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Abstract: It is difficult to identify the working conditions of the rotary kilns due to the harsh
environment in the kilns. The flame images of the firing zone in the kilns contain a lot of working
condition information, but the flame image data sample size is too small to be used to fully extract
the key features. In order to solve this problem, a method combining transfer learning and attention
mechanism is proposed to extract key features of flame images, in which the deep residual network is
used as the backbone network, the coordinate attention module is introduced to capture the position
information and channel information on the branch of feature graphs, and the features of flame
images obtained are further screened to improve the extraction ability. At the same time, migration
learning is performed by the pre-trained ImageNet data set, and feature migration and parameter
sharing are realized to cope with the training difficulty of a small sample data size. Moreover, an
activation function Mish is introduced to reduce the loss of effective information. The experimental
results show that, compared with traditional methods, the working condition recognition accuracy of
rotary kilns is improved by about 5% with the proposed method.

Keywords: rotary kiln; flame image; working condition recognition; deep learning; transfer learning;
coordinate attention mechanism

1. Introduction

Rotary kilns are widely used in cement, metallurgy, chemical and environmental
protection fields. The firing zone temperature in the kilns is adjusted by controlling the
amount of coal feeding, the damper opening and the kiln rotational speed according to the
current kiln conditions during the production process. They are the most important factors
in determining the clinker quality and are usually used as the controlled variables in the
rotary kiln control strategies [1,2]. However, due to the influence of interfering factors,
such as smoke and dust in the kilns, the traditional method is difficult to measure the
temperature of the sintering zone accurately.

There is a close relationship between flame image and temperature, and the flame
image of the firing zone contains a wealth of information about the operating conditions.
In order to achieve intelligent control of rotary kilns, many intelligent methods, such as
singular value decomposition (SVD) [3], support vector machine (SVM) and K-means [4]
are applied to the feature extraction and classification of such flame images to recognize
working conditions of rotary kilns.

However, machine learning and neural network approaches alone are not satisfactory
in terms of recognition accuracy. As a result, most of the subsequent studies chose to
pre-process the flame images by combining filters or image segmentation to highlight the
regions of interest before using neural networks for working condition recognition, which
improved recognition accuracy to a certain extent [5,6]. However, due to the limitation of
the number of network layers and performance, these methods using neural networks are
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difficult to distinguish important features when extracting features from flame images with
high similarity, and it is also difficult to select classifiers.

In recent years, the application of deep learning in the field of image recognition has
made breakthrough progress [7]. However, it is difficult to obtain images of rotary kiln
flames: the lack of sample data makes it difficult to meet the demand for image feature
extraction in deep learning networks, and the training is prone to overfitting. To reduce the
dependence of deep learning models on the number of training samples, transfer learning
can be applied to classification recognition tasks for speeding up training efficiency [8].
Therefore, a combination of deep learning and transfer learning is applied to the recognition
of rotary kiln working conditions. In [9], a convolutional neural network was used for
feature migration, and the network was trained and tested for automatic recognition of
combustion states. There are also methods based on deep transfer learning to obtain the
feature space of the dynamic convolutional neural network and input the feature vector
into stochastic configuration networks (SCN) to realize the recognition of the burning state
of the flame image [10]. These methods have alleviated the problem of a lack of sample data
for flame images to some extent, but due to the high similarity between different classes of
flame images of rotary kilns, the existing deep learning models do not pay special attention
to the important image features, resulting in difficulties in extracting key features during
the training process.

In order to improve the ability of deep learning networks to extract key features, an
attention mechanism [11,12] is added to the computer vision research to complement and
improve existing deep learning networks, which is popular in natural language processing.
The attention mechanism was first used on the RNN model, and a visual processing
framework based on it was proposed [13]. In [14], in order to find the most relevant regions
in the input images, a deep learning network Deep RNN and attention mechanism were
combined to recognize images and reduce the image classification errors.

The method of combining attention mechanism and deep learning network has begun
to be widely used in the field of computer vision [15], such as the classification and
recognition of medical images [16], the classification of remote sensing images [17], and
the detection of industrial casting defects [18]. Inspired by the above research, a rotary
kiln condition recognition method based on transfer learning and attention mechanism is
proposed. The main contributions of this work are as follows:

• Transfer learning is used to solve the problem of data acquisition difficulty of rotary
kiln flame images and avoid overfitting during model training.

