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Abstract: We present a comprehensive simulation study of the Newtonian and quantum model of
a Stern–Gerlach experiment with cold neutrons. By solving Newton’s equation of motion and the
time-dependent Pauli equation for a wide range of uniform magnetic field strengths, we scrutinize
the role of the latter for drawing the conclusion that the magnetic moment of the neutron is quantized.
We then demonstrate that a marginal modification of the Newtonian model suffices to construct,
without invoking any concept of quantum theory, an event-based subquantum model that eliminates
the shortcomings of the classical model and yields results that are in qualitative agreement with
experiment and quantum theory. In this event-by-event model, the intrinsic angular momentum can
take any value on the sphere, yet, for a sufficiently strong uniform magnetic field, the particle beam
splits in two, exactly as in experiment and in concert with quantum theory.

Keywords: Stern–Gerlach experiment; classical mechanics; quantum mechanics; event-by-event
simulation

1. Introduction

In 1922, O. Stern and W. Gerlach demonstrated experimentally that silver atoms
passing through an inhomogeneous magnetic field experience deflections in spatially
different, distinguishable directions. This observation was very important for the early
development of quantum theory for it provided direct experimental evidence that not only
the spectra of atoms but also the magnetic moment of the particles might be quantized [1–3].
The Stern–Gerlach (SG) experiment is often used in textbooks [4–7] to introduce the concepts
of spin and quantization of angular momentum and plays a prominent role in discussions
on determining properties of atomic size objects by means of macroscopic measuring
devices [8,9]. The SG experiment, and its conceptually equivalent experiment with single
photons passing through a birefringent crystal, are also used in textbooks to illustrate
postulates of quantum theory [4–7].

In short, an SG experiment involves a source of electrically neutral, magnetic particles,
collimators, a magnet generating an inhomogeneous field, and a particle detector; see
Figure 1 for a sketch of an SG with cold neutrons. Due to the interaction between the
magnetic moment of the particle and the inhomogeneous magnetic field, a particle passing
through the latter experiences a force that changes the trajectory of the particle. Note that
this reasoning is entirely Newtonian, no concept of quantum theory is entering yet.
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Figure 1. Diagram (not to scale) of a Stern–Gerlach experiment with cold neutrons, performed by
Hamelin et al. [10]. After passing through the collimators, most neutrons travel along the y-direction.
The cone indicates the directions in which the neutron may, but not necessarily have to, leave the
magnetic field region.

Assuming (i) uniformly random orientations of the magnetic moments leaving the
source and (ii) a sufficiently large uniform magnetic field, the standard classical picture of
the magnetic moment as a spinning top leads to the conclusion that there should be no
splitting of the beam [5]; however, under certain conditions [11], to be scrutinized in the
present paper, the SG magnet splits the particle beam in two, spatially well-separated direc-
tions, in agreement with the outcome of the SG experiment. As the amount of deflection is
proportional to the magnetic moment, an SG-like apparatus can be used to measure the
magnetic moment of nano-size particles [12,13].

As originally conceived, the SG experiment employs electrically neutral particles.
Obviously, this begs the question if it would be feasible to perform a similar experiment to
observe the spin of say, electrons [14–17] or ions [18]. Addressing this interesting question
is beyond the scope of the present paper, which focuses on the case of electrically neutral
particles only.

The deflection in spatially well-separated directions along the direction of the uniform
magnetic field is commonly regarded as an experimental proof that the magnetic moment
of the particles is quantized [1,2,4,5]. Labeling the distinct beams by a two-valued variable
s = ±1/2 and representing the beams by the corresponding state vectors forms the basis for
the well-known quantum-theoretical description of the idealized SG experiment [4–7,19,20].

The first aim of the present paper is primarily pedagogical in that we present, to
the best of our knowledge, the first comprehensive treatment of both the Newtonian and
quantum model of a real SG experiment. In order to touch base with a real SG experiment,
we have taken model parameters from an SG experiment performed with cold neutrons [10].
In this respect, there is little overlap with earlier numerical studies of the quantum model
of an SG experiment [21,22].

The second aim is to demonstrate that a minor modification to the classical, Newtonian
equations of motion in the spirit of the event-by-event simulation approach yields results
that (i) can be very different from those of the classical and (ii) are in full qualitative
agreement with SG experiments and with the quantum-theoretical description thereof. The
idea behind this modification is the following. As long as the particle does not experience a
magnetic field, the internal frame of reference used to define the direction of the magnetic
moment is detached from the laboratory frame of reference. This hold true in quantum
theory as well: in the absence of an electromagnetic field there is no relation between
the xyz-coordinates of the particle and xyz-components of the spin operator [7]. In the
event-based approach, a particle moving from a field-free region into a region where the
electromagnetic field is present is viewed as an event which establishes the relation between
the xyz-coordinates of the particle and xyz-components of the magnetic moment. This
event-triggered process of alignment may be thought of as a highly simplified model for
the classical electrodynamic transient processes that occur when a magnetic moment moves
through a region in which the magnetic field changes [23].

The paper is structured as follows. Section 2 describes the SG experiment with
neutrons [10] that we take as reference for our simulation work. In Sections 3 and 4, we
present and discuss the results obtained by solving Newton’s equation of motion and the
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time-dependent Pauli equation (TDPE), respectively. Adopting the parameters for the cold
neutrons SG experiment in combination with the macroscopic size of the experimental setup
requires the use of high-precision solvers and substantial computer resources. In Section 4,
we also discuss the transition from a description in terms of position and spin to a model
that involves spin-1/2 operators only. Section 5 introduces the modification to Newton’s
equation of motion that turns the classical model into a event-by-event, subquantum model
for the SG experiment, meaning that data generated by the latter exhibit the same features as
the data obtained by SG experiments and their quantum-theoretical description. Section 6
summarizes our findings.

2. Neutron Experiment

Figure 1 shows a schematic of the SG experiment with neutrons, as performed by
Hamelin et al. [10]. Cold neutrons leaving the neutron guide impinge on a collimator
positioned 0.2 m from the exit plane of the neutron guide. The selected neutrons impinge
on a second collimator, placed 1 m from the first one. The strongly collimated beam of
neutrons then passed through the SG magnet which is 0.8 m long. The distance between
the second collimator and the exit plane of the SG magnet is 0.9 m. The direction of the
neutrons leaving the SG magnet is selected by means of a meaning window. The distance
between the exit plane of the SG magnet and the 3He detector is 2 m.

In Figure 2 we present some of the results reported in Ref. [10]. Clearly, the SG magnet
causes the neutron beam to split in two well-defined beams, with their maxima of intensities
separated by about 6 mm. Note that the window (see Figure 1) in front of the detector
moves in the x-direction only.
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Figure 2. Neutron counts per 100 s as recorded in the SG experiment by Hamelin et al. [10]. The data
were extracted from Figure 6 of Ref. [10] by hand.

Looking at the experimental data presented in Figure 2, it is obvious that in order to
represent the spin state of a neutron by a two-valued variable, it is necessary to classify the
data points as belonging to one of two groups. As the two maxima of the counts are well
separated, simply drawing a vertical line at x = 0 suffices to classify the data points. Once
this classification is made, we can dispose of the spatial degree of freedom and describe the
process of spin-based filtering in terms of spin-1/2 matrices, a model that is often used in
textbooks [4–7].
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3. Newtonian Mechanics

The Hamiltonian describing the dynamics of a neutral, particle of mass m and magnetic
moment M subject to a time-independent magnetic field B = B(x) reads

H =
m
2

v2 −M · B(x) =
m
2

v2 − γ L · B(x) , (1)

where L is the angular momentum relative to the center of mass x of the particle, and γ is
the gyromagnetic ratio. Starting from Equation (1), the standard procedure to derive the
equations of motion yields,

m
dv
dt

= γ ∇ (B(x) · L) , (2)

dL
dt

= γ L× B(x) . (3)

The angular momentum L has the same dimension as h̄, namely
(
kg m2 s−1). In order to

facilitate the comparison with the quantum-theoretical description, it is expedient to define
L = h̄S where S = S(cos φ sin θ, sin φ sin θ, cos θ)T is a dimensionless vector. In terms of
this vector, the classical equations of motion read

m
h̄

dv
dt

= γ ∇ (B(x) · S) , (4)

dS
dt

= γ S× B(x) . (5)

Note that the presence of h̄ is the result of rewriting the classical equations of motion
in terms of a dimensionless angular momentum S and does not, in any way, imply that
Equations (4) and (5) describes quantum phenomena. The length S of the vector S does not
affect the solution of Equation (5) and needs to be fixed by comparison with the results of
the quantum-theoretical description; this is described in a later section of the paper.

