi and yi are the iterative sequence, xi ∈ (−1, 1)
and yi ∈ (−1, 1).

2D-SFCF is evolved from 1-DCF [32], and its expression is shown in Equation (2),

xn+1 = cos(
α

xnβ
). (2)

Compared with the 1-DCF, the dynamic behavior of the 2D-SFCF is more complex and the
parameter space in chaotic state is larger.
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2.1. Attractor

The attractor indicates the ergodicity of the system. If the nonlinear dynamical system
has good ergodicity, its attractor distribution will fill the entire phase space. The nonlinear
dynamic system with strong ergodicity is more suitable for the cryptographic system. The
cryptographic system requires random keys and this is not easy to predict. The attractors
of the 2D-SFCF are shown in Figure 1 in different parameter. The initial value is set to
x0 = 0.78345533315 and y0 = 0.97443453789.

(a) (b)

(c) (d)

Figure 1. Attractor of 2D-SFCF. (a) α = 1.8, β = 2. (b) α = 3, β = 4.2. (c) α = 5, β = 9.7.
(d) α = 8, β = 9.7.

It can be seen from Figure 1 that the 2D-SFCF has good ergodicity, and its attractors
are evenly distributed in the phase space, so it can be shown that the chaotic sequence
generated by the 2D-SFCF has good randomness.

2.2. NIST Statistical Test Suite

The National Institute of Standards and Technology (NIST) is an important tool for
counting the randomness of a sequence. Given the significance level, when the test value
is greater than the significance level, it indicates that the sequence passes the test and is
random. In this section, given the significance level γ = 0.01, the NIST test results of the 2D-
SFCF are shown in Table 1, where the initial values of the 2D-SFCF are x0 = 0.78345533315
and y0 = 0.97443453789. The NIST test results show that the sequences generated by the
2D-SFCF have a high degree of randomness. The 2D-SFCF is suitable for cryptosystem to
generate keystream.
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Table 1. NISTtest of plaintext and ciphertext.

Statistical Test

a = 9.7, b = 8 a = 2.8, b = 10

X Y X Y
p-Value Result p-Value Result p-Value Result p-Value Result

Longest run of
ones 0.419021 Success 0.096578 Success 0.236810 Success 0.534146 Success

Overlapping
template
matching

0.616305 Success 0.383827 Success 0.534146 Success 0.574903 Success

Random
excursions

variant
0.671779 Success 0.350485 Success 0.976060 Success 0.888137 Success

Rank 0.657933 Success 0.350485 Success 0.816537 Success 0.911413 Success
Frequency 0.066882 Success 0.350485 Success 0.494392 Success 0.108791 Success
Universal 0.657933 Success 0.494392 Success 0.350485 Success 0.883171 Success
Random

excursions 0.602458 Success 0.275709 Success 0.862344 Success 0.995711 Success

Block
frequency 0.289667 Success 0.911413 Success 0.006661 Success 0.779188 Success

Cumulative
sums 0.191687 Success 0.289667 Success 0.574903 Success 0.236810 Success

Runs 0.213309 Success 0.816537 Success 0.816537 Success 0.085587 Success
Serial 0.779188 Success 0.616305 Success 0.883171 Success 0.289667 Success

Spectral 0.045675 Success 0.816537 Success 0.883171 Success 0.851383 Success
Approximate

entropy 0.955835 Success 0.455937 Success 0.816537 Success 0.383827 Success

Nonoverlapping
template
matching

0.971699 Success 0.383827 Success 0.534146 Success 0.739918 Success

Linear
complexity 0.574903 Success 0.534146 Success 0.455937 Success 0.455937 Success

2.3. Lyapunov Exponents

The Lyapunov exponent is recognized as one of the most effective means of judging
whether a nonlinear dynamical system is chaotic. The calculation formula of Lyapunov
exponents is shown in Equation (3),

λ = lim
T→+∞

1
T

T

∑
t=0
| f ′(xt)|. (3)

When the nonlinear dynamical system has more than one positive Lyapunov exponent, it
indicates that the system is in a hyperchaotic state. A hyperchaotic state is a more complex
dynamical behavior than a chaotic state. The Lyapunov exponents of the 2D-SFCF are
shown in Figure 2a–f. Furthermore, it is compared with the Lyapunov exponents of the
1-DCF [32] and the 2D-SCMCI [33] , which are shown in Figure 2g–i.

