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Abstract: Link prediction is an important task in the field of network analysis and modeling, and
predicts missing links in current networks and new links in future networks. In order to improve the
performance of link prediction, we integrate global, local, and quasi-local topological information of
networks. Here, a novel stacking ensemble framework is proposed for link prediction in this paper.
Our approach employs random forest-based recursive feature elimination to select relevant structural
features associated with networks and constructs a two-level stacking ensemble model involving
various machine learning methods for link prediction. The lower level is composed of three base
classifiers, i.e., logistic regression, gradient boosting decision tree, and XGBoost, and their outputs are
then integrated with an XGBoost model in the upper level. Extensive experiments were conducted
on six networks. Comparison results show that the proposed method can obtain better prediction
results and applicability robustness.

Keywords: ensemble learning; stacking; recursive feature elimination; link prediction; complex
networks

1. Introduction

Complex networks can be used to model various real-world complex systems such
as social, biological and information systems, where nodes denote different individuals or
entities in the system, and links or edges indicate the relations or interaction between nodes [1].
Great efforts have been devoted to analyze the network topologies, and predict links among
nodes in order to better understand the evolution of networks. A challenging issue in complex
network analysis is link prediction, which aims to reveal potential links or forecast future
relations based on the known information of nodes and network structure [2,3].

A large number of methods have been proposed to solve the link prediction problem [4–7],
which are mainly divided into similarity-based methods and learning-based methods.
Similarity-based methods are the most common, and especially structural similarity, due to
simple and efficient computation, and universal applicability to networks with similar struc-
tures. These methos hold the view that the probability of link existence between two nodes
is proportional to their topological similarity. In terms of the topological information range
used in similarity calculation, these methods can be grouped into three categories: local simi-
larity methods, global similarity methods, and quasi-local similarity methods. Local similarity
methods explore local information of the disconnected nodes such as common neighbors and
node degree, and include Common Neighbors (CNs) [8], Jaccard coefficient (JC) [9], Preferential
Attachment (PA) [10], the Adamic–Adar (AA) index [11], Resource Allocation (RA) [12], Cosine
similarity, and the Salton index (SI) [13]. These methods achieve good results in many cases due
to lower computational complexity and simple implementation [14]. Global similarity methods
utilize the topological information of the whole network for link prediction. Klein et al. [15]
introduced average commuting time (ACT) as a novel distance function, and considered that
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the node similarity is related to average commuting time. Brin et al. [16] presented the random
walk with restart (RWR) index, an extended application of the PageRank algorithm, to improve
the search efficiency of large-scale Web search engines. Jeh et al. [17] estimated the similarity
score by considering recursively the similarity of neighboring nodes, and defined the SimRank
index. These methods incur a higher computational cost to learn the global information from
the known networks, and thus are infeasible for large networks. Quasi-local similarity methods
have been introduced as trade-offs between local and global approaches, with the aim of extract-
ing the same amount of topological information of networks as global methods and having the
computing efficiency of local methods. Examples of such methods include local path (LP) [18],
local random walk (LRW) [19], and superposed random walk (SRW) [19], whose results are a
balance of prediction accuracy and computational complexity.

Learning-based methods, by comparison, predict the link likelihood of node pairs on
the basis of machine learning algorithms. Specially, link prediction is treated as a binary
classification problem, in which a prediction model is built by learning the topological
features extracted from the observed network structure. Wu et al. [20] employed the
AdaBoost algorithm to integrate CN, JC, AA, and RWR to predict links on two networks.
Li et al. [21] aggregated logistic regression and XGBoost to learn four similarity indices
to predict missing links. Ma et al. [22] used logistic regression to determine the weights
of different similarity indices, and then predicted the connection probabilities of missing
links. The ordered weighted averaging operator [23] and Choquet fuzzy integral [24]
were utilized to fuse similarity indices. Furthermore, network embedding [25] and deep
neural networks [26] were used to improve the performance of link prediction in complex
networks. Learning-based methods usually perform better than similarity-based methods,
but consume more resources in the training process of the prediction model [27].