3.1. Model for the Magnetic Field

Essential to an SG experiment is that the magnetic particles interact with an inho-
mogeneous magnetic field. Maxwell’s equation requires that ∇ · B(x) = 0. From the
Maxwell equation

∂E(x, t)
∂t

=
1

εµ
∇× B(x)− 1

ε
J(x, t) , (6)

where J(x, t), ε and µ represent the external current, the electrical permittivity, and magnetic
permeability, respectively. It follows that if ∇× B(x) 6= 0, the magnetic field would induce
a nonzero, time-dependent electric field E(x, t). The strength of this electric field would
increase linearly with time. Although this electric field would not affect the motion of the
electrically neutral particles, in our study, we only consider the case ∇× B(x) = 0.

A simple choice, complying with the conditions ∇ · B(x) = 0 and ∇× B(x) = 0 just
mentioned, is [11,21,22,24–26]

B(x) =

{
(B0 + zB1)ez − xB1ex , y ∈ [y0, y1]
0 , y 6∈ [y0, y1]

, (7)

that is, B(x) = 0 except when y0 ≤ y ≤ y1 where the strength of the field gradient in both
the x and z direction is B1 > 0 (we adopt the convention that B0, B1 ≥ 0). The term in
Equation (7) proportional to B0, the uniform magnetic field in the z-direction, describes
the contribution of the dipole field. The two terms in Equation (7) proportional to B1
are characteristic for the quadrupole contribution to the magnetic field. The values of
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B0 and B1 depend on the design of the magnet. In this paper, we regard B0 and B1 as
model parameters.

From Equation (7) it follows that for y ∈ [y0, y1], the force F(x) on the particle is
given by

F(x) = γ ∇ (B(x) · S) = γ B1(Szez − Sxex) , (8)

independent of x or z. For y 6∈ [y0, y1], the force F(x) on the particle is zero. As a function of
y, the simple model Equation (7) shows discontinuities at y = y0, y1. Instead of smoothing
out these discontinuities, we integrate the equations of motion in the interval y0 ≤ y ≤ y1
and assume that the velocity distribution at y = y1 is representative (up to trivial, free-
particle scale factors) for the velocity and position distributions at y� y1.

From Equation (8), it follows immediately that the velocity in the y-direction is con-
served. In this paper, we assume that all particles move with velocity vy along the y-
direction. The time it takes for the particles to traverse the magnetic field region is given by
t∗ = (y1 − y0)/vy.

Once a particle’s y-coordinate exceeds y1, its velocity v = (vx, vy, vz) is used to incre-
ment the histogram count at the transverse velocity coordinate (vx, vz) and the simulation
of that particle is terminated. The distribution of transverse velocities (vx, vz) does not
change if the particles leave the region where the magnetic field is present and is therefore
well-suited to analyze the data. The distribution of transverse positions (x, z) at any plane
located to the right of the SG (see Figure 1) is straightforwardly obtained from the distri-
bution of transverse velocities by using the fact that in the field-free region, the particles
propagate freely.

In this paper, we mainly present results for the distribution of the transverse veloc-
ities (vx, vz), obtained by classical, quantum-theoretical, and event-by-event simulation.
This distribution contains all information about the outcome of the simulated SG exper-
iment and facilitates the presentation of the simulation data in a compact, unified, and
convenient manner.

3.2. Analytically Solvable Cases

It is of interest to consider a special case that is easy to solve analytically. We take as
initial positions and velocities of the N particles x = (0, y0, 0) and v = (0, vy, 0), respectively,
and we only consider the case in which all particles have their initial magnetic moment
along the z-axis, i.e., S = S(0, 0,±1). Note that S× B(x = (0, y, z)) = 0 for any (y, z), see
Equation (7), implying that for x = (0, y, z), the torque on the spin is zero; therefore, the
direction of the spin does not change and the particles only feel a constant force in the
z-direction, see Equation (8). The trajectory is that of a particle in a constant force field, that
is vz(t) = ±h̄γB1St/m and z(t) = ±h̄γB1St2/2m for 0 ≤ t ≤ t∗.

Looking ahead, this simple scenario mimics the quantum-theoretical textbook case
(see Appendix D.2) and allows us to fix the magnitude of the classical magnetic moment S.
Indeed, the classical and quantum-theoretical expressions for the change in the velocity
due to the magnetic field gradients match if S = 1/2.

From the analysis of the analytically solvable, classical mechanical case, it follows that
the time of flight, the changes of transverse velocity and displacement are given by

t∗ =
y1 − y0

vy
, v∗ =

∣∣∣∣ h̄γB1

2m

∣∣∣∣t∗ , z∗ =
v∗t∗

2
, (9)

respectively. The three parameters Equation (9) characterize the state of the particles at
the point y = y1, that is when they leave the region where the magnetic field is present.
Again, looking ahead, the quantum-theoretical textbook case also yields Equation (9). We
use Equation (9) to set the scale of time, velocity, and position for both the classical and
quantum-theoretical model.
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The second solvable case is the one that is often referred to when comparing the
classical and quantum-theoretical picture of the magnetic moment.

If the uniform magnetic field is present (B0 > 0), a transformation to a frame rotating
with angular frequency γB0 removes the static field term −γB0Sz from the transformed
Hamiltonian at the cost of introducing time-dependent, sinusoidal terms in the equations
of motion. Then, the argument goes, if these sinusoidal terms oscillate sufficiently rapidly,
their effect on the motion averages out [6,11]. Although this argument holds for B0 → ∞, for
realistic values of B0 and B1, see Section 3.3, it does not. Only if the particle trajectories are
close to the region where the field gradient is small, the argument applies, see Appendix A.
When applied to the SG experiment with realistic values of B0 and B1, the above argument
is circular but self-consistent. The justification that the argument is valid comes from the
numerical solution presented in Section 3.5.

If we simply omit the x-component in Equations (7) and (8) (and thereby violate
one of Maxwell’s equations), we are left with the classical problem in which Sz does not
change with time and the particle is subject to a force F(x) = γ B1Szez (recall that B0 has
disappeared because of the transformation to the rotating frame). For the initial conditions
x = (0, y0, 0) and v = (0, vy, 0) we have vx(t∗) = 0, vz(t∗) = ±h̄γB1Szt∗/m, x(t∗) = 0, and
z(t∗) = ±h̄γB1Sz(t∗)2/2m. The expressions for final velocity vz(t∗) and position z(t∗) are
the same as those obtained in the first analytically solvable case. For each random choice of
S, Sz is a random number in the range [−1/2, 1/2] and the distribution of velocities is a
line at vx = 0, stretching from vz = −v∗ to vz = v∗. This is the expected outcome of the
Newtonian description of the SG experiment that is often referred to when comparing with
the quantum-theoretical prediction.

3.3. Model Parameters

We adopt the geometry of the experiment with neutrons, reported in Ref. [10]. The
region in which there is a nonzero gradient in the x-z directions is 0.8 m long [10], that
is y1 − y0 = 0.8 m. In the neutron experiment, the maximum gradient of the B-field is
estimated to be B1 = 300 T/m [10]. In the case of the SG experiment with silver atoms,
estimates range from B1 = 1 T/cm = 100 T/m to B1 = 20 T/cm = 2000 T/m [9,27].
In view of the uncertainties about the strength and precise form of the B-field gradients
in these experiments and taking into consideration that the simple form of the B-field
gradients used for our theoretical/simulation study is unlikely to hold to any of these
experiments, we will use B1 = 300 T/m in all our simulation work.

