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Abstract: This paper considers the problem of comparing several means under the one-way Analysis
of Variance (ANOVA) setup. In ANOVA, outliers and heavy-tailed error distribution can seriously
hinder the treatment effect, leading to false positive or false negative test results. We propose a
robust test of ANOVA using an M-estimator based on the density power divergence. Compared with
the existing robust and non-robust approaches, the proposed testing procedure is less affected by
data contamination and improves the analysis. The asymptotic properties of the proposed test are
derived under some regularity conditions. The finite-sample performance of the proposed test is
examined via a series of Monte-Carlo experiments and two empirical data examples—bone marrow
transplant dataset and glucose level dataset. The results produced by the proposed testing procedure
are favorably compared with the classical ANOVA and robust tests based on Huber’s M-estimator
and Tukey’s MM-estimator.

Keywords: minimum density power divergence; robust ANOVA; fixed effects; robust testing;
M-estimation

1. Introduction

The analysis of variance (ANOVA) has become one of the most useful and powerful
statistical approaches in diverse applications, such as biology, physics, chemistry, genetics,
engineering, economics, psychology, and medicine. This omnibus procedure, developed
by [1], has often been applied to the continuous data from more than two independent
samples for exploratory and confirmatory data analysis (cf. [2]). ANOVA is statistically
appealing since this approach specifies and quantifies the effect of different treatments on
the observed outcomes by comparing two sources of variabilities, i.e., variations within
and between groups, to assess the equality of group means (or to test the null hypothesis of
no treatment effects) (cf. [3,4]).

The classical ANOVA test requires some restrictive assumptions, such as normality
of the errors, homogeneity of group variances, and absence of outliers, which may not
be satisfied in practice (cf. [3,5–7]). In particular, one crucial issue that requires special
attention is the presence of outliers that differ from the bulk of the data (cf. [8]). Outliers
caused by the measurement error, recording error, and naturally atypical observations may
be masked and have adverse effects on the efficiency of traditional estimators [8]. As a
result, even a small deviation from the ideal conditions can make the test meaningless
and lead to unreliable results. To downplay this problem, practitioners often use some
ad-hoc methods to remove outliers. However, such an approach has shortcomings as it
can lead to a significant loss of efficiency. Hence, a more appropriate strategy is to use a
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robust procedure that is not influenced by outlying observations but correctly describes the
structure of the bulk of the data.

The research on the robustness of testing procedures starts with the study of [9]
that explores the non-robustness of the classical ANOVA. Ref. [10] presents some key
concepts related to robustness, such as breakdown point, influence function, the robustness
of validity, and robustness of efficiency. The robustness of validity and efficiency is the
two-fold purpose of performing robust testing. These concepts refer to the stability of
the level of the test and maintaining the good power under the arbitrary departures from
the null hypothesis and alternative hypothesis, respectively [11]. The robust procedures
can be viewed as methods to check the appropriateness of the classical techniques. The
readers are referred to [12–15] for more information about the robustified tests and their
advantages over the classical testing procedures. Several procedures have been proposed
to perform the ANOVA test robustly. For instance, refs. [16,17] proposed several robust
methods for testing treatment effects using M-estimators. In addition, by adapting the
M-estimates to the hypothesis tests in linear models, ref. [18] developed the likelihood
ratio type tests to provide robust ANOVA. Moreover, ref. [19] examined the properties of
F∗ and W statistics proposed by [20] replacing the usual ANOVA F test in the presence
of heterogeneous variances. Using the median and trimmed mean, a robust one-way
ANOVA under possibly non-regular conditions was proposed by [21]. More recently,
ref. [22] proposed a robust test based on a weighted sum of squares for the one-way
ANOVA model when the homoscedasticity is violated. Some non-parametric procedures
are discussed in [10,23,24]. By combining the results of some existing studies related to
non-parametric analysis, ref. [23] generalized the ANOVA model by relaxing the normality
assumption as well as the structure of the designs. The authors used linear rank statistics
to make statistical inferences about the treatment effects in obtaining a unified approach
for continuous and discontinuous distribution functions. Ref. [24] suggested employing
rank-based methods in the ANOVA test when there is a concern related to the presence
of outliers in the data since the classical ANOVA methods may be conservative. The non-
parametric methods are good choices when one might suspect the normality assumption
in some practical cases. However, robust methods are generally preferred over the non-
parametric (rank-based) ones because those methods produce stable results with a small
loss of efficiency by allowing for limited changes in the data or small departures from
the model assumptions (cf. [25–28]). Hence, we focus on the robust tests in this study
because they are more generally powerful than the non-parametric tests and insensitive to
violating some assumptions. In addition to the methodological studies, the ANOVA test is
one of the most commonly applied methods in practical problems. Consult [28–33], and
the references therein for a comprehensive review of the applications of robust ANOVA
methods in medical, clinical, and pharmaceutical studies.

In this paper, we propose a robust test based on the minimum density power di-
vergence estimator (MDPDE) introduced by [34] under weaker conditions. Based on the
MDPDE, a one-sample Wald-type test is proposed in [35], and [36] develops a test for
the equality of two sample means. These tests have substantially superior performance
compared to the likelihood-based test in the presence of outliers, although being very
competitive in pure data. So, the tests based on the MDPDE are very useful practical tools
in robust statistics (cf. [37,38]).

The rest of the paper is organized as follows. First, we introduce the generalized
analysis of variance model in Section 2. In Section 3, we describe the density power
divergence (DPD) measure and the corresponding estimator for this model. The theoretical
properties, including the asymptotic distribution and the influence function of the proposed
estimator, are presented in Section 4. We also propose a method to select the optimum
DPD parameter by minimizing the asymptotic mean square error of the treatment means.
Section 6 illustrates an extensive simulation study based on the proposed method and
compares the results with the traditional techniques and other robust methods. The
numerical results are further supported through a set of real data examples in Section 7.
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Some concluding remarks are given in Section 8, and the proofs of the technical results are
shown in the Appendix A and Supplementary Materials.