Generally, different networks have their own structural features and one similarity
index can only exploit some structural features of networks. One or several fixed similarity
indices are applied to predict links on all networks, which may degrade the prediction
performance. To this end, we incorporate the inherent topological features into link pre-
diction for different networks. In this paper, a novel link prediction method is proposed,
which combines random forest-based recursive feature elimination and stacking ensemble
learning for link prediction, named RF-RFE-SELLP. The main contributions are three-fold.
First, recursive feature elimination in random forest is employed to effectively select repre-
sentative and relevant structural features associated with the networks. Second, a stacking
ensemble framework is presented to combine the advantages of different machine learning
methods to enhance the prediction results of the model. Considering better generalization
performance and discrepancy of models, three models, i.e., logistic regression (LR), gra-
dient boosting decision tree (GBDT), and XGBoost, are selected as the base models and
XGBoost is employed as the top-level model. Third, extensive experiments on a variety
of networks were carried out, showing that the proposed RF-RFE-SELLP method obtains
better prediction results and applicability robustness than other comparison methods.

The remainder of this paper is organized as follows. Section 2 introduces the problem
description, similarity indices, and datasets. The proposed method is presented in Section 3.
Extensive experimental results are shown and analyzed in Section 4. Finally, Section 5
concludes this paper.

2. Preliminaries
2.1. Problem Description

Consider an undirected and unweighted network G(V, E), where V and E denote
the sets of nodes and links, respectively. As is usual, self-loops and multiple links are not
allowed. For a network with N nodes, A =

{
aij
}

N×N represents the adjacency matrix. Let

S be the universal set of all N(N−1)
2 possible links, and S− E be the set of nonexistent links.

For each nonexistent link e
(
vi, vj

)
∈ S− E, vi, vj ∈ V, the similarity score is evaluated to

quantify the link existence likelihood according to a defined similarity index. Generally, the
link set E can be randomly divided into two parts: training set ET and test set EP, where
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E = ET ∪ EP, ET ∩ EP = ∅. The training set ET is utilized to compute the similarity index
to obtain the similarity score of the test set EP. Link prediction methods exploit the known
topological information to predict the missing or unknown links in the network. It can be
deemed to be a binary classification problem, where the class label is determined by the
existence of links. If there is a direct connection between two nodes, the label is 1; otherwise,
the label is 0. In this way, each link is assigned a label, and then the topological features of
each link are extracted from the network information by computing the similarity indices.
The goal of link prediction is to utilize these extracted topological features to forecast the
links in the network G.

2.2. Similarity Indices

Let Γvi denote the neighbor set of node vi, and kvi denote its degree. Several similarity
indices are introduced as follows.

(i) Common Neighbor (CN) index [8]: the CN index emphasizes that a pair of nodes
with more common neighbors are more likely to be connected:

SCN(vi, vj
)
=
∣∣∣Γvi ∩ Γvj

∣∣∣ (1)

(ii) Preferential Attachment (PA) index [10]: the PA index assumes that the connection
probability of a pair of nodes is proportional to the product of their degree:

SPA(vi, vj
)
= kvi · kvj (2)

(iii) Adamic–Adar (AA) index [11]: the AA index assigns more weights to the common
neighbor nodes with a low degree:

SAA(vi, vj
)
= ∑vl∈Γvi∩Γvj

1
lg
(
kvl

) . (3)

(iv) Leicht–Holme–Newman (LHN) index [28]: a pair of nodes with more common
neighbors has high similarity, and the product of two node degrees is proportional to the
mean of a common neighbor’s number:

SLHN(vi, vj
)
=

∣∣∣Γvi ∩ Γvj

∣∣∣
kvi × kvj

(4)

(v) Resource Allocation (RA) index [12]: the proposal of RA index was inspired by the
process of network resource allocation. Some resources are passed by node vi to vj, and
their common neighbor is the transmission medium. The number of resources received by
vj is defined as the similarity:

SRA(vi, vj
)
= ∑vl∈Γvi∩Γvj

1
kvl

. (5)

(vi) Average Commute Time (ACT) index [15]: the ACT index assumes that the smaller
the average commute time of two nodes, the closer the two nodes. Denote m(x, y) as the
average number of steps that a random walker starting from node vi to reach node vj. The
average commute time is then described as:

n(i, j) = m(i, j) + m(j, i) (6)

By solving the pseudoinverse of the Laplacian matrix L+, we can obtain:

n(i, j) = M
(

l+ii + l+jj − 2l+ij
)

(7)
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and then the similarity is defined as:

SACT(vi, vj
)
=

1
l+ii + l+jj − 2l+ij

(8)

where l+ij represents the corresponding element in the matrix L+.
(vii) Matrix Forest Index (MFI) index [29]: the MFI index is based on matrix-forest

theory and expressed as:

SMFI(vi, vj
)
= (1 + αL)−1, α > 0 (9)

where L is the Laplacian matrix.
(viii) Random Walk with Restart (RWR) index [16]: the RWR index assumes that the

random walker returns to the starting point with a certain probability 1 − c, and P is the
transition probability matrix. The probability vector of arriving at each node vi of the
network at time t + 1 is:

πvi (t + 1) = c · PTπvi (t) + (1− c)evi (10)

where evi represents the starting point, and the similarity index is defined as:

SRWR(vi, vj
)
= πvivj + πvjvi (11)

where πvivj represents the probability from node vi to node vj.
(ix) SimRank index [17]: the SimRank index states that two nodes are similar if they

are connected to similar nodes:

SSimRank(vi, vj
)
= C ·

∑vl∈Γvi
∑v′l∈Γvj

sSimRank
vlv′l

kvi · kvj

(12)

where the attenuation parameter svivi = 1, and C ∈ [0, 1].
(x) Local Path (LP) index [18]: the LP index considers local paths on the basis of the

CN index, and attains a balance between the precision and computational complexity:

SLP(vi, vj
)
= A2(vi, vj

)
+ αA3(vi, vj

)
(13)

where A2(vi, vj
)

and A3(vi, vj
)

are the number of different paths with the length 2 and 3,
respectively, and α is the free parameter α = 0.001.

(xi) Local Random Walk (LRW) index [19]: the random walker starts from node vi at
time t, and πvivj(t) is the probability that the walker just goes to node vj at time t + 1:

πvi (t + 1) = PTπvi (t), t ≥ 0 (14)

The initial resource of node vi is qvi , and the LRW index at time step t is defined as:

SLRW(t) = qvi πvivj(t) + qvj πvjvi (t) (15)

(xii) Superposed Random Walk (SRW) index [19]: on the basis of the LRW index,
the value of the SRW index can be acquired by summing the results of step t and the
previous step:

SSRW(t) = ∑t
τ=1 SLRW(τ) = ∑t

τ=1

[
qvi πvivj(τ) + qvj πvjvi (τ)

]
(16)
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2.3. Dataset Description

To evaluate the effectiveness of the proposed RF-RFE-SELLP model, we performed
massive experiments on six real-world networks from different fields. The basic statistics
of these networks are summarized in Table 1 and a brief description is provided.

Table 1. Basic statistics of six networks. Notation: N is the number of nodes, M is the number of links,
C is the clustering coefficient, R is the assortative coefficient, and H is the degree heterogeneity.

Networks N M C R H

C. elegans 297 2148 0.308 −0.163 1.800
Vicker 29 376 0.733 −0.157 0.982
Email 1133 5451 0.254 0.078 1.942

NS 1589 2742 0.791 0.462 2.011
SciMet 3084 10,399 0.175 −0.033 2.78
Router 5022 6258 0.033 −0.138 5.503

C. elegans [30]: The Caenorhabditis elegans network consists of 297 neurons and
2148 connections.

Vicker [31]: the Vicker dataset is a social network between seventh grade students in a
school in Victoria, Australia., which consists of 29 students and 376 links.

Email [32]: the E-mail network has 1133 users and 5451 communications between the
members of University at Rovira i Virgili.

NS [33]: the NetScience dataset is a co-authorship network consisting of 1589 scientists
and 2742 co-authorships.

SciMet [34]: the SciMet dataset is a network of articles from or cited by Scientometrics
that includes 3084 articles and 10,399 links.

Router [35]: the Router dataset is an internet router hierarchical network containing
5022 routers and 6258 links.

3. Proposed Framework: RF-RFE-SELLP

In this section, the proposed RF-RFE-SELLP model is presented in detail, including
model structure and algorithm procedure.

3.1. Motivation

Twelve similarity indices are introduced in Section 2.2, among which each index
exploits one or two structural features of networks [36]. The fusion of these indices can
incorporate multiple structural features to improve prediction performance. However,
different networks have different inner structural features.

To validate this fact, a series of experiments was constructed on the six networks described
above. For each network, the matching score [22] of one similarity index is computed:

σ =

∣∣∣E ∩ Ẽ
∣∣∣

|E| (17)

where Ẽ denotes the set of top |E| ranked links predicted by the predefined index. The
larger the value of σ, the better the accuracy of the index. In this work, the PA index and
the LP index are employed to illustrate that one similarity index plays different roles in
different networks. The matching scores of the two indices, σPA and σLP, respectively, are
calculated according to Equation (17), and the difference between them is defined as:

∆σ = σLP − σPA (18)

The values of ∆σ for the six networks are shown in Figure 1. It can be observed that
for NS and Vicker networks, the role of the PA index is superior to that of the LP index;
that is, the structural features induced by the PA index can better represent this network.
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For the Email and SciMet networks, the role of the LP index is greater than that of the PA
index, which indicates that LP feature is more representative on these networks. For the
remaining two networks, there is little difference between the two indices. Therefore, it is
unwise to use structural features of one similarity index for link prediction in all networks.
Due to different contributions of each index to different networks, it is essential to select
suitable features of networks to improve the prediction accuracy.