In the case of the experiment with neutrons we have [10,28]

m = 1.67× 10−27 kg , γ = −1.83× 108 T−1s−1 ,
|γB0| = 1.83× 108 s−1 , |γB1| = 5.50× 1010 m−1 s−1 ,
h̄B1/mB0 = 1.89× 10−5 m s−1 , h̄|γ|B1/m = 3.46× 103 m s−2 ,
vy = 395.6 m s−1 , t∗ = 2.02× 10−3 s ,
v∗ = 3.50 m s−1 , z∗ = 3.53× 10−3 m ,

(10)

where h̄ = 1.05× 10−34 kg m2 s−1 and we have taken as an example B0 = 1 T.
Assume, as we did in Section 3.2, that all particles have their initial magnetic mo-

ment along the z-axis, i.e., S = S(0, 0,±1). According to Equation (9), the particles cross
the plane at y = y1 at x = (0, y1,±v∗t∗/2) = (0, y1,±3.53 × 10−3 m) with a velocity
v = (0, vy,±3.50 m s−1). During the remaining free-particle flight to the detector screen,
the z-coordinate changes by ∆zscreen = ±3.50× 2 m/395.6 = ±17.7 mm. Thus, in traveling
from the source to the detector, the z-coordinate changes by ∆zsource−screen ≈ ±21.2 mm.
This is about a factor of 7 larger than the splitting observed in the neutron experiment [10];
see Figure 1. In view of the fact that the magnetic field Equation (7) is unlikely to result from
the real magnet used in the experiment [10], this order-of-magnitude agreement between
the beam-splittings at the screen is quite satisfactory.

As explained in Appendix D, solving the time-dependent Pauli equation for the
quantum-theoretical model with the set of parameters given by Equation (10) is computa-
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tionally very expensive. In order to speed up the development of the simulation software
and to generate simulation data for a case that is substantially different than that of neu-
trons, we have chosen to perform simulations with parameters taken from the original SG
experiment [9,27] except that instead of the value of magnetic moment of the silver atom,
we have taken the value of the magnetic moment of the Ag107 nucleus [29]. In the following,
we refer to this case as simulations with imaginary silver particles. The parameters are

m = 1.79× 10−25 kg , γ = −1.09× 107 T−1s−1 ,
|γB0| = 1.09× 107 s−1 , |γB1| = 3.26× 109 m−1 s−1 ,
h̄B1/mB0 = 1.76× 10−7 m s−1 , h̄|γ|B1/m = 1.91 m s−2 ,
vy = 540 m s−1 , t∗ = 1.48× 10−3 s ,
v∗ = 1.42× 10−3 m s−1 , z∗ = 1.05× 10−6 m ,

(11)

where again, we have taken as an example B0 = 1 T.

3.4. Numerical Solution of Equation (3)

In practice, we solve the system Equation (3) by a combination of the exact integration
of the torque equation Equation (5) and the velocity-Verlet method as used in molecular
dynamics [30]. Appendix B gives the details of the algorithm that we use.

Unless mentioned explicitly, the model parameters for all our classical simulations are
B1 = 300 T/m. Numerical experiments show that the simulation results show insignificant
quantitative changes if we decrease the time step from τ = 10−8 s to τ = 10−9 s. We use
the latter to compute the data that we present in this paper.

Solving Equation (3) for N = 1,000,000 particles with a time step of τ = 10−9 s takes
of the order of hundred minutes on a compute node with two 24-cores Intel Xeon Platinum
8168 CPUs running at 2.7 GHz. We only present data that are essential for the comparison
of the classical and quantum description of an SG experiment.

3.5. Newtonian Dynamics: Simulation Results for Neutrons

In this section, we focus on the SG with neutrons [10]. Repeating the simulations with
the particle parameters of imaginary silver particles (see Equation (11) yields data, some of
which are presented in Figure 3 and Appendix C, that leads to the same general conclusions.

To allow for a spreading of the particle beam entering the magnet, the distance from
the source to the magnet y0 = 1 m, similar to the distance between the rightmost colli-
mator and the magnet in the neutron experiment [10]. The length of the magnet in the
y-direction y1 − y0 = 0.8 m [10]. The distance from the magnet to the detection screen is
taken to be zero because the motion of the particle is that of a free particle with velocity
v = (∆vx, vy, ∆vz) where ∆vx and ∆vz are the changes of the transverse velocities due to
the magnetic field gradients.

As the particles leave the source, the positions and velocities are normally distributed,
centered around x = (0, 0, 0) and v = (0, vy, 0) and with variances σx and σv, respectively.
Unless mentioned explicitly, σx = σv = 0.

The simulation reproduces the analytically obtained results if the initial positions and
velocities are x = (0, y0, 0) and v = (0, vy, 0), respectively, and the initial magnetic moments
are aligned along the z-axis, i.e., S = (0, 0,±1)/2. The results are in excellent agreement
with those obtained by solving the problem analytically and are, therefore, not shown.

Next, we assume that the direction of the magnetic moment, represented by the
three-dimensional spin vector S, is uniformly distributed over the sphere. In different
words, there is maximum uncertainty about the directions of magnetic moments of the
neutrons emerging from the neutron guide (see Figure 1). With this initial condition of
S, the transverse velocity distribution changes drastically as the strength of the uniform
magnetic field decreases from rather strong (B0 = 1 T) to very weak (B0 ≈ 0 T), as illustrated
in Figure 3a–f.
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Figure 3. Histograms of the transverse velocity distribution obtained by the solving the classical
equations of motion Equation (3) with the initial magnetic moments distributed randomly (see
text) and for different values of the uniform magnetic field B0. (a) B0 = 1 T; (b) B0 = 0.1 T;
(c) B0 = 0.01 T; (d) B0 = 0.001 T, hard to see but looks similar to a projection of an elongated pacifier;
(e) B0 = 0.0001 T; (f) B0 = 0.00001 T.

From Figure 3a, it follows that a uniform magnetic field of B0 = 1 T is sufficiently
strong to suppress the effect of the x-component of the magnetic field. Because the spins S
of different particles are distributed uniformly over the sphere of radius S = 1/2, the final
distribution of velocities is a strip at vx ≈ 0, stretching from vz = −v∗ to vz = v∗. This is
exactly as expected [1,3–7] on the basis of the arguments discussed in Section 3.2.

Figure 3b–e demonstrate that the transverse velocity distribution changes drastically
each time we reduce B0 by an order of magnitude. Analytically predicting any of particular
shapes shown in Figure 3c–e seems to be a daunting task.

For B0 = 0, any rotation of the (x, z) coordinates about the y-axis together with the
corresponding inverse rotation of the spin leaves the Hamiltonian invariant. As the initial
values of (Sx, Sz) are distributed uniformly over a circle it follows that the maxima of
the transverse velocity distribution are expected to trace out a circle in the vx-vz plane, in
agreement with Figure 3f.
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Figure 4 shows data for the case B0 = 0. The transverse velocity distribution looks
very similar to the one shown in Figure 3f. In the neutron experiment [10], the neutrons
that have passed through the SG magnet are selected by means of a narrow window that
moves in one direction (say the x direction) only. The recorded neutron counts, plotted
as a function of x, show two, very well-separated maxima (see Figure 2). In analogy with
the experimental procedure, we compute the one-dimensional, x-dependent distribution
by integrating the histogram shown in Figure 4a for vz ∈ [−v∗, v∗]/100. This procedure
is the computational equivalent of the moving window used in the neutron experiment.
The resulting x-dependent distribution is displayed in Figure 4b. This projected transverse
velocity consists of two very well-separated distributions. Figure 4b strongly suggests that
the presence of a magnetic field gradient causes the incident beam of particles to split into
two well-defined beams.
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Figure 4. (a) Histogram of the transverse velocity distribution obtained by solving the classical
equations of motion Equation (3) for B0 = 0, with the initial magnetic moments distributed randomly
(see text). (b) Distribution of the number of particles obtained by integrating the histogram shown in
(a) for vz ∈ [−v∗, v∗]/100, as indicated by the gray dashed line in (a).

In Figure 5, we present the corresponding data for three spin components Sx, Sy, and
Sz, obtained by averaging the respective values for vz ∈ [−v∗, v∗]/100 (Figure 5a) and
vx ∈ [−v∗, v∗]/100 (Figure 5b), respectively. Both figures clearly show that the presence of
the magnet field gradient causes the initially randomly oriented spins S to preferably align
along the direction of transverse propagation.