• A deep residual network is used to directly perform feature extraction, classification
and recognition on the flame images without segmenting them.

• An attention mechanism is added during feature extraction to improve the weight
of the key flame image features, solving the problem of insufficiently extracting key
features with traditional methods.

• It is the first time a combination of transfer learning and attention mechanism is
used to identify rotary kiln working conditions from flame images, which accelerates
the model convergence speed, and improves the model recognition accuracy and
generalization ability.

The other parts of the paper are organized as follows: related work is given in Section 2.
Section 3 presents a method for recognition working conditions of rotary kilns based on
transfer learning and attention mechanism. The results of the experiments are reported in
Section 4 and discussed in Section 5. Finally, the conclusions are given in Section 6.

2. Related Work

Recognition of a sintering state by flame image is helpful to determine a sintering state.
In [3], the authors proposed a method of rotary-kiln combustion-state identification based
on singular value decomposition (SVD) and support vector machine (SVM). The flame
image features between the two libraries were extracted and used as input to train the
SVM classifier offline to realize the recognition of rotary kiln. In [5], the author gradually
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optimized the feature space of the flame image by evaluating the uncertain cognitive results
of different cognitive demand values and realized the simulated feedback cognitive mode
from global to local. In this study, the authors combined the coupling operation of training
layer and cognitive decision layer and established a simulation feedback mechanism based
on bag of words model, latent semantic analysis method and entropy theory. The aver-
age recognition accuracy of the proposed rotary-kiln combustion-state cognition method
reached 92.32%. In [4], the author proposed a combustion state recognition method for
cement rotary kiln based on Otsu–K-means flame image segmentation and SVM. The
Otsu–K-means image segmentation method is used to achieve the effective segmentation of
the flame image target region. On this basis, 10 feature parameters of the target region are
extracted as the state recognition features. Then, the one minute statistical average of the
extracted feature parameters was used as the input type to classify and identify the flame
image, and 28 groups of samples could be correctly identified. In [19], the authors proposed
an effective quality sensing feature of texture intensity (TI) to model texture, structure and
naturalness of images. Using the video quality score statistics calculated by TI-NIQE as
input features, the automatic visual recognition model of rotary kiln status recognition was
trained. It has high prediction accuracy for rotary kiln state recognition on the benchmark
data set. However, it is challenging to extract the key features of flame image efficiently.

There are also methods of feature extraction using flame video directly. In [1], the
author proposed an effective model based on the spatiotemporal feature extraction of
flame video. The dynamic texture descriptor 3DBLBP is used to extract the dynamic
texture and flame motion from three adjacent frames of a video block. Then, the dynamic
structure descriptor HOPC-TOP is used to extract the three-dimensional phase consistency
information from three orthogonal planes to capture the structure and motion characteristics
of the flame. Combining these two descriptors, the spatiotemporal characteristics of flame
fragments are extracted to identify the burning state. In [20], the author designed a set of
trajectory evolution characteristics and morphological distribution characteristics of chaotic
attractors. After the chaotic attractors were reconstructed from the intensity sequence of
the flame video through phase-space reconstruction, quantitative features were extracted
from the recursive graph and morphological distribution, and then put into the decision
tree to identify the burning conditions. The authors claim that the method is more than 5%
more accurate than other methods.

Because the flame image is difficult to obtain, it is sometimes necessary to solve the
problem of uneven data sets. The authors in [2] proposed a comprehensive framework
considering class disequilibrium for sintering condition recognition. The characteristics of
heat signal were analyzed by the Lipschitz method, and four discriminative features were
extracted to comprehensively describe different sintering conditions. A new recognition
model, kernel modified ODM (KMODM), was proposed for the identification of a sintering
state, which alleviated the decrease in the accuracy of minority detection. For a sintering
state identification under class imbalance, a cascade stack autoencoder (SAE) model [21]
was proposed to integrate prior knowledge and hidden information, extract hidden infor-
mation from thermal signals, and extract discriminant features of unbalanced data. At the
same time, the kernel modified Optimal Margin distribution machine (ddKMODM) is used
as the sintering state recognition model, and the overall sintering state recognition accuracy
of the scheme is more than 92%.