Figure 1. Difference in matching scores between the LP index and the PA index.

3.2. Random Forest-Based Recursive Feature Elimination for Feature Selection

In random forest (RF), feature selection can be performed in a very simple way by
the removal of features with low importance. However, RF can only provide the rank-
ing of importance for each feature, but cannot determine the effective features and the
number of features in the optimal feature set. In order to choose the relevant features for
building the classification model, we recursively remove the features with lower impor-
tance to obtain smaller feature subsets, estimate the discriminative abilities of features of
the subsets, and select those features with greatest discriminative power to enhance the
prediction performance.

For m features of x1, x2, · · · , xm, the variable importance measure (VIM) is computed
to evaluate the importance of each feature, and can be derived from the Gini index. The
Gini index can be defined as follows:

GIt = ∑C
c=1 ∑c′ 6=c ptc ptc′ = 1−∑C

c=1 p2
tc (19)

where C represents the number of categories, and ptc indicates the proportion of samples
that belongs to category c for node t. The VIM of feature xj in node t is:

VIMnode
jt = GIm − GIl − GIr (20)

where GIl and GIr represent the Gini index of left and right child branches, respectively.
The VIM of feature xj in the i-th decision tree is:

VIMtree
ji = ∑t∈T VIMjt (21)

where T is the node set of feature xj in the i-th decision tree. The VIM of feature xj in RF is:

VIMRF
j = ∑n

i=1 VIMij (22)
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where n is the number of trees in RF. The importance score of feature xj is defined by
normalizing the VIMj:

VIMj =
VIMj

∑12
i=1 VIMi

(23)

The higher the value of VIMj, the greater the importance of feature xj on RF for classification.
Furthermore, recursive feature elimination (RFE) [37] is utilized to repeatedly remove

the feature with the lowest VIM to obtain a new feature subset until only one feature
remains in the feature set. We estimate the discriminative abilities of features in the subsets
and then select the optimal features. To find the optimal number of features, k-fold cross-
validation is employed to score different feature subsets and select the best scoring set of
features. The cross-validation score (CVS) is used to evaluate the discrimination of each
feature subset, defined as:

CVS =
∑K

k=1 Pk

K
(24)

where pk is the classification accuracy on the k-th cross validation subset. The feature subset
with the highest CVS is chosen as the optimal one. The proposed RF-RFE method aims to
eliminate irrelevant features and redundant features to represent the original features with
as few features as possible in order to improve the generalization ability of the classification
model. In this work, k is set as 5, and the simulation is conducted 20 times.

3.3. Stacking Ensemble Learning for Link Prediction

Ensemble learning combines multiple weak supervised models to form a better super-
vised model. Ensemble learning methods are mainly divided into three categories: bagging,
boosting, and stacking. Stacking fuses information from base models to generate a new
model to obtain better classification performance than that of a single model. The base
model with strong learning ability is conductive to improving the classification results.
Moreover, the classification models with great differences should be selected as the base
model, which can reflect the advantages of different algorithms to the greatest extent. In
this paper, a stacking ensemble learning model for link prediction is proposed, named
SELLP, in which three different models, i.e., XGBoost, LR, and GBDT, are selected as the
base models, and XGBoost, which has better generalization performance, is employed as
the top-level model. The model is shown in Figure 2.

