# An Alternative Study about the Geometry and the First Law of Thermodynamics for AdS Lovelock Gravity, Using the Definition of Conserved Charges

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

#### 1.1. Change of the Cosmological Constant in Four Dimensions and Generalizations

#### 1.2. Thermodynamics

## 2. Phase Space and Charges

#### 2.1. Noether Charges

#### 2.2. The Presymplectic Form and Charges

#### 2.3. An Extended Covariant Phase Space Formalism

## 3. Lovelock Action Principle

#### 3.1. The Ground States and Regularization

#### 3.2. Problems and a Solution

## 4. Scale Transformations and an Improved Presymplectic Form

#### 4.1. Regularization in Even Dimensions

#### 4.2. Regularization in Odd Dimensions

## 5. Static Solution

#### 5.1. Even Dimensions

#### 5.2. Odd Dimensions

#### 5.3. Asymptotic Behavior

#### 5.4. Noether Charge in Even Dimensions

#### 5.5. Noether Charge in Odd Dimensions

#### 5.6. Variation along the Space of Solutions

#### 5.7. Hamiltonian Variation

#### 5.7.1. For $d=2n$

#### 5.7.2. For $d=2n+1$

#### 5.8. The Horizon

#### 5.9. Summary of First Law of Thermodynamics

## 6. Relevant Cases

#### 6.1. Einstein in d Dimensions

#### 6.2. Five Dimensional Einstein–Gauss–Bonnet Gravity

#### 6.3. Born-Infeld

#### 6.4. Pure Lovelock

#### 6.4.1. Even Dimensions with s Odd

#### 6.4.2. Odd Dimension with s Odd

#### 6.5. Chern–Simons Gravity

## 7. Conclusions and Prospects

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Regulation

#### Appendix A.1. Even Dimensions

#### Appendix A.2. Odd Dimensions

## References

- Parker, M.C.; Jeynes, C. A Relativistic Entropic Hamiltonian–Lagrangian Approach to the Entropy Production of Spiral Galaxies in Hyperbolic Spacetime. Universe
**2021**, 7, 325. [Google Scholar] [CrossRef] - Carter, B. The commutation property of a stationary, axisymmetric system. Commun. Math. Phys.
**1970**, 17, 233–238. [Google Scholar] [CrossRef] - Bardeen, J.M.; Carter, B.; Hawking, S.W. The Four laws of black hole mechanics. Commun. Math. Phys.
**1973**, 31, 161–170. [Google Scholar] [CrossRef] - Bekenstein, J.D. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D
**1974**, 9, 3292–3300. [Google Scholar] [CrossRef] - Hawking, S.W. Particle Creation by Black Holes. In Euclidean Quantum Gravity; World Scientific: Singapore, 1975. [Google Scholar]
- Hooft, G.T. Dimensional reduction in quantum gravity. arXiv
**1993**, arXiv:gr-qc/9310026. [Google Scholar] - Susskind, L. The World as a hologram. J. Math. Phys.
**1995**, 36, 6377–6396. [Google Scholar] [CrossRef] - Bousso, R. The Holographic principle. Rev. Mod. Phys.
**2002**, 74, 825–874. [Google Scholar] [CrossRef] - Iyer, V.; Wald, R.M. Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D
**1995**, 52, 4430–4439. [Google Scholar] [CrossRef] - Hollands, S.; Ishibashi, A.; Marolf, D. Comparison between various notions of conserved charges in asymptotically AdS-spacetimes. Class. Quant. Grav.
**2005**, 22, 2881–2920. [Google Scholar] [CrossRef] - Kastor, D.; Ray, S.; Traschen, J. Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav.
**2009**, 26, 195011. [Google Scholar] [CrossRef] - Mann, R.B. Black Holes: Thermodynamics, Information, and Firewalls. In SpringerBriefs in Physics; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Cvetič, M.; Gibbons, G.W.; Lü, H.; Pope, C.N. Killing Horizons: Negative Temperatures and Entropy Super-Additivity. Phys. Rev. D
**2018**, 98, 106015. [Google Scholar] [CrossRef][Green Version] - Kubizňák, D.; Mann, R.B. P-V criticality of charged AdS black holes. J. High Energy Phys.
**2012**, 2012, 33. [Google Scholar] [CrossRef] - Kubizňák, D.; Mann, R.B.; Teo, M. Black hole chemistry: Thermodynamics with Lambda. Class. Quant. Grav.
**2017**, 34, 063001. [Google Scholar] [CrossRef] - Frassino, A.M.; Kubizňák, D.; Mann, R.B.; Simovic, F. Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics. J. High Energy Phys.
