
����������
�������

Citation: Hu, S.; Zhang, B.; Lv, H.;

Chang, F.; Zhou, C.; Wu, L.; Zou, G.

Improving Network Representation

Learning via Dynamic Random Walk,

Self-Attention and Vertex

Attributes-Driven Laplacian Space

Optimization. Entropy 2022, 24, 1213.

https://doi.org/10.3390/e24091213

Academic Editors: Marcin Sosnowski,

Jaroslaw Krzywanski, Yunfei Gao,

Karolina Grabowska, Dorian Skrobek,

Ghulam Moeen Uddin, Anna

Kulakowska, Anna Zylka and Bachil

El Fil

Received: 25 July 2022

Accepted: 26 August 2022

Published: 30 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Improving Network Representation Learning via Dynamic
Random Walk, Self-Attention and Vertex Attributes-Driven
Laplacian Space Optimization
Shengxiang Hu 1, Bofeng Zhang 2,3,*, Hehe Lv 1, Furong Chang 4, Chenyang Zhou 1, Liangrui Wu 1

and Guobing Zou 1,*

1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
2 School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China
3 School of Computer Science and Technology, Kashi University, Kashi 844008, China
4 School of Information Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
* Correspondence: bfzhang@sspu.edu.cn (B.Z.); gbzou@shu.edu.cn (G.Z.)

Abstract: Network data analysis is a crucial method for mining complicated object interactions. In
recent years, random walk and neural-language-model-based network representation learning (NRL)
approaches have been widely used for network data analysis. However, these NRL approaches suffer
from the following deficiencies: firstly, because the random walk procedure is based on symmetric
node similarity and fixed probability distribution, the sampled vertices’ sequences may lose local
community structure information; secondly, because the feature extraction capacity of the shallow
neural language model is limited, they can only extract the local structural features of networks; and
thirdly, these approaches require specially designed mechanisms for different downstream tasks to
integrate vertex attributes of various types. We conducted an in-depth investigation to address the
aforementioned issues and propose a novel general NRL framework called dynamic structure and
vertex attribute fusion network embedding, which firstly defines an asymmetric similarity and h-hop
dynamic random walk strategy to guide the random walk process to preserve the network’s local
community structure in walked vertex sequences. Next, we train a self-attention-based sequence
prediction model on the walked vertex sequences to simultaneously learn the vertices’ local and
global structural features. Finally, we introduce an attributes-driven Laplacian space optimization to
converge the process of structural feature extraction and attribute feature extraction. The proposed
approach is exhaustively evaluated by means of node visualization and classification on multiple
benchmark datasets, and achieves superior results compared to baseline approaches.

Keywords: network representation learning; dynamic random walk; feature extraction; Laplacian
space optimization

1. Introduction

Network structure can effectively model complex inter-entity relationships, such as
social networks between users [1], e-commerce networks between users and products [2],
citation networks between publications [3], biological networks [4], etc. These networks
have been utilized for a range of data-mining applications, including vertex classification [5],
link prediction [6], user search [7] and recommendation systems [2]. Figure 1 depicts the
three processes of network data mining.

Entropy 2022, 24, 1213. https://doi.org/10.3390/e24091213 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24091213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24091213
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24091213?type=check_update&version=1

Entropy 2022, 24, 1213 2 of 18

A

C

D

E

F

B

H

G

A

C

D

E

F

B

H

G

Optimization

Algoriths

(a). Selecting the appropriate type

of network to model data;
(b). Extracting vertices features

via optimization algorithms;

Node

Classification

Link

Prediction

User Search

Recommender

System

...

Node

Classification

Link

Prediction

User Search

Recommender

System

...

(c). Designing downstream data mining

tasks based on the vertices features.

Figure 1. An overview of the three steps of network analysis. First, selection of an appropriate
network type to represent the objects and their interrelationships as a starting point. Second, extrac-
tion of the features of vertices to retain network structure information, vertex attribute information,
and other essential and useful network information [8]. The obtained features are then used for
subsequent data-mining tasks.

The second step is the most crucial since the capability of acquired features to charac-
terize the network has a significant effect on the execution of subsequent tasks. Traditional
supervised matrix decomposition-based network analysis approaches strongly bind the
second and third phases, and employ specialized algorithms for a variety of downstream
tasks and network types. However, as information technology advances, networks become
more diverse, extensive, and sparse, which makes labeling all vertices, and performing
matrix decomposition, impractical and time-consuming. In addition, approach migration
is precluded by the great bond between algorithms and downstream tasks. In recent years,
unsupervised network representation learning (NRL) approaches [9–12], which are based
on random walk and shallow neural language models, have been extensively researched
and have achieved great success. These approaches separate the second and third phases,
and focus on extracting representative low-dimensional latent features for vertices. The
resulting features can then be directly incorporated into further vector-based data mining
algorithms for subsequent tasks. In general, random walks on a network are run to generate
vertex sequences that contain information about the network’s structure, and then a neural
language model is trained [13] by modeling the co-occurrence of vertices pairs on the
sequences to extract structural features for the vertices. Despite the fact that these meth-
ods have demonstrated their efficacy, they suffer from the three flaws listed below: First,
because the random walk is a Markov process based on a static probability distribution
without considering previous walk history, the sampled vertex sequences are prone to
losing vertex neighborhood structure information; second, because the feature extraction
capability of the shallow language model is limited, only local structural features can be
learned, while global structural features are ignored; and third, in order to incorporate
the vertex attribute information into network representation, a specific attribute fusion
algorithm has to be designed for different downstream tasks and attribute types, which
raises the design complexity of the approach.

To address the aforementioned issues, we propose a general NRL approach called
dynamic structure and vertex attributes fusion network embedding (dSAFNE). First, based
on a newly defined asymmetric second-order vertex approximity, we design an h-hop
weighted dynamic random walk strategy, which incorporates a series of previously walked
vertices to dynamically calculate the sampling probability of each vertex and assign a
higher walk probability to the more similar ones. The sampled vertex sequences are then
fed into a self-attention-based sequence prediction model. Vertex representations, which
preserve both local and global structural characteristics, can be learned through a fake task
that predicts the next walked vertex based on the previous vertex sequence. Moreover,
in order for our model to effectively extract vertex attribute features of various types, we
introduce a vertex attributes-driven Laplacian space optimization. It first leverages the

Entropy 2022, 24, 1213 3 of 18

state-of-the-art (SOTA) learning models for different types of data (e.g., residual neural
network (ResNet) [14] for images, bidirectional encoder representations from Transformer
(BERT) [15] for text, etc.) to extract vertex attribute features. Then, it uses the pairwise
feature similarities of the vertices to optimize the vertex representations so that vertices with
a higher attribute similarity are represented more closely in the feature space. Finally, we
validate the effectiveness of the dSAFNE framework on various datasets through different
downstream tasks. This paper’s major contributions are outlined below.