Figure 5. Histogram of the average of the three spin components in the transverse velocity distri-
bution obtained by solving the classical equations of motion Equation (3) with the initial magnetic
moments distributed randomly (see text). (a) Average calculated by integrating the spin data for
vz ∈ [−v∗, v∗]/100. (b) Average calculated by integrating the spin data for vx ∈ [−v∗, v∗]/100.

More specifically, focusing on the peaks at vz/v∗ = ±1 in Figure 5b, we find that
the particles with Sz ≈ 1/2 (and Sx ≈ 0, Sy ≈ 0) acquired a negative transverse velocity,
whereas those with Sz ≈ −1/2 (and Sx ≈ 0, Sy ≈ 0) acquired a positive transverse
velocity, in qualitative agreement with the quantum-theoretical description (see Section 4.1).
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Similarly, looking at Figure 5a, we conclude that particles with Sx ≈ 1/2,−1/2 (and Sy ≈ 0,
Sz ≈ 0) acquired a positive (negative) transverse velocity, also in qualitative agreement
with the quantum-theoretical description (see Section 4.1). The fact that for the x-direction,
positive and negative are interchanged with respect to the case of the z-direction is a direct
consequence of the different signs of the corresponding components of the magnetic field
(see Equation (8)).

Viewed along one direction, e.g., the z-direction, there are two well-separated beams,
each of which has a well-defined magnetization. Thus, in the absence of the uniform
magnetic field (B0 = 0), the classical Newtonian model yields a one-dimensional profile that
displays all signatures of the “quantization of the magnetic moment”. Or, put differently,
unless the uniform magnetic field B0 is sufficiently strong, the classical Newtonian model
predicts “quantization of the magnetic moment” in any direction.

For completeness, Figure 6 shows how a spread in the initial transverse velocities
affects the final transverse velocity distribution for B0 = 0. Clearly, the main features
displayed in Figure 4 are prominently present.
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Figure 6. (a) Same as Figure 4a except that as the particles depart from the source, the variance of the
transverse velocity σv = 0.28v∗. (b) Distribution of the number of particles obtained by integrating
the histogram shown in (a) for vz ∈ [−v∗, v∗]/100. The distribution obtained by integrating the same
histogram for vx ∈ [−v∗, v∗]/100 looks identical and is therefore not shown.

Finally, Figure 7 shows that performing the classical simulation using model param-
eters appropriate for imaginary silver particles instead of neutrons does not change the
qualitative features of the transverse velocity distribution. Compared to neutrons (see
Figure 4b), the main difference is that the transverse velocity distribution is more spread
out over the circle with radius v∗ (see Figure 7b)
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Figure 7. Same as Figure 4 except that the parameters for neutrons have been replaced by the
parameters for imaginary silver particles.
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4. Quantum-Theoretical Model

The Hamiltonian describing a neutral, spin-1/2 particle of mass m subject to a time-
independent magnetic field B = B(x) reads

H =
1

2m
p2 − h̄γ

2
B(x) · σ , (12)

where p = (px, py, pz) = −ih̄∇ are the momentum operators, σ = (σx, σy, σz) are the
three Pauli matrices and γ is the gyromagnetic ratio. The magnetic field B(x) is given by
Equation (7).

From Equations (7) and (12), it follows immediately that [py, H] = 0, that is, the
momentum in the y-direction is conserved. In other words, the motion of the particles in
the y-direction is that of a free particle; therefore, in the region where the magnetic field is
nonzero, the quantum-theoretical problem effectively amounts to solving the TDPE

i
∂

∂t
|Ψ(t)〉 =

[
− h̄

2m

(
∂2

∂x2 +
∂2

∂z2

)
− γB0

2
σz − γB1

2
zσz +

γB1

2
xσx

]
|Ψ(t)〉 , (13)

for the two-component spinor

〈x, z|Ψ(t)〉 =
(

Ψ+1(x, z, t)
Ψ−1(x, z, t)

)
, (14)

where the subscript s = ±1 refers to the eigenvalues s of the σz operator.
In Appendix D, we discuss the details of the analytical and numerical tools we use to

solve Equation (13).

4.1. Quantum Theory: Simulation Results

Figure 8 shows the transverse velocity distribution |〈x, z|Φ(t∗/10)〉|2 obtained by
solving the TDPE Equation (A24) for various strengths of the uniform magnetic field and
up to the time t∗/10 at which, in the Newtonian model, the neutrons would have left the
region in which the magnetic field is present.

For a sufficiently strong uniform magnetic field, e.g., B0 = 1 T, the transverse velocity
distribution is bimodal with well-separated maxima at vz ≈ ±v0; see Figure 8a. The SG
magnet then functions as an (almost perfect) filtering device, yielding particle beams which
may be labeled by the eigenvalues of the σz Pauli matrix.

We wrote may because a meaningful assignment in terms of the eigenvalues σz requires
that if we send the beam of particles through a second SG magnet with its strong uniform
magnetic field along the z-axis, the particles should emerge in one and the same beam only.

More generally, if we use a filter device to label different outcomes, subsequent
repeated filtering by identical devices should leave the labeling intact [31]. If it does not,
the original assignment is useless.

Thus, to verify that an SG magnet with its strong uniform magnetic field along the
z-axis acts as a spin-filtering device, we repeat the simulation with B0 = 1 T and initial spin
state | ↑〉. The resulting transverse velocity distribution is the same as the one in Figure 8a
with the top spot removed (image not shown). Thus, with a strong static field B0, the SG
magnet indeed acts as an ideal filtering device.

In the quantum-theoretical treatment, the spin is quantized by construction; therefore,
the observed splitting of the beam cannot be regarded as evidence for the quantization
of the spin; however, for large B0, the quantized spin model shows that the SG magnet
splits the beam (in agreement with experiment) whereas the Newtonian model does not (in
disagreement with experiment), exposing a fundamental shortcoming of the latter.
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Figure 8. Probability distribution |〈vx, vz|Φ(t∗/10)〉|2 (v0 = v∗/10) obtained by solving the TDPE
Equation (A24) with the initial state given by Equation (A27). Initially, the (dimensionless) variance
σ = 0.1 and the spin state is (| ↑〉 + | ↓〉)/

√
2. (a) B0 = 1 T; (b) B0 = 0.1 T; (c) B0 = 0.01 T;

(d) B0 = 0.001 T; (e) B0 = 0.0001 T; (f) B0 = 0.00001 T.

As in the classical case (see Figure 3a–f), the transverse velocity distribution changes
drastically with each reduction of B0 by an order of magnitude; see Figure 8a–f. The
distributions for large (Figure 8a,b) and small (Figure 8e,f) values of the uniform magnetic
field B0 are robust to changes of B0 but for intermediate values of B0 (Figure 8c,d), it is hard
to predict the distribution. The distributions shown in Figure 8e,f look very similar to their
classical counterparts shown in Figure 3e,f but differ in the details.

Maxwell’s equation dictates that (with our choice of the frame of reference) the Hamil-
tonian of an SG experiment should contain terms in both γσxB1 and γσzB1, which implies
that the magnetization (in any direction) is not conserved. Therefore, unless B0 → ∞, the
eigenvalues of σz cannot be used to label the eigenstates of the Hamiltonian. In other words,
there are situations, choices of the model parameters, for which the SG magnet cannot be
used to define the quantization direction of the spin [21,22].

We study this aspect by solving the TDPE for the initial state given by Equation (A27)
with θ = α = 0, that is for the initial spin states | ↑〉 and | ↓〉 and B0 = 0. The transverse
velocity distributions are shown in Figure 9a,b. If the initial spin state is | ↑〉 (| ↓〉), the wave
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packet dominantly propagates along the −z-direction and +z-direction; see Figure 9a,b,
respectively. The term γσxB1 causes both components of the wave function to spread in
all directions, producing the sickle-like shapes in Figure 9a,b. Not surprisingly, the sum of
Figure 9a,b yields an image that looks very much like Figure 8f.

Figure 9. (a) Probability distribution |〈vx, vz|Φ(t∗/10)〉|2 (v0 = v∗/10) of the transverse velocity dis-
tribution obtained by solving the TDPE Equation (A24) with the initial state given by Equation (A27)
and B0 = 0. Initially, the (dimensionless) variance σ = 0.1 and the spin state is | ↑〉. (b) Same as (a)
except that the initial spin state is | ↓〉.