In order to meet the requirements of deep learning on the number of training samples,
a rotary kiln recognition method combining transfer learning has emerged. In [10], the
author proposed an intelligent sensing model of flame image combustion condition based
on deep transfer learning. On the one hand, the adaptive structure convolutional neural
networks (ASCNN) were constructed by a self-optimizing adjustment mechanism. On
the other hand, stochastic configuration networks (SCN) with stochastic approximation
ability are constructed. Experimental results demonstrate the feasibility of the recognition
model. In [9], the author adopted the convolutional neural network VGG-16 model for
feature transfer, and trained and tested the flame images of different combustion states in
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the rotary kiln through the network so as to achieve the purpose of automatic identification
of combustion states. However, the application of deep learning in rotary kiln working
condition recognition still has great development potential.

3. Rotary Kiln Working Condition Recognition Based on Transfer Learning and
Attention Mechanism

The working conditions in rotary kilns are generally divided into three types: under-
burning state, normal-burning state and over-burning state. The flame brightness is low,
and the shiny area is small when it is under the “under-burning state”; the flame area
has uniform brightness when it is under the “normal-burning state”; the flame has a high
brightness and a large shiny area, and even exposure occurs, when it is under the “over-
burning state”. In order to extract useful information features and improve the recognition
accuracy of the working conditions, a method for identifying the working conditions of the
rotary kiln based on transfer learning and attention mechanism is proposed in the paper.

Figure 1 shows the workflow and methodology of our proposed work. It includes
five parts: A: Rotary kiln flame image dataset is prepared for inputs. B: The flame images
are preprocessed using bilateral filtering [22] and their resolution are improved through
super resolution generative adversarial network (SRGAN) [23]. C: The pre-trained model
of ResNet50 [24] is loaded for feature migration, and the coordinate attention module is
embedded in the fully connected layer of the network model to improve the weight of key
features in the network; its activation function Mish [25] is optimized to reduce the loss
of effective information. D: The optimal model is saved. E: The corresponding rotary kiln
working condition category is outputted.
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Figure 1. Workflow and methodology of rotary kiln working condition recognition model.

3.1. Image Preprocessing

The original rotary kiln flame image data is collected by the kiln head camera. In
order to make the image dataset better adapt to the recognition model, the flame images
need to be preprocessed. The comparison before and after image preprocessing is shown
in Figure 2. Firstly, the resolution of the flame images is improved to 224 × 224 by super
resolution generative adversarial network (SRGAN). The bilateral filtering is then used to
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refine the edge features of flame images due to the large similarity of flame features under
the three working conditions.
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Figure 2. Image preprocess and its effect.

SRGAN consists of a generator network and a discriminant network. The real images,
fake images and their corresponding labels are inputs to the discriminant network. The fake
images are generated by sending low-resolution images into the generator network, and
the authenticity of the input images is judged by the discriminant network through training.
The images are further trained by the generator network according to the discriminator’s
results. At the same time, the real high-resolution images and the fake high-resolution
images are sent to the VGG network by the generator to obtain the features of the two
kinds of images, and the loss is obtained by comparing them. The perceptual loss lSR

is used to improve the realism of the recovered images and their resolution, and retain
high-frequency details, which is beneficial to the identification of working conditions. The
perceptual loss lSR consists of the content loss lSR

MSE and the adversarial loss lSR
Gen.

lSR = lSR
MSE + 10−3lSR

Gen (1)

lSR
MSE =

1
r2WH

rW

∑
x=1

rH

∑
y=1

(
IHR
x,y − GθG

(
ILR

)
x,y

)2
(2)

where r is the amplification factor. W, H are the width and height of the images, respectively.
IHR is the high-resolution image and G and θG represent the generator network and
network parameters.

lSR
Gen = ∑−lnDθD

(
GθG

(
ILR

))
(3)

where ILR represents low resolution image, D represents discriminant network and θD is
discriminant network parameter.



Entropy 2022, 24, 1186 6 of 16

3.2. Transfer Learning

Transfer learning is an effective way to improve model performance when the number
of training data is insufficient, especially when small sample data size is used in network
models with complex structures and train difficulty [26].