Figure 2. SELLP model.
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For a network with N nodes, a dataset S is constructed containing all possible links. The
dataset S is divided into a training set ST and test set SP, where ST =

{
(xi, yi), i = 1, . . . , NT},

NT is the number of samples, xi ∈ RD, and yi is the feature vector and label of the i-th sample,
respectively. In the training phase, the dataset ST is randomly divided into five subsets
ST

k , k = 1, . . . , 5 with the same size. Let ST
−k = ST − ST

k , ST
−k, and ST

k be the k-th training
set and test set in the 5-fold cross validation, respectively. For the base model Cj, j = 1, 2, 3
of the first layer, the training set ST

−k is used to train each base model Cj to obtain the base
model Cjk, k = 1, . . . , 5. After cross validation, 3 × 5 = 15 base models are obtained.
For each sample xi in the k-th test set ST

k , the prediction result of the base model Cjk is
ŷji. The probability predicted by each base model Cj on the subset ST

k forms a new dataset
ST

new =
{
(ŷ1i, ŷ2i, ŷ3i, yi), i = 1, . . . , NT}. The newly generated dataset is then used to train

the fuse model of the second layer in the SELLP model. By learning from the new dataset ST
new,

the XGBoost model can fuse the learning results of multiple base models in the first layer.
For each base model, the test data are different from the training data. All the data are

utilized only once in the training phase, which can effectively prevent overfitting. Moreover,
in the SELLP model, the training results of base models in the first layer are fully used
in the induction process of the fusion model in the second layer. The fusion model can
optimize and correct the prediction results of base models in the first layer to improve the
accuracy of the SELLP model.

In the test phase, each sample in the test set SP =
{

xl , l = 1, . . . , NP} is fed into
the base models in the first layer. For the sample xl , the base models Cjk, k = 1, . . . , 5,
predict the classification results ỹjkl , respectively, and then average classification results
ỹjl =

1
5 ∑5

k=1 ỹjkl can be obtained for each base model Cj. The classification results of three
base models form a data (ỹ1l , ỹ2l , ỹ3l), which is sent to the fuse model to obtain the final
classification results given by the SELLP model.

3.4. RF-RFE-SELLP Algorithm

The training procedure of the proposed RF-RFE-SELLP model is summarized as follows:
Step 1: Obtain the adjacency matrix of a network and calculate the similarity scores of

12 feature indices to construct the feature vectors of links in the network.
Step 2: Estimate the VIM of features by the Gini index in random forest, then remove

the feature with the lowest VIM, and calculate the corresponding CVS to obtain the optimal
feature subset.

Step 3: Construct the dataset including the features and labels of all links, and divide
this dataset into the training set and test set. LR, XGBoost, and GBDT are used as the base
models in the first layer. Train the base models separately on the training set by 5-fold cross
validation, and then obtain the classification results of each base model.

Step 4: Construct new training data from the prediction results by the base models and
utilize these data to train the fuse model in the second layer. Then, the final RF-RFE-SELLP
model can be obtained. The specific steps of RF-RFE-SELLP algorithm are presented in
Algorithm 1.
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Algorithm 1: RF-RFE-SELLP algorithm

Input: Network G = (V, E)
Output: Parameters of SELLP model
1: Calculate the adjacency matrix A of network G.
2: for each vi, vj ∈ V do
3: yn ← A(:)

4: xn ←
(

xS1

(
vi, vj

)
, . . . , xS12

(
vi, vj

))
5:/*yn is the label, xn is the feature vector, and xSl

(
vi, vj

)
is the score computed by the similarity

index Sl .*/
6: end for
7: for r ← 1 to 12 do
8: Compute the VIM of features, and remove the feature with the lowest one.
9: Update feature ranked list, and calculate the corresponding CVS.
10: end for
11: Obtain the optimal feature subset Fn by comparing CVS.
12: Construct the set S including the feature subset Fn and label yn, and then divide S into the
training set ST and test set SP.
13: for k← 1 to 5 do
14: for j← 1 to 3 do
15: Train the base model Cjk on the training set ST

−k.
16: Predict the probability ŷjk on the test set ST

k .
17: end for
18: end for
19: Construct the set ST

new =
{
(ŷ1i, ŷ2i, ŷ3i, yi), i = 1, . . . , NT} by the prediction results of each

base model.
20: Train the fuse model of the second layer on the set ST

new.
21: Return the parameters of RF-RFE-SELLP model.

4. Experiments

In this section, we compare the proposed RF-RFE-SELLP with similarity-based meth-
ods described in Section 2 and supervised learning-based methods, i.e., multi-layer percep-
tron neural networks (MLP), RF, and AdaBoost for the purpose of validating the perfor-
mance of RF-RFE-SELLP.

4.1. Experimental Setting

Due to the sparsity of real networks, the training set and test set should be generated
with balanced class distribution. The number of existent links is calculated, and the same
number of data is randomly selected from the nonexistent links to form a new dataset D.
We randomly select a certain fraction (90%) of links from D as the training set DT , and the
remaining data as the test set DP.