• To address the issue of too much randomness in random walk that is based on a static
probability distribution Markov process, we first design an asymmetric second-order
proximity that reflects vertex similarity while retaining role information, and then
propose an h-hop weighted dynamic random walk strategy based on this similarity.
It incorporates a series of historical vertices to dynamically calculate the sampling
probability of each vertex, and allocates higher walk probabilities to vertices with high
similarities, leading to fully capturing the vertex neighborhood structure information.

• To address the issue that the shallow language model adopted by the majority of
unsupervised NRL approaches can only extract short-range local structural features
of vertices, we model learning network structural features from vertex sequences as
a sequence prediction problem and develop a sequence prediction model based on
the self-attention mechanism with reference to the structure of the Transformer [16]
encoder, which can handle both short-range and long-range dependence problems in
order to simultaneously learn the multi-granularity structural features of vertices.

• To address the issue of underutilization of vertex attribute information, we propose
a vertex attribute-driven Laplacian optimization that constrains the NRL training
process by vertex attribute similarity in order to obtain distributed representations of
vertices containing vertex attribute features.

• To evaluate the proposed dSAFNE model, we conducted a series of experiments on
vertex classification and visualization over a variety of different types of datasets, and
obtained excellent results when compared to the baseline methods.

The rest of this paper is organized as follows: Section 2 describes related work.
Section 3 explains the essential concepts that help to understand this paper. Section 4
introduces each module of the dSAFNE framework in detail. Section 5 presents and
analyses the experimental results. Section 6 summarizes the work in this paper.

2. Related Work

In this section, we briefly describe the related NRL approaches, which are classified
into matrix-factorization-based models and shallow neural embedding models according
to implementation characteristics.

The matrix-factorization-based models [17–21] first used different types of relational
matrices [20] to preserve the network information, and then applied matrix factorization to
obtain vertex representations. Belkin et al. [17] utilized Laplacian spectral decomposition to
discover non-linear low-dimensional representations for the input network data. To learn
community-oriented vertex representation, Tang et al. [18] performed a decomposition of
the modularity matrix. Donnat et al. [19] embedded vertex neighborhood structure into
a low-dimensional space and preserved structural role proximity by leveraging spectral
graph wavelet diffusion patterns. Yang et al. [20] executed inductive matrix decomposi-
tion [22] on the vertex context matrix to preserve both network structure and vertex text
attribute characteristics in the vertex representation vector. Zhang et al. [21] focused on the
weakness of ignoring the homophily property in [20], and suggested a regularization term
that simultaneously integrates homophily, structural context and vertex content to extract
network representations. Although the matrix-factorization-based approach can effectively
extract the global structural features of networks, these methods are challenging to be
deployed to large networks since matrix factorization requires a great deal of computing
and memory resources. In the meantime, the design of relational matrices will have a direct
impact on the performance of matrix factorization, introducing an extra contingency.

Entropy 2022, 24, 1213 4 of 18

The shallow neural embedding models [9–12,23–26] seek an embedding matrix, which
can be considered as a vertex representation by a row or column vector. Typically, they first
extract vertex sequences by performing random walks on the network to capture network
structure. Based on the assumption that the comparable context-sharing vertices in random
walk sequences should be closely represented in the low-dimension feature space, they
then train a shallow neural language model on the sequences to optimize the embedding
matrix, i.e., to maximize the log-likelihood of context vertices when given a target vertex.
Perozzi et al. [9] performed truncated random walk on the network to generate vertex
sequences, in which the co-occurrence frequencies of vertex-context pairs indicated their
relevance. To further extract the vertex representation, they generalized the idea of a
word embedding model (i.e., Skip-Gram [27]) over the vertex sequences. Cao et al. [23]
followed the idea of [9] and extended the Skip-Gram model to capture k-step high-order
vertex proximity, with the goal of making vertices that shared common k-step neighbors
proximate in the embedding space. In contrast to the rigid strategy of truncated random
that defines the neighborhood (context) for each vertex, Grover et al. [10] introduced a
biased random walk to balance breadth-first search (BFS) and depth-first search (DFS) [28],
and then applied Skip-Gram to learn the vertex feature from random walk sequences. To
preserve the structural role proximity of vertices, Ribeiro et al. [11] first encoded vertex
structural role proximity into a multi-layer graph, where the edge weights of each unique
graph were defined by the structural role difference, and then executed [9] at each layer to
learn vertex representations.

In order to incorporate vertex labels with network structure, Li et al. [24] proposed
learning discriminative network representations by concurrently optimizing the objective
of [9] and supporting vector classification. Pan et al. [25] adapted a paragraph vector
model [29] to capture vertex textual content and label information, and then jointly opti-
mized the objective of [9] to simultaneously encode network structure, vertex label and
attribute information into a vertex representation. Sun et al. [12] exploited long short-term
memory (LSTM) [30] to maintain the transfer possibilities among the vertices. To further
improve the extraction of the network’s local structural features, they devised a Laplacian-
supervised embedding space optimization. Rozemberczki et al. [26] proposed a Euler walk
for executing a Euler tour in the diffusion subgraph centered on each vertex.

In comparison to matrix factorization-based models, shallow neural embedding mod-
els are more robust since they are unaffected by artificially constructed relation matrices.
Moreover, since random walk can be easily applied to large-scale networks, the scalability
of such approaches is considerably enhanced. Despite this, there still remain a series of
shortcomings. These models do not consider the effect of a series of historical vertices on
the sampling probability when performing random walks, leading to the loss of community
structure. Limited by the feature extraction ability and receptive field of the shallow neural
language model, only local structural features of the network can be extracted. In addition,
it is necessary to design attribute fusion strategies specifically for a variety of downstream
tasks and attribute types.

Motivated by the aforementioned investigations, we are committed to addressing the
following issues of previous shallow neural embedding methods, including the loss of
community structure resulting from the static-probability-distribution-based random walk,
the inability to simultaneously learn multi-grained structural features, and the task-specific
vertex attribute integration algorithm requirements.

3. Preliminaries

In this section, we summarize some essential concepts and define the research problem.