2. Generalized Analysis of Variance Model

Let us consider the generalized ANOVA model as follows:

yij = µi + εij, i = 1, 2, · · · , k; j = 1, 2, · · · , ni, (1)

where yij is the j-th observation under the i-th categorical group and ∑k
i=1 ni = N. Here,

µi is the unobserved fixed effect of the i-th group. We assume that the random errors εij
are independent random variables with mean zero and finite variance. As we are dealing
with a robust estimator, we do not assume that the error term necessarily follows a normal
distribution but rather a contaminated normal distribution with p proportion outliers,
where 0 ≤ p < 0.5. However, the target distribution for εij is N(0, σ2) for all i = 1, 2, · · · , k
and j = 1, 2, · · · , ni. Thus, the model parameter θ = (µ1, µ2, · · · , µk, σ2)T , with θ ∈ Θ, is
robustly estimated to match the target distribution. We denote the target distribution of yij,
i.e., N(µi, σ2), as fθ(yij|i), or simply fθ(yij). It is also referred to as the model distribution.
The following assumption is needed to define the true data generating distribution.

Assumption 1. Suppose the true data generating distribution g(yij) contains p proportion
outliers from an arbitrary distribution χ(yij), i.e., g(yij) = (1− p) fθ0(yij) + pχ(yij), where
0 ≤ p < 0.5 and θ0 ∈ Θ. We assume that there exist a small positive number γ0, such that
η(γ) = maxi

∫
yij

f γ
θ0
(yij)χ(yij)dyij is sufficiently small for γ > γ0.

A small value of η(γ) ensures that χ(·) is an outlying distribution as the effective mass
of χ(·) lies at the tail of the model distribution fθ(·) [39]. Here, we relaxed the normality
assumption from the classical ANOVA model; however, the main structure of the true
distribution should be normal, only the tails may be different. If the main structure of the
block distributions is not normal, one may consider a different model for fθ(yij). Although
all the calculations in this paper are based on the normal model, one may follow the same
techniques for an arbitrary model.

We also eliminate another crucial constraint from the classical ANOVA model: the
error distributions are identical. We only need them to be mutually independent. Here,
g(yij) is the true density of the i-th block, and different blocks may have different variances
without violating Assumption 1. Thus, our approach allows heteroscedasticity if the
outlying distribution causes it.

3. Density Power Divergence

Let us consider a family of models {Fθ , θ ∈ Θ} with density fθ . We denote G as the
class of all distributions having densities with respect to the Lebesgue measure. Suppose
G ∈ G is the true distribution with density g. Then, the DPD measure between the model
density fθ and the true density g is defined as follows:

dγ( fθ , g) =


∫

y

{
f 1+γ
θ (y)−

(
1 +

1
γ

)
f γ
θ (y)g(y) +

1
γ

g1+γ(y)
}

dy, for γ > 0,∫
y

g(y) log
(

g(y)
fθ(y)

)
dy, for γ = 0,

(2)

where γ is a tuning parameter [34]. Note that G is not necessarily a member of the model
family Fθ . Further, for γ = 0, the DPD measure is obtained as a limiting case of γ → 0+,
and is the same as the Kullback-Leibler (KL) divergence. Given a parametric model, we
estimate θ by minimizing the DPD measure with respect to θ over its parametric space Θ.
We call the estimator the minimum power divergence estimator (MDPDE). It is well-known
that, for γ = 0, minimization of the KL-divergent is equivalent to maximization of the
log-likelihood function. Thus, the maximum likelihood estimator (MLE) can be considered
a special case of the MDPDE when γ = 0.
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Let θ = (µ1, µ2, · · · , µk, σ2)T denote the parameter of the generalized ANOVA model (1).
We have the model density fθ(yij) = 1√

2πσ
exp

{
− 1

2σ2 (yij − µi)
2
}

. For γ > 0, the DPD
measure can empirically be written as

d̂γ( fθ , g) =
1
N

k

∑
i=1

ni

∑
j=1

∫
yij

f 1+γ
θ (yij)dyij −

1 + γ

Nγ

k

∑
i=1

ni

∑
j=1

f γ
θ (yij) + c(γ), (3)

where c(γ) = 1
Nγ ∑k

i=1 ∑ni
j=1

∫
yij

g1+γ(yij)dyij does not depend on θ. Using Equation (B.1)
in Supplementary Materials, Equation (3) can be written as

d̂γ( fθ , g) = (2π)−
γ
2 σ−γ(1 + γ)−

1
2

[
1− (1 + γ)3/2

Nγ

k

∑
i=1

ni

∑
j=1

exp
{
− γ

2σ2 (yij − µi)
2
}]

+ c(γ). (4)

The MDPDE of θ is then obtained by minimizing d̂γ( fθ , g) over θ ∈ Θ. Note that
if the j-th observation under the i-th block is an outlier, then the value of fθ(yij) is very
small compared to other observations. In that case, its contribution in the second term
of Equation (3) is negligible when γ > 0; thus, the corresponding MDPDE becomes
robust against outliers. On the other hand, when γ = 0, the KL divergent can be written
as d̂γ( fθ , g) = −∑k

i=1 ∑ni
j=1 log fθ(yij) + d, where d is independent of θ. For an outlying

observation, the KL divergence measure diverges as fθ(yij)→ 0. Therefore, the MLE breaks
down in the presence of outliers as they dominate the loss function. In fact, the tuning
parameter γ controls the trade-off between efficiency and robustness of the MDPDE—
robustness measure increases if γ increases, but at the same time, efficiency decreases.