Three supervised-learning methods, namely AdaBoost, RF and MLP, were employed
to identify missing links in the following experiments. The grid search and cross validation
are utilized to determine the parameters of the models. All of the link prediction methods
were coded in Python 3.8 and all experiments were implemented on a computer with an
Intel(R) Xeon(R) Silver 4214 CPU and 32 GB memory. All experimental results are the
average results of 10 independent runs.

4.2. Evaluation Metric

In this paper, link prediction is regarded as a binary classification problem. The label of
a node pair is positive if a link exists between them, and negative otherwise. Four common
terms are introduced to formulate the evaluation metrics [38]. True Positive (TP) is the
number of node pairs with links that are correctly recognized as positive. False Positive
(FP) corresponds to the number of node pairs without links that are incorrectly labeled
as positive. False Negative (FN) refers to the number of node pairs with links that are
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incorrectly as identified negative. True Negative (TN) is the number of node pairs without
links that are correctly classified as negative.

Four evaluation metrics are employed in this work to quantify the prediction per-
formance of algorithms, i.e., Accuracy, Precision, F1-score, and AUC. Accuracy is the
proportion of all correctly classified node pairs in the set of node pairs. Precision represents
the proportion of all node pairs with links in the set of node pairs classified as positive.
Recall is the proportion of node pairs correctly classified as positive in the set of node pairs
with links. F1-score is the harmonic average of Precision and Recall.

Accuracy =
TP + TN

TP + FP + TN + FN
(25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1− score =
2Precision·Recall
Precision + Recall

(28)

Area under the curve (AUC) can describe the overall performance of the prediction
model, given as:

AUC =
S0 − n0(n0 + 1)/2

n0n1
(29)

where n0 and n1 are the numbers of positive and negative node pairs, respectively, and
S0 = ∑ ri, ri is the rank of i-th positive node pairs in the ranked list.

4.3. Performance Comparison

Figure 3 shows the CVS of selected features obtained by RF-RFE on six networks,
where the abscissa indicates the number of selected features and the vertical ordinate
represents the corresponding cross validation score. It can be observed that the CVS
increases and gradually stabilizes as the number of selected features increases for most
networks. The higher CVS indicates the higher discriminative ability of features. In this
way, the optimal feature subset can be determined with fewer features and a higher CVS.
Taking the Vicker network, for instance, the value of CVS increases from 73.73% to a
maximum of 80.36% when the number of features increases from one to five. When the
number of features is greater than five, there is a slight decrease in the CVS. This indicates
that too many features do not necessarily produce higher classification accuracy. The
five features are selected for the Vicker network that make significant contributions to
classification results.

To investigate module-wise effectiveness of the three base models and feature selection
on the overall performance, the ensemble model, i.e., SELLP (RF-RFE-SELLP without RF-
RFE feature selection), and three base models, i.e., GBDT, XGBoost, and LR, are evaluated,
respectively. Tables 2–5 summarize the performance in terms of AUC, Accuracy, Precision,
and F1-score of the six networks. With the same features, the ensemble model exhibits
better results than the three base models in terms of the four metrics, which highlights the
advantage of stacking ensemble learning. Each classification model with the selected fea-
tures by RF-RFE can achieve better performance results than that with the original features,
which proves the effectiveness of RF-RFE feature selection. RF-RFE can eliminate irrelevant
and redundant features to represent the raw data in order to improve the generalization
ability of the classification model. Moreover, the proposed RF-RFE- SELLP outperforms the
comparison methods on all of the six networks. In detail, our model exhibits the highest
AUC of 0.9118, Accuracy of 0.8985, Precision of 0.8743, and F1-score of 0.9156 on the Vicker
network. Similar results can be observed on the other networks.
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Figure 3. The CVS of selected features.

Table 2. AUC results of the base and ensemble models on six networks.

Results Based on the Original Features

Methods Vicker C. elegans NS Email SciMet Router

SELLP 0.8290 0.9236 0.9538 0.9424 0.9378 0.9604
GBDT 0.7750 0.9079 0.9461 0.9308 0.9138 0.9477

XGBoost 0.7604 0.9085 0.9457 0.9460 0.9268 0.9531
LR 0.7318 0.8631 0.9365 0.9263 0.8967 0.9287

Results based on the selected features using RF-RFE

Methods Vicker C. elegans NS Email SciMet Router

RF-RFE
-SELLP 0.9118 0.9525 0.9949 0.9747 0.9764 0.9884

RF-RFE-GBDT 0.8663 0.9419 0.9747 0.9476 0.9438 0.9680
RF-RFE-
XGBoost 0.8059 0.9278 0.9786 0.9521 0.9563 0.9769

RF-RFE-LR 0.8263 0.9121 0.9627 0.9497 0.9432 0.9581

Table 3. Accuracy results of the base and ensemble models on six networks.