Definition 1 (Network). A network can be formally represented as a triplet G = (V, E, C), which
consists of a vertex set V = {v1, v2, . . . , vn} of n vertices, an edge set E = {eij}n

i,j=1, and a vertex
attributes set C = {c1, c2, . . . , cn} where ci denotes the attributes of vertex vi. Each object eij in E

Entropy 2022, 24, 1213 5 of 18

indicates that there exists an edge, which is attached with a weight wij ∈ R, from vertex vi to vj. In
an unweighted network, wij = 1 if eij ∈ E else wij = 0.

Definition 2 (Vertex Proximity). In real-world networks, many vertex proximities exist, including
first-order, second-order, and higher-order proximities, etc. The first-order proximity function can
be used to determine the direct connectedness of two vertices, which is often specified as the weight
of the connecting edge. The second-order proximity of two vertices indicates the distance between
their adjacent distributions [31]. Higher-order proximity between two vertices can be defined as the
k-step probability of transitioning between them [32].

Definition 3 (Structure and Vertex Attributes Fusion Network Embedding). The structure
and vertex attributes fusion network embedding task attempts to learn a low-dimensional represen-
tation matrix R ∈ R|V|×d for a given network G, where d � |V|. The row vector Ri,: is treated
as the representation of vertex vi. Ri,: should preserve both the structural information and vertex
attribute information. In other words, the vertices that share common neighbors, or have similar
attributes, should be represented closely in the low-dimension feature space.

4. Approach

In this section, we present details of the proposed NRL approach dSAFNE. Figure 2
shows the overall framework, which consists of three modules: (a) an h-hop weighted
dynamic random walk for sampling vertices sequences on the top left, (b) a novel masked
self-attention-based deep neural prediction model for capturing mixed-grained structure
on the right, (c) a vertex attributes-driven Laplacian space optimization for capturing vertex
attribute features on the bottom left.

Embedding Layer

Position Encoding

+

+

Q K V

Softmax

Laplacian Eigenmaps

Attributes Similarity Matrix

Optimization

H-hop
Weighted
Dynamic

Random Walk

Vertex
Attributes

WK WV WQWK WV WQ WK

Input sequence (v1, v2, v3, . . .)

Output sequence (v2, v3, v4, . . .)

D

F

E
A

C

B
H

G

n× n×

n×

Figure 2. The overall framework of dSAFNE.

4.1. Random Walk
4.1.1. Asymmetric Second-Order Proximity

Edges in networks always signify a degree of resemblance or connection between ver-
tices. Traditional NRL approaches [9,33] always adopt first-order proximity to characterize
the pairwise proximity. However, in an unweighted network, the symmetric first-order
proximity between all directly connected vertices is equal to one, obliterating relationship

Entropy 2022, 24, 1213 6 of 18

information and social roles associated with vertices. Figure 3 depicts a toy example of a
social network, with different colors denoting distinct communities. Vertices A have more
similar social roles with E than B, since A and E have more neighbors, who are usually
more critical users in social networks, and information is more likely to propagate between
A and E. Additionally, the interaction between vertices is usually asymmetric. In the
instance of vertices A and B, A has more neighbors than B, so B plays a minor role in A’s
context and has less influence on A, while A plays a more important role in B’s context and
has a greater influence on B.

A

C

D

E

F

B

H

G first-order

proximity

asymmetric

second-order

proxiimity

Figure 3. A toy example of a social network, where different colors indicate distinct communities.
First-order proximity and asymmetric second-order proximity is quite different among vertices A, E
and B.

To measure the connection between vertices appropriately while retaining social role
information, we define an asymmetric second-order proximity based on the notion that the
more 1-hop neighbors two vertices share, the more similar their social roles are. Formally,
given a network G = (V, E, C), we define the 1-hop central neighborhood of vertex vi as
N c1

vi
= {vi} ∪N 1

vi
, where N 1

vi
= {vi1, vi2, . . . , vik} and each vik ∈ N 1

vi
is directly connected

with vi via edge eik ∈ E. For each pair of vertices < vi, vj ∈ N 1
vi

>, the asymmetric
second-order proximity sij is calculated as follows:

sij = wij ·

∣∣∣N c1
vi
∩N c1

vj

∣∣∣∣∣∣N c1
vi

∣∣∣ (1)

where wij is the edge weight of eij. As seen in Figure 3, the asymmetric second-order
similarity has the ability to reflect social role information and more correctly characterize
vertex similarity.

4.1.2. h-Hop Weighted Dynamic Random Walk

Formally, given a network G = (V, E, C) and a random-walked vertex sequence
X = {x1, x2, . . . , xi−1}, the generation of the ith vertex in the walk can be considered as a
Markov process with the following distribution:

P(xi = v|xi−1 = u) =


πuv

Z
i f euv ∈ E

0 else
(2)

where πuv
Z is the normalized transition probability between vertex u and v, and Z is the

normalizing constant. In some work [9,12], the static edge weight is treated as the transition
probability. However, these methods ignore the correlation between walked history and
the vertices to be sampled, leading to loss of essential information about the community
structure. In order to steer the random walk process between a series of vertices with high
similarity and capture the local community structure, we introduce an h-hop dynamic
random walk based on the asymmetric second-order proximity.

Entropy 2022, 24, 1213 7 of 18

As shown in Figure 4, when calculating the transition probability P(xi = v|xi−1 = u),
we consider the similarity among the h previously walked verticesXh = {xi−h, xi−(h−1), . . . ,
xi−1} and v. For each neighbor v ∈ N c1

xi−1=u, the dynamic transition probability is calcu-
lated as follows:

P(xi = v|xi−1 = u) = P(xi = v|Xh) = β
∑h

j=1 αisvxi−j

Z
(3)

β =

{
1 vi 6= u

q vi = u
(4)

where svxi−j is the asymmetric second-order proximity between vertex xi−j and v, α ∈ (0, 1)
is the similarity decay parameter, which is used to adjust the degree to which past vertices
have an effect on the transition probability. The greater alpha is, the more likely it is to
walk among vertices that are similar to those in the historical vertex sequence, hence
preserving more community structure information in the vertex sequence. β ∈ (0, 1] is the
retrospective parameter, which can control whether the walk goes backwards or not. When
q → 0, the walk approximates DFS behavior; when q → 1, the walk approximates BFS
behavior. The pseudocode for h-hop dynamic random walk is given in Algorithm 1.