The MDPDE of θ is obtained by directly minimizing the DPD measure given in (4).
Alternatively, by solving the estimating equations (given in Supplementary Material C), an
iterative algorithm for the MDPDE is as follows:

µi =
∑ni

j=1 yij exp
{
− γ

2σ2 (yij − µi)
2
}

∑ni
j=1 exp

{
− γ

2σ2 (yij − µi)2
} for i = 1, 2, · · · , k,

σ2 =
∑k

i=1 ∑ni
j=1(yij − µi)

2 exp
{
− γ

2σ2 (yij − µi)
2
}

∑k
i=1 ∑ni

j=1 exp
{
− γ

2σ2 (yij − µi)2
}
− Nγ

(1+γ)3/2

.

(5)

The above algorithm needs initial values for µi and σ. To protect against outliers, we use the
i-th block median for µi for i = 1, 2, · · · , k, and a scaled median absolute deviation (MAD)
for σ. The following lemma gives the interpretation of the parameter in the contaminated
model g(·).

Lemma 1. Under Assumption 1, if η(γ) is sufficiently small for γ > γ0, then the target parameter
that minimizes the DPD measure dγ( fθ , g) is θ0 for all values of γ > γ0.

If η(γ) is sufficiently small, then, under the contaminated model, dγ( fθ0 , g) is the
minimum for all θ ∈ Θ. Thus, the true value of θ is always θ0 for γ > γ0. It ensures
that the interpretation of θ0 has the same meaning as the classical ANOVA model where
the error distribution is normal. Therefore, we keep the target parameter free of γ in the
subsequent sections.
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4. Asymptotic Distribution of the MDPDE

In this section, we present the asymptotic distribution of the MDPDE when the data
generating distribution G(y) is not necessarily a contaminated model. Let us define the
score function as uθ(yij) =

∂
∂θ log fθ(yij). For i = 1, 2, · · · , k and j = 1, 2, · · · , ni, we define

J(ij) =
∫

yij

uθ(yij)uT
θ (yij) f 1+γ

θ (yij)dyij

+
∫

yij

{
Iθ(yij)− γuθ(yij)uT

θ (yij)
}{

g(yij)− fθ(yij)
}

f γ
θ (yij)dyij,

K(ij) =
∫

yij

uθ(yij)uT
θ (yij) f 2γ

θ (yij)g(yij)dyij − ξ(ij)ξ(ij)T ,

Iθ(yij) = −
∂

∂θ
uθ(yij), ξ(ij) =

∫
yij

uθ(yij) f γ
θ (yij)g(yij)dyij.

(6)

The form of uθ(yij) is given in Supplementary Material D. We further define

J = lim
N→∞

1
N

k

∑
i=1

ni

∑
j=1

J(ij), and K = lim
N→∞

1
N

k

∑
i=1

ni

∑
j=1

K(ij). (7)

Here, as N → ∞, we also need ni/N → ci, such that ci > 0 for all i = 1, 2, · · · , k and
∑i ci = 1. For the consistency and asymptotic distribution of the MDPDE, we need the
following assumptions:

(A1) The true density g(yij) is supported over the entire real line R.
(A2) There is an open subset ω ∈ Θ containing the best fitting parameter θ such that J is

positive definite for all θ ∈ ω.
(A3) Suppose Vθ(yij) = exp

{
− γ

2σ2 (yij − µi)
2
}

. There exist functions Mrst(yij) such that

|∂3Vθ(yij)/∂θr∂θs∂θt| ≤ Mrst(yij) for all θ ∈ ω, where Eg(|Mrst(yij)|) =
∫

yij
|Mrst(yij)|

g(yij)dyij < ∞ for all r, s and t.

(A4) We denote δ(·) as the indicator function. Then, for all r and s, we have

lim
χ→∞

sup
N>1

{
1
N

k

∑
i=1

ni

∑
j=1

Eg

[∣∣∣ ∂

∂θr
Vθ(yij)

∣∣∣δ(∣∣∣ ∂

∂θr
Vθ(yij)

∣∣∣ > χ

)]}
= 0, (8)

lim
χ→∞

sup
N>1

{
1
N

k

∑
i=1

ni

∑
j=1

Eg

[∣∣∣ ∂2

∂θrθs
Vθ(yij)− Eg

(
∂2

∂θrθs
Vθ(yij)

)∣∣∣
×δ

(∣∣∣ ∂2

∂θrθs
Vθ(yij)− Eg

(
∂2

∂θrθs
Vθ(yij)

)∣∣∣ > χ

)]}
= 0.

(9)

(A5) Let KN = 1
N ∑k

i=1 ∑ni
j=1 K(ij). For all ε > 0, we have

lim
N→∞

{
1
N

k

∑
i=1

ni

∑
j=1

Eg

[∥∥∥∥K−1/2
N

∂

∂θ
Vθ(yij)

∥∥∥∥2
δ

(∥∥∥∥K−1/2
N

∂

∂θ
Vθ(yij)

∥∥∥∥ > ε
√

N
)]}

= 0. (10)

Under the independent heterogeneous setup, the above conditions are required to
stabilize the matrices J and K for the existence of the asymptotic distribution (cf. [40–42]).
These assumptions are satisfied by the true density g(yij) defined in Assumption 1. How-
ever, the following theorem is proved for a more general form of g(yij).