Figure 3 shows the transfer learning approach. The basic network model is pre-trained
using ImageNet dataset, and the pre-trained model is obtained by learning a large number
of common underlying image features. However, as the ImageNet data set is not a special
flame image data set, on the basis of the training model of the flame image, recognition is
not targeted. Consequently, in the process of model training, the first step is to freeze the
model of the backbone network, and then the flame image sample is used to fine-tune and
train the model.
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Figure 3. Application of transfer learning during model training.

3.3. Coordinate Attention Module

The Coordinate Attention (CA) module [27] is a lightweight attention mechanism. The
location information is embedded into the channel attention to capture accurate location
information and areas of interest when it acquires the feature information between channels.
The specific structure of the CA module is shown in Figure 4.

The input feature map X uses the adaptive average pooling layer in the horizontal and
vertical directions to extract features for each feature channel, and the generated feature
maps are connected. Then, 1 × 1 convolution is used to generate the intermediate feature
map with vertical and horizontal spatial information, and the intermediate feature map
is divided into two feature maps along the spatial direction. Then 1 × 1 convolution
is used to transform the attention weights in vertical and horizontal spatial directions,
which are multiplied with the input feature map to obtain the feature map Y with the
attention weight.
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Figure 4. Coordinate attention module structure.

The CA module is introduced to improve ResNet50, and the location information is
embedded in the channel attention so that the network can obtain the feature information
between each channel, and improve the ability of the model to extract the key features of
the flame image.

The improved ResNet50 network is shown in Figure 5. Its input is a 3 × 224 × 224 flame
image, which first goes through the convolutional layers (Conv) and batch normalization
(BN). Next, is the max pooling after activation with the Mish function and is then passed
through the four residual modules of ResNet50 in turn. This process is simplified to Layer1
through Layer4. Then, the CA module is used for processing before the full connection
layer (fc), and finally the output, is obtained.
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4. Experiments
4.1. Dataset Description

The experimental data set came from the image acquisition of the on-site firing zone
of an industrial rotary kiln. The number of samples in each category is balanced, and the
labels are all calibrated by experts. As shown in Table 1, samples are divided into a training
set and test set for model training, and we only take 20% as the test set.

Table 1. Flame image samples.

Image Type Number of Training Samples Number of Test Samples

Under-burning state 279 69
Normal-burning state 281 69

Over-burning state 268 69

4.2. Experimental Setup

Pytorch architecture and GPU were adopted. An AdamW optimizer and cross-entropy
loss function were used. Frozen training was adopted, and the optimal model was auto-
matically saved according to the model performance on the test set during the training
process. The specific experimental parameter settings are shown in Table 2.

Table 2. Experimental parameters.

Experimental Parameters Number of Training Samples

Learning rate Freeze phase 1 × 10−3, Unfreeze phase 1 × 10−4

Batch size Freeze phase 32, Unfreeze phase 16
Epochs 100

In the experiment, the top-1 accuracy rate is used as the evaluation index of the overall
accuracy rate, and its calculation is shown as Equation (4).

top − 1 accuracy =
num

(
testpred = testture

)
num(test)

× 100% (4)

where testpred represents the classification results of the test set images judged by the model;

testture is the label category of the test set image; num
(

testpred = testture

)
is the number of

correctly recognized images; and num(test) is the total number of samples in the test set.
The top-1 accuracy rate is the percentage of the correct images identified in the test set, that
is the recognition effect of the model on the test dataset.

To measure the performance of each model, various parameters were considered, such
as precision, sensitivity, specificity and F1 score.

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

Precision =
TP

TP + FP
(7)

F1 Score =
(2 ∗ TP)

(2 ∗ TP + FN + FP)
(8)

In the multi-category identification task, each category was individually considered
“positive”, and all other categories were considered “negative”. For convenience of calcu-
lation, the prediction result is defined as positive, and the actual result is positive, which
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is represented by TP. If the predicted result is positive and the actual result is negative, it
is represented by FP. If the predicted result is negative, and the actual result is positive,
represented by FN. If the predicted result is negative, the actual result is negative, it is
denoted by TN.