Compared with the 1-DCF, the 2D-SFCF has a larger parameter space in the chaotic
state. In the same parameter space, the 2D-SFCF exhibits a hyperchaotic state, while
the 1-DCF is in a chaotic state or even a periodic state. Compared with the 2D-SCMCI,
the parameter space of 2D-SFCF in the chaotic state is continuous, which is beneficial
to generating the secret key of the cryptosystem. The comparison results show that the
2D-SFCF has good kinetic behavior. Furthermore, we verify the accuracy of Lyapunov
exponents using bifurcation diagrams, the bifurcation diagrams of the 2D-SFCF are shown
in Figure 3a–d. The bifurcation diagrams of the 1-DCF are shown in Figure 3e,f. The
bifurcation diagrams of the 2D-SCMCI are shown in Figure 3g,h.

(a) (b) (c)

Figure 2. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 2. Lyapunov exponents. (a) LEs of 2D-SFCF with β = 1. (b) LEs of 2D-SFCF with β = 2.
(c) LEs of 2D-SFCF with β = 4. (d) LEs of 2D-SFCF with β = 6. (e) LEs of 2D-SFCF with β = 10.
(f) LEs of 2D-SFCF with β = 20. (g) LEs of 1-DCF with β = 1. (h) LEs of 1-DCF with β = 10. (i) LEs
of 2D-SCMCI.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3. Bifurcation diagram (BD). (a) BD of 2D-SFCF with β = 4 (X). (b) BD of 2D-SFCF with β = 4
(Y). (c) BD of 2D-SFCF with β = 10 (X). (d) BD of 2D-SFCF with β = 10 (Y). (e) BD of 1-DCF with
β = 4. (f) BD of 1-DCF with β = 10. (g) BD of 2D-SCMCI (X). (h) BD of 2D-SCMCI (Y).
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3. SFCF-IE Algorithm

The SFCF-IE is divided into three parts, key generation, scrambling, and diffusion.
The SFCF-IE is a symmetric cryptosystem, and the decryption process is the reverse process
of encryption. The structure of the SFCF-IE is shown in Figure 4.

Figure 4. Schematic diagram of SFCF-IE.

3.1. Function Declaration

1. Set a key processing function [A, B, C, D] = F(a, b, c, d), the function F can be con-
verted a, b, c, d into a new value A, B, C, Dby Equation (4),

A = (a mod 1)× 100 + 1,
B = f loor(b× 1010) mod 35 + 2,
C = c mod 1,
D = d mod 1.

(4)

2. Set to a keystream generation function [SX, SY] = C(a, b, c, d, N), where a is the
parameter α of the 2D-SFCF, b is the parameter β of the 2D-SFCF, c is the initial value
x0 of the 2D-SFCF, d is the initial value x0 of the 2D-SFCF, and N is the number of
iterations. Output sequences are SX ∈ M1×N and SY ∈ M1×N . Note that when
generating a chaotic sequence, some initial values of iterations need to be discarded,
so that the generated sequence is sufficiently chaotic. Here, the first 100 iteration
values are set to be discarded.

3. Set a sorting function B = Sort(a), which can sort the one-dimensional vector a and
find the position of the sorted vector in the vector a, and the return value is B. An exam-
ple of a sorting function. If A =

[
0.2785 0.5469 0.9575 0.9649 0.1576 0.9706

]
,

and then B =
[

4 5 2 3 6 1
]
.