Theorem 1. Under the regularity conditions (A1)–(A5), with probability tending to 1 as N → ∞,
there exists θ̂, such that

(i) θ̂ is consistent for θ, and
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(ii) the asymptotic distribution of θ̂ is given by

√
N(θ̂ − θ) ∼ Nk+1(0, J−1KJ−1). (11)

Proof. The proof of the theorem is given in Appendix A.

The independent and non-identically distributed samples leading to heterogeneity in
variances technically impose a computational burden (cf. [42]). Hence, a positive definite
matrix J in assumption (A2) is required to stabilize the asymptotic variance of the MDPDE.
Furthermore, the assumption (A4) and a generalized version of Khinchin’s weak law of
large numbers (cf. [43]) are needed to ensure consistency, while the asymptotic normality is
guaranteed by the assumption (A5) and a multivariate extension of the Lindeberg-Levy
central limit theorem.

Further calculations in the supplementary materials show that for the uncontaminated

model, i.e., when g = fθ , the covariance matrix of
√

Nµ̂ is Σµ = (1+γ)3σ2

(1+2γ)
3
2

limN→∞ S−1,

where S is a k× k dimensional diagonal matrix with i-th diagonal element ni/N. Thus, the
variance of each component of µ̂ increases as γ increases. Therefore, the efficiency of the
MDPDE decreases as γ increases—the MLE being the most efficient estimator in pure data.
However, our simulation studies show that the loss of efficiency is minimal unless γ is too
large. On the other hand, the gain in robustness is significant for contaminated data.

4.1. Influence Function of the MDPDE

We access the extent of the resistance to outliers of our proposed estimator using the
influence function approach of [26]. It measures the rate of asymptotic bias of an estimator
to infinitesimal contamination in the distribution. A bounded influence function suggests
that the corresponding estimator is robust against extreme outliers. Note that the MDPDE
is an M-estimator [25] as the estimating equation can be written as ∑i ∑j Ψθ(yij) = 0, where

Ψθ(yij) = uθ(yij) f γ
θ (yij)−

∫
y

uθ(yij) f 1+γ
θ (yij)dyij. (12)

This is obtained by differentiating d̂γ( fθ , g) with respect to θ in Equation (3). Let G(y) be the
true distribution function Y, and θ = Tγ(G) be functional for the MDPDE. Following [34],
the influence function of the MDPDE is given by

IF(yij, Tγ, G) = J−1
{

uθ(yij) f γ
θ (yij)− ξ(ij)

}
, (13)

where J is evaluated at the model when g = fθ , and ξ(ij), given in Equation (E.6), is a fixed
vector that does not depend on index i and j.

Remark 1. Note that the score function uθ(yij) in Equation (D.3) of the Supplementary Materials
is unbounded in yij. As a result, the influence function of the MLE, i.e., the MDPDE with γ = 0, is
unbounded. On the other hand, uθ(yij) f γ

θ (yij) is bounded in yij when γ > 0 as the corresponding
terms can be written as yij exp(y2

ij). So, the influence function of the MDPDE of θ is bounded in
yij when γ > 0. Moreover, IF(yij, Tγ, G) tends to zero as |yij| → ∞, indicating a redescending
effect for large vertical outliers. The higher the value of γ, the larger the down-weighting effect on
the outliers.

4.2. Choice of the Optimum γ

One important use of the asymptotic distribution of the MDPDE is the selection of the
optimum value of the DPD parameter γ. As the performance of the test depends on the
corresponding estimator, we choose γ that is optimum in terms of robustness and efficiency
of µ̂ = (µ̂1, µ̂2, · · · , µ̂k)

T . In practice, the user may work with a fixed value of γ depending
on the desired level of robustness measure at the cost of efficiency. Alternatively, we may
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select a data-driven optimum γ. Following [44], we minimize the mean square error (MSE)
of µ̂ to obtain the optimum value of γ adaptively. Suppose Σµ is the asymptotic variance
of µ̂ obtained from Theorem 1, assuming that the true distribution belongs to the model
family. Let Σ̂µ be the estimate of Σµ. The empirical estimate of the MSE, as the function of a
pilot estimator µP, is given by

M̂SE(γ) = (µ̂− µP)T(µ̂− µP) + tr(Σ̂µ). (14)

From Supplementary Material H, we find that Σ̂µ = (1+γ)3σ̂2

(1+2γ)
3
2

S−1. In particular, we recom-

mend that a robust estimator, such as the MDPDE with γ ∈ (0.3, 0.5), can be used as a pilot
estimator. One should then iterate this process by taking the previous stage’s optimum γ
as the current stage’s pilot estimator and proceeding until convergence. It eliminates the
sensitivity in the initial value of µP as long as the initial estimate is robust. In our numerical
examples, we have used this iterative procedure.

Lemma 1 shows that the target parameter is the same for all γ for the contaminated
model. Moreover, Theorem 1 proves that all µ̂ converge to the target parameter. How-
ever, their small sample performance may be different depending on the contaminated
proportion (p) and closeness of the contaminated distribution (χ) to the model distribu-
tion ( fθ). Thus, selecting the DPD parameter γ in finite samples is important to get the
best performance.

5. Testing of Hypothesis

Let us now consider the ANOVA test, where the null hypothesis assumes no treatment
effects, i.e.,

H0 : µ1 = µ2 = · · · = µk against H1 : H0 is not true. (15)

The following m(·) function imposes k− 1 restrictions for the null hypothesis:

m(θ) = (µ1 − µ2, µ2 − µ3, · · · , µk−1 − µk)
T = 0k−1, (16)

where 0k−1 is a zero vector of length k− 1.