Algorithm 1: The h-hop dynamic random walk procedure.
Data: network G = (V, E, C), Start vertex u, Walk length l, Hop number h, Decay

parameter α, Retrospective parameter β
Result: Vertex sequence seq

1 Initialize vertex sequence seq = [u];
2 for walk_iter = 1 to l do
3 curr = seq[−1];
4 his = seq[−h : −1];
5 N ccurr = GetNeighbor(curr);
6 asym_prox = CalculateProximity(his,N ccurr);
7 d_prob = CalculateProbability(his,N ccurr, asym_prox, α, β);
8 s = Sample(N ccurr, d_prob);
9 append s to seq;

10 end
11 return seq

C

D B

H

G

Figure 4. Illustration of the h-hop dynamic random walk procedure in dSAFNE. The walk transitioned
from vertex vi−2 to vi and is now evaluating its next step of vertex vi. α and β indicate the decay
parameter and retrospective parameter, respectively.

4.2. Deep Latent Structure Feature Extraction

The h-hop dynamic random walk process can be thought of as a message propagation
process, where messages are more likely to spread inside the community, i.e., among
vertices with high similarities. The random walk sequence can be seen as a time series of
the message propagation path, i.e., a projection of the structure of the network. Following
the assumption of [9], we assume that, in the random walk sequences, the vertices sharing

Entropy 2022, 24, 1213 8 of 18

more common historical sequences should be presented closely in the embedding space, i.e.,
they should have similar structural features. Therefore, we can extract the multi-grained
structural features by modeling the co-occurrence relationship between the current vertex
and the short-range/long-range historical vertices. With such a hypothesis, we anticipate
maximizing the likelihood of the current vertex when given historical walked vertices.
Given a random walk sequence X = {x1, x2, . . . , xl} , the likelihood function is defined
as follows:

D(X) =
l

∑
i=2

P(xi|x1, . . . , xi−1), W) (5)

where W means the trainable model parameters.
Recently, Transformer [16] and its variations [34,35] have demonstrated promising

performance on a variety of sequence prediction tasks, due to the powerful ability of the self-
attention mechanism to model short- and long-range dependencies, which can be utilized
to learn the local and global structure feature of network simultaneously. Thus, inspired
by Transformer, we present a novel masked self-attention-based prediction model, which
consists of an input layer, n encoder layers and an output layer. The detailed information
is shown in the right of Figure 2. In contrast to the traditional Transformer, we omit the
decoder and, instead, feed the encoder’s output directly into a softmax layer, and output
the prediction probability of the target vertex. By converting the encoder’s self-attention
layer to a one-way masked self-attention, we expect the prediction model to automatically
learn the correlation between the target vertex and the historical vertices. When given a
network G, we initially represent vertices with an embedding matrix R ∈ R|V|×d, where
each row Ri,: indicates the representation of vertex vi. To enable the model to utilize the
temporal information included in the vertices’ sequences, we follow the original design of
the Transformer encoder to combine the positional encoding with the vertex embedding as
the model’s input. The position encoding is used to identify the position of a vertex in the
sequence. The positional encoding and the input of our model are calculated as follows:

PE(pos, 2i) = sin(
pos

100002i/dmodel
) (6)

PE(pos, 2i + 1) = cos(
pos

100002i/dmodel
) (7)

h0 = TSR + PE (8)

where pos is the index of a vertex in the walk sequence, i indicates a dimension of the
representation vector, TS ∈ R|V|×|V| is the one-hot tokenized matrix of vertices, Ti,: means
the one-hot encoding for vertex vi, and h0 is then fed into the encoder layer of the predic-
tion model.

To improve the model’s capacity for deep latent feature extraction, we stack nlayer
encoder layers and leverage the output of the final encoder layer as the retrieved vertex
temporal feature to predict the target vertex. The l-th encoder layer is formulated as follows:

Ql = Wq
l hl−1 (9)

Kl = Wk
l hl−1 (10)

Vl = Wv
l hl−1 (11)

attnl = I′ � so f tmax(
QlKT

l√
dkl

) (12)

h′l = attnlVl (13)

hl = hl−1 + h′l (14)

s.t. ∀l ∈ [1, nlayer] (15)

Entropy 2022, 24, 1213 9 of 18

where I′ is a lower triangular unit matrix, Wq
l , Wk

l and Wv
l are the trainable projection

weights of l-th layer, dkl
is a normalization parameter, and hl indicates the hidden state of

l-th layer encoder layer and is considered as the input of next encoder layer. The lower
triangular matrix attnl ∈ R|X |×|X | is the values of the so-called attention of l-th layer, and
attnl(i,j) denotes the influence of the j-th vertex in extracting the structural feature of the
i-th vertex. The output of the nlayer-th encoder layer is treated as the deep latent feature
to be fed into the output layer and predict the target vertex. The softmax output layer is
defined as:

ŷ = so f tmax(hnlayer) (16)

where ŷ is the predicted probability distribution of the target vertex. We leverage the cross
entropy [36] loss function Lpred to measure the degree of asynchronism between ŷ and the
true probability distribution y, which is calculated as follows:

Lpred = −∑
i

yi ∗ log(ŷi) (17)

It is worth emphasizing that this is only a fake task [13] due to the goal of network
representation learning. We just optimize the vertex representations through the prediction
procedure, while the optimized embedding matrix R that encodes the deep latent structure
feature of vertices is what is needed.

4.3. Vertex Attributes-Driven Laplacian Space Optimization

Although we are able to learn the local and global structural properties of the vertices
using the prediction model, there may be topologically distant vertices with comparable
attributes in the real network. Since vertex attributes typically contain extensive semantic
information and can directly reflect the similarity of vertices at the attribute level, we
should ensure that vertices with comparable attributes, but which are topologically distant,
also remain adjacent in the embedding space.

To encode additional attribute features into the vertex representation while ensuring
the versatility of our model, inspired by [12,37], we propose an attributes-driven Laplacian
space optimization (Attr-LapSO) to extract attribute features. For the attributes of different
types, we first extract their latent semantic features via the existing state-of-the-art learning
models, such as ResNet [14] for images, BERT [15] for text, and multilayer perceptron
(MLP) [38] for numerical attributes. We then calculate the attributes similarity matrix
F ∈ R|V|×|V| based on the extracted attribute feature under a specific criterion, e.g., cosine
similarity or Euclidean distance, where each element Fi,j of F indicates the attribute similar-
ity of vertices vi and vj. After that, we select the top k similar and dissimilar vertices as set
optimvi for each vertex vi in the network. Then, we use this similarity matrix to optimize
the embedding matrix R. The loss function Llap of Attr-LapSO is defined as follows.