**2014**, 2014, 80. [Google Scholar] [CrossRef] - Hendi, S.H.; Momennia, M. AdS charged black holes in Einstein Yang Mills gravity’s rainbow: Thermal stability and P-V criticality. Phys. Lett. B
**2018**, 777, 222–234. [Google Scholar] [CrossRef] - Hendi, S.H.; Mann, R.B.; Panahiyan, S.; Panah, B.E. Van der Waals like behavior of topological AdS black holes in massive gravity. Phys. Rev. D
**2017**, 95, 021501. [Google Scholar] [CrossRef] - Zou, D.C.; Zhang, S.J.; Wang, B. Critical behavior of Born-Infeld AdS black holes in the extended phase space thermodynamics. Phys. Rev. D
**2014**, 89, 044002. [Google Scholar] [CrossRef] - Zou, D.C.; Liu, Y.; Wang, B. Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble. Phys. Rev. D
**2014**, 90, 044063. [Google Scholar] [CrossRef] - Zou, D.C.; Liu, Y.; Yue, R. Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity. Eur. Phys. J. C
**2017**, 77, 365. [Google Scholar] [CrossRef] - Zou, D.C.; Yue, R.; Zhang, M. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity. Eur. Phys. J. C
**2017**, 77, 256. [Google Scholar] [CrossRef] - Lemos, J.P.S. Cylindrical black hole in general relativity. Phys. Lett. B
**1995**, 353, 46–51. [Google Scholar] [CrossRef][Green Version] - Crisostomo, J.; Troncoso, R.; Zanelli, J. Black hole scan. Phys. Rev. D
**2000**, 62, 084013. [Google Scholar] [CrossRef] - Aros, R.; Troncoso, R.; Zanelli, J. Black holes with topologically nontrivial AdS asymptotics. Phys. Rev. D
**2001**, 63, 084015. [Google Scholar] [CrossRef] - Gover, A.R.; Shaukat, A.; Waldron, A. Tractors, Mass and Weyl Invariance. Nucl. Phys. B
**2009**, 812, 424–455. [Google Scholar] [CrossRef] - Cong, W.; Kubizňák, D.; Mann, R.B. Thermodynamics of AdS Black Holes: Critical Behavior of the Central Charge. Phys. Rev. Lett.
**2021**, 127, 091301. [Google Scholar] [CrossRef] [PubMed] - Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys.
**1971**, 12, 498–501. [Google Scholar] [CrossRef] - Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D
**1993**, 48, R3427–R3431. [Google Scholar] [CrossRef] - Urano, M.; Tomimatsu, A.; Saida, H. Mechanical First Law of Black Hole Spacetimes with Cosmological Constant and Its Application to Schwarzschild-de Sitter Spacetime. Class. Quant. Grav.
**2009**, 26, 105010. [Google Scholar] [CrossRef] - Lee, J.; Wald, R.M. Local symmetries and constraints. J. Math. Phys.
**1990**, 31, 725–743. [Google Scholar] [CrossRef] - Aros, R.; Contreras, M.; Olea, R.; Troncoso, R.; Zanelli, J. Conserved charges for even dimensional asymptotically AdS gravity theories. Phys. Rev. D
**2000**, 62, 044002. [Google Scholar] [CrossRef] - Eslamzadeh, S.; Firouzjaee, J.T.; Nozari, K. Radiation from Einstein–Gauss–Bonnet de Sitter black hole via tunneling process. Eur. Phys. J. C
**2022**, 82, 75. [Google Scholar] [CrossRef] - Regge, T.; Teitelboim, C. Role of Surface Integrals in the Hamiltonian Formulation of General Relativity. Ann. Phys.
**1974**, 88, 286. [Google Scholar] [CrossRef] - Kastor, D. Conformal Tensors via Lovelock Gravity. Class. Quant. Grav.
**2013**, 30, 195006. [Google Scholar] [CrossRef] - Aros, R. Analyzing charges in even dimensions. Class. Quant. Grav.
**2001**, 18, 5359–5369. [Google Scholar] [CrossRef] - Mišković, O.; Olea, R. Counterterms in Dimensionally Continued AdS Gravity. J. High Energy Phys.
**2007**, 2007, 28. [Google Scholar] [CrossRef] - Kofinas, G.; Olea, R. Universal regularization prescription for Lovelock AdS gravity. J. High Energy Phys.
**2007**, 2007, 69. [Google Scholar] [CrossRef] - Aros, R. Boundary conditions in first order gravity: Hamiltonian and ensemble. Phys. Rev. D
**2006**, 73, 024004. [Google Scholar] [CrossRef] - Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Zanelli, J. (Super)gravities beyond four-dimensions. In Geometric and Topological Methods for Quantum Field Theory, Proceedings of the Summer School, Villa de Leyva, Colombia, 9–27 July 2001; World Scientific: Singapore, 2002; pp. 312–371. [Google Scholar]
- Estrada, M.; Aros, R. Regular black holes and its thermodynamics in Lovelock gravity. Eur. Phys. J. C
**2019**, 79, 259. [Google Scholar] [CrossRef] - Anninos, D.; Li, W.; Padi, M.; Song, W.; Strominger, A. Warped AdS
_{3}Black Holes. J. High Energy Phys.**2009**, 2009, 130. [Google Scholar] [CrossRef] - Aros, R.; Contreras, M.; Olea, R.; Troncoso, R.; Zanelli, J. Conserved charges for gravity with locally Anti–de Sitter asymptotics. Phys. Rev. Lett.