Definition 1. Let θ̂ be the MDPDE of θ. The family of proposed Wald-type test statistics for testing
the null hypothesis in (15) is given by

WN = NmT
(

θ̂
)[

MT
(

θ̂
)

J−1
(

θ̂
)

K
(

θ̂
)

J−1
(

θ̂
)

M
(

θ̂
)]−1

m
(

θ̂
)

, (17)

where M(θ) = ∂mT(θ)
∂θ .

When γ = 0, the Wald-type test statistic reduces to the classical Wald test for testing
the null hypothesis in (15). We define a k× (k− 1)-dimensional matrix

Mµ =



1 0 0 0 · · · 0 0 0
−1 1 0 0 · · · 0 0 0
0 −1 1 0 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 0 −1 1
0 0 0 0 · · · 0 0 −1


. (18)

Then, the (k + 1)× (k− 1)-dimensional matrix M(θ) is written as M(θ) = (MT
µ , 0k−1)

T . Us-
ing Equation (H.8) from the Supplementary Materials, the test statistic WN in Equation (17)
is simplified as

WN = Nσ̂−2(1 + γ)−3(1 + 2γ)
3
2 mT

(
θ̂
)[

MT
µ S−1Mµ

]−1
m
(

θ̂
)

, (19)
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where S is a k× k dimensional diagonal matrix with i-th diagonal element ni/N. In the
following theorem, we present the asymptotic distribution of WN .

Theorem 2. The asymptotic null distribution of the proposed Wald-type test statistics given in (19)
is chi-square with k− 1 degrees of freedom.

Proof. The proof follows from Theorem 1 using the derivation given in [45].

6. Numerical Results

To investigate the empirical performance of our proposed method, an extensive sim-
ulation study under different sample sizes, block sizes, error distributions, and outlier
types is performed. The performance of the proposed method is compared with the classi-
cal ANOVA test and two robust alternative methods based on Huber’s M-estimator and
Tukey’s MM-estimator [25]. The latter two tests are implemented in R by combining the
‘rlm’ and ‘Anova’ functions from the ‘MASS’ and ‘car’ packages, respectively. For those esti-
mators, we have used the default tuning parameters given in the corresponding functions.
The robustness properties of the MDPDE depend on the choice of the tuning parameter,
and thus, four fixed values of γ = 0.1, 0.2, 0.3, and 0.4 are considered. The optimum value
of γ is determined based on the data-driven adaptive choice of γ as discussed in Section 4.2
and the pilot estimator is used iteratively until convergence. From now on, the DPD with
optimum γ is abbreviated as “DPD(Opt.)”.

6.1. Levels for Different Block Sizes and Error Distributions

We consider the generalized ANOVA model in (1) with k = 3 blocks of sizes; n1 = 30,
n2 = 25, and n3 = 35. First, we consider the standard normal errors εij ∼ N(0, 1) for all i
and j. To check the empirical levels of different tests, the dataset is generated from the null
hypothesis where µ1 = µ2 = µ3 = 0. The empirical level is computed as the proportion of
test statistics in 5000 replications that exceed the nominal χ2 critical value at a 5% level of
significance. The results are reported in the first column of Table 1. From the results, all
the values are close to the nominal level. In addition, the MSE of µ̂ (times N) for all the
estimators is reported in the second column of Table 1. The ANOVA test is based on the
MLE, theoretically the most efficient estimator under normal errors. The simulated results
also show that the MLE gives the smallest MSE in pure data. The MSE of the MDPDE
increases as the value of γ increases. In DPD(Opt.), we minimize the MSE of the block
means (µ̂), and the mean value of optimum γ comes out to be 0.0507, which is close to
zero. However, as the algorithm uses a dummy value of the true parameter µP iteratively,
its efficiency is lower than the actual fixed γ that produces the minimum MSE. Thus, the
corresponding empirical level is also slightly inflated.

Table 1. The empirical level of different tests and the MSE of µ̂ (times N) for the corresponding
estimators for different block sizes and error distributions.

Tests
k = 3, Normal k = 4, Cauchy k = 5, Normal k = 6, t3

Level MSE Level MSE Level MSE Level MSE

ANOVA 0.0480 8.9155 0.0218 1.3× 1010 0.0464 26.0063 0.0410 114.8192
DPD (0.1) 0.0592 9.0236 0.0310 103.4623 0.0594 26.2686 0.0394 69.7182
DPD (0.2) 0.0574 9.3041 0.0402 61.7873 0.0578 27.0460 0.0432 62.8766
DPD (0.3) 0.0580 9.7067 0.0462 49.7004 0.0594 28.1916 0.0506 60.7463
DPD (0.4) 0.0606 10.2002 0.0498 44.5338 0.0650 29.6157 0.0570 60.5194

DPD (Opt.) 0.0652 9.2297 0.0602 41.4773 0.0638 26.4132 0.0654 61.9717
Huber 0.0480 9.4081 0.0468 73.6107 0.0486 27.3243 0.0468 62.5188
Tukey 0.0480 9.4475 0.0462 52.4656 0.0480 27.3652 0.0484 62.0656

In the following simulation, the error distribution is changed to the Cauchy distribu-
tion, and we consider an additional block of size n4 = 20. The empirical levels and MSEs
computed for this case are reported in the third and fourth columns of Table 1, respectively.
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From the results, the MLE breaks down, and the N times MSE of µ̂ becomes 1.3× 1010 when
the errors are heavy-tailed. The MDPDEs with small γ are affected by the heavy-tailed
errors, and the corresponding tests become very conservative. On the other hand, the DPD
tests with higher values of γ properly maintain the level of the test. The mean value of
optimum γ is 0.5865. So, the algorithm adaptively selects a higher value of γ as the data
contains some extreme values. The tests based on Huber and Tukey’s estimators properly
maintain the level of the test; however, the MSEs of µ̂ are much higher than DPD(Opt.).