Figure 10a,b shows the corresponding probability distributions for the | ↑〉 and | ↓〉
components of the wave function, projected onto the z = 0 and x = 0 axis, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

p
(v

x
 /
 v

0
)

vx / v0

(a) u
d

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

p
(v

z
 /
 v

0
)

vz / v0

(b) u
d

Figure 10. (a) One-dimensional probability distributions p(vx) = |Φ+1(vx, vz = 0, t∗/10)|2 (u,
solid line) and p(vx) = |Φ−1(vx, vz = 0, t∗/10)|2 (d, dotted line), extracted from the data shown
in Figure 9a. Except for |vx/v0| ≤ 0.2, the difference between two distributions is too small to be
visible in the plot. (b) One-dimensional probability distributions p(vz) = |Φ+1(vx = 0, vz, t∗/10)|2

(u, solid line) and p(vz) = |Φ−1(vx = 0, vz, t∗/10)|2 (d, dotted line), extracted from the data shown
in Figure 9a. The probability distributions |Φ−1(vx = 0, vz, t∗/10)|2 is too small to be visible in the
plot. Except for |vx/v0| ≤ 0.2, the difference between two distributions is too small to be visible in
the plot. For presentation purposes, each distribution is normalized such that its maximum is one.
As in Figure 9, v0 = v∗/10.

If, in an experiment such as the one with cold neutrons [10], one would only count
particles by moving a narrow window along the x-direction, the distribution shown in
Figure 10a would lead us to conclude that the SG magnet has split the beam into parts.
On the other hand, measuring with a moving window along the z-direction yields the
distribution shown in Figure 10b, which forces us to conclude that only the | ↓〉 component
is present in the outgoing beam. Indeed, the intensity of the | ↑〉 component is several
orders of magnitude smaller than the one of the | ↓〉 component. For B0 & 0, the SG magnet
does not act as a spin filter.
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It may be of interest to note that if an SG magnet is used to measure the magnetic
moment to, e.g., atomic clusters [13], the value of B0 does not matter much. The positions
of the peaks in the one-dimensional distributions, which are the same for large and zero
uniform magnetic field B0, suffice to determine the value of the magnetic moment.

4.2. Quantum Theory: Simplified Model

The TDPE Equation (13), with the term in σx removed, is an excellent approximation to
the full TDPE Equation (13) if the uniform magnetic field is strong enough, e.g., if B0 = 1 T.
Then, we may also replace σz by σ · b where b = B/‖B‖ is the unit vector parallel to
the strong, uniform magnetic field, because (i) the eigenvalues of σ · b are the same as
those of σz and (ii) only the eigenvalues enter in the spin part of the simplified TDPE. By
introducing b, the latter can describe situations in which the strong uniform magnetic field
can take any orientation, as long as it is approximately perpendicular to the y-direction
(otherwise the argument to remove the σx term may break down).

We can now simplify the description further. Because of the one-to-one correspondence
between the eigenvalue of σ · b and the change in the transverse velocity of the outgoing
particles, we may dispose of the description of the translational degrees of freedom entirely
and represent the operation of the SG apparatus by the projection operator [7]

M(b) =
1 + σ · b

2
, (15)

acting on the spin state |ψ〉 = a↑| ↑〉+ a↓| ↓〉 only. The probability to observe a particle in
the beam labeled by sb = ±1, one of the two eigenvalues of b · σ, is given by

P(sb|ξ) = 〈ψ|M(b)|ψ〉 = 1 + sb cos ξ

2
=


cos2 ξ

2 , sb = +1

sin2 ξ
2 , sb = −1

, (16)

where cos ξ = s · b and s = 〈ψ|σ|ψ〉. The last expression in Equation (16) is reminiscent of
Malus’ law for the intensity of polarized light passing through a polarizer.

The projector equation (Equation (15)) and the probability equation (Equation (16))
describe the operation of the SG apparatus in terms of the spin-degree of freedom only. This
simplified model is often used in textbooks to elucidate quantum measurement theory [5–7].
We stress that Equation (16) does not apply to the case of a weak uniform magnetic field.

Solving the TDPE Equation (13) for B0 = 1 T and for the initial states Equation (A27)
with θ = 0, π/6, π/4, π/3 and α = θ/2 yields the expected bimodal shape of the transverse
velocity distributions (data not shown). The total probabilities for vz < 0 and vz > 0 are in
excellent agreement with the prediction based on Equation (16).

5. Event-by-Event Simulation

From the comparison of Figure 3a with Figure 8a and also of Figure A1a with
Figure A2b, it is immediately clear that the transverse velocity distributions are very differ-
ent if B0 = 1 T. For B0 = 0, there is no qualitative difference between the Newtonian and
quantum-theoretical results.

The qualitative difference between the Newtonian and quantum-theoretical prediction
in the case of a large uniform magnetic field has been decisive to eliminate the former
as a description of the experimental observations [1–3]; however, that does not imply
that quantum theory is the only viable description of experiments in which the frequency
distribution of detection events is built up one-by-one, such as in the SG experiment.

From this broader perspective, the fundamental question to be answered is “is it
possible to construct a process that generates event-by-event and without using knowledge
about the final distribution of events, frequency distributions that are commonly thought to
be a signature of wave interference, two-particle entanglement, uncertainty, etc.” This ques-
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tion is answered in the affirmative by the event-by-event simulation approach developed
in Refs. [32–43].

In the case at hand, the conceptually interesting question is whether it is possible
to retain a picture of the SG experiment in which individual particles follow trajectories
while, in contrast to the Newtonian results, the transverse velocity distribution exhibits
two well-separated maxima along the line defined by the direction of the strong static field
(the z direction in our case).

Remarkably, a marginal modification of Newton’s equation of motion suffices to
answer this question affirmatively. The modification consists of replacing step

4. If y ∈ [y0, y1] set F = γ B1Szez − γ B1Sxex,

in which the force F is being calculated (see Appendix B for details) by the rules

4. If y ∈ [y0, y1]: the first time that the event ‖B(x)‖ > 0 occurs, that is when the particle
enters the region where ‖B(x)‖ > 0, use Equation (16) with s = S to align the vector
S along the magnetic field sbB(x) and compute F = γ B1Szez − γ B1Sxex.

In detail, if r ≤ S · B(x)/‖B‖ set S = B/2‖B‖, otherwise set S = −B/2‖B‖. Here r is
a uniform (pseudo) random number in the range [−1/2, 1/2] (which changes each time
before it is used). With the new S, compute F = γ B1Szez − γ B1Sxex. For each particle, the
alignment of S is carried out only once.

One might try to argue that because the event-by-event model makes use of Equation (16),
it implicitly “knows” about quantum theory; however, probabilistic laws such as
Equation (16) also follow from the application of logical-inference [19,44] to the mod-
eling of event-based processes. This approach yields Equation (16) directly, without any
reference to quantum-theoretical concepts.

In short, the key idea of the logical inference approach is that “good” physics experi-
ments must yield reproducible frequency distributions which are robust, meaning do not
change much, if the conditions under which the data was taken changes a little [44]. In
the case at hand, the frequency distribution consists of the average numbers of +1 and −1
events and ξ = arccos(2S · B(x)/‖B‖) represents the condition [44]. Expressing the key
idea mathematically leads to the requirement that the Fisher information

IF(ξ) = ∑
x=±1

1
p(x|ξ)

(
∂p(x|ξ)

∂ξ

)2

> 0 , (17)

for the probability p(x|ξ) to observe the event x = ±1 under the condition ξ must be
independent of ξ and minimal [44]. After some elementary algebra, we find that the
solution of this optimization problem reads [44]

p(x|ξ) =
1± x cos ξ

2
, (18)

where the ± sign reflects the ambiguity in assigning +1 or −1 to one of the directions.
Quantum theory postulates Equation (16) (through the Born rule) whereas the logical
inference approach allows us to derive Equation (16) without making reference to a concept
of quantum theory. Thus, the argument that the event-by-event algorithm implicitly refers
to quantum theory does not hold.