Llap =
|V|
∑
i=0

2k

∑
j=1

(ri − rj)
2Fi,j (18)

= 2 ∗ Tr(RT LR) (19)

where vj ∈ optimvi , ri ∈ R is the representation of vertex vi, L = D − F is a Laplacian
eigenmap, D ∈ R|V| is a diagonal matrix, Dii = ∑j Fij.

4.4. Model Training

The pseudocode of dSAFNE is presented in Algorithm 2. To learn model parame-
ters, we take advantage of a backward propagation and mini-batch Adam optimization
scheme [39] to minimize the loss functions Lpred and Llap, and to update the model pa-
rameters. As demonstrated in lines 11 → 16 of Algorithm 2, the two loss functions are
alternatively and iteratively optimized for primarily two reasons. On the one hand, combin-

Entropy 2022, 24, 1213 10 of 18

ing the two loss functions will make it difficult to update the parameters of the prediction
model. On the other hand, by sharing the vertices representation vectors across the two
stages, one stage’s training helps accelerate the other’s convergence process.

Algorithm 2: The dynamic structure and vertex attributes fusion network em-
bedding framework.

Data: network G = (V, E, C), Walk length l, Walks per vertex γ, Hop number h,
Decay parameter α, Retrospective parameter β, Optimization neighbor
account k, Prediction iters θpred, Laplacian iters θlap

Result: Vertex representation matrix R
1 Initialize walks as [];
2 for vi in V do
3 for j = 0 to γ do
4 seqij = HDynamicRW(G, vi, l, h, α, β);
5 append seqij to walks;
6 end
7 end
8 Initialize R;
9 F = AttributeSimilarity(G)

10 for iter = 0 to iters do
11 for i = 0 to θpred do
12 Optimize(Lpred);
13 end
14 for i = 0 to θlap do
15 Optimize(Llap, F, k);
16 end
17 end
18 return R;

5. Evaluation
5.1. Experimental Setup and Datasets

Our experiments were conducted on a workstation outfitted with an Intel Xeon Gold
6132 processor running at 2.60 GHz, an NVIDIA Geforce GTX 1080Ti graphics card, and
192 GB of RAM. The Python 3.8.5 and Pytorch 1.11.0 were utilized to develop the dSAFNE
framework. The code is available at https://github.com/SXiangHu/dSAFNE, accessed on
24 July 2022.

To examine the proposed dSAFNE framework thoroughly, we undertook experiments
on five benchmarking datasets of varying sizes. Table 1 presents detailed statistics for
the datasets.

• Facebook [40] is a network of verified Facebook sites. The vertices indicate official
Facebook pages, which are classified into one of four categories. Each vertex is attached
with a series of keywords extracted from the site description as its attribute. The vertex
attribute is represented as a binarization vector by the bag-of-words model. The edges
represent mutual likes.

• BlogCatalog [18] is a network of bloggers, with vertices representing bloggers and
edges representing the relationships of friendship between them. Each vertex is
associated with at least one label.

• 3-Cora, CiteSeer, and PubMed [3] are networks in which vertices represent scientific
publications and edges denote citation relationships. According to their research topic,
vertices are classified into various categories. The vertex attribute is the abstract of
a publication.

https://github.com/SXiangHu/dSAFNE

Entropy 2022, 24, 1213 11 of 18

Table 1. Statistics of different datasets.

Dataset Vertices Edges Categories

Facebook 22,470 171,002 4
BlogCatalog 10,312 333,983 39

3-Cora 1195 3429 3
CiteSeer 3311 4732 6
PubMed 19,717 44,338 3

5.2. Baseline Methods

The baseline methods are listed as follows:

• DeepWalk [9]: DeepWalk pioneers the use of language modeling with unsupervised
feature learning to learn latent representations of vertices, achieving SOTA results at
that time.

• TADW [20]: Text-attributed deep walk (TADW) leverages matrix factorization to
incorporate vertex rich text attributes into the embedding process.

• Node2vec [10]: Node2vec defines a flexible concept of a vertex’s network neigh-
borhood and implements a biased random walk technique that explores diverse
neighborhoods to learn richer representations.

• Struc2vec [11]: Struc2vec creates a multi-layer graph to encode structural similarity
and produce structural context for vertices, and then learns the latent representations
for the vertices’ structural identities.

• DNE [12]: Deep network embedding (DNE) proposes an LSTM-based deep embed-
ding framework that preserves transfer possibilities between network vertices and
uses Laplacian supervised space optimization to capture the local structure.

• Attributes: The features of vertex attributes are treated directly as the vertex representations.

5.3. Parameter Setting

The dimensions of the extracted vertex representations were set to 128 for all datasets.
We adhered to the parameter settings indicated in the appropriate literatures for baseline
approaches. For the proposed dSAFNE framework, we set the walk length and walks per
vertex to 100, and we set the number of encoder layers nlayer = 8. At the stage of model
training, we raised the learning rate from zero to 10−3 linearly over the first 5000 steps, and
then annealed it to 10−4 by an exponential scheduler. For all datasets excluding BlogCatalog,
we adopted denoising autoencoder (DAE) [41] to extract the vertices’ attribute features and
calculate the cosine similarities between each pair of vertices.

We intended to disclose the network structure in this task by intuitively viewing the ac-
quired vertex representations. If the vertex representations are sufficiently representational,
vertices of the same class should be close to each other, while vertices of different classes
should be far from each other in the embedding space. We trained the proposed dSAFNE
model and baseline approaches on the 3-Cora dataset to learn vertex representations. The
vertices in 3-Cora were classed as neural network, rule learning, or reinforcement learning.
Then we used t-SNE [42] to project the vertex representation learned through various
approaches onto a two-dimensional space and visualize them, as depicted in Figure 5.

Entropy 2022, 24, 1213 12 of 18

(a) DeepWalk (b) TADW (c) Node2vec (d) Struc2vec

(e) DNE (f) Attributes (g) dSAFNE

Figure 5. Visualization of 3-Cora. Every point represents a scientific publication. Different colors
correspond to distinct categories. Red denotes neural network, blue represents rule learning, and
green means reinforcement learning.