Furthermore, we consider two additional cases with k = 5 and k = 6, where additional
block sizes are n5 = 30 and n6 = 50. The error distributions are the standard normal
and t-distribution with 3 degrees of freedom (t3), respectively. The results from the third
simulation with k = 5 are similar to the first case with k = 3. On the other hand, the MSE of
the MLE is still too large in the fourth case as t3 is a heavy-tailed distribution, although less
extreme than the Cauchy distribution. The empirical level of the ANOVA test improves;
however, as demonstrated in the later part of our numerical results, the power of the test is
considerably affected in such situations.

Remark 2. Note that in our numerical analyses, the Cauchy and t-distributions, which follow
the form of the true density g(yij) in Assumption 1, are considered as the structure of the central
region resembles the normal model, i.e., only the tails are different. On the other hand, a chi-square
error distribution with smaller degrees of freedom deviates much from the normal model, and thus,
it creates a discrepancy in the empirical levels and loss of power for the DPD tests. As discussed
in Section 2, in such cases, one needs to assume a different model for fθ(yij) and compute the test
statistic accordingly.

6.2. Levels for Different Sample Sizes

Let us consider the generalized ANOVA Model in (1) with k = 4 blocks and equal
sample size (n) in all blocks, i.e., n1 = n2 = n3 = n4 = n. The performance of the estimators
is examined under the standard normal errors εij ∼ N(0, 1) for the increasing number of
sample size per block (n = 20 to 100). The plot at the top left in Figure 1 displays the
empirical levels of all tests for different values of the sample sizes. To avoid overlapping
plots, we present the results only for one DPD test, DPD(Opt.), excluding the tests with
fixed γ. From the results, DPD(Opt.) shows inflated levels, but it settles down rapidly
around the nominal level as the sample size increases. Other tests, including the DPDs
with fixed γ (not presented in the plot), perform well in maintaining the level of the test
even in small sample sizes.
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Figure 1. The level of different tests in pure data (top left) and in the presence of 5% vertical outliers at
random locations (top right), 5% clustered outliers (bottom left), and 10% clustered outliers (bottom
right). In all cases, k = 4.
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6.3. Effect of Outliers

In the following setups, the robustness properties of the estimators are evaluated in
the presence of different types of outliers. A certain percentage (p%) of outliers are inserted
using two different scenarios to generate contaminated data; (a) random contamination
and (b) concentrated contamination. Following Assumption 1, the contamination schemes
are as follows.

1. The random outliers in the y-direction, i.e., random vertical outliers, are obtained by
replacing p% original standard normal errors with εit ∼ N(10, 1) in the generalized
ANOVA model (1).

2. Concentrated vertical outliers are generated by substituting p% errors in the first
block by εit ∼ N(10, 1).

The plots at the top right, bottom left, and bottom right in Figure 1 present the
empirical levels of different tests in contaminated data. The plot on the top right in Figure 1
presents the results when the dataset is contaminated at random locations with 5% outliers.
In this case, all the methods produce similar performance with their performance obtained
when no outlier is present in the data (i.e., the plot on the top left in Figure 1). Outliers do
not alter the level even for the classical ANOVA test, as all the blocks are equally affected by
the outliers. DPD(Opt.) is slightly liberal as the optimum γ is estimated from the data. In
the bottom plots, the first block is contaminated by the clustered outliers with 5% (left) and
10% (right) contamination levels. The results indicate that the clustered outliers drastically
inflate the empirical levels of the ANOVA test. The Huber test eventually fails to maintain
its level when the proportion of clustered outliers is large. On the other, the empirical levels
of the DPD(Opt.) test are very close to the nominal level.

6.4. Empirical Powers

The empirical powers of the test procedures for all the outlier types and contamination
levels are presented in Figure 2. To compute the power of the tests, the dataset is generated
under the alternative hypothesis using the block means µ = (−0.4, 0.2,−0.1, 0.3)T . The
top left plot in Figure 2 shows that the power of all four tests is similar when no outlier is
present in the data, and the power converges to one as the sample size increases. DPD(Opt.)
shows slightly higher power in small sample sizes. However, the level corrected power
(not presented in the plot) is equivalent to other tests. From other plots in Figure 2, the
classical ANOVA test is severely affected by both types of outliers. While the power of the
Huber test is relatively high, it loses sufficient power, especially in the presence of clustered
outliers at a large percentage. In other words, the Huber test is not fully robust to the
clustered outliers. Compared with other tests, the proposed DPD(Opt.) produces improved
power values in all cases. Moreover, it produces higher power that is not affected by the
outlier types and contamination levels. While Tukey’s test produces higher power than the
classical ANOVA, the proposed DPD test gives even better power than Tukey’s test even
after level correction.

In a nutshell, the results produced by our simulation studies suggest that the perfor-
mance of the proposed DPD test is similar to the classical ANOVA test when no outlier
is present in the data. On the other hand, the DPD test with large values of γ yields an
improved level and power values than the classical ANOVA and the test based on the
Huber estimator. In addition, the data-dependent optimum MDPDE successfully produces
the optimum performance and adequately balances the efficiency in pure data and robust-
ness properties in the contaminated data. Moreover, our results indicate that the proposed
method produces a competitive or even better level and power than the tests based on
other M-estimators.

Remark 3. We note that the error distributions are not identically distributed in the case of the
clustered outliers. In addition, the error variance is different in the first block, i.e., the model is
heteroscedastic because of the outliers. In this case, some of the assumptions for the classical ANOVA
test are not satisfied, and thus, the empirical level breaks down, and the test losses significant power.
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On the other hand, our proposed DPD test produces consistent results and successfully relaxes
those assumptions.
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Figure 2. The power of different tests in pure data (top left) and in the presence of 5% vertical outliers
at random locations (top right), 5% clustered outliers (bottom left) and 10% clustered outliers (bottom
right). In all cases, k = 4 and µ = (−0.4, 0.2,−0.1, 0.3)T .

