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A. Some Integrals

The following integrals are used in the DPD measure d (fy, g) and simplify the | and
K matrices at the model when g = fy. As the integrals are over the entire real line, we will
omit the subscripts from y;; and call it y for simplicity. However, it should be noted that the
mean function associated with y is y;.
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B. Estimating Equations
From Equation (4) of the main paper, we get
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Thus, the estimating equations of 0 are obtained from equation 55d ( fo,§) = 0 and they
are simplified as
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C. Score Functions

The probability density function is given by

1 1
folyij) = MGXP{M(}/ijﬂi)z}/ (C.1)
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Let us define the score function as
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For parameters y; and 02, the score functions are given by
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D. | and K matrices at the Model

Note that, if the true distribution g(y) is a member of the model family f(y) for some
0 € O, then

JiD = /y up(y)ud (v) £ (y)dy. (D.1)

In this case, the symmetric matrix J(/) can be partitioned as
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and in Appendix F, it is shown that
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The ) matrix simplifies to

. D; 0
J0) = @) "2 214+ 9) 2| 7 e ] (D.4)
O 22y

where D; is a k x k dimensional matrix with (i,7)-th diagonal element 1 and 0 otherwise.
Therefore,
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where S is a k X k dimensional diagonal matrix with i-th diagonal element 1;/N.
Similarly, ¢ (i) can be partitioned as gf(l]) = (g,(]{ ), @;,Z), s, @SIZ), C((le])) ,and in Appendix E,
it is shown that
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Note that if we write the matrix (/) as a function of 7, i.e., J(i) = J(@) (77), then we have
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Using Equations (D.5) and (D.6), we get from Equation (D.8)
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E. Vector &) at Model
From Equations (D.1) and (C.4), we get
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From Equations (D.1) and (C.6), we get
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E Matrix JU) at Model
From Equations (D.1) and (C.4), we get
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From Equations (D.1) and (C.6), we get
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G. Test Statistics
From Equation (D.5), we get
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where S is a k x k dimensional diagonal matrix with i-th diagonal element 7;/N. Using the
inverse of a block matrix, we have
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and d(7) = (271) 207 "2(1+ 7)~2. Now,

_ S0
]Nl = [OI{T 1], (H.3)
U
where 7 = %. Therefore,
1.1 d2y) .. _
Tpy-1 1
JKIT = S dim N Ky
_d@y) o e o [s o
2(y) v |0f 1| of 1 (H4)
3,2 S—l 0
(1293 N | O 32
Thus, the covariance matrix of /N fis Yy = % limp e S71. Similarly, the variance
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asymptotically independent.
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