**2000**, 84, 1647–1650. [Google Scholar] [CrossRef] - Mora, P.; Olea, R.; Troncoso, R.; Zanelli, J. Finite action principle for chern-simons ads gravity. J. High Energy Phys.
**2004**, 2004, 36. [Google Scholar] [CrossRef][Green Version] - Aros, R. The Horizon and first order gravity. J. High Energy Phys.
**2003**, 2003, 24. [Google Scholar] [CrossRef] - Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quant. Grav.
**2002**, 19, 5387–5408. [Google Scholar] [CrossRef] - Henneaux, M.; Teitelboim, C. The cosmological constant as a canonical variable. Phys. Lett. B
**1984**, 143, 415–420. [Google Scholar] [CrossRef] - Mora, P.; Olea, R.; Troncoso, R.; Zanelli, J. Vacuum energy in odd-dimensional ads gravity. arXiv
**2004**, arXiv:hep-th/0412046. [Google Scholar] - Kastor, D.; Ray, S.; Traschen, J. Smarr Formula and an Extended First Law for Lovelock Gravity. Class. Quant. Grav.
**2010**, 27, 235014. [Google Scholar] [CrossRef] - Couch, J.; Fischler, W.; Nguyen, P.H. Noether charge, black hole volume, and complexity. J. High Energy Phys.
**2017**, 2017, 119. [Google Scholar] [CrossRef] - Brown, A.R.; Roberts, D.A.; Susskind, L.; Swingle, B.; Zhao, Y. Holographic Complexity Equals Bulk Action? Phys. Rev. Lett.
**2016**, 116, 191301. [Google Scholar] [CrossRef] - Caceres, E.; Nguyen, P.H.; Pedraza, J.F. Holographic entanglement chemistry. Phys. Rev. D
**2017**, 95, 106015. [Google Scholar] [CrossRef] - Garraffo, C.; Giribet, G. The Lovelock Black Holes. Mod. Phys. Lett. A
**2008**, 23, 1801–1818. [Google Scholar] [CrossRef] - Deser, S.; Ryzhov, A.V. Curvature invariants of static spherically symmetric geometries. Class. Quant. Grav.
**2005**, 22, 3315–3324. [Google Scholar] [CrossRef] - Kofinas, G.; Olea, R. Vacuum energy in Einstein-Gauss-Bonnet anti–de Sitter gravity. Phys. Rev. D
**2006**, 74, 084035. [Google Scholar] [CrossRef][Green Version] - Kofinas, G.; Olea, R. Universal Kounterterms in Lovelock AdS gravity. Fortsch. Phys.
**2008**, 56, 957–963. [Google Scholar] [CrossRef] - Dolan, B.P.; Kostouki, A.; Kubizňák, D.; Mann, R.B. Isolated critical point from Lovelock gravity. Class. Quant. Grav.
**2014**, 31, 242001. [Google Scholar] [CrossRef] - Estrada, M.; Aros, R. Thermodynamic extended phase space and P-V criticality of black holes at Pure Lovelock gravity. Eur. Phys. J. C
**2020**, 80, 395. [Google Scholar] [CrossRef] - Myers, R.C.; Simon, J.Z. Black Hole Thermodynamics in Lovelock Gravity. Phys. Rev. D
**1988**, 38, 2434–2444. [Google Scholar] [CrossRef] - Arenas-Henriquez, G.; Mann, R.B.; Miskovic, O.; Olea, R. Mass in Lovelock Unique Vacuum gravity theories. Phys. Rev. D
**2019**, 100, 064038. [Google Scholar] [CrossRef] - Cai, R.G.; Cao, L.M.; Li, L.; Yang, R.Q. P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. J. High Energy Phys.
**2013**, 2013, 5. [Google Scholar] [CrossRef] - Hansen, D.; Kubizňák, D.; Mann, R.B. Universality of P-V Criticality in Horizon Thermodynamics. J. High Energy Phys.
**2017**, 2017, 47. [Google Scholar] [CrossRef] - Majhi, B.R.; Samanta, S. P-V criticality of AdS black holes in a general framework. Phys. Lett. B
**2017**, 773, 203–207. [Google Scholar] [CrossRef] - Mora, P. Chern-simons supersymmetric branes. Nucl. Phys. B
**2001**, 594, 229–242. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Aros, R.; Estrada, M.; Pereira, P.
An Alternative Study about the Geometry and the First Law of Thermodynamics for AdS Lovelock Gravity, Using the Definition of Conserved Charges. *Entropy* **2022**, *24*, 1197.
https://doi.org/10.3390/e24091197

**AMA Style**

Aros R, Estrada M, Pereira P.
An Alternative Study about the Geometry and the First Law of Thermodynamics for AdS Lovelock Gravity, Using the Definition of Conserved Charges. *Entropy*. 2022; 24(9):1197.
https://doi.org/10.3390/e24091197

**Chicago/Turabian Style**

Aros, Rodrigo, Milko Estrada, and Pablo Pereira.
2022. "An Alternative Study about the Geometry and the First Law of Thermodynamics for AdS Lovelock Gravity, Using the Definition of Conserved Charges" *Entropy* 24, no. 9: 1197.
https://doi.org/10.3390/e24091197