Results Based on the Original Features

Methods Vicker C. elegans NS Email SciMet Router

SELLP 0.8260 0.9246 0.9536 0.9524 0.9447 0.9600
GBDT 0.7681 0.9093 0.9245 0.9434 0.9237 0.9276

XGBoost 0.7826 0.9030 0.9453 0.9461 0.9279 0.9492
LR 0.7681 0.8813 0.9353 0.9361 0.9019 0.9248

Results based on the selected features using RF-RFE

Methods Vicker C. elegans NS Email SciMet Router

RF-RFE-
SELLP 0.8985 0.9534 0.9945 0.9747 0.9764 0.9884

RF-RFE-
GBDT 0.8405 0.9369 0.9745 0.9611 0.9537 0.9780

RF-RFE-
XGBoost 0.8405 0.9355 0.9854 0.9606 0.9572 0.9768

RF-RFE-LR 0.8115 0.9081 0.9726 0.9592 0.9328 0.9492
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Table 4. Precision results of the base and ensemble models on six networks.

Results Based on the Original Features

Methods Vicker C. elegans NS Email SciMet Router

SELLP 0.8246 0.9294 0.9545 0.9488 0.9481 0.9652
GBDT 0.7868 0.8919 0.9309 0.9375 0.9100 0.9474

XGBoost 0.7822 0.9097 0.9455 0.9419 0.9310 0.9523
LR 0.7791 0.8696 0.9370 0.9221 0.9098 0.9259

Results based on the selected features using RF-RFE

Methods Vicker C. elegans NS Email SciMet Router

RF-RFE-
SELLP 0.8743 0.9670 0.9927 0.9794 0.9853 0.9913

RF-RFE-
GBDT 0.8614 0.9320 0.9727 0.9548 0.9510 0.9789

RF-RFE-
XGBoost 0.8367 0.9469 0.9845 0.9592 0.9524 0.9744

RF-RFE-LR 0.8189 0.8934 0.9781 0.9481 0.9428 0.9576

Table 5. F1-score results of the base and ensemble models on six networks.

Results based on the original features

Methods Vicker C. elegans NS Email SciMet Router

SELLP 0.8571 0.9213 0.9536 0.9421 0.9374 0.9601
GBDT 0.8048 0.9059 0.9457 0.9304 0.9136 0.9478

XGBoost 0.8314 0.9066 0.9455 0.9457 0.9265 0.9533
LR 0.8260 0.8552 0.9363 0.9257 0.8960 0.9290

Results based on the selected features using RF-RFE

Methods Vicker C. elegans NS Email SciMet Router

RF-RFE-
SELLP 0.9156 0.9501 0.9945 0.9744 0.9762 0.9885

RF-RFE-
GBDT 0.8607 0.9380 0.9745 0.9473 0.9436 0.9682

RF-RFE-
XGBoost 0.8817 0.9261 0.9785 0.9512 0.9559 0.9769

RF-RFE-LR 0.8395 0.9109 0.9624 0.9486 0.9429 0.9584

To further evaluate the performance of the proposed method, the RF-RFE-SELLP
method is compared with supervised learning-based methods, i.e., AdaBoost, RF, and
MLP, and similarity-based methods, i.e., CN, MFI, and SRW. Three chosen similarity-based
methods belong to global similarity, local similarity, and quasi-local similarity, respectively.
Figures 4–7 illustrate the comparison results regarding AUC, Accuracy, Precision, and
F1-score on the six networks, where one bar with green color indicates the best result on
this network.

It can be seen that RF-RFE-SELLP outperforms all of the comparison methods in terms
of the four metrics on four networks, i.e., NS, Email, SciMet, and Router. For the Vicker
network, the MFI index performs best in the four metrics, whereas the SRW index achieves
the best results in terms of AUC and Precision for the C. elegans network. Although some
similarity indices can obtain good performance on some networks, the performance varies
greatly on different networks. The Precision of the CN index is 0.9710 on the NS network
and 0.5606 on the Vicker network; the F1-score of the MFI index is 0.9189 on the Vicker
network, but 0.3477 on C. elegans network; and the Precision of the SRW index is 0.9973
on the C. elegans network and 0.6491 on the Vicker network. Among the three similarity
indices, the CN index achieves the worst performance on Vicker, NS, SciMet, and Router
networks, and the worst results are obtained by the MFI index on C. elegans and Email
networks. Compared with similarity-based methods, supervised learning-based methods
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can obtain more stable results in most respects on most networks. MLP yields the worst
results in terms of Precision and Accuracy on C. elegans, NS, Email, SciMet, and Router
networks, and the worst classification model is AdaBoost for the Vicker network.