Moreover, the modification does not change the vector character of S. In the event-by-
event model, S can take any value on the sphere of radius 1/2, there is no wave function,
there are no Pauli spin matrices, there simply is no element of quantum theory in the
event-by-event model.

Figure 11a demonstrates that the event-based model produces a bimodal transverse
velocity distribution, in qualitative agreement with the solution of the TDPE Equation (13).
Clearly, the minor modification to Newton’s equation has a tremendous impact on the
trajectories of the particles. For B0 ≈ 0, the event-by-event simulations yields the circular
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distribution; see Figure 11e,f, in qualitative agreement with both the Newtonian and
quantum-theoretical description.

Figure 11. Histograms of the transverse velocity distribution obtained by event-by-event simulation.
The classical equations of motion (Equation (3)) are modified to include a one-time projection of the
spin vector S along the direction of the magnetic field using the procedure described in the text. The
initial magnetic moments of the particles are distributed randomly. The variance of the transverse
velocity σv = 0.014v∗. (a) B0 = 1 T; (b) B0 = 0.1 T; (c) B0 = 0.01 T; (d) B0 = 0.001 T; (e) B0 = 0.0001 T;
(f) B0 = 0.00001 T.

As a further check, we perform event-by-event simulations for B0 = 1 T and take
as initial spin vector S = (cos φ sin θ, sin φ sin θ, cos θ)T/2 for θ = 0, π/6, π/4, π/3, π/2,
2π/3, 3π/4, 5π/6, π and φ uniformly random from the interval [0, 2π] (data not shown).
The total probabilities for vz < 0 and vz > 0 are in excellent agreement with Equation (16),
that is with quantum theory.

6. Conclusions

In all our simulations, the strength of the magnetic field gradient was fixed and tuned
to the case of an SG experiment with cold neutrons [10] while the strength of the uniform
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component of the magnetic field was varied. The simulation data for imaginary silver
particles instead of neutrons show the same qualitative features.

In Table 1, we collect the most essential features of the results for the transverse velocity
distribution obtained from the simulation of three different models of the SG experiment.
Thereby, we have omitted many of the computational details mentioned earlier and limit
the discussion to the two extreme cases of a strong and zero uniform magnetic field.

Table 1. Overview of the shapes of the transverse velocity distributions obtained by computer
simulation of three different descriptions of the SG experiment with cold neutrons.

B0 = 0 B0 = 1 T

Experiment ??? two spots (Figure 2)
Newton circular (Figure 3f) one stripe (Figure 3a)

Quantum theory circular (Figure 8f) two spots (Figure 8a)
Event-by-event circular (Figure 11f) two spots (Figure 11a)

The first three rows of the last column in Table 1 express what is known since the
original SG experiment was performed, namely that Newtonian mechanics cannot explain
the observed splitting of the particle beam [1,3–7] if the uniform magnetic field component
is sufficiently large. It is exactly under this last condition that the quantum-theoretical
textbook model provides an accurate description of the time evolution of the probability
distribution while the Newtonian model does not.

However, we have also shown that a minor modification to Newton’s equations of
motion yields results that are in line with the experimental observation and quantum
theory. In this event-by-event simulation approach, the spin is described in terms of a
three-dimensional vector, not in terms of Pauli matrices.

If the strength of the uniform magnetic field B0 gradually decreases, then, for any of
the three models, the changes in the transverse velocity distribution become hard to predict
analytically, unless the effect of B0 becomes negligible. Indeed, for B0 = 0 a symmetry
argument can be used to understand why the calculated transverse velocity distribution
shows a circular structure, see column two of Table 1.

However, also the case B0 & 0 poses some interesting interpretational issues, depend-
ing on how the distribution of particles is measured. If, as in the neutron experiment [10],
one only records the distribution along a particular direction, the Newtonian model also
yields a bimodal distribution. Without additional data, the bimodality would (erroneously,
see Section 4.1) imply that the two beams can be labeled by the spin quantum number.

From a general perspective, quantization (not to be confused with results from quan-
tum theory) is the process of classifying empirical data into groups and attaching discrete
labels to these groups. As mentioned at the end of Section 2, in the specific case of the
neutron experiment it is clear that quantization is the result of classification, putting data
points in two groups; see Figure 2. Once this “operation” has been carried out, the com-
pressed, new data are “quantized”. In our view, quantum theory provides a powerful
mathematical framework to describe such “quantized data”. Within quantum theory, the
spin is quantized by definition/construction. If the “quantized” form of the empirical
data is described well in terms of a quantum spin model, then that is a great achievement;
however, this success does not necessarily justify the conclusion that “quantization” is a
property/attribute of the phenomenon that gave rise to the empirical data. In our view,
drawing this conclusion mixes up the phenomenon that gave rise to the empirical data
with a quantum model of it.

On the basis of SG experiments that have been performed to date, it is not possible
to distinguish between the quantum-theoretical and event-by-event model. New, high-
precision experiments are needed to rule out the latter and to allow for a quantitative
comparison between experimental and simulation data.

Furthermore, it would be of interest to perform an SG experiment in which the
uniform magnetic field is weak enough to render the description textbook model invalid.
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For instance, an experiment with neutrons passing through a quadrupole magnet with
a large field gradient would allow a direct comparison with our simulations (which, if
needed, can easily be adapted to other field configurations).
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Appendix A. Large Static Field B0

In the following, we assume that the particle is inside the region where the magnetic
field B = (−xB1, 0, γB0 + zB1)

T is present. Written out explicitly, the torque equation for
the spin reads

dSx(t)
dt

= −γ(B0 + zB1)Sy(t) , (A1a)

dSy(t)
dt

= γ(B0 + zB1)Sx(t) + γxB1Sz(t) , (A1b)

dSz(t)
dt

= −γxB1Sx(t) . (A1c)

Next, we only consider classical particles that follow trajectories for which |x(t)B1| � B0
and |z(t)B1| � B0. For example, if, as in our simulations, we choose B0 = 1 T and
B1 = 300 T/m, we require trajectories that satisfy |x(t)| � 3 mm and |z(t)| � 3 mm which,
from the neutron experiment point of view is not unreasonable. Under these conditions,
we may ignore the terms in B1 in Equations (A1a) and (A1b) and we obtain

Sx(t) = Sx(0) cos γB0t− Sy(0) sin γB0t . (A2)

Substituting Equation (A2) into the equation of motion

dvx(t)
dt

= − h̄γB1

m
Sx(t) , (A3)

and integrating over time gives

vx(t) = vx(0) + βSx(0) sin γB0t− βSy(0)(1− cos γB0t) , (A4)

where β = h̄B1/mB0. Integrating Equation (A4) over time once more results in

x(t) = x(0) + vx(0)t− βSy(0)t + β′Sx(0)(1− cos γB0t) + β′Sy(0) sin γB0t , (A5)

where β′ = β/γB0.
In the case of neutrons and for B0 = 1 T and B1 = 300 T/m we have β ≈ 2× 10−5 m/s

and β′ ≈ 10−13 m and it follows immediately from Equation (A5) that the motion of the
spin has a negligible effect on the motion of the particles in the x-direction.

www.gauss-centre.eu
www.gauss-centre.eu
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On the other hand, under the same conditions, it follows from Equations (A1c) and (A2)
that Sz(t) ≈ Sz(0) and the equation of motion for the z-component of the velocity becomes

dvz(t)
dt

=
h̄γB1

m
Sz(0) , (A6)

yielding

vz(t) = vz(0) +
h̄γB1

m
Sz(0)t . (A7)

In our simulations, Sz(0) is a uniform random number in the range [−1/2,+1/2]. Therefore,
if vz(0) = 0, the values of vz(t∗) are also uniformly distributed over the interval [−v∗,+v∗].

Clearly, these elementary calculations yield results which are in excellent agreement
with the simulation data for B0 = 1 T.