3.2. Key Generation of SFCF-IE

The key of the SFCF-IE is generated by a hash function. The initial key is a 256-bit
binary stream. The initial key is processed so that the initial key becomes the initial value
and parameter of the 2D-SFCF. The key generation process is described as follows.
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Input: P (P ∈ Mm×n)
Step 1: Use SHA-256 to generate the initial key Ψ, which is a 256-bit key, and the input

to the hash function is a plaintext image.
Step 2: Every 16 bits in Ψ is converted into a new key ϑi, which is a decimal, ϑi ∈ [0, 216],

i = 1, 2, 3, . . . , 16.
Step 3: Processing ϑi, so that ϑi can become the initial value of Logistic,

l1 = (ϑ1 + ϑ2 + ϑ3 + ϑ4)/106,
l2 = (ϑ5 + ϑ6 + ϑ7 + ϑ8)/106,
l3 = (ϑ9 + ϑ10 + ϑ11 + ϑ12)/106,
l4 = (ϑ13 + ϑ14 + ϑ15 + ϑ16)/106,

(5)

Step 4: li are the initial value of Logistic, iterate 30 times by Equation (6),
L(j, i + 1) = 3.9999× L(j, i)× (1− L(j, i)),
L(1, 1) = l1, L(2, 1) = l2, L(3, 1) = l3, L(4, 1) = l4,
j = 1, 2, 3, 4, i = 1, 2, 3, . . . , 30.

(6)

Step 5: The new keys are set to K1 = L(1, 30), K2 = L(2, 30), K3 = L(3, 30), and
K4 = L(4, 30).

Output: K1, K2, K3 and K4

3.3. Scrambling of SFCF-IE

The scrambling algorithm is described as follows.
Step 1: Process the generated secret key K1, K2, K3, and K4, K1, K2, K3. Get the initial

values and parameters of the 2D-SFCF.
Step 2: Generate a key stream by 2D-SFCF, [X, Y] = C(ks1, ks2, ks3, ks4, max(m, n)),

and output two sequences, X ∈ M1×max(m,n) and Y ∈ M1×max(m,n).
Step 3: Sort X and Y, generate a row scrambled matrix SX and a column scrambled

matrix SY, where SX = sort(X(1 : m)) and SY = sort(Y(1 : n)).
Step 4: Scramble the plaintext P by Equation (7),

S(i, j) = P(SX(i), SY(j)), i = 1, 2, 3, . . . , m, j = 1, 2, 3, . . . , n. (7)

where S is the scrambled matrix.

3.4. Diffusion of SFCF-IE

Different from the common diffusion algorithm that starts from position (1, 1), the
starting position of the SFCF-IE diffusion algorithm is determined by the secret key. This
design method increases the diversity of the algorithm and increases the difficulty of
cracking. The diffusion algorithm is described as follow.

Input: S (S ∈ Mm×n)
Step 1: The starting positions lp and cp of the diffusion is generated by the sequence

X and Y,
lp = floor(X(floor(m/2) + 1)× 1010 mod (m− 1) + 1)
cp = floor(Y(floor(n/2) + 1)× 1010 mod (n− 1) + 1)

. (8)

Step 2: The matrixs dm1, dm2 required for diffusion are generated by Equation (9),

[ks5, ks6, ks7, ks8] = F(K1, K2, K3 + K4, K4 − K3)
[DX, DY] = C(ks5, ks6, ks7, ks8, m× n)
dm1 = f loor(DX× 1010) mod 256
dm2 = f loor(DY× 1010) mod 256

(9)

Convert dm1, dm2 to two matrixs, dm1 ∈ M1×mn → dm1 ∈ Mm×n and dm2 ∈ M1×mn →
dm2 ∈ Mm×n.
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Step 3: The diffusion process is described as
(1) C(lp, cp) = (S(lp, cp) + dm1(lp, cp) + dm2(lp, cp)) mod 256.
(2) C(lp, i) = (S(lp, i) + dm1(lp, i) + dm2(lp, i) + C(lp, i − 1)) mod 256, i = cp +