5.4. Experimental Results and Analysis
5.4.1. Visualization

The visualizations of DeepWalk, Node2vec and Struc2vec were meaningless since
points belonging to the same category are not clustered together, while DNE was capable
of clustering the majority of points with the same label, but the borders were not obvious
enough. TADW achieved the best visualization results among the baseline approaches
because of the incorporation of vertex text attribute information in the process of representa-
tion learning. Even so, dSAFNE performed significantly better than the baseline approaches.
Our method was capable of clustering not only points belonging to the same category but
could also clearly separate clusters. This experiment demonstrated that dSAFNE is capable
of learning representations that are more resilient and informative.

5.4.2. Node Classification

In this part, we performed multi-label classification on the BlogCatalog dataset, fol-
lowed by multi-class classification on the Facebook, CiteSeer, and PubMed datasets. The
representations gained through different approaches are referred to as the vertices feature
vectors. For each dataset, a random sample of the labeled vertices was used as training data
to train an MLP classifier, while the remaining vertices were used as test data. We measured
the performance of classification results via the widely adopted accuracy, micro-F1 (miF1)
and macro-F1 (maF1) scores, which are defined as follows:

Entropy 2022, 24, 1213 13 of 18

accuracy =
∑r

i=1 TPi

|D| (20)

miP =
∑r

i=1 TPi

∑r
i=1(TPi + FPi)

(21)

miR =
∑r

i=1 TPi

∑r
i=1(TPi + FNi)

(22)

miF1 = 2
miP×miR
miP + miR

(23)

Pi =
TPi

TPi + FPi
(24)

Ri =
TPi

TPi + FNi
(25)

maF1 =
1
r

r

∑
i=1

F1i =
2
r

r

∑
i=1

Pi × Ri
Pi + Ri

(26)

where r means the number of categories, |D| indicates the number of samples in dataset
D. TPi, FPi and FNi denote the number of true positive predictions, the number of false
positive predictions and the number of false negative predictions, respectively, for category
i. Accuracy and micro-F1 scores indicate the overall performance of various approaches,
while macro-F1 emphasizes the performance in rare categories. We repeated each task ten
times and analyzed the experimental results using an ANOVA test.

On the BlogCatalog dataset, we exclusively focused on learning network structural
features to demonstrate the h-hop dynamic random walk and masked self-attention based
prediction model’s efficacy at capturing network structure information. We excluded
TADW because it uses DeepWalk to maintain the network structure. From Table 2, one
can see that dSAFNE improved the best baseline DNE by 7.67% (Micro-F1) and 4.26%
(Macro-F1), respectively, and achieved a 20.43% (Micro-F1) and 18.47% (Macro-F1) increase.
From the experimental results, we can be sure that the h-hop dynamic random walk and
self-attention mechanism can incorporate additional contextual information, which enables
the model to retain more information about the network’s global and local structure.

Table 2. Micro-F1/Macro-F1 scores for multi-label classification on BlogCatalog; * indicates that our
model significantly outperformed the best baseline based on ANOVA test (p < 0.05).

Algorithm
%Labeled Vertices

10% 20% 30%

Micro-F1

DeepWalk 33.17 ± 1.21 35.84 ± 2.31 37.28 ± 0.23
Node2vec 31.25 ± 2.07 32.27 ± 1.80 32.24 ± 1.60
Struc2vec 11.16 ± 2.29 11.20 ± 0.63 12.86 ± 0.20

DNE 34.13 ± 2.18 37.25 ± 2.23 37.56 ± 2.32
dSAFNE 39.54 * ± 2.10 44.25 * ± 1.15 45.23 * ± 2.36

Gains 15.85% 18.79% 20.43%

Macro-F1

DeepWalk 17.40 ± 0.45 20.39 ± 2.63 21.96 ± 2.38
Node2vec 11.54 ± 1.33 14.33 ± 0.58 16.31 ± 1.05
Struc2vec 5.24 ± 2.73 5.57 ± 0.05 4.83 ± 2.34

DNE 17.38 ± 0.58 21.41 ± 2.48 23.06 ± 0.92
dSAFNE 21.04 * ± 2.00 25.31 * ± 0.15 27.32 * ± 2.62

Gains 21.05% 18.21% 18.47%

Entropy 2022, 24, 1213 14 of 18

Table 3 shows the results of multi-class classification. As can be seen, dSAFNE rou-
tinely outperformed the other baseline methods. dSAFNE improved accuracy by 4.42%
on Facebook, 4.75% on CiteSeer, and 4.83% on PubMed with 30% labeled vertices when
compared to the best baseline TADW. The classification results suggest that dSAFNE is
effective at taking into account the network structure and vertex attribute information in
a comprehensive manner, significantly improving the quality of the learned representa-
tion vectors.

Table 3. Accuracy scores for multi-class classifications on Facebook, CiteSeer and PubMed; * indicates
that our model achieved significant improvements.

Algorithm Facebook CiteSeer PubMed

%Labeled
Vertices 10% 20% 30% 10% 20% 30% 10% 20% 30%

DeepWalk 72.09 ± 1.22 74.83 ± 2.38 76.14 ± 1.13 50.94 ± 1.25 51.54 ± 1.78 53.28 ± 1.47 69.94 ± 1.27 71.37 ± 2.20 72.51 ± 1.41
TADW 79.48 ± 1.56 80.50 ± 1.25 83.08 ± 2.01 60.89 ± 1.83 62.32 ± 1.36 64.78 ± 0.62 80.63 ± 2.39 81.76 ± 0.61 84.32 ± 1.03

Node2vec 53.44 ± 0.98 54.81 ± 0.22 55.81 ± 1.00 30.41 ± 1.31 32.12 ± 1.11 32.75 ± 0.49 39.04 ± 2.20 39.37 ± 0.25 39.83 ± 2.27
Struc2vec 35.58 ± 1.39 35.13 ± 1.05 35.82 ± 1.95 25.01 ± 2.33 26.76 ± 1.04 27.75 ± 0.19 47.08 ± 1.53 48.15 ± 0.56 49.32 ± 2.16

DNE 68.06 ± 0.66 70.62 ± 0.47 73.06 ± 0.02 50.56 ± 1.51 52.97 ± 1.39 54.04 ± 1.36 73.11 ± 1.40 73.04 ± 0.29 74.72 ± 0.51
Attributes 74.27 ± 0.14 76.62 ± 2.23 78.41 ± 0.58 57.31 ± 1.84 59.20 ± 0.92 61.09 ± 1.30 75.45 ± 1.65 77.52 ± 1.10 78.79 ± 0.84
dSAFNE 84.23 * ± 2.10 85.88 * ± 0.38 87.50 * ± 0.90 65.38 * ± 1.47 68.13 * ± 1.36 69.53 * ± 1.41 85.27 * ± 1.74 87.04 * ± 2.07 89.15 * ± 1.22