7. Case Study
7.1. Bone Marrow Transplant Dataset

The bone marrow transplant dataset, originally reported by [46], describes several
hematologic diseases for 187 children and adolescents (112 males and 75 females) diagnosed
with malignant (n = 155) and nonmalignant disorders (n = 32). The patients underwent
unmanipulated allogeneic unrelated donor hematopoietic stem cell transplantation between
2000 and 2008. Their median age at transplant is 9.6 years (range: 0.6–20.2 years). With
this dataset, our aim is to test if the average time to platelet recovery is related to the type
of hematologic diseases. The platelet recovery is defined as a recovery of platelet count
greater than 50× 109/L without transfusion support for three consecutive days. The first
day of three consecutive days is regarded as the day of platelet engraftment. Because
of some missing cases or patients without platelet recovery, 17 observations containing
platelet recovery time of 106 days are excluded from the data. The remaining dataset has
142 patients with malignant disorders and 28 nonmalignant cases. Among the malignant
disorders patients, there are cases of 62 acute lymphoblastic leukemia (ALL), 31 acute
myelogenous leukemia (AML), 42 chronic myelogenous leukemia, and 7 lymphomas.
Figure 3 presents the box plots and normal kernel density plots of platelet recovery time (in
days) for different groups of patients. From Figure 3, the dataset has some large outliers,
which motivates us to apply our proposed method to robustly test the equality of the
average times to platelet recovery of different types of hematologic diseases.

The results are presented in Table 2. In this table, the first four columns denote
the results of the ANOVA, DPD(Opt.), Huber, and Tukey’s tests, respectively. From the
results, the ANOVA test based on the MLE is considerably affected by the outliers, and the
computed block means for this method are higher than the other methods. Note that the
block medians of the five groups are 23, 25, 17.5, 21, and 17, respectively. In addition, the
MLE produces a considerably larger standard deviation, σ̂ = 36.83, compared with the
robust methods, yielding a large p-value = 0.2298 for the ANOVA test. On the other hand,
the robust methods produce smaller estimates for σ. Thus, the p-values obtained by the
DPD and Tukey’s tests are significant at a 5% level of significance, while Huber’s test is on
the borderline.
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Table 2. The parameter estimates for the generalized ANOVA model and the p-values of different
tests for the bone marrow transplant dataset. The last four columns give results when lymphoma
patients are removed from the dataset.

Full Data Reduced Data

ANOVA DPD(Opt.) Huber Tukey ANOVA DPD(Opt.) Huber Tukey

ALL (µ̂1) 38.85 21.28 24.84 22.00 38.85 21.36 24.85 22.02
AML (µ̂2) 35.52 21.33 24.39 21.93 35.52 21.38 24.41 21.94

Chronic (µ̂3) 24.55 17.71 20.11 18.27 24.55 17.77 20.12 18.28
Lymphoma (µ̂4) 23.86 20.12 22.11 20.99 – – – –

Non-malignant (µ̂5) 24.39 16.24 19.05 16.58 24.39 16.27 19.07 16.59
σ̂ 36.83 7.01 10.14 8.04 37.45 7.12 10.20 8.09

p-value 0.2298 0.0101 0.0511 0.0132 0.1644 0.0045 0.0263 0.0058
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Figure 3. The box-plots and normal kernel density plots of platelet recovery time (in days) for
different group of patients in the bone marrow transplant dataset.

In this dataset, the block lymphoma has only seven patients, i.e., it includes only
4.12% of observations. Therefore, the test results may be biased due to the unbalanced
case. To overcome this problem, we remove this block and re-compute the results for all
the methods. The results are presented in the last four columns of Table 2. From the results,
the p-value computed from the ANOVA is still large. On the other hand, the robust tests
comfortably reject the null hypothesis at a 5% level of significance. Consequently, the
results indicate that the platelet recovery time varies significantly depending on the type
of hematologic disease. However, the classical ANOVA test fails to detect the difference
because of the impacts of the large outliers.

7.2. Glucose Level Dataset

We analyze the glucose level dataset, where we are interested in determining the
significant difference in average blood glucose levels among work types. The original
dataset, available at https://healthdata.gov/ (accessed on 28 July 2022), is used to predict
cerebral stroke based on 11 features (see [47]). The dataset contains 43,400 observations,
including 6156 children aged below 16. The adults are categorized into four groups based
on their work type—government, never worked, private, and self-employed. Figure 4
presents the box plots and normal kernel density plots of average glucose levels for different
groups. This figure denotes that all the distributions have long tails to the right. In other

https://healthdata.gov/
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words, the population of each group may follow a contaminated normal distribution.
Therefore, it is expected that the robust tests may produce better results compared to the
classical ANOVA.
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Figure 4. The box-plots and normal kernel density plots of average glucose level for different groups
in the glucose level dataset.

Our results for the glucose level dataset are presented in the first four columns of
Table 3. The null hypothesis claims that the means of the average glucose level in all
categories are equal. All the tests excluding the proposed DPD(Opt.) come out to be
significant as the p-values are almost identical to zero. Here, the group medians are 88.52,
92.35, 88.57, 91.61, and 94.68, respectively. From Table 3, the group means computed by the
ANOVA are inflated dramatically because of the outliers. On the other hand, the estimates
of the group mean obtained by the DPD(Opt.) are not significantly different.