1, cp + 2, cp + 3, . . . , n.
(3) C(lp, i) = (S(lp, i) + dm1(lp, i) + dm2(lp, i) + C(lp, i + 1)) mod 256, i = cp −

1, cp− 2, cp− 3, . . . , 1.
(4) C(i, j) = S(i, j)⊕ dm1(i, j)⊕ dm2(i, j)⊕C(i+ 1, j), i = lp− 1, lp− 2, lp− 3, . . . , 1, j =

1, 2, 3, . . . , n.
(5) C(i, j) = S(i, j)⊕ dm1(i, j)⊕ dm2(i, j)⊕C(i− 1, j), i = lp+ 1, lp+ 2, lp+ 3, . . . , m, j =

1, 2, 3, . . . , n.
Output: C (C ∈ Mm×n)

4. Performance Analysis

To evaluate the performance of the SFCF-IE algorithm, in this paper, we will analyze
the encryption effect and security of the algorithm from the visualization, key space analysis,
histogram analysis, key sensitivity, information entropy, correlation, and NIST.

4.1. Visualization

Images are selected from the USC-SIPI Image Database for visualization analysis. The
visual analysis of the SFCF-IE are shown in Figures 5–7, including the encryption and decryp-
tion results of the image. The visualization results show that the ciphertext image obtained
by the SFCF-IE is a noise image, and the attacker cannot obtain any information from the
ciphertext image.

(a) (b) (c)

Figure 5. Visualization of SFCF-IE for image ‘1.5.01’ (512× 512). (a) plaintext of ‘1.5.01’. (b) ciphertext
of ‘1.5.01’. (c) decrypted ‘1.5.01’.

(a) (b) (c)

Figure 6. Visualization of SFCF-IE for image ‘1.5.03’ (512× 512). (a) plaintext of ‘1.5.03’. (b) ciphertext
of ‘1.5.03’. (c) decrypted ‘1.5.03’.
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(a) (b) (c)

Figure 7. Visualization of SFCF-IE for image Black (512 × 512). (a) plaintext of Black. (b) ciphertext
of Black. (c) decrypted Black.

4.2. Key Analysis

The original key of SFCF-IE is generated by a hash function, and the rest of the keys
are converted from the original key, so the key space of the SFCF-IE is 2256. The key space
of the SFCF-IE is much larger than 2100, so the algorithm in this paper is sufficient to resist
external exhaustive attacks.

In addition to being large, the key of a cryptographic system also needs to be sensitive
enough. A good cryptographic algorithm must be highly sensitive to small changes in the
key. Figure 8 analyzes the key sensitivity of the SFCF-IE. The original key is K, and the
slightly changed keys are K1, K2, K3, K4, K5, K6. Decrypt with the correct key and the wrong
key, respectively.

K = beb9b8c4e f 16383cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d29bd6c94095aa9
K1 = beb9b8c4e f 16383cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d29bd6c94095aaa
K2 = beb9b8c4e f 16383cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d29bd6c94095aa8
K3 = aeb9b8c4e f 16383cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d29bd6c94095aa9
K4 = ceb9b8c4e f 16383cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d29bd6c94095aa9
K5 = beb9b8c4e f 16383cd3b1945b8aa8b2873 f 7bbbb29ee7a6903d29bd6c94095aa9
K6 = beb9b8c4e f 16383cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d2abd6c94095aa9
K7 = beb9b8c4e f 16483cd3b1945b8dd8b2873 f 7bbbb29ee7a6903d29bd6c94095aa9

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Key sensitivity analysis of SFCF-IE. (a) decrypted by K. (b) decrypted by K1. (c) de-
crypted by K2. (d) decrypted by K3. (e) decrypted by K4. (f) decrypted by K5. (g) decrypted by K6.
(h) decrypted by K7.
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4.3. Histogram Analysis

The histogram analysis can intuitively reflect the distribution characteristics of pixels.
If the ciphertext cannot cover up the statistical characteristics of the image, the attacker will
infer the information distribution of the plaintext according to the ciphertext to crack the
algorithm. The histogram analysis of the SFCF-IE is shown in Figures 9 and 10.