Experiments and visual analysis were carried out to verify the proposed strategy. The
same rotary kiln flame image data set was used for training and testing. The pre-training
model was loaded to accelerate the convergence. During the first 10 epochs, the backbone
of the network was frozen for fine-tuning, and the backbone network was thawed in the
subsequent epochs.

4.3. Experimental Results

The experiment is divided into two parts. The first part is to compare ResNet50 with
different attention mechanism modules, including SE (Squeeze-and-Excitation) [28], CBAM
(Convolutional Block Attention Module) [29], ECA (Efficient Channel Attention) [30] and
CA module.

The training process of ResNet50 after adding different attention modules is shown in
Figure 6. It can be seen that the loss curves drop faster than ResNet50 after adding several
different attention modules and the top-1 accuracy of ResNet50 with different attention
modules except CBAM is better than that of ResNet50. The test results are shown in Table 3.
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Table 3. Different attention module performance comparison.

Settings Top-1 Acc (%) Params (M)

ResNet50 92.75 25.6
+SE 93.24 28.1

+CBAM 93.72 28.1
+ECA 94.20 25.6
+CA 94.69 28.5

To further explore the effectiveness of the attention module, the visualization tool
Gradient-weighted Class Activation Mapping (Grad-CAM) [31] was used to visualize the
feature extraction of the network. The higher the brightness of an area on the heatmap, the
higher the network pays attention to this area of the flame images. Different types of flame
images were input to CA-ResNet50 respectively, and the feature extraction in several stages
was obtained using Grad-CAM. The visualization results are shown in Figure 7.
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Figure 7. Grad-CAM visualization results of CA-ResNet50.

At the same time, a principal component analysis (PCA) is used to reduce the di-
mension of the test data features classified by CA-ResNet50. The two-dimensional space
mapping of the test data features on CA-ResNet50 is shown in Figure 8. Data features
of different categories are represented by dots of different colors in the figure. It can be
seen that the classification of different categories of data features is good, indicating the
feasibility of adding an attention module scheme to ResNet50.
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The second part is to compare the proposed model with different network models, in-
cluding AlexNet [32], VGG16 [33], MobileNetV2 [34], ResNet34 and Vision Transformer [35].
Their training process curves are shown in Figure 9.
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Figure 10 shows the training accuracy and loss of the proposed model.
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Figure 10. Proposed model training accuracy and loss.

As can be seen from the changes in the loss and accuracy of the training set and
validation set during model training in Figure 10, the loss of the training set and validation
set shows a downward trend. Combined with the performance of the proposed model in
accuracy, it is shown that the proposed model does not have the problem of overfitting.

In order to compare the performance of the above networks more comprehensively,
a confusion matrix is adopted to reflect the actual recognition of each working condition
category by different networks, as shown in Figure 11.
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Figure 11. Heatmaps of different models.

Figure 11 is the heatmaps of different models, which shows the total correct predic-
tions of the models from total test images. 175 images out of 207, 180 images out of 207,
183 images out of 207, 185 images out of 207, 188 images out of 207 and 199 images out of
207 are correctly predicted by ResNet34 model, AlexNet model, VGG16 model, MobileNet
V2 model, Vision Transformer model and the proposed model, respectively.

In Table 4, the details of the ResNet34 score are given. The score shows the precision,
sensitivity and specificity.
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Table 4. ResNet34 Precision, Sensitivity and Specificity.

Working Class Precision Sensitivity Specificity

Under-burning state 0.797 0.739 0.906
Normal-burning state 0.782 0.986 0.862

Over-burning state 1.0 0.812 1.0

Table 5 shows precision, sensitivity and specificity of AlexNet.

Table 5. Shows precision, sensitivity and specificity of AlexNet.

Working Class Precision Sensitivity Specificity

Under-burning state 0.784 0.841 0.884
Normal-burning state 0.863 1.0 0.920

Over-burning state 1.0 0.768 1.0

Table 6 shows precision, sensitivity and specificity of VGG16.

Table 6. Shows precision, sensitivity and specificity of VGG16.

Working Class Precision Sensitivity Specificity

Under-burning state 0.817 0.841 0.906
Normal-burning state 0.863 1.0 0.920

Over-burning state 1.0 0.812 1.0

Table 7 shows precision, sensitivity, and specificity of MobileNet V2.