Appendix B. Numerical Solution of Equation (3)

For any time step τ, Equation (5) can be solved in closed form. In terms of the three
components of the spin vector S, we have

S(t + τ) =

 Sx(t + τ)
Sy(t + τ)
Sz(t + τ)

 = R(τ)

 Sx(t)
Sy(t)
Sz(t)

 = R(τ)S(t) , (A8)

where

R(τ) =

 u2 + v2C + w2C uv− uvC + wS uw− uwC− vS
uv− uvC− wS v2 + u2C + w2C vw− vwC + uS
uw− uwC + vS vw− vwC− uS w2 + u2C + v2C

 , (A9)

where u = γBx/Ω, v = γBy/Ω and w = γBz/Ω, C = cos(τΩ), S = sin(τΩ) and
Ω = |γ|(B2

x + B2
y + B2

z)
1/2. The matrix R(τ) is orthogonal, implying that the integration

scheme does not change the length of S.
We integrate the equations of motion Equation (3) using the velocity-Verlet algo-

rithm [30]. Initially, the positions and velocities are normally distributed, centered around
x = (0, 0, 0) and v = (0, vy, 0) and with variances σx and σv, respectively.

We only consider the case 0 < y0 < y1 and y0 ≤ y ≤ y1. According to Equation (8), at
t = 0, the force F(x, t = 0) = 0. We choose a time step τ and repeat steps 1 to 5:

1. v← v + τF/2m,
2. x← x + τv,
3. S← R(τ)S
4. F = γ B1Szez − γ B1Sxex,
5. v← v + τF/2m,

for a number of time steps N.
As a curiosity, it may be of interest to mention that if the force F is constant, the Verlet

scheme integrates the equation of motions exactly. On the other hand, Equations (A8)
and (A9) integrate the torque equation for spin exactly. Thus, it is only the combination of
particle and spin motion that forces us to integrate Equation (3) numerically.
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Figure A1. Histograms of the transverse velocity distribution obtained by solving the classical
equations of motion Equation (3) for the model parameters pertaining to imaginary silver particles
and for different values of the uniform magnetic field B0. The initial magnetic moments distributed
randomly (see text) (a) B0 = 1 T; (b) B0 = 0.1 T; (c) B0 = 0.01 T; (d) B0 = 0.001 T; (e) B0 = 0.0001 T;
(f) B0 = 0.00001 T.

Appendix C. Newtonian Dynamics: Imaginary Silver Particles

Figure A1c demonstrates that a uniform magnetic field of B0 = 0.01 T is sufficiently
large to yield a distribution of velocities centered at vx = 0 and stretching from vz = −v∗

to vz = v∗, as expected for the classical, textbook model [1,4–7].
The transverse velocity distribution changes drastically if B0 decreases two and three

orders of magnitude; see Figure 3d,e.
As B0 vanishes, the transverse velocity distribution becomes a circular disk of radius

v∗, with the maximum located at the edges and the minimum at the center, qualitatively
similar to the case of neutrons.
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Appendix D. Quantum-Theoretical Model

If we drop the term in σx in Equation (13), the solution of the corresponding TDPE can
be written as a product of unitary operators, each of which can be worked out analytically.
Writing Ĥ = ã(p2

x + p2
z)− b̃0σz + b̃1zσz, we have

U(t) = e−itĤ = eitb̃0σz
e−itãp2

x e−itã(pz−b̃1tσz/2)2
eitb̃1zσz

e−iãb̃2t3/12 . (A10)

Computing the derivative of U(t) with respect to t, it readily follows that U(t) satis-
fies ∂tU(t) = ĤU(t). In other words, if we drop the term in σx in Equation (13), the
time-evolution operator of the corresponding TDPE can be solved analytically; see also
Appendix D.2 for a more direct proof of this fact.

Appendix D.1. Momentum Representation

For the particular choice of the magnetic field given by Equation (7), it is advantageous
for theoretical and numerical work to write the TDPE Equation (13) in the momentum
representation [7]. We define Fourier transform pairs by

Ψ(x, z, t) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
ei(kx x+kzz) Φ(kx, kz, t) dkx dkz ,

Φ(kx, kz, t) =
∫ +∞

−∞

∫ +∞

−∞
e−i(kx x+kzz) Ψ(x, z, t) dx dz , (A11)

and introduce the operators qx = i∂kx and qz = i∂kz . Note that [qx, kx] = [qz, kz] = i
and that the “i” in the definitions of qx and qz is not in the denominator as in the case
of the momentum operator in the coordinate representation. The transformation to the
momentum representation amounts to making the replacements x ↔ qx, z↔ qz, px ↔ kx,
pz ↔ kz. In the momentum representation, the TDPE Equation (13) reads

i
∂

∂t
|Φ(t)〉 =

[
h̄

2m

(
k2

x + k2
z

)
− γ B0

2
σz − iγ B1

2
σz ∂

∂kz
+

iγ B1

2
σx ∂

∂kx

]
|Φ(t)〉 , (A12)

where

〈kx, kz|Φ(t)〉 =
(

Φ+1(kx, kz, t)
Φ−1(kx, kz, t)

)
, (A13)

is the two-component spinor in the momentum representation.

Appendix D.2. Textbook Model

The TDPE Equation (A12) can be solved in closed form if we ignore the term in
Equation (A12) which is proportional to σx. Then, the momentum kx and the projection
of the spin in the z-direction are conserved; therefore, the motion in the x-direction is that
of a free particle, which we may omit from further considerations. This simplified model
is often used to discuss the qualitative aspects of the SG experiment [4–7,26,45], but it
does not comply with the Maxwell equations; however, as explained above, if the uniform
magnetic field B0 is sufficiently large, the textbook model is an excellent approximation.

Not only is it instructive to derive the closed-form solution of the TDPE of this simpli-
fied model, the solution itself is also of great help to validate simulation code. Technically
and for consistency, the treatment given below uses the momentum representation (the
treatment of which we have not found in the literature).

The TDPE Equation (A12) of the textbook model separates into two uncoupled first-
order partial differential equations

i
∂

∂t
ϕs(kz, t) =

[
h̄k2

z
2m
− sγ B0

2
− isγ B1

2
∂

∂kz

]
ϕs(kz, t) , (A14)
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where s = ±1 denotes the eigenvalues of σz and we omitted the constant term proportional
to k2

x. We eliminate the term proportional to B0 by a transformation to a rotating frame.
Substituting ϕs(kz, t) = eistγ B0/2φs(kz, t), Equation (A14) becomes

i
∂

∂t
φs(kz, t) =

[
h̄k2

z
2m
− isγ B1

2
∂

∂kz

]
φs(kz, t) . (A15)

Changing to new variables defined by kz = k′ + gt′ and t = t′, we have ∂
∂k′ = ∂

∂kz
,

∂
∂t′ =

∂
∂t + g ∂

∂kz
, and Equation (A15) changes to

i
[

∂

∂t′
+ (

sγ B1

2
− g)

∂

∂k′

]
φs(k′, t′) =

h̄(k′ + gt′)2

2m
φs(k′, t) , (A16)

Choosing g = sγ B1/2, Equation (A16) simplifies to

i
∂

∂t′
φs(k′, t′) =

h̄(k′ + gt′)2

2m
φs(k′, t′) , (A17)

the solution of which reads

φs(k′, t′) = e−ih̄ t′ [k′2+gt′+g2t′2/3]/2mφs(k′, 0)

= e−ih̄g2t′3/24me−ih̄t′(k′+gt′/2)2/2mφs(k′, 0) , (A18)

or, in terms of the original coordinates,

ϕs(kz, t) = eistγ B0/2e−ih̄g2t3/24me−ih̄t(kz−gt/2)2/2m ϕs(kz − gt, 0) . (A19)

It then follows that

|ϕs(kz + sγ B1 t/2, t)|2 = |ϕs(kz, 0)|2 , s = ±1 , (A20)

for any choice of the initial state ϕs(kz, 0). Equation (A20) tells us that as a function of time,
the probability density |ϕs(kz, t)|2 is the same as the initial probability density, translated
in momentum space by −sγ B1 t/2.

Assuming that 〈ϕs(kz, 0)|ϕs(kz, 0)〉 = 1, it follows from Equation (A19) that

〈kz(t)〉s = 〈ϕs(kz, t)|kz|ϕs(kz, t)〉
= 〈ϕs(kz, t)|(kz − gt)|ϕs(k, t)〉+ gt〈ϕs(k, t)|ϕs(k, t)〉
= 〈ϕs(kz, 0)|kz|ϕs(kz, 0)〉+ gt = 〈kz(0)〉s + gt

= 〈kz(0)〉s +
sγ B1 t

2
. (A21)

Therefore, in the textbook case, the presence of a gradient in the magnetic field causes the
average momentum to linearly decrease (s = +1) or increase (s = −1) if γ < 0 (which
is the case for neutrons or imaginary silver particles). Integrating Equation (A21) with
respect to time yields 〈z(t)〉s = 〈qz(t)〉s = 〈z(0)〉s + 〈kz(0)〉s t + sγ B1 t2/4 showing that
the average position traces out a parabolic trajectory [7].