Gains 5.97% 6.68% 5.35% 7.37% 9.32% 7.33% 5.75% 6.45% 5.73%

5.4.3. Parameter Sensitivity

This section investigates the method’s sensitivity to various hyperparameter values.
The proposed dSAFNE mainly takes seven hyperparameters into account: the dimension
of the learned representation vector d, walks per vertex γ, walk length l, decay parameter
α, retrospective parameter β, number of prediction model training steps per iteration θpred
and Laplacian space optimize steps per iteration θlap. To determine the optimal values
for various hyperparameters, we assessed the multi-class classification performance with
varying parameter settings, changing the value of one parameter at a time. We randomly
selected 30% of the CiteSeer dataset’s vertices as the training set and the remaining 70% as
the test set.

Figure 6a illustrates the influence of various d and γ/l values on the performance of
classification. For convenience, γ is set equal to l. As d increases, the accuracy increases
initially and then maintains relative stability because the vector can keep more information
as the dimension increases. When d = 128, the classification accuracy is at its maximum.
The figure demonstrates that as γ and l grow, the classification accuracy increases as well,
because γ and l correlate to the corpus’s richness. The corpus is more abundant when γ
and l have bigger values. Since the self-attention mechanism is capable of resolving the
problem of long-distance dependency, increasing the walk length has no adverse effect and
also better captures the network’s global structure.

Figure 6b shows the accuracy scores for different values of the number of prediction
model training steps per iteration θpred and Laplacian space optimize steps per iteration
θlap. The accuracy score is maximized when θpred = 1, θlap = 3, the two training procedures
are balanced, and the model converges effectively. As θpred increases, the model loses the
information about vertex attributes, and as θlap increases, the model tends to converge the
absolute values of each dimension of the representation to 0.

Figure 6c depicts the accuracy scores for different values of the decay parameter α
and retrospective parameter β. When α = 0.5, β = 0.2, the accuracy score has a maximum
value. With increasing α, the context vertices exert a bigger effect on the random walk
process, and the sampled vertex sequences contain more information about local commu-
nity structure. However, if α is set to a value that is too large, the random walk process
will lack randomization, preventing it from capturing different types of neighbor vertices,
and, therefore, coarse-grained structural features of the network will be lost. β can be used
to adjust the bias of the random walk process for depth-first or breadth-first search. The

Entropy 2022, 24, 1213 15 of 18

greater the β, the more breadth-first search is favored, while the lower the β, the more
depth-first search is favored. When β = 0.2, the walk procedure can better balance DFS
and BFS, thus capturing different types of structural features.

(a) d and γ/l

lap

1 2 3 4 5 6

pred

1
2

3
4

5
6

Ac
cu

ra
cy

 (%
)

56

58

60

62

64

66

(b) θpred and θlap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q
0.2

0.4
0.6

0.8
1.0

Ac
cu

ra
cy

 (%
)

59
60
61
62
63
64
65
66

(c) α and β

Figure 6. Accuracy scores for different parameters on CiteSeer.

Considering both effectiveness and efficiency, Table 4 summarizes the optimal values
of key hyperparameters for our experimental scenarios.

Table 4. Optimal values of various hyperparameters.

Hyperparameter Description Value

d Dimension of the learned
representation vector 128

γ Walks per vertex 100
l Walk length 100

θpred
Number of prediction model
training steps per iteration 1

θlap
Number of Laplacian space
optimize steps per iteration 3

α Decay parameter 0.5
β Retrospective parameter 0.2

6. Summary and Discussion

This paper proposes a general NRL framework dSAFNE, which focuses on the short-
comings of previous NRL methods, including the excessive randomness of the random
walk process based on symmetric node similarity and static probability distribution, the
inability to simultaneously learn multi-grained structural features, and inefficient vertex
attribute utilization. The proposed dSAFNE framework mainly consists of three modules:
an h-hop weighted dynamic random walk, a masked self-attention-based prediction model
and a vertex attributes-driven Laplacian space optimization. Based on the well-designed
asymmetric second-order similarity, which reflects vertex similarity while maintaining
social role information, the proposed h-hop weighted dynamic random walk can capture
the community structure information effectively. Due to the wide receptive field of the
self-attentive mechanism, the prediction model can simultaneously learn the co-occurrence
relationship between the target vertex and the short-range/long-range contextual vertices,
leading to the extraction of multi-grained structural features. In addition, the proposed
vertex-attributes-driven Laplacian space optimization paradigm makes it simple to inte-
grate different types of vertex attributes into the vertex representation, hence ensuring the
future generalizability of the model. Furthermore, extensive experiments were conducted
on five benchmarking datasets. The experimental results demonstrated that dSAFNE is
capable of learning more representational vertex features than the state-of-the-art compet-
ing approaches.

Entropy 2022, 24, 1213 16 of 18

While these experimental results are encouraging, some limitations of the proposed
dSAFNE framework remain. On the one hand, similar to the regular Transformer, the
self-attention-based prediction model suffers from the quadratic complexity with the length
of random walk sequence, which restricts the possibility to capture the global structure of
large-scale networks by extending the length of random walk sequences, particularly in
scenarios where computational resources are constrained. Therefore, the development of
a more efficient prediction model and network sampling strategies are necessary. On the
other hand, the present version of dSAFNE is only applicable to homogeneous networks
and does not account for the heterogeneity of vertices and edges. It is crucial to extend
dSAFNE to heterogeneous networks in order to improve the generalizability. Finally, in
addition to node visualization and classification, NRL has a vast array of downstream tasks,
such as link prediction, temporal prediction and recommender system, etc. The efficiency
of the proposed dSAFNE framework with respect to these downstream tasks needs to be
further explored. We leave this for future investigations.

Author Contributions: Data curation, L.W.; Formal analysis, H.L.; Funding acquisition, B.Z.; Method-
ology, S.H.; Project administration, G.Z.; Resources, H.L.; Software, C.Z.; Supervision, B.Z.; Validation,
C.Z.; Visualization, L.W.; Writing—original draft, S.H.; Writing—review & editing, B.Z., F.C. and G.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China grant number
2017YFC0907 505.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NRL Network representation learning
dSAFNE Dynamic structure and vertex attributes fusion network embedding
Attr-LapSO Attributes-driven Laplacian space optimization
LSTM Long short-term memory
BERT Bidirectional encoder representations from transformer
MLP Multilayer perceptron
TADW Text-attributed deep walk
DNE Deep network embedding
SOTA State-of-the-art

References
1. Agouti, T. Graph-based modeling using association rule mining to detect influential users in social networks. Expert Syst. Appl.