Table 7. MobileNet V2 Precision, Sensitivity and Specificity.

Working Class Precision Sensitivity Specificity

Under-burning state 0.808 0.913 0.891
Normal-burning state 0.919 0.986 0.957

Over-burning state 0.982 0.783 0.993

Table 8 shows precision, sensitivity and specificity of Vision Transformer.

Table 8. Vision Transformer Precision, Sensitivity and Specificity.

Working Class Precision Sensitivity Specificity

Under-burning state 0.847 0.884 0.920
Normal-burning state 0.896 1.0 0.942

Over-burning state 1.0 0.841 1.0

Table 9 shows precision, sensitivity and specificity of Proposed Model.

Table 9. Proposed Model Precision, Sensitivity and Specificity.

Working Class Precision Sensitivity Specificity

Under-burning state 0.907 0.986 0.950
Normal-burning state 0.986 1.0 0.993

Over-burning state 1.0 0.899 1.0

Figure 12 shows the visualization results of the F1-score in various working conditions
on different models.
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Table 10 shows the top-1 accuracy, number of parameters and training time of different
models. Compared with other models, the proposed model has better accuracy and
performance. The proposed model achieves 96.14% accuracy, and the cost of training time
is also relatively small.

Table 10. Comparison of test results with different models.

Model Top-1 Acc (%) Params (M) Training Time (s)

ResNet 34 84.54 11.7 1569.56
AlexNet 86.47 61.1 2283.09
VGG16 88.89 138.4 3521.74

MobileNet V2 90.34 3.5 1668.15
Vision Transformer 94.20 86 2097.81

Proposed Model 96.14 28.5 1863.24

5. Discussion

The method proposed in this paper uses a deep learning model combined with
transfer learning and CA attention module to help extract key features of flame images
while reducing training costs. It can also be seen in Figure 6 and Table 3 that the addition
of the attention module improves the condition recognition ability of the model, indicating
that the addition of the attention module can effectively improve the ability of the network
to extract key features of flame images. As can be seen from the number of parameter
changes in the table, increasing the attention module will hardly increase the complexity of
the model, and improve the performance of the model at a small cost. Combined with the
visual analysis in Figure 7, it can be seen that the recognition model, after adding the CA
module, expands the range of feature areas through network learning and gradually finds
the important features that are conducive to distinguishing categories on the image. Then,
the attention module is used to improve the network’s attention to important features and
increase the corresponding feature weights.

According to the various evaluation indexes of different models in Figures 9–12 and
Tables 4–9, such as precision, sensitivity, specificity, heatmaps, and F1 score, it can be seen
that all networks have more misjudgments on the understanding of under-burning state
and over-burning state. This is because the flame of these two conditions is similar, and
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it is difficult to classify them. However, the model proposed in this paper has a good
ability to recognize the three types of working conditions. It can be seen from Table 10
that on the flame image dataset: ResNet34 achieves a top-1 accuracy of 84.54%; AlexNet
reached 86.47%; The top-1 accuracy of VGG16 and MobileNetV2 in the test set reaches
about 90%, but VGG16 has a large number of parameters and spends more time during
training process; Vision Transformer reached 94.20%, but the model structure is relatively
complex and the training takes up more resources, so it is difficult to converge.

The accuracy of the proposed model is 96.14%, and the recognition accuracy is slightly
higher than that of the Vision Transformer. However, the complexity of the model is low, the
running time takes up less resources and the training time cost is relatively small, indicating
that the proposed model has a better performance in the task of condition recognition.

6. Conclusions

A deep learning network model combining transfer learning and coordinate attention
mechanism for rotary kiln working condition recognition is proposed in this paper. Ex-
periment results show that using transfer learning for deep learning network models can
realize parameter sharing and feature transfer, speed up model convergence, reduce the
dependence of model training on sample data and solve the problem of small sample learn-
ing. The introduction of the coordinate attention mechanism can improve the weight of
key features and obtain accurate location information of the interest region. The improved
model is helpful to improve the accuracy of the working condition recognition of rotary
kilns. The limitations of the model are mainly the practical application of deployment
on mobile devices. In future work, it is hoped that the model can be further improved
by processing the flame image and reducing the size of the model. This will help with
deploying the model on mobile devices.
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