Figure 4. AUC results of all comparative methods on six networks. The best performance is empha-
sized in green for each network.

Figure 5. Accuracy results of all comparative methods on six networks. The best performance is
emphasized in green for each network.
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Figure 6. Precision results of all comparative methods on six networks. The best performance is
emphasized in green for each network.

Figure 7. F1-score results of all comparative methods on six networks. The best performance is
emphasized in green for each network.

Furthermore, we performed the statistical test for the proposed RF-RFE-SELLP and
six comparative methods, i.e., AdaBoost, RF, MLP, CN, MFI, and SRW, in terms of AUC,
Accuracy, Precision, and F1-score on six networks. Table 6 shows the results for Accuracy
on the Email network.

Table 6. Statistical test for RF-RFE-SELLP vs. AdaBoost, RF, MLP, CN, MFI, and SRW in mean
Accuracy on the Email network.

AdaBoost RF MLP CN MFI SRW

p-value (F-test) 0.48 0.45 0.11 0.02 0.14 0.19
p-value (t-test) 4.95 × 10−5 3.41 × 10−3 1.25 × 10−4 3.14 × 10−7 4.56 × 10−9 6.09 × 10−9

Mean Accuracy 0.9341 0.9461 0.9249 0.6227 0.5441 0.8161
Mean Accuracy of

RF-RFE-SELLP 0.9748 0.9748 0.9748 0.9748 0.9748 0.9748
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The F-test and t-test were performed to compare the prediction results. In the case of
RF, as a result of the F-test, the obtained p-value (0.45) was greater than the significance
level of 0.05, indicating there is no difference in variance between RF-RFE-SELLP and RF.
Then, a two-sample assuming equal variance t-test was conducted and the obtained p-value
(3.41 × 10−3) was smaller than the significance level of 0.05; that is, there is a statistically
significant difference in mean Accuracy between RF-RFE-SELLP and RF. In addition, the
95% confidence interval of mean difference does not include zero. From the results, we can
conclude that RF-RFE-SELLP outperforms RF in Accuracy. A similar conclusion can be
obtained for AdaBoost, MLP, CN, MFI, and SRW. Moreover, the experimental results in
terms of AUC, Precision, and F1-score for these methods also lead to the same conclusion.

4.4. Robustness

In order to verify the robustness of the proposed RF-RFE-SELLP to the size of the
training set, we compared CN, SRW, RF, MLP, and RF-RFE-SELLP. We performed the
experiments with 80% and 90% training sets. Figures 8 and 9 show the variation in
performance in terms of Precision and F1-score with training sets of different sizes, where
one bar with blue color indicates the result with 80% training set and one with red color
denotes the result with 90% training set. When we reduce the training set size from 90%
to 80%, the performance degrades for all methods. However, the degradation is much
smaller in the three supervised learning-based methods, i.e., RF, MLP, and RF-RFE-SELLP,
compared to similarity-based methods, i.e., CN and SRW. Two indices work solely on local
structural information of networks so that 10% removal of links affects their similarity
scores, and the decline in F1-score is greater than that in Precision. Three supervised
learning-based methods, especially RF-RFE-SELLP, select strong structural features from
networks, which results in slight performance degradation.

Figure 8. Precision results with different training set sizes.
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Figure 9. F1-score results with different training set sizes.

5. Conclusions

The contributions of this paper include proposing the use of recursive feature elimina-
tion in random forest to choose representative structural features for networks, in addition
to using the stacking ensemble learning method to predict the missing links. The RF-RFE-
SELLP algorithm proposed in this paper is an ensemble learning framework that integrates
LR, GBDT, and XGBoost models. Extensive experiments show that the performance of
RF-RFE-SELLP in terms of AUC, Accuracy, Precision, and F1-score consistently exceeds
that of the individual base model, and the comparison with the no feature selection method
demonstrates encouraging performance in terms of these metrics. Moreover, the RF-RFE-
SELLP method can achieve better performance than several supervised learning-based and
similarity-based methods for most networks.
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