2022, 2022, 117436. [CrossRef]
2. Zhu, Z.; Wang, S.; Wang, F.; Tu, Z. Recommendation Networks of Homogeneous Products on An E-commerce Platform:

Measurement and Competition Effects. Expert Syst. Appl. 2022, 201, 117128. [CrossRef]
3. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008,

29, 93. [CrossRef]
4. Zitnik, M.; Sosič, R.; Feldman, M.W.; Leskovec, J. Evolution of resilience in protein interactomes across the tree of life. Proc. Natl.

Acad. Sci. USA 2019, 116, 4426–4433. [CrossRef] [PubMed]
5. Chen, L.; Shen, C.; Vogelstein, J.T.; Priebe, C.E. Robust vertex classification. IEEE Trans. Pattern Anal. Mach. Intell. 2015,

38, 578–590. [CrossRef]
6. Chen, G.; Wang, H.; Fang, Y.; Jiang, L. Link prediction by deep non-negative matrix factorization. Expert Syst. Appl. 2022,

188, 115991. [CrossRef]
7. Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. Network representation learning: A survey. IEEE Trans. Big Data 2018, 6, 3–28. [CrossRef]
8. Cai, H.; Zheng, V.W.; Chang, K.C.C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE

Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [CrossRef]

http://doi.org/10.1016/j.eswa.2022.117436
http://dx.doi.org/10.1016/j.eswa.2022.117128
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1073/pnas.1818013116
http://www.ncbi.nlm.nih.gov/pubmed/30765515
http://dx.doi.org/10.1109/TPAMI.2015.2456913
http://dx.doi.org/10.1016/j.eswa.2021.115991
http://dx.doi.org/10.1109/TBDATA.2018.2850013
http://dx.doi.org/10.1109/TKDE.2018.2807452

Entropy 2022, 24, 1213 17 of 18

9. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.

10. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

11. Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. struc2vec: Learning node representations from structural identity. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August
2017; pp. 385–394.

12. Sun, X.; Song, Z.; Dong, J.; Yu, Y.; Plant, C.; Böhm, C. Network Structure and Transfer Behaviors Embedding via Deep
Prediction Model. In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton Hawaiian Village, Honolulu, HI,
USA, 27 January–1 February 2019; Volume 33, pp. 5041–5048.

13. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.
14. Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019,

90, 119–133. [CrossRef]
15. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

17. Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003,
15, 1373–1396. [CrossRef]

18. Tang, L.; Liu, H. Relational learning via latent social dimensions. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 817–826.

19. Donnat, C.; Zitnik, M.; Hallac, D.; Leskovec, J. Spectral graph wavelets for structural role similarity in networks. arXiv 2018,
arXiv:1710.10321.

20. Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E. Network representation learning with rich text information. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.

21. Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. Homophily, structure, and content augmented network representation learning.
In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 609–618.

22. Natarajan, N.; Dhillon, I.S. Inductive matrix completion for predicting gene–disease associations. Bioinformatics 2014, 30, i60–i68.
[CrossRef]

23. Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015;
pp. 891–900.

24. Li, J.; Zhu, J.; Zhang, B. Discriminative deep random walk for network classification. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 1004–1013.

25. Pan, S.; Wu, J.; Zhu, X.; Zhang, C.; Wang, Y. Tri-party deep network representation. Network 2016, 11, 12.
26. Rozemberczki, B.; Sarkar, R. Fast sequence-based embedding with diffusion graphs. In Proceedings of the 9th International

Workshop on Complex Networks, Madrid, Spain, 1–3 December 2020; pp. 99–107.
27. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10
December 2013; pp. 3111–3119.

28. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009.
29. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on

Machine Learning, PMLR, Barcelona, Spain, 13–15 June 2014; pp. 1188–1196.
30. Graves, A. Generating Sequences with Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850.
31. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.
32. Liu, X.; Tang, J. Network representation learning: A macro and micro view. AI Open 2021, 2, 43–64. [CrossRef]
33. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale information network embedding. In Proceedings of the

24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.
34. Krause, B.; Kahembwe, E.; Murray, I.; Renals, S. Dynamic Evaluation of Transformer Language Models. arXiv 2019, arXiv:1904.08378.
35. Rae, J.W.; Potapenko, A.; Jayakumar, S.M.; Lillicrap, T.P. Compressive transformers for long-range sequence modelling. arXiv

2019, arXiv:1911.05507.
36. Jamin, A.; Humeau-Heurtier, A. (Multiscale) cross-entropy methods: A review. Entropy 2019, 22, 45. [CrossRef]
37. Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of the

Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 9–14 December 2002; pp. 585–591.
38. Tang, J.; Deng, C.; Huang, G.B. Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2015,

27, 809–821. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.patcog.2019.01.006
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1093/bioinformatics/btu269
http://dx.doi.org/10.1016/j.aiopen.2021.02.001
http://dx.doi.org/10.3390/e22010045
http://dx.doi.org/10.1109/TNNLS.2015.2424995
http://www.ncbi.nlm.nih.gov/pubmed/25966483

Entropy 2022, 24, 1213 18 of 18

39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
40. Rozemberczki, B.; Allen, C.; Sarkar, R. Multi-Scale Attributed Node Embedding. arXiv 2019, arXiv:cs.LG/1909.13021.
41. Lu, X.; Tsao, Y.; Matsuda, S.; Hori, C. Speech enhancement based on deep denoising autoencoder. In Proceedings of the

Interspeech, Lyon, France, 25–29 August 2013; Volume 2013, pp. 436–440.
42. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

	Introduction
	Related Work
	Preliminaries
	Approach
	Random Walk
	Asymmetric Second-Order Proximity
	h-Hop Weighted Dynamic Random Walk

	Deep Latent Structure Feature Extraction
	Vertex Attributes-Driven Laplacian Space Optimization
	Model Training

	Evaluation
	Experimental Setup and Datasets
	Baseline Methods
	Parameter Setting
	Experimental Results and Analysis
	Visualization
	Node Classification
	Parameter Sensitivity

	Summary and Discussion
	References