Writing Equation (A21) in terms of the quantum-theoretical velocity operator defined
by v = h̄k/m, we have 〈vz(t)〉±1 = 〈vz(0)〉±1 ± h̄γ B1 t/2m. The classical mechanical
expression ±h̄γB1St/m for the change of the velocity due to the magnetic field gradient
matches the quantum-theoretical result if S = 1/2, as mentioned earlier.
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Appendix D.3. Dimensionless Form

We define h̄kx/m = v0vx, h̄kz/m = v0vz, and t = t0τ where v0 and t0 set the scale of
the velocity and time, respectively. In terms of these variables Equation (A12) reads

i
∂

∂τ
|Φ(τ)〉 =

[
mv2

0t0

2h̄

(
v2

x + v2
z

)
− γ B0t0

2
σz − ih̄γ B1t0

2mv0

(
σz ∂

∂vz
− σx ∂

∂vx

)]
|Φ(τ)〉 . (A22)

We simplify the notation somewhat by introducing the (dimensionless) parameters

a =
mt0v2

0
2h̄

, b =
h̄γ B1t0

2mv0
, c =

γ B0t0

2
, (A23)

and, at the risk of creating confusion, make the replacements τ → t, vx → x, vz → z,
i ∂

∂vx
→ px and i ∂

∂vz
→ pz. Then, Equation (A22) becomes

i
∂

∂t
|Φ(t)〉 =

[
a
(

x2 + z2
)
− cσz − bσz pz + bσx px

]
|Φ(t)〉 . (A24)

We emphasize that from now on, whenever we discuss the quantum-theoretical model, x
and z denote the dimensionless velocity in the x- and z-direction, respectively.

In the case of neutrons, we use the parameters given in Equation (10) and the corre-
sponding values of t0 = t? and v0 = v? to find

a = 196,540 , b = −1 , c = −185,339B0 T−1 , (A25)

whereas for c (using Equation (11)), we find

a = 2.53618 , b = −1 , c = −8053.19B0 T−1 . (A26)

Comparing Equations (A25) and (A26), we may expect that numerically solving the TDPE
Equation (A24) for the case of neutrons is much more difficult than for the case of imaginary
silver particles, simply because in the former a and b differ by more than five orders
of magnitude.

Appendix D.4. Initial State

The initial two-component spinor in the momentum representation is given by

〈x, z|Φ(t = 0)〉 =
(

cos(θ/2)e−iα/2

sin(θ/2)e+iα/2

)
G(x, z) , (A27)

where θ controls the ratio and α controls the phases of the spin-up and spin-down compo-
nents, respectively. The function G(x, z) is taken to be

G(x, z) =
1

2πσ2 exp
(
− x2 + z2

2σ2

)
, (A28)

the standard Gaussian distribution with variance σ and centered around (0, 0).
In practice, we either use uniform random numbers to determine cos(θ/2) and α or

we set α = π/4 and choose θ from the set {π/4 , −π/4 , 0 , π/2}, corresponding to the
spin states (| ↑〉+ | ↓〉)/

√
2, (| ↑〉 − | ↓〉)/

√
2, | ↑〉, and | ↓〉, respectively.

Appendix D.5. Simulation Method

In practice, we solve Equation (A24) by means of the Chebyshev polynomial algo-
rithm [46,47]. Disregarding the discretization of the px and pz, this algorithm has the
virtue that it yields numerical results with close to machine precision, for any time t [46,47].
Technical details about this TDPE solver can be found in Appendix D.6.
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For the reasons explained in Appendix D.6, simulating the neutron experiment [10]
is prohibitively costly. A simple way out of this conundrum is to “make the SG magnet
shorter” by a factor of ten. Then t0 = t?/10, v0 = v?/10 and, according to Equation (A23),
a is reduced by a factor of thousand and b is left unchanged.

A simulation with t0 = t∗/10 and v0 = v∗/10, using a grid of 215 × 215 points requires
about 200 GiB of memory and finishes in about 8 hours, using a compute node with two
AMD EPYC 7742, 2× 64 cores, 2.25 GHz processors. Although it would be technically
straightforward to use more nodes by extending the code to use the MPI communication
protocol, we believe that this extension would not bring much additional insight. The main
point here is that we can perform simulations in which the neutrons travel a macroscopic
distance and the dimensions of the apparatus are also macroscopic.

It may be of interest to mention that in practice, a product-formula approach [22,48]
using the decomposition in terms of the exact propagators in Equation (A10) for the x and
z components fails, simply because of the large disparity between the coefficients a and b
(in the case of neutrons).

Appendix D.6. TDPE Solver: Technical Aspects

We discretize the x and z variables by using a square regular grid. The mesh size δ
should be small enough to support (i) an accurate representation of terms with the first
derivatives and (ii) accurately resolve the dependence of the “potential” a(x2 + z2) on x
and z. As |b| = 1, condition (i) is automatically satisfied if (ii) is satisfied. For the neutron
case, the fact that a is more than five orders of magnitude larger than |b|makes it difficult
to satisfy condition (ii).

Ideally, for the numerical solution of Equation (A12), we would like to take t0 = t∗ and
v0 = v∗ as the scales of time and velocity, respectively. We do so in the case of imaginary
silver particles. Unfortunately, for the case of neutrons an accurate numerical solution of
Equation (A12) for t0 = t∗ and v0 = v∗ requires a currently prohibitive amount of memory
and CPU time.

To appreciate the difficulty of satisfying condition (ii) it is sufficient to focus on the
x-dependence and consider the case B0 = 0. We assume δ� 1 in the following. Initially,
the wave packet is concentrated around −mδ ≤ x ≤ mδ where m is a small (compared
to the grid size) integer. The potential of two neighboring grid points in the vicinity of
x = 0 differs by the amount a(x± δ)2 − ax2 ≈ ±aδ2(2m± 1). On the other hand, with our
choice of dimensionless units, the relevant range of the dimensionless velocities x and z is
approximately [−1, 1]. If, in the course of time, (part of) the wave packet is concentrated
around say x = 1, the potential of two neighboring grid points differs by the amount
a(x ± δ)2 − ax2 ≈ ±2aδ. In order to represent the smoothly changing potential ax2 on
a grid, we must require 2aδ � 1. Otherwise, when the wave moves towards x = ±1,
it will encounter a potential that changes in big steps and its dynamics will no longer
resemble that of a wave propagating in a continuum. As explained below, the number
of grid points in one direction that we use is of the order 215, yielding a grid size of
δ = 4/215 = 2−13 ≈ 0.00012. For neutrons a = 196,540, 2aδ ≈ 48, which is much too large.
In contrast, for imaginary silver particles a = 2.53618, 2aδ ≈ 0.0006, which is definitely
small enough; therefore, in the case of neutrons, we are forced to reduce the size of the
simulation problem.

Appendix D.7. Quantum Dynamics: Imaginary Silver Particles

Unlike in the case of neutrons in which memory requirements limited the TDPE
integration time to t?/10, the parameters for imaginary silver particles are such that there
are no such limitations. Thus, in this case v0 = v∗. The value of B0 at which the two spots
changes into a circular shape is hard to predict without actually performing the simulation.
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Figure A2. Probability distributions |〈vx, vz|Φ(t∗)〉|2 of the transverse velocity distribution obtained
by solving the TDPE Equation (A24) with the initial state given by Equation (A27) and for the model
parameters pertaining to imaginary silver particles (v0 = v∗). Initially, the variance (dimensionless)
σ = 0.1 and the spin state is (| ↑〉 + | ↓〉)/

√
2. (a) B0 = 1 T; (b) B0 = 0.1 T; (c) B0 = 0.01 T;

(d) B0 = 0.001 T; (e) B0 = 0.0001 T; (f) B0 = 0.00001 T.
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