(a) (b)

Figure 9. Spatiotemporal histogram of ‘1.5.01’. (a) Plaintext spatiotemporal histogram of ‘1.5.01’.
(b) Ciphertext spatiotemporal histogram of ‘1.5.01’.

(a) (b)

Figure 10. Spatiotemporal histogram of ‘1.5.02’. (a) Plaintext spatiotemporal histogram of ‘1.5.02’.
(b) Ciphertext spatiotemporal histogram of ‘1.5.02’.

Experimental results show that the algorithm can well mask the statistical proper-
ties of plaintext images. After encryption, the gray value appears with approximately
equal probability.

4.4. Information Entropy Analysis

Shannon’s theorem states that when the degree of disorder of information increases,
its entropy value will increase, and when the probability of occurrence of each element in
the information is equal, its entropy value will reach its maximum value. The calculation
formula of information entropy is

H =
255

∑
i=0

p(gi)log2
1

p(gi)
.

The information entropy of the SFCF-IE is shown in Table 2. In addition, the comparison
with the average information entropy of some classical algorithms [34–38] are shown in
Table 3.
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Table 2. Information entropy of SFCF-IE.

Image Plaintext Ciphertext

1.4.01 6.3291 7.9998
1.4.02 7.1882 7.9998
1.4.03 6.6188 7.9998
1.4.04 6.1911 7.9998
1.4.05 7.1177 7.9998
1.5.01 5.6826 7.9993
1.5.02 5.8145 7.9993
1.5.03 6.9857 7.9993
1.5.04 6.4154 7.9993
1.5.05 6.8087 7.9993
1.5.06 5.1332 7.9993
1.5.07 6.7359 7.9993
Black 0 7.9993
White 0 7.9992

Average 5.5015 7.9995

Table 3. Information entropy comparison.

Algorithms SFACF-IE Ref. [34] Ref. [35] Ref. [36] Ref. [37] Ref. [38]

Information
entropy 7.9995 7.993 7.9995 7.9993 7.9992 7.9972

The experimental results show that the ciphertext information entropy of the SFCF-IE is
close to 8. Compared with other algorithms, the information entropy of the SFCF-IE is closer
to the theoretical value, so it can be shown that the SFCF-IE has better encryption effect.

4.5. Correlation Analysis

The attacker can attack an image by analyzing the correlation between adjacent pixels
of the image, so the encryption algorithm should eliminate this correlation. The adjacent
pixel correlation is defined as,

rρ =
cov(x, y)√
D(x) · D(y)

.

Figure 11 is the result of the SFCF-IE adjacent pixel correlation analysis. When the correlation
between adjacent pixels is strong, the image presents a state of aggregation, and when the
correlation between adjacent pixels is weak, the image presents a state of divergence.
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Figure 11. Correlation analysis of ‘1.5.06’. (a) Horizontal of plaintext. (b) Vertical of plaintext. (c) Di-
agonal of plaintext. (d) Horizontal of ciphertext. (e) Vertical of ciphertext. (f) Diagonal of ciphertext.

Table 4 shows the quantitative analysis results of the correlation between adjacent pix-
els of the SFCF-IE, and the comparison results with some classical algorithms (Refs. [34–38])
are shown in Table 5.
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Table 4. Correlation coefficients of SFCF-IE.