Table 3. The parameter estimates for the generalized ANOVA model and the p-values of different
tests for the glucose level dataset. The last four columns give results when the ‘Never worked’
category is removed from the dataset.

Full Data Reduced Data

ANOVA DPD(Opt.) Huber Tukey ANOVA DPD(Opt.) Huber Tukey

Children (µ̂1) 92.38 89.02 90.41 90.40 92.38 89.40 90.41 89.82
Government job (µ̂2) 107.10 89.21 95.85 91.89 107.10 89.94 95.86 90.15
Never worked (µ̂3) 94.70 89.04 91.39 90.97 – – – –

Private (µ̂4) 104.78 89.26 94.95 91.76 104.78 89.94 94.95 90.20
Self-employed (µ̂5) 112.51 89.66 98.60 93.12 112.51 90.56 98.61 90.61

σ̂ 42.74 22.07 25.76 28.39 42.79 23.06 25.78 23.59
p-value 8.8 ×10−163 0.6231 7.5 × 10−61 1.5 × 10−7 1.2 × 10−161 0.0537 3.7 × 10−61 0.2890

Similar to the bone marrow transplant dataset, this dataset is also unbalanced as
only 117 people (0.41% of the sample size) have never worked. The other categories
have sufficient sample sizes—6156 children, 5440 government jobs, 24,834 private jobs,
and 6793 self-employed. Thus, the 117 observations belonging to the category ‘never
worked’ are discarded from the dataset to obtain a balanced design. The results obtained
for this balanced case are presented in the last four columns of Table 3. From the results,
the computed p-values obtained by ANOVA (1.2× 10−161) and Huber (3.7× 10−61) tests
are still very small. In this case, Tukey’s test produces a large p-value (0.2890), and the
corresponding estimates of the group means are close to 90. The p-value obtained by the
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DPD test is reduced compared with the one obtained from the unbalanced case, but it is
still insignificant at the 5% level. Thus, it is evident from the results that the ANOVA and
Huber tests produce false positive results for this dataset. On the other hand, the proposed
and Tukey’s tests show strong robustness against outliers.

8. Conclusions

In this study, we propose a robust procedure for testing the main effect in the one-way
ANOVA model under mild restrictions. The test has a tuning parameter that controls the
efficiency and robustness of the MDPDE of the treatment effect. In addition, we propose
an adaptive method that estimates the tuning parameter without prior knowledge of the
outliers. The proposed test can be used even if the normality assumption is violated at the
tails of the distribution or errors are heteroscedastic because of the outliers. The empirical
performance of the proposed method is evaluated via an extensive simulation study, and the
results are favorably compared with existing robust and non-robust testing procedures. Our
results indicate that the proposed method produces similar results to the classical ANOVA
when no outlier is present in the data. On the other hand, the proposed method produces
competitive or even significantly better results than the existing robust methods when
outliers contaminate the data. Through several empirical data examples, we demonstrate
that the proposed test can uncover both masking effects caused by outliers—blurring the
actual difference when one exists and detecting a difference when none exists.

There are several ways in which the present study can be further extended. For
instance, using a flexible formulation of the hypotheses obtained by a convenient contrast
matrix as discussed by [23]; the proposed test can be extended to the more complex
structure of the designs, such as factorial ANOVA. In addition, the proposed method can
be used with the non-parametric inference procedures, such as the one proposed by [48], to
incorporate the uncertainty associated with the underlying effect estimators and to handle
the right-censored survival data.
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Appendix A. Proof of Theorem 1

The proof of the first part closely follows the consistency of the maximum likelihood
estimator with the line of modifications as given in Theorem 3.1 of [40]. For brevity, we
only present the detailed proof of the second part.
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Let θ̂ be the MDPDE of θ. Then

∂

∂θ
d̂γ( fθ , g) = 0. (A1)

Differentiating Equation (3), it can be written as an M-estimator as follows
k

∑
i=1

ni

∑
j=1

Ψ
θ̂
(yij) = 0, (A2)

where
Ψθ(yij) = uθ(yij) f γ

θ (yij)−
∫
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uθ(y) f 1+γ

θ (yij)dy. (A3)

Let θg be the true value of θ, then
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Taking a Taylor series expansion of Equation (A2), we get
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Under regularity condition (A1)–(A3), it can be easily shown that the reminder term√
NRN = op(1). Now, we will show that
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Therefore, from Equation (A5), we will prove the theorem as
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So Equation (6) gives
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Second Part: From Equation (A4), we get

E

[
1√
N

k

∑
i=1

ni

∑
j=1

Ψθg(yij)

]
=

1√
N

k

∑
i=1

ni

∑
j=1

[ ∫
yij

uθg(yij) f γ
θg
(yij)g(yij)dyij

−
∫

y
uθg(yij) f 1+γ

θg
(yij)dyij

]
= 0.

(A10)

Now

V

[
1√
N

k

∑
i=1

ni

∑
j=1

Ψθg(yij)

]
=

1
N

k

∑
i=1

ni

∑
j=1

V
[
Ψθg(yij)

]

=
1
N

k

∑
i=1

ni

∑
j=1

[ ∫
y

uθg(yij)uT
θg
(yij) f 2γ

θg
(yij)g(yij)dyij − ξ(i)ξ(i)T

]

=
1
N

k

∑
i=1

ni

∑
j=1

K(i) = K.

(A11)

Therefore,

lim
N→∞

V

[
1√
N

k

∑
i=1

ni

∑
j=1

Ψθg(yij)

]
= K. (A12)

Finally, the asymptotic normality will be proved using the central limit theorem for the
independent but not identical random variables using assumption (A5). A bound can be
shown following Section 2.7 of [49] or Section 5 of [50] (also see [42]).
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