Image Size
Plaintext Ciphertext

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

1.4.01 1024 × 1024 0.9468 0.9172 0.9175 −0.0002 −0.0005 0.0011
1.4.02 1024× 1024 0.9749 0.9347 0.9209 −0.0002 −0.00002 0.0005
1.4.03 1024× 1024 0.9700 0.9557 0.9503 −0.0010 −0.0009 0.0005
1.4.04 1024× 1024 0.9739 0.9691 0.9633 0.0006 0.0007 0.0006
1.4.05 1024× 1024 0.9894 0.9734 0.9670 0.0012 0.0010 −0.0011
1.5.01 512× 512 0.8383 0.8956 0.7945 −0.0003 −0.0053 −0.0009
1.5.02 512× 512 0.8893 0.8940 0.8043 0.0009 0.0030 −0.0003
1.5.03 512× 512 0.8821 0.9214 0.8119 0.0006 0.0019 −0.0004
1.5.04 512× 512 0.7553 0.7146 0.5593 −0.0006 −0.0014 0.0001
1.5.05 512× 512 0.9510 0.9582 0.9206 −0.0015 0.0039 −0.0006
1.5.06 512× 512 0.6165 0.5006 0.4633 0.0020 0.0017 −0.0017
1.5.07 512× 512 0.7163 0.8144 0.5950 0.0007 0.0003 −0.0024
Black 512× 512 1 1 1 0.00003 −0.0022 0.0031
White 512× 512 1 1 1 0.0012 −0.0019 −0.0016

Average 0.8931 0.8892 0.8334 0.0002 0.00005 −0.0002

Table 5. Correlation coefficients of SFCF-IE.

Algorithms SFCF-IE Ref. [34] Ref. [35] Ref. [36] Ref. [37] Ref. [38]

Horizontal 0.0002 0.0048 −0.0042 0.0022 −0.0519 −0.0016
Vertical 0.00005 −0.0025 −0.0049 0.0017 −0.0385 −0.0026

Diagonal −0.0002 −0.0072 −0.0045 0.0019 0.0046 0.0116

4.6. NIST for Ciphertexts

Use the NIST to test whether the ciphertext image obtained by the SFCF-IE is random.
The NIST test results are shown in Table 6. The plaintext image fails in 14 tests, and one
test is successful. The plaintext image does not have randomness, and the distribution
of pixel values has certain regularity. The ciphertext passed 15 tests, indicating that the
ciphertext image has good randomness, and the attacker cannot find information related to
the plaintext from the ciphertext image. Therefore, the SFCF-IE has strong security.

Table 6. NISTtest of SFCF-IE

Number Statistical Test
Plaintext Ciphertext

p-Value Result p-Value Result

1 Longest run of
ones 0 Fail 0.151616 Success

2
Overlapping

template
matching

0 Fail 0.611108 Success

3
Random

excursions
variant

0 Fail 0.949602 Success

4 Rank 0 Fail 0.016431 Success
5 Frequency 0 Fail 0.258961 Success
6 Universal 0 Fail 0.559523 Success

7 Random
excursions 0 Fail 0.602458 Success

8 Block frequency 0 Fail 0.199580 Success

9 Cumulative
sums 0 Fail 0.855534 Success

10 Runs 0 Fail 0.113706 Success
11 Serial 0 Fail 0.714660 Success
12 Spectral 0 Fail 0.509162 Success

13 Approximate
entropy 0 Fail 0.258961 Success

14

Non-
overlapping

template
matching

0 Fail 0.953553 Success

15 Linear
complexity 0 Success Fail Success

5. Conclusions

In this work, a 2D-SFCF hyperchaotic system is proposed. Through Attractor, Lya-
punov exponent, and bifurcation graph, NIST verified that the 2D-SFCF has better dynamic
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behavior and larger parameter space than low-dimensional chaotic systems. In addition,
the parameter space of the 2D-SFCF in a hyperchaotic state is continuous. Based on the
2D-SFCF, we propose a new image encryption algorithm called SFCF-IE. Through key
analysis, information entropy analysis, correlation analysis, NIST, and other methods, it is
verified that THE 2D-SFCF has high security and high practical value and is widely used in
secure real-time communication of images and other occasions.
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